
Advances in Neural Rendering

A. Tewari1? J. Thies2? B. Mildenhall3? P. Srinivasan3? E. Tretschk1 Y. Wang4 C. Lassner5 V. Sitzmann6 R. Martin-Brualla3

S. Lombardi5 T. Simon5 C. Theobalt1 M. Nießner7 J. T. Barron3 G. Wetzstein8 M. Zollhöfer5 V. Golyanik1

1MPI for Informatics 2MPI for Intelligent Systems 3Google Research 4ETH Zurich 5Reality Labs Research
6MIT 7Technical University of Munich 8Stanford University ?Equal contribution.

Figure 1: This state-of-the-art report discusses a large variety of neural rendering methods which enable applications such as novel-view
synthesis of static and dynamic scenes, generative modeling of objects, and scene relighting. See Section 4 for more details on the various
methods. Images adapted from [MST∗20, TY20, CMK∗21, ZSD∗21, BBJ∗21, LSS∗21, PSB∗21, JXX∗21, PDW∗21].

Abstract
Synthesizing photo-realistic images and videos is at the heart of computer graphics and has been the focus of decades of
research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray
tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs
define the actual scene and what is rendered, and are referred to as the scene representation (where a scene consists of one
or more objects). Example scene representations are triangle meshes with accompanied textures (e.g., created by an artist),
point clouds (e.g., from a depth sensor), volumetric grids (e.g., from a CT scan), or implicit surface functions (e.g., truncated
signed distance fields). The reconstruction of such a scene representation from observations using differentiable rendering
losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from classical
computer graphics and machine learning to create algorithms for synthesizing images from real-world observations. Neural
rendering is a leap forward towards the goal of synthesizing photo-realistic image and video content. In recent years, we have
seen immense progress in this field through hundreds of publications that show different ways to inject learnable components
into the rendering pipeline. This state-of-the-art report on advances in neural rendering focuses on methods that combine
classical rendering principles with learned 3D scene representations, often now referred to as neural scene representations. A
key advantage of these methods is that they are 3D-consistent by design, enabling applications such as novel viewpoint synthesis
of a captured scene. In addition to methods that handle static scenes, we cover neural scene representations for modeling non-
rigidly deforming objects and scene editing and composition. While most of these approaches are scene-specific, we also discuss
techniques that generalize across object classes and can be used for generative tasks. In addition to reviewing these state-of-
the-art methods, we provide an overview of fundamental concepts and definitions used in the current literature. We conclude
with a discussion on open challenges and social implications.

1. Introduction

Synthesis of controllable and photo-realistic images and videos is
one of the fundamental goals of computer graphics. During the

last decades, methods and representations have been developed
to mimic the image formation model of real cameras, including
the handling of complex materials and global illumination. These
methods are based on the laws of physics and simulate the light

ar
X

iv
:2

11
1.

05
84

9v
1

 [
cs

.G
R

]
 1

0
N

ov
 2

02
1

2 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

transport from light sources to the virtual camera for synthesis. To
this end, all physical parameters of the scene have to be known for
the rendering process. These parameters, for example, contain in-
formation about the scene geometry and material properties such as
reflectivity or opacity. Given this information, modern ray tracing
techniques can generate photo-real imagery. Besides the physics-
based rendering methods, there is a variety of techniques that ap-
proximate the real-world image formation model. These methods
are based on mathematical approximations (e.g., a piece-wise linear
approximation of the surface; i.e., triangular meshes) and heuristics
(e.g., Phong shading) to improve the applicability (e.g., for real-
time applications). While these methods require fewer parameters
to represent a scene, the achieved realism is also reduced.

While traditional computer graphics allows us to generate high-
quality controllable imagery of a scene, all physical parameters of
the scene, for example, camera parameters, illumination and ma-
terials of the objects need to be provided as inputs. If we want
to generate controllable imagery of a real-world scene, we would
need to estimate these physical properties from existing observa-
tions such as images and videos. This estimation task is referred to
as inverse rendering and is extremely challenging, especially when
the goal is photo-realistic synthesis. In contrast, neural rendering is
a rapidly emerging field which allows the compact representation
of scenes, and rendering can be learned from existing observations
by utilizing neural networks (see Figure 1). The main idea of neu-
ral rendering is to combine insights from classical (physics-based)
computer graphics and recent advances in deep learning. Similar
to classical computer graphics, the goal of neural rendering is to
generate photo-realistic imagery in a controllable way (c.f. defini-
tion of neural rendering in [TFT∗20]). This, for example, includes
novel viewpoint synthesis, relighting, deformation of the scene, and
compositing.

Early neural rendering approaches (covered in [TFT∗20]) used
neural networks to convert scene parameters into the output images.
The scene parameters are either directly given as one-dimensional
inputs, or a classical computer graphics pipeline is used to gener-
ate two-dimensional inputs. The deep neural networks are trained
on observations of real-world scenes and learn to model as well as
render these scenes. A deep neural network can be seen as a univer-
sal function approximator. Specifically, a network defines a family
of functions based on its input arguments, model architecture, and
trainable parameters. Stochastic gradient descent is employed to
find the function from this space that best explains the training set
as measured by the training loss. From this viewpoint, neural ren-
dering aims to find the mapping I =M(c) between control param-
eters c ∈ Rdin and the corresponding output image I ∈ RH×W×3,
with H and W being image height and width. This can be inter-
preted as a complex and challenging sparse data interpolation prob-
lem. Thus, neural rendering, similar to classical function fitting,
has to navigate the trade-off between under- and over-fitting, i.e.,
representing the training set well vs. generalization to unobserved
inputs. If the representational power of the network is insufficient,
the quality of the resulting images will be low, e.g., results are of-
ten blurry. On the other hand, if the representational power is too
large, the network overfits to the training set and does not general-
ize to unseen inputs at test time. Finding the right network archi-
tecture is an art in itself. In the context of neural rendering, design-

(a) 2D Neural Rendering, also known as neural refinement, neural re-
rendering, or deferred neural rendering is based on 2D inputs that are gen-
erated for example using a classical renderer and learns to render a scene
in 2D.

(b) 3D Neural Rendering learns to represent a scene in 3D and uses fixed
differentiable rendering schemes from computer graphics which are moti-
vated by physics.

Figure 2: The term “Neural Rendering” is often applied to what
are two distinct concepts. The previous STAR report on neural ren-
dering [TFT∗20] primarily focused on the paradigm shown in (a),
in which a neural network is trained to map from some 2D input
signal (such as a semantic label or a rasterized proxy geometry)
directly to the output image — the neural network is trained to ren-
der. This report focuses on a newer emerging paradigm for neural
rendering, shown in (b) and well-exemplified by NeRF [MST∗20].
Here, a neural network is supervised so as to represent the shape or
appearance of a particular scene, and that neural representation is
rendered using a somewhat conventional graphics “engine” that is
defined analytically, instead of being learned. Unlike the previous
paradigm, here the neural network does not learn how to render
— it instead learns to represent a scene in 3D, and that scene is
then rendered according to the physics of image formation. Image
adapted from [MGK∗19].

ing the right physically motivated inductive biases often requires
a strong graphics background. These physically motivated induc-
tive biases act as regularizers and ensure that the found function is
close to how 3D space and/or image formation works in our real
world, thus leading to better generalization at test time. Inductive
biases can be added to the network in different ways. For example,
in terms of the employed layers, at what point in the network and in
which form inputs are provided, or even via the integration of non-
trainable (but differentiable) components from classical computer
graphics. One great example for this are recent neural rendering
techniques that try to disentangle the modeling and rendering pro-
cesses by only learning the 3D scene representation and relying on
a rendering function from computer graphics for supervision. For
example, Neural Radiance Fields (NeRF) [MST∗20] uses a multi-
layer perceptron (MLP) to approximate the radiance and density
field of a 3D scene. This learned volumetric representation can be
rendered from any virtual camera using analytic differentiable ren-
dering (i.e., volumetric integration). For training, observations of
the scene from several camera viewpoints are assumed. The net-
work is trained on these observations by rendering the estimated

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 3

3D scene from these training viewpoints, and minimizing the dif-
ference between the rendered and observed images. Once trained,
the 3D scene approximated by the neural network can be rendered
from a novel viewpoint, enabling controllable synthesis. In contrast
to approaches that use the neural network to learn the rendering
function as well [TFT∗20], NeRF uses knowledge from computer
graphics more explicitly in the method, enabling better generaliza-
tion to novel views due to the (physical) inductive bias: an inter-
mediate 3D-structured representation of the density and radiance
of the scene. As a result, NeRF learns physically meaningful color
and density values in 3D space, which physics-inspired ray cast-
ing and volume integration can then render consistently into novel
views.

The achieved quality, as well as the simplicity of the method,
led to an ‘explosion’ of developments in the field. Several advances
have been made which improve the applicability, enable controlla-
bility, the capture of dynamically changing scenes as well as the
training and inference times. Within this report, we cover these re-
cent advances in the field. To foster a deep understanding of these
methods, we discuss the fundamentals of neural rendering by de-
scribing the different components and design choices in detail in
Section 3. Specifically, we clarify the definition of the different
scene representations used in the current literature (surfaces and
volumetric approaches), and describe ways to approximate them
using deep neural networks. We also present the fundamental ren-
dering functions from computer graphics that are used to train these
representations. Since neural rendering is a very fast evolving field,
with significant progress along many different dimensions, we de-
velop a taxonomy of the recent approaches w.r.t. their application
field to provide a concise overview of the developments. Based on
this taxonomy and the different application areas, we present the
state-of-the-art methods in Section 4. The report is concluded with
Section 5 discussing the open challenges and Section 6 discussing
social implications of photo-realistic synthetic media.

2. Scope of This STAR

In this state-of-the-art report, we focus on advanced neural ren-
dering approaches that combine classical rendering with learnable
3D representations (see Figure 2). The underlying neural 3D rep-
resentations are 3D-consistent by design and enable control over
different scene parameters. Within this report, we give a compre-
hensive overview of the different scene representations and de-
tail the fundamentals of the components that are lent from clas-
sical rendering pipelines as well as machine learning. We further
focus on approaches that use Neural Radiance Fields [MST∗20]
and volumetric rendering. However, we do not focus on neural ren-
dering methods that reason mostly in 2D screen space; we refer
to [TFT∗20] for a discussion on such approaches. We also do not
cover neural super-sampling and denoising methods for ray-traced
imagery [CKS∗17, KBS15].

3. Fundamentals of Neural Rendering

Neural rendering, and especially 3D neural rendering is based on
classical concepts of computer graphics (see Figure 2). A neural
rendering pipeline learns to render and/or represent a scene from
real-world imagery, which can be an unordered set of images, or
structured, multi-view images or videos. It does so by mimicking
the physical process of a camera that captures a scene. A key prop-
erty of 3D neural rendering is the disentanglement of the camera
capturing process (i.e., the projection and image formation) and the
3D scene representation during this training. This disentanglement
has several advantages and leads especially to a high level of 3D
consistency during the synthesis of images (e.g., for novel view-
point synthesis). To disentangle the projection and other physical
processes from the 3D scene representation, 3D neural rendering
methods rely on known image formation models from computer
graphics (e.g., rasterization, point splatting, or volumetric integra-
tion). These models are motivated by physics, especially the inter-
action of the light of an emitter with the scene as well as the camera
itself. This light transport is formulated using the rendering equa-
tion [Kaj86].

The computer graphics field offers a variety of approximations
to this rendering equation. These approximations are dependent on
the used scene representation and range from classical rasterization
to path tracing and volumetric integration. 3D neural rendering ex-
ploits these rendering methods. In the following, we will detail the
scene representations (Section 3.1) as well as the rendering meth-
ods (Section 3.2) used in common neural rendering methods. Note
that both the scene representation as well as the rendering method
itself have to be differentiable in order to learn from real images
(Section 3.3).

3.1. Scene Representations

For decades, the computer graphics community has explored vari-
ous primitives, including point clouds, implicit and parametric sur-
faces, meshes, and volumes (see Figure 3). While these representa-
tions have clear definitions in the computer graphics field, there is
often a confusion in the current literature of neural rendering, espe-
cially when it is about implicit and explicit surface representations
and volumetric representations. In general, volumetric representa-
tions can represent surfaces, but not vice versa. Volumetric repre-
sentations store volumetric properties such as densities, opacities or
occupancies, but they can also store multidimensional features such
as colors or radiance. In contrast to volumetric representations, sur-
face representations store properties w.r.t. the surface of an object.
They cannot be used to model volumetric matter, such as smoke
(unless it is a coarse approximation). For both surface and volu-
metric representations, there are continuous and discretized coun-
terparts (see Figure 3). The continuous representations are partic-
ularly interesting for neural rendering approaches since they can
provide analytic gradients.

For surface representations, there are two different ways to rep-
resent the surface – explicitly or implicitly. The surface using an
explicit surface function fexplicit(.) ∈ R in the Euclidean space is

4 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

Figure 3: An overview of classical surface and volume representations. Images adapted from [GSHG98, SS10, YGKL21a, Vla09, Chu06].

defined as:

Sexplicit =

 x

y
fexplicit(x,y)

 ∣∣∣∣∣∣
(

x
y

)
∈ R2

 . (1)

Note that an explicit surface can also be represented as a parametric
function fparametric(.) ∈ R3, which generalizes Sexplicit:

S∗explicit =

{
fparametric(u,v)

∣∣∣∣ (u
v

)
∈ R2

}
. (2)

The surface using an implicit surface function fimplicit(·) ∈ R is
defined as the zero-level set:

Simplicit =

 x

y
z

 ∈ R3

∣∣∣∣∣∣ fimplicit(x,y,z) = 0

 . (3)

Whereas a volume representation defines properties in the entire
space:

V =

 fvol(x,y,z)

∣∣∣∣∣∣
 x

y
z

 ∈ R3

 . (4)

Note that the respective function domain can be restricted for all
these representations.

In general, for all three scene representations, the underlying
function can be any function that is capable to approximate the
respective content. For simple surfaces like a plane, the functions
fimplicit , fexplicit can be linear functions. To handle more complex
surfaces or volumes, polynomials (for example from a Taylor se-
ries) or multivariate Gaussians can be used. To increase the expres-
siveness further, these functions can be spatially localized and then
combined into a mixture, for example multiple Gaussians can form
a Gaussian mixture. Radial basis function networks are such mix-
ture models and can be used as an approximator for both, implicit
surface and volume functions [CBC∗01a]. Note that these radial

basis function networks can be interpreted as a single layer of a
neural network.

Since neural networks and, especially, multi-layer perceptrons
(MLPs) are universal function approximators, they can be used
to ‘learn’ the underlying functions (fimplicit, fexplicit, fparametric, or
fvol). (Similar to a Gaussian mixture, multiple localized, weaker
MLPs can be combined into a mixture as well, e.g., [RPLG21].)
In the context of neural rendering, a scene representation that is
using a neural network to approximate the surface or volumetric
representation function is called neural scene representation. Note
that both surface and volumetric representations can be extended to
store additional information, like color or view-dependent radiance.

In the following, we will discuss the different MLP-based func-
tion approximators that build the foundation of the recent neural
surface and volumetric representations.

3.1.1. Multi-Layer Perceptron as a Universal Function
Approximator

Multi-Layer Perceptrons (MLPs) are known to act as Universal
Function Approximators [HSW89]. Specifically, we use MLPs to
represent surface or volumetric properties. A multi-layer percep-
tron is a conventional fully-connected neural network. In the con-
text of scene repesentations, the MLP takes as input a coordinate in
space, and produces as output some value corresponding to that
coordinate. This type of network is also known as coordinate-
based neural network (and the resulting representation is called
coordinate-based scene representation). Note that the input coor-
dinate space can be aligned with the Euclidean space, but it can
also be embedded for example in the uv-space of a mesh (resulting
in a neural parametric surface).

A key finding to use ReLU-based MLPs for neural representation
and rendering tasks is the usage of positional encoding. Inspired by
the positional encoding used in natural language processing (e.g.,

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 5

in Transformers [VSP∗17]), the input coordinates are positionally
encoded using a set of basis functions. These basis functions can
be fixed [MST∗20] or they can be learned [TSM∗20]. These spa-
tial embeddings simplify the task of the MLP to learn the mapping
from a location to a specific value, since through the spatial embed-
ding, the input space is partitioned. As an example, the positional
encoding used in NeRF [MST∗20] is defined as:

x 7→ [cos(Mx),sin(Mx)] (5)

where M =
[
I 2I 22I . . . 2p−1I

]>
. (6)

Here, x is the input coordinate and p is a hyperparameter control-
ling the frequencies used (dependent on the target signal resolu-
tion). This “soft” binary encoding of the input coordinates makes it
easier for the network to access higher frequencies of the input.

As mentioned above, MLP-based function approximators can
be used to represent a surface or volume (i.e., fimplicit, fexplicit,
fparametric, or fvol), but they can also be used to store other at-
tributes like color. For instance, there are hybrid representations
composed of classical surface representations like point clouds or
meshes with an MLP to store the surface appearance (e.g., texture
field [OMN∗19]).

3.1.2. Representing Surfaces

Point Clouds. A point cloud is a set of elements of the Euclidean
space. A continuous surface can be discretized by a point cloud -
each element of the point cloud represents a sample point (x,y,z)
on the surface. For each point, additional attributes can be stored
such as normals or colors. A point cloud that features normals is
also referred to as oriented point cloud. Besides simple points that
can be seen as infinitesimally small surface patches, oriented point
clouds with a radius can be used (representing a 2D disk that lies
on the tangent plane of the underlying surface). This representa-
tion is called surface elements, alias surfels [PZvBG00]. They are
often used in computer graphics to render point clouds or parti-
cles from simulations. The rendering of such surfels is called splat-
ting, and recent work shows that it is differentiable [YSW∗19a].
Using such a differentiable rendering pipeline, it is possible to di-
rectly back-propagate to the point cloud locations as well as the
accompanied features (e.g., radius or color). In Neural Point-based
Graphics [ASK∗20a] and SynSin [WGSJ20], learnable features are
attached to the points that can store rich information about the ap-
pearance and shape of the actual surface. In ADOP [RFS21a] these
learnable features are interpreted by an MLP which can account
for view-dependent effects. Note that instead of storing explicitly
features for specific points, one can also use an MLP to predict the
features for the discrete positions.

As mentioned above, a point cloud is a set of elements of the Eu-
clidean space, thus, besides surfaces, they can also represent vol-
umes (e.g., storing additional opacity or density values). Using a
radius for each point naturally leads to a full sphere-based formu-
lation [LZ21].

Meshes. Polygonal meshes represent a piece-wise linear approxi-
mation of a surface. Especially, triangle and quad meshes are used
in computer graphics as de facto standard representation for sur-
faces. The graphics pipeline and graphic accelerators (GPUs) are

optimized to process and rasterize billions of triangles per second.
The majority of graphics editing tools work with triangle meshes
which makes this representation important for any content cre-
ation pipeline. To be directly compatible with these pipelines, many
’classical’ inverse graphics and neural rendering methods use this
basic surface representation. Using a differentiable renderer, the
vertex positions as well as the vertex attributes (e.g., colors) can
be optimized for to reproduce an image. Neural networks can be
trained to predict the vertex locations, e.g., to predict dynamically
changing surfaces [BNT21]. Instead of using vertex attributes, a
common strategy to store surface attributes within the triangles are
texture maps. 2D texture coordinates are attached to the vertices
of the mesh which reference a location in the texture image. Us-
ing barycentric interpolation, texture coordinates can be computed
for any point in a triangle and the attribute can be retrieved from
the texture using bilinear interpolation. The concept of textures is
also integrated into the standard graphics pipeline, with additional
features such as mip-mapping which is needed to properly handle
the sampling of the texture (c.f., sampling theorem). Deferred Neu-
ral Rendering [TZN19], uses textures that contain learnable view-
dependent features, so-called neural textures. Specifically, a coarse
mesh is used as underlying 3D representation, to rasterize these
neural textures. A neural network interprets these rasterized fea-
tures in image space. Note that the network can for example be a
pixel-wise MLP, then the neural texture represents the surface radi-
ance.

In contrast to using discrete textures, continuous textures can
be used. The authors of texture fields [OMN∗19] propose the us-
age of an MLP that predicts color values for each surface point.
In neural reflectance field textures (NeRF-Tex) [BGP∗21] the idea
of NeRF [MST∗20] is combined with the idea of using a 2D neu-
ral texture and an underlying 3D mesh. NeRF-Tex is conditioned
on user-defined parameters that control the appearance, thus, being
editable by artists.

Implicit Surfaces. Implicit surfaces define the surface as the zero
level-set of a function, see Eq. 3. The most commonly used im-
plicit surface representation is a signed distance function (SDF).
These SDF representations are used in numerous 3D scanning tech-
niques that use volumetric fusion [CL96] to incrementally recon-
struct the surface of a static [IKH∗11, NZIS13] or dynamic ob-
ject [NFS15]. Implicit surface representations offer many advan-
tages as they avoid the requirement of defining a mesh template,
thus, being able to represent objects with unknown topology or
changing topology in a dynamic scenario. The volumetric fusion
approaches mentioned above use a discretized (truncated) signed
distance function, i.e., using a 3D grid containing signed distance
values. Hoppe et al. [HDD∗92] propose piece-wise linear func-
tions to model the signed distance function w.r.t. input surface point
samples. The seminal work of Carr et al. [CBC∗01b] uses a ra-
dial basis function network instead. This radial basis function net-
work represent a continuous implicit surface function and can be
seen as the first ’neural’ implicit surface representation. Recent
neural implicit surfaces representations are based on coordinate-
based multi-layer perceptrons (MLPs), covered in Section 3.1.1.
Such representations have been gaining widespread popularity in
neural scene representation and rendering. They were proposed

6 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

concurrently in [PFS∗19, CZ19] for shape modeling, where MLP
architectures were used to map continuous coordinates to signed
distance values. The fidelity of signals represented by such coordi-
nate networks, or neural implicit representation, is primarily lim-
ited by the capacity of the network. Thus, compared to other afore-
mentioned representations, implicit surfaces offer potential advan-
tages in memory efficiency and, as a continuous representation,
they can theoretically represent geometries at infinite resolution.
The initial proposals was ensued, with broad enthusiasm, by a vari-
ety of improvements of different focuses, including improving the
training schemes [XFYS20,DZW∗20,YAK∗20], leveraging global-
local context [XWC∗19, EGO∗20], adopting specific parameteri-
zations [GCV∗19, DGY∗20, CTZ20, KJJ∗21, YRSH21] or spatial
partitions [GCS∗20,TTG∗20,CLI∗20,TLY∗21,MLL∗21]. As there
is no requirement of pre-defining the mesh template or the object
topology, neural implicit surfaces are well suited for modeling ob-
jects of varying topologies [PFS∗19, CZ19]. Analytic gradients of
the output with respect to the input coordinates can be computed
using backpropagation. This makes it possible to implement regu-
larization terms on the gradients [GYH∗20], in addition to other ge-
ometrically motivated regularizers [GYH∗20, PFAK20, YAK∗20].
These respresentations can be extended to also encode the radiance
of the scene [KJJ∗21, YTB∗21, SHN∗19]. This is useful for neural
rendering, where we want the scene representation to encode both
the geometry and appearance of the scenes.

3.1.3. Representing Volumes

Voxel Grids. As the pixel-equivalent in R3, voxels are commonly
used to represent volumes. They can store the geometry occupancy,
or store the density values for a scene with volumetric effects such
as transparency. In addition, the appearance of the scene can be
stored [GSHG98]. Using trilinear interpolation these volume at-
tributes can be accessed at any point within the voxel grid. T his
interpolation is especially used for sample-based rendering meth-
ods like ray casting. While the stored attributes can have a spe-
cific semantic meaning (e.g., occupancy), the attributes can also be
learned. Sitzmann et al. propose the use of DeepVoxels [STH∗19],
where features are stored in a voxel grid. The accumulation and
interpretation of the features after the ray-casting rendering pro-
cedure is done using a deep neural network. These DeepVoxels
can be seen as volumetric neural textures, which can be directly
optimized using backpropagation. While dense voxel-based repre-
sentations are fast to query, they are memory inefficient and 3D
CNNs, potentially operating on these volumes, are computation-
ally heavy. Octree data structures [LK10] can be used to repre-
sent the volume in a sparse manner. Sparse 3D convolution on oc-
trees [WLG∗17, ROUG17] can help mitigate some problems, but
these compact data structures cannot be easily updated on the fly.
Thus, they are difficult to integrate into learning frameworks. Other
approaches to mitigating the memory challenges of dense voxel
grids include using object-specific shape templates [KTEM18],
multi-plane [ZTF∗18, MSOC∗19, FBD∗19, TS20, WPYS21] or
multi-sphere [BFO∗20, ALG∗20] images, which all aim at repre-
senting the voxel grid using a sparse approximation.

Neural Volumetric Representations. Instead of storing features
or other quantities of interest using a voxel grid, these quantities

can also be defined using a neural network, similar to neural im-
plicit surfaces (see Section 3.1.2). MLP network architectures can
be used to parameterize volumes, potentially in a more memory ef-
ficient manner than explicit voxel grids. Still, these representations
can be expensive to sample depending on the underlying network
size because for each sample, an entire feedforward pass through
the network has to be computed. Most methods can be roughly clas-
sified as using global or local networks [GCV∗19, GCS∗20, CZ19,
MPJ∗19, AL20, SHN∗19, SZW19, OMN∗19, GYH∗20, YKM∗20,
DNJ20, SMB∗20, NMOG20, LGL∗20, JJHZ20, LZP∗20, KSW20].
Hybrid representations that use both grids and neural net-
works make a trade-off between computational and memory ef-
ficiency [PNM∗20, JSM∗20, CLI∗20, MLL∗21]. Similar to neural
implicit surfaces, neural volumetric representations allow for the
computation of analytic gradients, which has been used to define
regularization terms in [SMB∗20, TTG∗21, PSB∗21].

General remark: The use of coordinate-based neural networks to
model scenes volumetrically (as in NeRF) superficially resembles
the use of coordinate networks to model surfaces implicitly (as in
neural implicit surfaces). However, NeRF-like volumetric represen-
tations are not necessarily implicit — because the output of the net-
work is density and color, the geometry of the scene is parameter-
ized by the network explicitly, not implicitly. Despite this, it is com-
mon in the literature for these models to still be called “implicit”,
perhaps in reference to the fact that the geometry of the scene is
defined “implicitly” by the weights of a neural network (a different
definition of “implicit” than is used by the SDF literature). Also
note that this is a distinct definition of “implicit” than what is com-
monly used by the deep learning and statistic communities, where
“implicit” usually refers to models whose outputs are implicitly de-
fined as fixed points of dynamic systems, and whose gradients are
computed using the implicit function theorem [BKK19].

3.2. Differentiable Image Formation

The scene representations in the previous sections allow us to rep-
resent the 3D geometry and appearance of the scene. As a next step,
we describe how images can be generated from such scene repre-
sentations through rendering. There are two general approaches to
rendering a 3D scene into a 2D image plane: ray casting and ras-
terization, see also Figure 4. A rendered image of the scene can be
computed by also defining the camera in the scene. Most methods
use a pinhole camera, where all camera rays pass through a single
point in space (focal point). With a given camera, rays from the
camera origin can be cast towards the scene in order to calculate
the rendered image.

Ray Casting. In the pinhole model, the basic intercept theorem
can be used to describe how a point p ∈ R3 in 3D is projected to
the correct position q ∈ R2 in the image plane. It is by definition a
non-injective function and hard to invert—this puts it at the heart
of the 3D reconstruction problem.

The Pinhole model has a single parameter matrix for this projec-
tion: the intrinsic matrix K contains the focal lengths normalized by
pixel size f = [αx,αy], axis skew γ and center point c = [cx,cy]. Us-
ing the intercept theorem and assuming homogeneous coordinates
p′ = [x,y,z,1], we find that the projected coordinates are q′ =K ·p′,

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 7

(a) Forward Rendering (e.g., rasterization) – the image is generated by pro-
jecting the 3D representation to the image plane.

(b) Ray Casting – the image is generated by casting viewing rays,
sampling the 3D representation and accumulating them. Image adapted
from [MST∗20].

Figure 4: For explicit surfaces representations, the surface is di-
rectly indexable. This allows us to use forward rendering methods
that project the surface to the image plane and to set a pixel accord-
ingly (e.g., using rasterization or point splatting). Implicit surface
representations and volumetric representations, do not provide di-
rect information of the surface that would allow for forward ren-
dering, instead, the 3D space seen from the virtual camera has to
be sampled to generate an image (e.g., using ray marching).

with

K =

αx γ cx 0
0 αy cy 0
0 0 1 0

 .
This assumes that the center of the projection is at the coordinate
origin and that the camera is axis-aligned. To generalize this for
arbitrary camera positions, an extrinsic matrix R can be used. This
homogeneous 4×4 matrix E is composed of

E =

[
R3×3 t3×1
01×3 1

]
,

where R is a rotation matrix and t is a translation vector, such that
R · pw + t = pc, where we use pw to denote a point in world co-
ordinates and pc to denote it in camera coordinates. This defini-
tion of R and t is common in Computer Vision (for example, used
by OpenCV) and referred to as ‘world-to-cam’ mapping, whereas
in Computer Graphics (for example, in OpenGL) a similar inverse
‘cam-to-world’ mapping is more prevalent. Assuming the ‘world-

to-cam’ convention and using homogeneous coordinates, we can
write the full projection of pw to qp as:

qp
′ = K ·

[
R t

01×3 1

]
·pw
′.

If the ‘cam-to-world’ convention is used, the ray casting is simi-
larly convenient. Whereas these equations are non-injective due to
the depth ambiguity, they lend themselves very well for automatic
differentiation and can be optimized end-to-end in image formation
models.

To model current cameras correctly, there is one more compo-
nent that has to be taken into account: the lens. Leaving aside ef-
fects such as depth-of-field or motion blur, which must be mod-
eled in the image formation process, they add distortion effects to
the projection function. Unfortunately, there is no single, simple
model to capture all different lens effects. Calibration packages,
such as the one in OpenCV, usually implement models with up to
12 distortion parameters. They are modeled through polynomials
up to degree five, hence are not trivially invertible (which is re-
quired for raycasting as opposed to point projection). More modern
approaches to camera calibration use many more parameters and
achieve a higher accuracy [SLPS20] and could be made invertible
and differentiable.

Rasterization. An alternative to ray casting is rasterization of geo-
metric primitives. This technique does not try to emulate the image
formation process of the real world, but instead exploits the geo-
metric properties of objects to quickly create an image. It is mostly
used with meshes, which are described by a set of vertices v and
faces f, connecting triples or quadruplets of vertices to define sur-
faces. One fundamental insight is that the geometric operations in
3D can solely work with the vertices: for example, we can use the
same extrinsic matrix E to transform each point from the world to
the camera coordinate system. After this transformation, the points
outside of the view frustum or points with wrong normal orienta-
tion can be culled to reduce the amount of points and faces to be
processed in the next steps. The location of the remaining points
projected to image coordinates can again trivially be found by us-
ing the intrinsic matrix K as outlined above. The face information
can be used to interpolate the depth on face primitives, and the top-
most faces can be stored in a z-buffer.

This way of implementing the projection is often faster than ray
casting: it mainly scales with the number of visible vertices in a
scene, whereas ray-casting scales with the number of pixels and
the numbers of primitives to intersect with. However, it is harder to
capture certain effects using it (e.g., lighting effects, shadows, re-
flections). It can be made differentiable through ‘soft’ rasterization.
This has been implemented, for example, in [LLCL19, RRN∗20].

3.2.1. Surface Rendering

Point Cloud Rendering. In the computer graphics literature, point
cloud rendering techniques are extensively used [KB04, SP04]. As
mentioned before, point clouds are discrete samples of continuous
surfaces or volumes. Point cloud rendering corresponds to recon-
structing the continuous signal, e.g., the appearance of a continu-

8 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

ous surface, from irregularly distributed discrete samples then re-
sampling the reconstructed signal in the image space at each pixel
location.

This process can be done in two different ways. The first ap-
proach is based on the theory of classic signal processing and
can be seen as a ‘soft’ point splatting (similar to the soft ras-
terizer in the mesh rendering section below). It first constructs
the continuous signal using continuous local reconstruction ker-
nels r (·), i.e., f = ∑ fir (pi). Essentially, this approach amounts
to blending the discrete samples with some local deterministic
blurring kernels [LKL18, ID18, RROG18], such as EWA splat-
ting [ZPVBG01, ZPVBG02], which is a spatially-variant recon-
struction kernel that is designed to minimize aliasing. In neural
rendering, the discrete samples can store some learnable features.
Correspondingly, this aforementioned step effectively projects and
blends the individual features into a 2D feature map. If the features
have a predefined semantic meaning (e.g., colors, normals), a fixed
shading function or BRDF can be used to generate the final image.
If the features are learned neural descriptors, a 2D neural network
is deployed to transform the 2D feature map to an RGB image.
Recent neural point rendering methods that adopt this approach
include SinSyn and Pulsar [WGSJ20, LZ21]. They use spatially-
invariant and isotropic kernels in the blending step for performance
reasons. While these simplified kernels can result in rendering ar-
tifacts such as holes, blurred edges and aliasing, these artifacts can
be compensated in the neural shading step.

Alternative to the soft point splatting approach, one can use a
conventional point renderer from OpenGL or DirectX. Here, each
point is projected to a single pixel (or a small area of pixels) result-
ing in a sparse feature map. One can use a deep neural networks to
reconstruct the signal directly in the image space [ASK∗20b]. Note
that this naive rendering approach does not provide gradients with
respect to the point positions p, and only allows to differentiate the
rendering function w.r.t. the (neural) features. In contrast, the soft
point splatting approaches provide point position gradients via the
reconstruction kernel r (p).

However, even in this case, the gradient is confined spatially
within the support of the local reconstruction. [YSW∗19b] ad-
dressed this issue by approximating the gradient using finite dif-
ference, and successfully applied the renderer to surface denois-
ing, stylization, and multiview shape reconstruction. This idea was
adopted in [RFS21b] to optimize the geometry and camera poses
jointly for novel view synthesis.

Mesh Rendering. There are a number of general-purpose ren-
derers that allow meshes to be rasterized or otherwise rendered
in a differentiable manner. Among differentiable mesh rasteriz-
ers, Loper and Black [LB14] developed a differentiable rendering
framework called OpenDR that approximates a primary renderer
and computes the gradients via automatic differentiation. Neural
mesh renderer (NMR) [KUH18] approximates the backward gra-
dient for the rasterization operation using a handcrafted function
for visibility changes. [LTJ18] proposed Paparazzi, an analytic dif-
ferentiable renderer for mesh geometry processing using image fil-
ters. Petersen et al. [PBDCO19] presented Pix2Vex, a C∞ differ-
entiable renderer via soft blending schemes of nearby triangles,

and [LLCL19] introduced Soft Rasterizer, which renders and ag-
gregates the probabilistic maps of mesh triangles, allowing gradi-
ent flow from the rendered pixels to the occluded and far-range
vertices. While most rasterizers only support rendering based on
direct illumination, [LHL∗21] also supports differentiable render-
ing of soft shadows. In the domain of physics-based rendering,
[LADL18a] and [ALKN19] introduced a differentiable ray tracer
to implement the differentiability of physics-based rendering ef-
fects, handling camera position, lighting and texture. In addition,
Mitsuba 2 [NDVZJ19] and Taichi [HLA∗19,HAL∗20] are general-
purpose physically based renderers that support differentiable mesh
rendering via automatic differentiation, among many other graph-
ics techniques.

Neural Implicit Surface Rendering. When the input observa-
tions are in the form of 2D images, the network which implements
the implicit surface is extended to not only produce geometry-
related quantities, i.e., signed distance values, but also appearance-
related quantities. An implicit differentiable renderer [SZW19,
NMOG20,LZP∗20,LSCL19,YKM∗20,KJJ∗21,BKW21,TLY∗21]
can be implemented by first finding the intersection between a
viewing ray and the surface using the geometric branch of the neu-
ral implicit function, and then obtaining the RGB value of this
point from the appearance branch. The search of surface intersec-
tion is typically based on some variant of the sphere tracing al-
gorithm [Har96]. Sphere tracing iteratively samples the 3D space
from the camera center in the direction of the view ray until the
surface is reached. Sphere tracing is an optimized ray marching
approach that adjusts the step size by the SDF value sampled at
the previous location, but still this iterative strategy can be com-
putationally expensive. Takikawa et al. [TLY∗21] improved the
rendering performance by adapting the ray-tracing algorithm to
the sparse octree data structure. A common problem for implicit
surface rendering for joint geometry and appearance estimation
from 2D supervision is the ambiguity of geometry and appearance.
In [NMOG20,YKM∗20,KJJ∗21,BKW21], foreground masks were
extracted from the 2D images to provide additional supervision sig-
nals for the geometry branch. Recently, [OPG21] and [YGKL21b]
addressed this issue by formulating the surface function into the
volumetric rendering formulation (introduced below); on the other
hand [ZYQ21] use off-the-shelf depth estimation methods to gener-
ate pseudo ground truth signed distance values to assist the training
of the geometry branch.

3.2.2. Volumetric Rendering

Volumetric rendering is based on ray casting and has proven to be
effective in neural rendering and, especially, in learning a scene
representation from multi-view input data. Specifically, the scene is
represented as a continuous field of volume density or occupancy
rather than a collection of hard surfaces.

This means that rays have some probability of interacting with
the scene content at each point in space, rather than a binary inter-
section event. This continuous model works well as a differentiable
rendering framework for machine learning pipelines that rely heav-
ily on the existence of well-behaved gradients for optimization.

Though fully general volumetric rendering does account for

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 9

“scattering” events where rays can be reflected off of a volumet-
ric particles [Jar08], we will limit this summary to the basic model
commonly used by neural volumetric rendering methods for view
synthesis [LH96, Max95], which only accounts for “emission” and
“absorption” events, where light is emitted or blocked by a volu-
metric particle.

Given a set of pixel coordinates, we can use the camera model
previously described to calculate the corresponding ray through 3D
space with origin p and direction ωo. The incoming light along this
ray can be defined using a simple emission/absorption model as

L(p,ωo) =
∫ t1

t0
T (p,ωo, t0, t)σ(p+ tωo)Le(p+ tωo,−ωo)dt , (7)

where σ is volume density at a point, Le is emitted light at a point
and direction, and transmittance T is a nested integral expression

T (p, ωo, t0, t) = exp
(
−

∫ t

t0
σ(p+ sωo)ds

)
. (8)

Density denotes the differential probability that a ray interacts with
the volumetric “medium” of the scene at a particular point, whereas
transmittance describes how much light will be attenuated as it trav-
els back toward the camera from point p+ tωo.

These expression can only be evaluated analytically for simple
density and color fields. In practice, we typically use quadrature
to approximate the integrals, where σ and Le are assumed to be
piecewise-constant within a set of N intervals {[ti−1, ti)}N

i=1 that
partition the length of the ray:

L(p, ωo) ≈
N

∑
i=1

Tiαi L(i)
e , (9)

Ti = exp

(
−

i−1

∑
j=1

∆ jσ j

)
, (10)

αi = 1− exp(−∆iσi) , (11)

∆i = ti− ti−1 . (12)

For a full derivation of this approximation, we refer the reader to
Max and Chen [MC10]. Note that when written in this form, the
expression for approximating L exactly corresponds to alpha com-
positing the colors L(i)

e from back to front [PD84].

NeRF [MST∗20] and related methods (e.g., [MBRS∗21,NG21b,
PCPMMN21, SDZ∗21, ZRSK20, NSP∗21]) use differentiable vol-
ume rendering to project the scene representations into 2D images.
This allows these methods to be used in an “inverse rendering”
framework, where a three- or higher-dimensional scene representa-
tion is estimated from 2D images. Volume rendering requires many
samples to be processed along a ray, each requiring a full forward
pass through the network. Recent work has proposed enhanced data
structures [YLT∗21, HSM∗21, GKJ∗21], pruning [LGL∗20], im-
portance sampling [NSP∗21], fast integration [LMW21], and other
strategies to accelerate the rendering speed, although training times
of these methods are still slow. Adaptive coordinate networks ac-
celerate training using a multi-resolution network architecture that
is optimized during the training phase by allocating available net-
work capacity in an optimal and efficient manner [MLL∗21].

3.3. Optimization

At the heart of training neural networks lies a non-linear optimiza-
tion which aims to apply the constraints of the training set in order
to obtain a set of neural network weights. As a result, the function
which is approximated by the neural network is fit to the given
training data. Typically, optimization of the neural networks is
gradient-based; more specifically SGD variants such as Momentum
or Adam [KB14] are utilized, where the gradients are obtained by
leveraging the backpropagation algorithm. In the context of neural
rendering, the neural network implements the 3D scene representa-
tion, and the training data consists of 2D observations of the scene.
The renderings obtained using differentiable rendering of the neural
scene representations is compared with the given observation using
various loss functions. These reconstruction losses can be realized
with per-pixel L1 or L2 terms, but also using perceptual [JAFF16]
or even discriminator-based loss formulations [GPAM∗14]. How-
ever, key is that the losses are directly coupled with the respective
differentiable rendering formulation in order to update the scene
representations, cf. Section 3.1.

4. Applications

In this section, we discuss the specific applications of neural ren-
dering and the underlying neural scene representations. We first
discuss improvements to novel view synthesis of static content in
Section 4.1. We then give an overview over methods that general-
ize across objects and scenes in Section 4.2. After that, Section 4.3
discusses non-static, dynamic scenes. We next turn to editing and
composing scenes in Section 4.4. Then we provide an overview
over relighting and material editing in Section 4.5. Finally, we dis-
cuss several engineering frameworks in Section 4.6. We also de-
velop a taxonomy of the different methods for each application.
These are presented in Table 1, Table 2, Table 3, Table 4, and Ta-
ble 5, respectively.

4.1. Novel View Synthesis of Static Content

Novel view synthesis is the task of rendering a given scene from
new camera positions, given a set of images and their camera poses
as input. Most of the applications presented later in this section gen-
eralize the task of view synthesis in some way: in addition to being
able to move the camera, they might allow moving or deforming
objects within the scene, changing the lighting, and so on.

View synthesis methods are evaluated on a few salient criteria.
Clearly, output images should look as realistic as possible. How-
ever, this is not the whole story — perhaps even more important
is multiview 3D consistency. Rendered video sequences must ap-
pear to portray consistent 3D content as the camera moves through
the scene, without flickering or warping. As the field of neural ren-
dering has matured, most methods have moved in the direction of
producing a fixed 3D representation as output that can be used to
render new 2D views, as explained in the scope. This approach au-
tomatically lends a degree of multiview consistency that has histor-
ically been hard to achieve when relying too heavily on black-box
2D convolutional networks as image generators or renderers.

10 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

Method R
eq

ui
re

d
D

at
a

R
eq

ui
re

s
Pr

e-
tr

ai
ne

d
N

eR
F

3D
R

ep
re

se
nt

at
io

n

Pe
rs

is
te

nt
3D

N
et

w
or

k
In

pu
ts

C
od

e

Mildenhall et al. [MST∗20] I+P 7 V F PE(P)+PE(V) W

Sitzmann et al. [SZW19] I+P 7 S P P W

Niemeyer et al. [NMOG20] I+P+M 7 O F P W

Chen et al. [CZ19] S 7 O F P W

Gu et al. [LGL∗20] I+P 7 G+V F PE(P)+PE(V) W

Lindell et al. [LMW21] I+P 7 V P PE(P)+PE(V) W

Reiser et al. [RPLG21] I+P 3 G+V F PE(P)+PE(V) W

Garbin et al. [GKJ∗21] I+P 3 G F P+V 7

Hedman et al. [HSM∗21] I+P 3 G F P+PE(V) W

Yu et al. [YLT∗21] I+P 3 G F P+V W

Neff et al. [NSP∗21] I+P+D 7 V F PE(P)+PE(V) W

Sitzmann et al. [SRF∗21] I+P 7 7 N L W

Table 1: Selected methods for static scene view synthesis presented
in Section 4.1. Although some of these representations are used for
applications beyond static scene view synthesis, in this table we
only classify such methods based on the use of their underlying
3D scene representation for static scene view synthesis. I: Images,
P: Camera poses (exact or approximate), S: 3D shape, M: Object
masks, D: Depth. G: Grid, V: Neural volumetric, S: Neural SDF,
O: Neural occupancy. F: Fully. P: Partial, N: Not guaranteed. P: 3D
position, V: 2D viewing direction, L: Light field ray coordinates.
PE(): Positinal encoding of argument.

In Table 1, we give an overview over the discussed methods.

4.1.1. View Synthesis from a 3D Voxel Grid Representation

We will briefly review the recent history of view synthesis using
3D voxel grids and a volumetric rendering model.

DeepStereo [FNPS16] presented the first end-to-end deep learn-
ing pipeline for view synthesis. This work included many concepts
that have now become commonplace. A convolutional neural net-
work is presented with input images in the form of a plane sweep
volume (PSV), where each nearby input is reprojected to a set of
candidate depth planes, requiring the network to simply evaluate
how well the reprojections match for each pixel at each candidate
depth. The CNN’s outputs are converted into a probability distribu-
tion over depths using a softmax, which is then used to combine a
stack of proposed color images (one per depth plane). The final loss
is only enforced on the pixel-wise difference between the rendered
output and a heldout target image, with no intermediate heuristic
losses required.

A major drawback of DeepStereo is that it requires running
a CNN to estimate depth probabilities and produce each output
frame independently, resulting in slow runtime and a lack of mul-
tiview 3D consistency. Stereo Magnification [ZTF∗18] directly ad-
dresses this issue, using a CNN to process a plane sweep vol-
ume directly into an output persistent 3D voxel grid representation

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume
Rendering

Ray 1σ

σ

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

(b)(a) (c) (d)

Ray 2

Figure 5: An overview of the neural radiance field (NeRF) scene
representation and volume rendering procedure. NeRF synthesizes
images by sampling 5D coordinates (location and viewing direc-
tion) along camera rays (a), feeding those locations into an MLP to
produce color and volume density (b), and using volume rendering
to composite these values into an image (c). Since this rendering
function is differentiable, the NeRF scene representation MLP can
be optimized by minimizing the residual between synthesized and
ground truth observed images (d). Digital zoom recommended. Im-
age adapted from [MST∗20].

named a “multiplane image,” or MPI. Rendering new views sim-
ply requires using an alpha compositing to render the RGB-alpha
grid from a new location. In order to achieve high image quality,
Stereo Magnification heavily distorts the parameterization of its
3D grid to bias it to the frame of reference of one of the two in-
put views. This significantly decreases storage requirements for the
dense grid but means that new views can only be rendered in the
direct neighborhood of the input stereo pair. This shortcoming was
later addressed by improving the training procedure for a single
MPI [STB∗19], providing many more than two input images to the
network [FBD∗19], or combining multiple MPIs together to repre-
sent a single scene [MSOC∗19].

All methods mentioned above use a feed-forward neural net-
work to map from a limited set of input images to an output im-
age or 3D representation and must be trained on a large dataset
of pairs of input/output views. In contrast, DeepVoxels [STH∗19]
optimizes a 3D voxel grid of features jointly with a learned ren-
derer using images of a single scene, without requiring any external
training data. Similarly, Neural Volumes [LSS∗19] optimizes a 3D
CNN to produce an output volumetric representation for a single
scene of multiview video data This single-scene training paradigm
has greatly increased in popularity recently, leveraging the unique
“self-supervised” aspect of view synthesis: any input images can
also be used as supervision via a rerendering loss. In comparison
to MPI-based methods, DeepVoxels and Neural Volumes also use
a 3D voxel grid parameterization that is not heavily skewed to one
particular viewing direction, allowing novel views to be rendered
observing the reconstructed scene from any direction.

It is worth mentioning that a number of computer vision pa-
pers focused primarily on 3D shape reconstruction (rather than
realistic image synthesis) adopted an alpha compositing volu-
metric rendering model in parallel with this view synthesis re-
search [HRRR18, KHM17, TZEM17]; however, these results were
heavily constrained by the memory limitations of 3D CNNs and
could not produce voxel grid outputs exceeding 1283 resolution.

https://github.com/bmild/nerf
https://github.com/vsitzmann/scene-representation-networks
https://github.com/autonomousvision/differentiable_volumetric_rendering
https://github.com/czq142857/implicit-decoder
https://github.com/facebookresearch/NSVF
https://github.com/computational-imaging/automatic-integration
https://github.com/creiser/kilonerf
https://github.com/google-research/google-research/tree/master/snerg
https://github.com/sxyu/plenoctree
https://github.com/facebookresearch/DONERF
https://github.com/vsitzmann/light-field-networks

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 11

4.1.2. View Synthesis from a Neural Network Representation

To address the resolution and memory limitations of voxel grids,
Scene Representation Networks (SRNs) [SZW19] combined a
sphere-tracing based neural renderer with a multilayer perceptron
(MLP) as a scene representation, focusing mainly on generalization
across scenes to enable few-shot reconstruction. Differentiable Vol-
umetric Rendering (DVR) [NMOG20] similarly leveraged a sur-
face rendering approach, but demonstrated that overfitting on sin-
gle scenes enables reconstruction of more complex appearance and
geometry.

Neural radiance fields (NeRF [MST∗20] signified a break-
through in the application of MLP-based scene representations to
single-scene, photorealistic novel view synthesis, see Figure 5. In-
stead of a surface-based approach, NeRF directly applies the vol-
ume rendering model described in Section 3.2.2 to synthesize im-
ages from an MLP that maps from an input position and viewing di-
rection to output volume density and color. A different set of MLP
weights are optimized to represent each new input scene based on
pixelwise rendering loss against the input images.

This overall framework shares many similarities with the work
described in the previous section. However, MLP-based scene rep-
resentations can achieve higher resolution than discrete 3D vol-
umes by virtue of effectively differentiably compressing the scene
during optimization. For example, a NeRF representation capa-
ble of rendering 800× 800 resolution output images only required
5MB of network weights. In comparison, an 8003 RGBA voxel grid
would consume close to 2GB of storage.

This ability can be attributed to NeRF’s use of a positional
encoding applied to the input spatial coordinates before passing
through the MLP. In comparison to the previous work on using
neural networks to represent implicit surfaces [PFS∗19, CZ19] or
volumes [MON∗19], this allows NeRF’s MLP to represent much
higher frequency signals without increasing its capacity (in terms
of number of network weights).

The main drawback of switching from a discrete 3D grid to an
MLP-based representation is rendering speed. Rather than directly
querying a simple data structure, calculating the color and density
value for a single point in space now requires evaluating an en-
tire neural network (hundreds of thousands of floating point opera-
tions). On a typical desktop GPU, an implementation of NeRF in a
standard deep learning framework takes tens of seconds to render a
single high resolution image.

4.1.3. Improving Rendering Speed

Several different methods have been proposed for speeding up vol-
umetric rendering of MLP-based representations. Neural Sparse
Voxel Fields [LGL∗20] builds and dynamically updates an oc-
tree structure while the MLP is optimized, allowing for aggressive
empty space skipping and early ray termination (when the transmit-
tance along the ray approaches zero). KiloNeRF [RPLG21] com-
bines empty space skipping and early termination with a dense 3D
grid of MLPs, each with a much smaller number of weights than a
standard NeRF network.

Three concurrent works recently proposed methods for caching
the values various quantities learned by the NeRF MLP on a sparse

3D grid, allowing for realtime rendering once training is complete.
Each method modifies the way in which view-dependent colors are
predicted in order to facilitate faster rendering and smaller memory
requirements for the cached representations. SNeRG [HSM∗21]
stores volume density and a small spatially-varying feature vec-
tor in a sparse 3D texture atlas, using fast shader for composit-
ing these values along a ray and running a tiny MLP decoder to
produce view-dependent color for each ray. FastNeRF [GKJ∗21]
caches volume density along with weights for combining a set of
learned spherical basis functions that produce view-varying colors
at each point in 3D. PlenOctrees [YLT∗21] queries the MLP to pro-
duce a sparse voxel octree of volume density and spherical har-
monic coefficients and further finetunes this octree representation
using a rendering loss to improve its output image quality.

NeX-MPI [WPYS21] combines the multiplane image parame-
terization with an MLP scene representation, with view dependent
effects parameterized as a linear combination of globally learned
basis functions. Because the model is supervised directly on a 3D
MPI grid of coordinates, this grid can be easily cached to render
new views in real time once optimization is complete.

An alternative approach for accelerating rendering is to train the
MLP representation itself to effectively precompute part or all of
the volume integral along the ray. AutoInt [LMW21] trains a net-
work to “automatically integrate” the output color value along ray
segments by supervising the gradient of the network to behave like
a standard NeRF MLP. This allows the rendering step to break the
integral along a ray into an order of magnitude fewer segments than
the standard quadrature estimate (down to as few as 2 or 4 sam-
ples), trading off speed for a minor loss in quality. Light Field Net-
works [SRF∗21] takes this a step further, optimizing an MLP to di-
rectly encode the mapping from an input ray to an output color (the
scene’s light field). This enables rendering with only a single evalu-
ation of the MLP per ray, in contrast to hundreds of evaluations for
volume- and surface-based renderers, and enables real-time novel
view synthesis. These methods present a tradeoff between render-
ing speed and multiview consistency: reparameterizing the MLP
representation as a function of rays rather than 3D points means
that the scene is no longer guaranteed to appear consistent when
viewed from different angles. In this case multiview consistency
must be enforced through supervision, either by providing a very
large number of input images or learning this property via general-
ization across a dataset of 3D scenes.

4.1.4. Miscellaneous Improvements

A variety of papers have augmented the rendering model, supervi-
sion data, or robustness of volumetric MLP scene representations.

Depth Supervision. DONeRF [NSP∗21] trains an “depth oracle”
network to predict sample locations along each ray, drastically re-
ducing the number of samples sent through the NeRF MLP and
allowing interactive rate rendering. However, this method is super-
vised with dense depths maps, which are challenging to obtain for
real data. Depth-supervised NeRF [DLZR21] directly supervises
the output depths from NeRF (in the form of expected termination
depth along each ray) using the sparse point cloud output which is a
byproduct of estimating camera poses using structure-from-motion.

12 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

NerfingMVS [WLR∗21] uses a multistage pipeline for depth su-
pervision, first finetuning a single-view depth estimation network
on sparse structure-from-motion depth estimates, then uses the re-
sulting dense depth maps to guide NeRF optimization.

Optimizing Camera Poses. NeRF-- [WWX∗21] and Self-
Calibrating Neural Radiance Fields [JAC∗21] jointly optimize
the NeRF MLP and input camera poses, bypassing the need for
structure-from-motion preprocessing for forward facing scenes.
Bundle-Adjusting Neural Radiance Fields (BARF) [LMTL21] ex-
tends this idea by applying a coarse-to-fine annealing schedule to
each frequency component of the positional encoding function,
providing a smoother optimization trajectory for joint reconstruc-
tion and camera registration. However, neither of these methods
can optimize poses from scratch for wide-baseline 360 degree cap-
tures. GNeRF [MCL∗21] achieves this by training a set of cycle
consistent networks (a generative NeRF and a pose classifier) that
map from pose to image patches and back to pose, optimizing until
the classified pose of real patches matches that of sampled patches.
They alternate this GAN training phase with a standard NeRF op-
timization phase until the result converges.

Hybrid Surface/Volume Representations. The Implicit Differ-
entiable Renderer (IDR) from Yariv et al. [YKM∗20] combines a
DVR-like implicit surface MLP with a NeRF-like view dependent
branch which takes viewing direction, implicit surface normal, and
the 3D surface point as inputs and predicts the view-varying output
color. This work shows that including the normal vector as input
to the color branch helps the representation disentangle geometry
and appearance more effectively. It also demonstrates that camera
pose can be jointly optimized along with the shape representation
to recover from small miscalibration errors.

UNISURF [OPG21] proposes a hybrid MLP representation that
unifies surface and volume rendering. To render a ray, UNISURF
uses root finding to get a “surface” intersection point, treating the
volume as an occupancy field, then distributes volume rendering
samples only within an interval around that point. The width of this
interval monotonically decreases over the course of optimization,
allowing early iterations to supervise the whole training volume and
later stages to more efficiently refine the surface with tightly spaced
samples. Azinovic et al. [AMBG∗21] propose to use an SDF rep-
resentation instead of volume densities to reconstruct scenes from
RGB-D data. They convert the sdf values to densities that can be
used in the NeRF formulation. NeuS [WLL∗21] ties the volume
density to an signed distance field and reparameterizes the trans-
mittance function such that it achieves its maximal slope precisely
at the zero-crossing of this SDF, allowing an unbiased estimate of
the corresponding surface. VolSDF [YGKL21b] uses an alternate
mapping from SDF to volume density, which allows them to devise
a new resampling strategy to achieve provably bounded error on the
approximated opacity in the volume rendering quadrature equation.
In [LFS∗21], the authors propose a method called MINE which is
a hybrid between multi-plane images (MPI) and NeRF. They are
able to reconstruct dense 3D reconstructions from single color im-
ages which they demonstrate on RealEstate10K, KITTI and Flow-
ers Light Fields.

Figure 6: Instead of sampling points x along the rays traced from
the camera projection center (a), MipNeRF [BMT∗21] reasons
about 3D canonical frustum per camera pixel (b). Image adapted
from [BMT∗21].

Robustness and Quality. NeRF++ [ZRSK20] provides a “in-
verted sphere” parameterization of space that can allow NeRF to
large-scale, unbounded 3D scenes. Points outside the unit sphere
are inverted back into the unit sphere and passed through a separate
MLP.

NeRF in the Wild [MBRS∗21] adds additional modules to the
MLP representation to account for inconsistent lighting and objects
across different images. They apply their robust model to the Photo-
Tourism dataset [SSS06] (consisting of internet images of famous
landmarks across the world) and are able to remove transient ob-
jects such as people and cars and capture time-varying appearance
through use of a latent code embedding associated with each input
image.

MipNeRF [BMT∗21] modifies the positional encoding applied
to 3D points to incorporate the pixel footprint, see Figure 6. By
pre-integrating the positional encoding over a conical frustum cor-
responding to each quadrature segment sampled along the ray, Mip-
NeRF can be trained to encode a representation of the scene at
multiple different scales (analogously to a mipmap of a 2D tex-
ture), preventing aliasing when rendering the scene from dramati-
cally varying positions or resolutions.

4.2. Generalization over Object and Scene Classes

While a significant amount of prior work addresses generalization
over multiple scenes and object categories for voxel-based, mesh-
based, or non-3D structured neural scene representations, we fo-
cus this discussion on recent progress in generalization leveraging
MLP-based scene representations. Where approaches that overfit a
single MLP on a single scene [MST∗20, YKM∗20] require a large
number of image observations, the core objective of generalizing
across scene representations is novel view synthesis given few or
potentially only a single input view. In Table 2, we give an overview
over the discussed methods, classified by whether they leverage lo-
cal or global conditioning, whether they can be used as uncondi-
tional generative models or not, what kind of 3D representation
they leverage (volumetric, SDF, or occupancy), what kind of train-
ing data they require, and how inference is performed (amortized
with an encoder, via the auto-decoder framework, or via gradient-
based meta-learning).

We may differentiate two key approaches in generalizing across
scenes. One line of work follows an approach reminiscent of image-
based rendering [CW93, SK00], where multiple input views are

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 13

Method C
on

di
tio

ni
ng

R
eq

ui
re

d
D

at
a

3D
R

ep
re

se
nt

at
io

n

C
la

ss
Sp

ec
ifi

c
Pr

io
r

G
en

er
at

i v
e

M
od

el

In
fe

re
nc

e
Ty

pe

C
od

e

Yu et al. [YYTK21] L G V 7 7 A W

Raj et al. [RZS∗20] L F V 7 7 A 7

Trevithick et al. [TY20] L G V 7 7 A W

Wang et al. [WWG∗21] L G V 7 7 A 7

Reizenstein et al. [RSH∗21] L G V 7 7 A 7

Sitzmann et al. [SZW19] G G S 3 3 D W

Kosiorek et al. [KSZ∗21] G G V 7 3 A 7

Rematas et al. [RMBF21] G G V 3 3 D W

Xie et al. [XPMBB21] G G V 7 7 A 7

Tancik et al. [TMW∗21] G G V 7 7 GB W

Gao et al. [GSL∗20] G F V 7 7 GB 7

Nguyen-Phuoc et al. [NPLT∗19] G G V 3 3 7 W

Schwarz et al. [SLNG20] G G V 3 3 7 7

Chan et al. [CMK∗21] G G V 3 3 7 W

Anonymous [Ano22] G G V 3 3 7 7

Niemeyer et al. [NG21a] G G V 3 3 7 7

Table 2: Selected methods for generalization presented in Sec-
tion 4.2. G: Global, L: Local. I: Implicitly, E: Explicitly. G: Gen-
eral, B: Body, F: Face. A: Amortized/Encoder, D: Auto-Decoder,
GB: Gradient-based. V: Neural volumetric, S: Neural SDF.

Figure 7: Input images from DTU MVS dataset [JDV∗14] and
novel views obtained by PixelNeRF [YYTK21] with no test-time
optimization. Furthermore, training and test sets do not share the
same scenes. Image adapted from [YYTK21].

warped and blended to synthesize a novel viewpoint. In the con-
text of MLP-based scene representations, this is often implemented
via local conditioning, where the coordinate input to the scene
representation MLP is concatenated with a locally varying feature
vector, stored in a discrete scene representation, such as a voxel
grid [PNM∗20]. PiFU [SHN∗19] uses an image encoder to com-
pute features on the input image and conditions a 3D MLP on these
features via projecting 3D coordinates on the image plane - how-

ever, PiFU did not feature a differentiable renderer, and so required
ground-truth 3D supervision. PixelNeRF [YYTK21] (see Figure 7)
and Pixel-Aligned Avatars [RZS∗20] leverage this approach in a
volume rendering framework where these features are aggregated
over multiple views, and a MLP produces color and density fields
that are rendered as in NeRF. When trained on multiple scenes,
they learn scene priors for reconstruction, that enable high fidelity
reconstruction of scenes from a few views. PixelNeRF can also be
trained on specific object categories, enabling object instance 3D
reconstruction from one or multiple posed images. GRF [TY20]
uses a similar framework, with an additional attention module that
reasons about the visibility of the 3D point in the different sam-
pled input images. Stereo Radiance Fields [CBLPM21] similarly
extracts features from several context views, but leverages learned
correspondence matching between pairwise features across context
images to aggregate features across context images instead of a
simple mean aggregation. Finally, IBRNet [WWG∗21] and NeR-
Former [RSH∗21] introduce transformer networks across the ray
samples that reason about visibility.

An alternative to such image-based approaches aims to learn
a monolithic, global representation of a scene instead of relying
on images or other discrete spatial data structures. This is ac-
complished by inferring a set of weights for the scene represen-
tation MLP that describes the whole scene, given a set of obser-
vations. One line of work accomplishes this by encoding a scene
in a single, low-dimensional latent code that is then used to condi-
tion the scene representation MLP. Scene Representation Networks
(SRNs) [SZW19] map low-dimensional latent codes to the param-
eters of a MLP scene representation via a hypernetwork, and sub-
sequently render the resulting 3D MLP via ray-marching. To re-
construct an instance given a posed view, SRNs optimize the la-
tent code so that its rendering matches the input view(s). Differen-
tiable Volumetric Rendering [NG20] similarly uses surface render-
ing, but computes its gradients analytically and performs inference
via a CNN encoder. Light Field Networks [SRF∗21] leverage low-
dimensional latent codes to directly parameterize the 4D light field
of the 3D scene, enabling single-evaluation rendering. NeRF-VAE
embeds a NeRF in a variational auto-encoder, similarly represent-
ing the whole scene in a single latent code, but learning a genera-
tive model that enables sampling [KSZ∗21]. Sharf [RMBF21] uses
a generative model of voxelized shapes of objects in a category,
which in turn condition a higher resolution neural radiance field
that is rendered using volume rendering for higher novel view syn-
thesis fidelity. Fig-NeRF [XPMBB21] models an object category as
a template shape conditioned on a latent code, that undergoes a de-
formation that is also conditioned on the same latent variable. This
enables the network to explain certain shape variations as more in-
tuitive deformations. Fig-NeRF focuses on retrieving an object cat-
egory from real object scans, and also proposes using a learn back-
ground model to segment the object from its background. An alter-
native to representing the scene as a low-dimensional latent code is
to quickly optimize the weights of an MLP scene representation in a
few optimization steps via gradient-based meta-learning [SCT∗20].
This can be used to enable fast reconstruction of neural radiance
fields from few images [TMW∗21]. The pre-trained models con-
verge faster when trained on a novel scene, and require fewer
views compared to standard neural radiance field training. Portrait-

https://github.com/sxyu/pixel-nerf
https://github.com/alextrevithick/GRF
https://github.com/vsitzmann/scene-representation-networks
https://github.com/tensorflow/graphics/tree/master/tensorflow_graphics/projects/radiance_fields
https://github.com/tancik/learnit
https://github.com/thunguyenphuoc/HoloGAN
https://github.com/marcoamonteiro/pi-GAN

14 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

NeRF [GSL∗20] proposes a meta-learning approach to recover a
NeRF from a single frontal image of a person. To account for dif-
ferences in pose between the subjects, it models the 3D portraits
in a pose-agnostic canonical reference frame, that is warped for
each subject using 3D keypoints. Bergman et al. [BKW21] lever-
age gradient-based meta-learning and local conditioning on image
features to quickly recover a NeRF of a scene.

Instead of inferring a low-dimensional latent code conditioned
on a set of observations of the sought-after 3D scene, a simi-
lar approach can be leveraged to learn unconditional generative
models. Here, a 3D scene representation equipped with a neu-
ral renderer is embedded in a generative adversarial network. In-
stead of inferring low-dimensional latent codes from a set of ob-
servations, we define a distribution over latent codes. In a for-
ward pass, we sample a latent from that distribution, condition
the MLP scene representation on that latent, and render an im-
age via the neural renderer. This image can then be used in an
adversarial loss. This enables learning of a 3D generative model
of shape & appearance of 3D scenes given only 2D images. This
approach was first proposed with 3D scene representations param-
eterized via voxelgrids [NPLT∗19]. GRAF [SLNG20] first lever-
aged a conditional NeRF in this framework and achieved signif-
icant improvements in photorealism. Pi-GAN [CMK∗21] further
improved on this architecture with a FiLM-based conditioning
scheme [PSDV∗18] of a SIREN architecture [SMB∗20]. StyleN-
eRF [Ano22] further improves image quality by adopting the con-
dition mechanism of StyleGAN, and improves runtime (enabling
higher-resolution image generation) by only leveraging NeRF to
generate low-resolution feature maps and subsequent upsampling
with a carefully designed upsampling network that avoids alias-
ing to ensure multi-view consistency. While these approaches do
not require more than observation per 3D scene and thus, also no
ground-truth camera poses, they still require knowledge of the dis-
tribution of camera poses (i.e., for portrait images, the distribution
over camera poses must produce plausible portrait angles). CAM-
PARI [NG21a] addresses this constraint by jointly learning cam-
era pose distribution and generative model. GIRAFFE [NG21b]
proposes to learn a generative model of scenes composed of sev-
eral objects by parameterizing a scene as a composition of several
foreground (object) NeRFs and a single background NeRF. Latent
codes are sampled for each NeRF separately, and a volume renderer
composes them to a coherent 2D image.

4.3. Learning to Represent and Render Non-static Content

While the original neural radiance fields [MST∗20] are used to rep-
resent static scenes and objects, there are approaches that can addi-
tionally handle dynamically changing content. In Table 3, we give
an overview over the discussed methods.

These approaches can be categorized in time-varying represen-
tations that allow to do novel viewpoint synthesis of a dynami-
cally changing scene as an unmodified playback (e.g., to produce
a bullet-time effect), or in techniques that also give control over
the deformation state, thus, allowing for novel-view point synthe-
sis and editing of the content. The deforming neural radiance field
can be achieved implicitly or explicitly, see Figure 8:

Method D
at

a

D
ef

or
m

at
io

n

C
la

ss
-S

pe
ci

fic
Pr

io
r

C
on

tr
ol

la
bl

e
Pa

ra
m

et
er

s

C
od

e

Lombardi et al. [LSS∗21] MV I G V,R W

Li et al. [LNSW21] MV I G V,R 7

Xian et al. [XHKK21] Mo I G V,R 7

Gao et al. [GSKH21] Mo I G V,R 7

Du et al. [DZY∗21] Mo I G V,R W

Pumarola et al. [PCPMMN21] Mo E G V,R W

Park et al. [PSB∗21] Mo E G V,R W

Tretschk et al. [TTG∗21] Mo E G V,R W

Park et al. [PSH∗21] Mo I+E G V,R W

Attal et al. [ALG∗21] Mo+D I G V,R W

Li et al. [LSZ∗21] MV I G V,R 7

Gafni et al. [GTZN21] Mo E F V,R,E W

Wang et al. [WBL∗20] MV I F V,R 7

Guo et al. [GCL∗21] Mo I F V,R,E W

Noguchi et al. [NSLH21] Mo+3D E B V,R,E W

Su et al. [SYZR21] Mo E B V,R,E 7

Peng et al. [PDW∗21] MV E B V,R,E W

Peng et al. [PZX∗21] MV I+ E B V,R W

Liu et al. [LHR∗21] MV E B V,R,E 7

Xu et al. [XAS21] MV+Mo I B V,R,E 7

Table 3: Selected methods for non-static, dynamic scenes pre-
sented in Section 4.3. MV: Multi-View, Mo: Monocular, D: Depth,
3D: 3D pose. I: Implicitly, E: Explicitly. G: General, B: Body,
F: Face/Head. V: Viewpoint, R: Replay, E: Editing.

• Implicitly, by conditioning the NeRF on a representation of the
deformation state (e.g., a time input)
• Explicitly, by using a separate deformation field that can map

from the deformed space to a canonical space where the NeRF
is embedded.

4.3.1. Time-varying Neural Radiance Fields

Time-varying neural radiance fields allow to playback a video with
novel view points, see Figure 9. Since they forego control, these
methods do not rely on a specific motion model and can thus handle
general objects and scenes.

Several extensions of NeRF for non-rigid scenes were proposed
concurrently. We first discuss methods that model deformations im-
plicitly [LNSW21,XHKK21,GSKH21,DZY∗21]. While the origi-
nal NeRF is static and takes as input only a 3D spatial point, it can
be extended in a straightforward manner to become time-varying:
the volume can additionally be conditioned on a vector that rep-
resents the deformed state. In current methods, this conditioning
takes the form of a time input (potentially positionally encoded)

https://github.com/facebookresearch/neuralvolumes
https://github.com/yilundu/nerflow
https://github.com/albertpumarola/D-NeRF
https://github.com/google/nerfies
https://github.com/facebookresearch/nonrigid_nerf
https://github.com/google/hypernerf
https://imaging.cs.cmu.edu/torf/#code
https://github.com/gafniguy/4D-Facial-Avatars
https://github.com/YudongGuo/AD-NeRF
https://github.com/nogu-atsu/NARF
https://github.com/zju3dv/animatable_nerf
https://github.com/zju3dv/neuralbody

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 15

Figure 8: Current methods for modelling deformations with neu-
ral radiance fields fall into two categories. Left: Implicitly, by con-
ditioning the radiance field, v, on the deformation (here: time t).
Right: Explicitly, by warping space with a separate deformation
MLP that regresses offsets (blue arrow) from the deformed space
(black) into static canonical space (yellow). This bends straight rays
into the canonical radiance field. Image adapted from [TFT∗21].

Figure 9: An input monocular video of a general deformable scene
and novel view rendering thereof by space-time neural irradiance
fields of Xian et al. [XHKK21]. Image adapted from [XHKK21].

[XHKK21,LNSW21,GSKH21,DZY∗21,PCPMMN21] or an auto-
decoded latent code per time step [PSB∗21, TTG∗21, PSH∗21].

Since handling non-rigid scenes without prior knowledge of ob-
ject type or 3D shape is an ill-posed problem, methods of this
class adopt various geometric regularizers and condition learn-
ing on additional data modalities. To encourage consistency of re-
flectance and opacity across time, several methods learn scene-flow
mappings between temporally neighboring time steps [LNSW21,
XHKK21, GSKH21, DZY∗21]. Since this is restricted to small
temporal neighborhoods, artifact-free novel-view synthesis is pre-
dominantly demonstrated on spatio-temporal camera trajectories
that are close to the spatio-temporal input camera trajectories.
The scene-flow mapping can be trained with reconstruction losses
that warp the scene from other time steps into the current time
step [LNSW21, DZY∗21], by encouraging consistency between
estimated optical flow and the 2D projection of the scene flow
[LNSW21,GSKH21], or by tracking backprojected keypoints in 3D
[DZY∗21]. The scene flow is often constrained with additional reg-
ularization losses [LNSW21, XHKK21, GSKH21, DZY∗21], e.g.,
to encourage spatial or temporal smoothness or forward-backward
cycle consistency. Unlike the other methods mentioned, Neural Ra-
diance FLow (NeRFlow) of Du et al. [DZY∗21] models deforma-
tions with infinitesimal displacements that need to be integrated
with Neural ODE [CRBD18] to obtain offsets.

In addition, several methods use estimated depth maps to su-
pervise the geometry estimation [LNSW21, XHKK21, GSKH21,
DZY∗21]. One limitation of this regularization is that the accuracy
of the reconstruction depends on the accuracy of monocular depth
estimation methods. As a result, artefacts of monocular depth esti-
mation methods are recognizable in the novel views [XHKK21].

Finally, the static background is often handled separately, allow-
ing it to exploit multi-view clues from monocular input record-
ings across time. To that end, some methods estimate a second
static volume that is not conditioned on the deformation [LNSW21,
GSKH21] or introduce soft regularization losses to constrain static
scene content [XHKK21]. Gao et al. [GSKH21], a follow-up to
Xian et al.’s work [XHKK21], train the static NeRF on observa-
tions that do not contain moving and deforming parts with the help
of a binary segmentation mask (one of the inputs to the model and
user-provided).

One advantage of Guo et al.’s method is that it produces the
most accurate quantitative and qualitative results on the challeng-
ing dataset of Yoon et al. [YKG∗20] (compared to Tretschk et
al. [TTG∗21] and Li et al. [LNSW21]). The latter dataset was
initially introduced for novel-view synthesis from a comparably
sparse set of input monocular views of dynamic scenes with mod-
erate changes in the camera poses. Limitations of the method in-
clude strong reliance on optical flow and handling of arbitrary non-
rigid deformations (in contrast to scenes composed of independent
rigidly moving objects).

Finally, NeRFlow can be used to de-noise and super-resolve
views of pre-trained scenes. Limitations of NeRFlow, which the au-
thors mention, include difficulty in preserving static backgrounds,
handling complex scenes (non-piecewise-rigid deformations and
motions) and rendering novel views at substantially different cam-
era trajectories compared to the input ones.

The methods discussed so far model deformations implicitly
by conditioning the scene representation on the deformation. This
makes controllability of the deformation cumbersome and diffi-
cult. Other works instead disentangle the deformations from the
geometry and appearance: they factor out the deformations into
a separate function on top of a static canonical scene, a crucial
step towards controllability. The deformations are accomplished by
shooting straight rays into deformed space and then bending them
into the canonical scene, usually by regressing per-point offsets for
points on the straight ray using a coordinate-based MLP that is con-
ditioned on the deformation. This can be thought of as space warp-
ing or scene flow. In contrast to implicit modelling, these methods
share geometry and appearance information across time by con-
struction via the static canonical scene, thereby providing hard cor-
respondences, which do not drift. Due to that hard constraint, un-
like implicit methods, current methods with explicit deformations
cannot handle topological changes and only demonstrate results on
scenes with significantly smaller motion than implicit methods.

D-NeRF [PCPMMN21] uses an unregularized ray-bending MLP
to model deformations of a single or multiple synthetic objects seg-
mented from the background and observed by virtual cameras. It
assumes a pre-defined set of multi-view images given, though, at
training time, only a single view chosen arbitrarily is used for su-
pervision at any time. Thus, D-NeRF can be considered an inter-

16 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

mediate step between techniques with multi-view supervision and
truly monocular approaches.

Several works show results on real-world scenes observed by
a moving monocular camera. The core application of Deformable
NeRF of Park et al. [PSB∗21] is the creation of Nerfies, i.e., free-
viewpoint selfies. Deformable NeRF conditions deformations and
appearance with an auto-decoded latent code per input view. The
bent rays are regularized using an as-rigid-as-possible term (also
known as elastic energy term) that penalizes deviations from piece-
wise rigid scene configurations. Thus, Deformable NeRF works
well on articulated scenes (e.g., a hand holding a tennis racket) and
scenes such as human heads (where the head is moving w.r.t. the
torso). Still, small non-rigid deformations are handled well (such as
smiling), as the regularizers are soft. Another important innovation
of this work is using a coarse-to-fine scheme which allows learning
low-frequency components first and avoiding local minima due to
overfitting to high-frequency details.

HyperNeRF [PSH∗21] is an extension of Deformable NeRF
[PSB∗21] using a canonical hyperspace instead of a single canon-
ical frame. This allows tackling scenes with topological changes
such as opening and closing the mouth. In HyperNeRF, the bending
network (MLP) of Deformable NeRF is augmented with an ambi-
ent slicing surface network (likewise an MLP) that selects a canon-
ical subspace for every input RGB view by indirectly conditioning
the canonical scene on the deformation. As such it is a hybrid that
combines both explicit and implicit deformation modelling, which
allows it to handle topological changes by sacrificing hard corre-
spondences.

Non-rigid NeRF (NR-NeRF) [TTG∗21] models a time-varying
scene appearance using a per-scene canonical volume, per-scene
rigidity flag (an MLP) and per-frame ray bending operator (an
MLP). NR-NeRF shows that no additional supervisory cues such
as depth maps or scene flows are required to handle scenes with
small non-rigid deformations and motions, in contrast to [PSB∗21,
XHKK21, LNSW21]. Moreover, the observed deformations are
regularized by a divergence operator, which imposes a volume-
preserving constraint and stabilizes occluded areas with respect to
supervising monocular input views. In this regard, it has similar-
ities with the elastic regularizer of Nerfies penalizing deviations
from piece-wise rigid deformations. This regularization makes it
possible for the camera trajectory of novel views to differ signif-
icantly from the input camera trajectory. While controllability is
still severely limited, NR-NeRF demonstrates several simple edits
of the learned deformation field, such as motion exaggeration or
removal of dynamic scene content.

Other works do not restrict themselves to the case of monocular
RGB input video, but instead consider other inputs.

Time-of-Flight Radiance Fields (TöRF) method [ALG∗21] re-
places data-driven priors for reconstructing dynamic contents with
depth maps from a depth sensor. In contrast to the vast majority
of computer vision works, TöRF uses raw ToF sensor measure-
ments (so-called phasors), which brings advantages when handling
weakly-reflecting regions and other limitations of modern depth
sensors (e.g., restricted working depth range). Integration of mea-
sured scene depths in the learning of NeRF reduces the requirement
on the number of input views leading to sharp and detailed models.

Figure 10: Dynamic Neural Radiance Field to synthesize novel
views and expressions of humans. Image adapted from [GTZN21].

The depth cue also enables superior accuracy compared to NSFF
[LNSW21] and space-time neural irradiance fields [XHKK21].

Neural 3D Video Synthesis [LSZ∗21] uses a multi-view RGB
setup and models deformations implicitly. The method exploits
temporal smoothness by first training on keyframes. It also exploits
that the cameras remain static and that the scene content is predom-
inantly static by sampling rays in a biased manner for training. The
results are sharp even for dynamic content that is small.

4.3.2. Controllable Dynamic Neural Radiance Fields

To allow controllability of the deformation of the neural radiance
field, method use class specific motion models as underlying repre-
sentation of the deformation state (e.g., a morphable model for the
human face or a skeletal deformation graph for the human body).

NeRFace [GTZN21] is the first approach that uses a morphable
model to implicitly control a neural radiance field (see Figure 10).
They use a face tracker [TZS∗16] to reconstruct the face blend-
shape parameters as well as the camera pose in the training views
(monocular video). The MLP is trained on these views with the
blendshape parameters and a learnable per-frame latent codes as
conditioning. In addition, they assume a known static background
such that the radiance field only stores the information about the
face. The latent codes are used to compensate missing tracking in-
formation (i.e., the shoulders of a person) as well as errors in the
tracking). Once trained the radiance field can be controlled via the
blendshape parameters, thus, allowing reenactment and expression
editing. While NeRFace uses a global deformation code based on
a morphable model, Wang et al. [WBL∗20] generate local anima-
tion codes. Specifically, they extract a global animation code from
multi-view inputs which is mapped to local codes using 3D con-
volutional neural network. These are used to condition the fine-
level radiance field which are represented as MLPs. In contrast to
NeRFace, the method does not allow direct control over expres-
sions of the face, but an encoder has to be trained that for exam-
ple can generate the animation codes from facial keypoints. Guo et
al. [GCL∗21] propose an audio driven neural radiance field (AD-
NeRF) which is inspired by NeRFace. But instead of using expres-
sion coefficients, they map audio features extracted using Deep-
Speech [HCC∗14, TET∗20] to a feature which serves as a condi-
tioning to the MLP that represents the radiance field. While the
expression is controlled implicitly via an audio signal, they provide
explicit control over the rigid pose of the head. To synthesize the
portrait view of a person, they employ two separate radiance fields,
one for the head and one for the torso.

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 17

Figure 11: Neural Body [PZX∗21] approach recovers 3D models of
humans with fine appearance details from sparse multi-view video.

While the afore mentioned approaches show promising results
in a portrait scenario, they are not applicable to highly non-rigid
deformations, especially, for articulated motion of a human body
captured from a single view. Therefore, methods leverage the hu-
man skeleton embedding explicitly. Neural Articulated Radiance
Field (NARF) [NSLH21] is trained via pose-annotated images. An
articulated object is decomposed into several rigid object parts with
their local coordinate systems and global shape variations on top.
The converged NARF can be used to render novel views by manip-
ulating the poses, estimate depth maps and perform body parts seg-
mentation. In contrast to NARF, A-NeRF [SYZR21] learns actor-
specific volumetric neural body models from monocular footage in
a self-supervised manner. The method combines a dynamic NeRF
volume with the explicit controllability of an articulated human
skeleton embedding and reconstructs both the pose and radiance
field in an analysis-by-synthesis way. Once trained, the radiance
field can be used for novel view point synthesis as well as motion
retargeting. On the Human3.6M dataset [IPOS14], they show the
benefits of using a learned surface-free model which improves the
accuracy of human pose estimation from monocular videos with the
help of a photometric reconstruction loss. While A-NeRF is trained
on monocular videos, Animatable Neural Radiance Fields (ANRF)
[PDW∗21] is a skeleton-driven approach for human model recon-
struction from multi-view videos. Its core component is a new mo-
tion representation, i.e., the neural blend weight field, that is com-
bined with 3D human skeletons for deformation field generation.
Similarly to several general non-rigid NeRFs [PSB∗21, TTG∗21],
ANRF maintains a canonical space and estimates two-way corre-
spondences between the multi-view inputs and the canonical frame.
The reconstructed animatable human models can be used for free-
viewpoint rendering and re-rendering under novel poses. Human
meshes can also be extracted from ANRF by running marching
cubes on volume densities at the discretized canonical space points.
The method achieves high visual accuracy for the learned human
models, and the authors suggest that handling complex non-rigid
deformations on the observed surfaces (such as those due to loose
clothes) can be improved in future work.

The Neural Body approach of Peng and colleagues [PZX∗21]
enables novel view synthesis of human performances from sparse
multi-view videos (e.g., only four synchronized views), see Fig-
ure 11 for exemplary inputs and the result. Their method uses con-
ditioning by the parametric human shape model SMPL [LMR∗15]

as a shape proxy prior. It assumes that the recovered neural rep-
resentation at different frames has the same set of latent codes
anchored to a deformable mesh. General-purpose baselines such
as rigid NeRF [MST∗20] (applied per timestamp) or NeuralVol-
umes [LSS∗19] assume much denser input image sets and, conse-
quently, cannot compete with Neural Body in its ability to render
novel views of moving humans from a few synchronized input im-
ages. The method also favourably compares to human mesh recon-
struction techniques such as PIFuHD [SSSJ20], which strongly de-
pends on training 3D data when it comes to the 3D reconstruction of
fine appearance details (e.g., rarely-worn or unique garments). Sim-
ilar to the Neural Body approach, Neural Actor (NA) [LHR∗21]
uses the SMPL model to represent the deformation states. They
leverage the proxy to explicitly unwarp the surrounding 3D space
into a canonical pose, where the NeRF is embedded. To improve
the recovery of high fidelity details in geometry and appearance,
they use additional 2D texture maps defined on the SMPL surface,
which are used as an additional conditioning to the NeRF MLP. H-
NeRF [XAS21] is another technique for temporal 3D reconstruc-
tions of humans with conditioning using an human body model.
Similarly to Neural Body [PZX∗21], they require a sparse set of
videos from synchronized and calibrated cameras. In contrast to
it, H-NeRF uses a structured implicit body model with signed dis-
tance fields [AXS21], which results in sharper renderings and more
complete geometry for challenging subjects.

Mixture of Volumetric Primitives [LSS∗21] is a model for ren-
dering dynamic, animatable virtual humans in real time. The main
idea is to model a scene or object with a set of volumetric primitives
that can dynamically change position and content. These primitives
model components of the scene like a parts-based model. Each vol-
umetric primitive is a voxel grid produced by a decoder network
from a latent code. The code defines the configuration of the scene
(e.g., a facial expression, in the case of human faces) which is used
by the decoder network to produce primitive locations and voxel
values (which contain RGB color and opacity). To render, a ray-
marching procedure is used to accumulate color and opacity values
along the rays corresponding to each pixel. Similar to other dy-
namic NeRF methods, multi-view video is used as training data.
The method is capable of creating extremely high-quality realtime
renderings that look realistic even on challenging materials, like
hair and clothing.

4.4. Compositionality and Editing

The methods discussed so far allow reconstructing volumetric rep-
resentations of static or dynamic scenes and render novel views of
them, perhaps from a few input images. They keep the observed
scene unchanged, except for comparably straightforward modifica-
tions (e.g., foreground removal). Several recent methods also allow
editing the reconstructed 3D scenes, i.e., rearranging and affine-
transforming the objects and altering their structure and appear-
ance. In Table 4, we give an overview of the discussed methods.

Conditional NeRF [LZZ∗21] can alter the color and shape of
rigid objects observed in 2D images from manual user edits (e.g.,
it is possible to remove some object parts). This functionality is en-
abled by a single NeRF trained on multiple object instances of the
same category. During editing, the network parameters are adjusted

18 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

Method R
eq

ui
re

d
D

at
a

3D
R

ep
re

se
nt

at
io

n

C
on

tr
ol

la
bl

e
Pa

ra
m

et
er

s

G
en

er
at

iv
e

M
od

el

C
od

e

Nguyen-Phuoc et al. [NPLT∗19] MVI+UIC V P,S,T 3 W

Liu et al. [LZZ∗21] MVI V S,C 7 W

Jang and Agapito [JA21] UIC V P,S,T 7 W

Ost et al. [OMT∗21] VID V-O P,S,T,O 3 W

Zhang et al. [JXX∗21] MV-VID V-O S,C 3 W

Niemeyer and Geiger [NG21b] UIC NFF P,S,T 3 W

Table 4: Selected methods for editing and scene compositionality
presented in Section 4.4. VID: Monocular videos, MV-VID: Syn-
chronised multi-view videos, MVI: Multi-view image collections,
UIC: Unstructured 2D image collections. V: Neural volumetric, V-
O: Per-object+background neural volumetric, NFF: Neural feature
fields. P: Camera pose, S: Shape, T: Texture/appearance, O: Opac-
ity, C: Color.

Figure 12: A reconstructed view, learned object nodes and novel
scene renderings by the Neural Scene Graphs approach [OMT∗21].

to match the shape and color of a newly observed instance. One of
the contributions of this work is finding a subset of tunable parame-
ters which can successfully propagate user edits for novel view gen-
eration. This avoids expensive modifications of the entire network.
CodeNeRF [JA21] represents shape and texture variations across
an object class. Similar to pixelNeRF, CodeNeRF can synthesize
novel views of unseen objects. It learns two different embeddings
for the shape and texture. At test time, it estimates a camera pose,
3D shape and texture of the object from a single image, and both
can be continuously modified by altering their latent codes. Co-
deNeRF achieves comparable performance to previous methods for
single-image 3D reconstruction, while not assuming known camera
poses.

Neural Scene Graphs (NSG) [OMT∗21] is a recent method for
novel view synthesis from monocular videos recorded while driv-
ing (ego-vehicle views). This technique decomposes a dynamic
scene with multiple independent rigidly moving objects into a
learned scene graph that encodes individual object transformations
and radiances. Thus, each object and the background are encoded
by different neural networks. In addition, the sampling of the static

node is restricted to layered planes (which are parallel to the image
plane) for increased efficiency, i.e., a 2.5D representation. NSG re-
quires annotated tracking data for each rigidly moving object of in-
terest over the set of input frames, and each object class (e.g., a car
or bus) shares a single volumetric prior. The neural scene graph can
then be used to render novel views of the same (i.e., observed) or
edited (i.e., by rearranging the objects) scene. Applications of NSG
include background-foreground decomposition, enriching training
datasets for automotive perception, and improved object detection
and scene understanding (see Figure 12).

Another layered representation for editable free-viewpoint
videos is introduced in Zhang et al. [JXX∗21]. Their spatially and
temporally consistent NeRF (ST-NeRF) relies on bounding boxes
for all independently moving and articulated objects—resulting in
multiple layers—and disentangles their positions, deformations and
appearance. The input to ST-NeRF is a set of 16 synchronized
videos from the cameras placed at regular intervals in a half-circle,
along with human-background segmentation masks. The method’s
name suggests that space-time coherence constraints are reflected
in its architecture, i.e., as a space-time deformation module and a
NeRF module of the canonical space. ST-NeRF also accepts times-
tamps to account for the appearance evolving in time. While render-
ing novel views, the sampling rays are cast through multiple scene
layers, which results in accumulated densities and colors. ST-NeRF
can be used for neural scene editing such as rescaling, shifting, du-
plication or removing of the performers, and temporal rearrange-
ments. As promising directions for future work, the authors name
reducing the number of input views and enabling non-rigid scene
editing.

Note that some of the methods [NG21b, NPLT∗19] discussed in
Section 4.2 can be used for scene editing as well. E.g, GIFARRE
can rotate an object of a known class observed in a single monoc-
ular image, change its appearance and translate it along the depth
channel. See Table 4 for a comparison of the methods discussed in
this section.

4.5. Relighting and Material Editing

The applications we have presented so far are based on the simpli-
fied absorption-emission volumetric rendering model discussed in
Section 3.2.2, in which the scene is modeled as a volume of par-
ticles that block and emit light. While this model is sufficient for
rendering images of the scene from novel viewpoints, it is unable to
render images of the scene under different lighting conditions. En-
abling relighting requires a scene representation that can simulate
the transport of light through the volume, including the scattering
of light by particles with various material properties. In Table 5, we
give an overview over the discussed methods.

Neural Reflectance Fields [BXS∗20] proposed the first extension
of NeRF to enable relighting. Instead of representing a scene as a
field of volume density and view-dependent emitted radiance, as
in NeRF, Neural Reflectance Fields represent a scene as a field of
volume density, surface normals, and bi-directional reflectance dis-
tribution functions (BRDFs). This allows for rendering the scene
under arbitrary lighting conditions by using the predicted surface
normals and BRDFs at each 3D location to evaluate how much in-
coming light is reflected off particles at that location towards the

https://github.com/thunguyenphuoc/HoloGAN
https://github.com/stevliu/editnerf
https://github.com/wayne1123/code-nerf
https://github.com/princeton-computational-imaging/neural-scene-graphs
https://github.com/DarlingHang/ST-NeRF
https://github.com/autonomousvision/giraffe

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 19

Method R
eq

ui
re

d
D

at
a

3D
R

ep
re

se
nt

at
io

n

C
on

tr
ol

la
bl

e
Pa

ra
m

et
er

s

M
od

el
s

L
ig

ht
V

is
ib

ili
ty

M
od

el
s

In
di

re
ct

Il
lu

m
in

at
io

n

C
od

e

Bi et al. [BXS∗20] I+L V L+M 3 7 7

Zhang et al. [ZLW∗21] I+M S L+M 7 7 W

Boss et al. [BBJ∗21] I+M V L+M 7 7 W

Srinivasan et al. [SDZ∗21] I+L V L+M 3 3 7

Zhang et al. [ZSD∗21] I V L+M 3 7 W

Xiang et al. [XXH∗21] I+M V T N/A N/A 7

Table 5: Selected methods for relighting presented in Section 4.5.
I: Images, L: Lighting parameters for input images, M: Object
masks. V: Neural volumetric, S: Neural SDF. L: Lighting, M: Ma-
terials, T: Texture map.

Figure 13: NeRFactor [ZSD∗21] decomposes a scene captured un-
der an unknown illumination into 3D neural fields of surface nor-
mals, albedo, BRDF and shading. This enables free-viewpoint re-
lighting and material editing. Image adapted from [ZSD∗21].

camera. However, evaluating the visibility from each point along
the camera ray to each light source is extremely computationally
intensive for neural volumetric rendering models. Even when just
considering direct lighting, the MLP must be evaluated at densely-
sampled locations between each point along the camera ray and
each light source in order to compute the incident lighting to ren-
der that ray. Neural Reflectance Fields sidesteps this issue by only
training with images of objects illuminated by a single point light
that is co-located with the camera, so the MLP only needs to be
evaluated along the camera ray.

Other recent works that recover relightable models have avoided
the difficulty of computing light source visibility by simply ig-
noring self-occlusions and assuming that all light sources in
the upper hemisphere above any surface are fully visible. Both
PhySG [ZLW∗21] and NeRD [BBJ∗21] assume full light source

visibility, and further accelerate rendering by representing the envi-
ronment lighting and scene BRDFs as mixtures of spherical Gaus-
sians, which enables the hemispherical integral of the incoming
light multiplied by the BRDF to be computed in closed form. As-
suming full light source visibility can work well for objects that are
mostly convex, but this strategy is unable to simulate effects such
as cast shadows that are due to the occlusion of light sources by
scene geometry.

Neural Reflectance and Visibility Fields [SDZ∗21] (NeRV)
trains an MLP to approximate the light source visibility for any in-
put 3D location and 2D incoming light direction. Instead of query-
ing an MLP at densely-sampled points along each light ray, the
visiblity MLP only needs to be queried a single time for each in-
coming light direction. This enables NeRV to recover relightable
models of scenes from images with significant shadows and self-
occlusion effects.

Instead of optimizing a relightable representation from scratch,
as done in the previously discussed methods, NeRFactor [ZSD∗21]
starts with a pre-trained NeRF model. NeRFactor then recovers a
relightable model by simplifying the pre-trained NeRF’s volumet-
ric geometry into a surface model, optimizing MLPs to represent
the light source visibility and surface normals at any point on the
surface, and finally optimizing a representation of the environment
lighting and the BRDF at any surface point; see Figure 13 for an
example decomposition. This results in a relightable model that is
more efficient when rendering images, since the volumetric geom-
etry has been simplified into a single surface and light-source visi-
bility at any point can be computed by a single MLP query.

The relightable models described above represent scene mate-
rials as a continuous 3D field of BRDFs. This enables some ba-
sic amount of material editing since the recovered BRDFs can be
changed before rendering. NeuTex [XXH∗21] enables more intu-
itive material editing by introducing a surface parameterization net-
work that learns a mapping from 3D coordinates in the volume to
2D texture coordinates. After a NeuTex model of a scene is recov-
ered, the 2D texture can easily be edited or replaced.

4.6. Engineering Frameworks

For practitioners, working with neural rendering models poses en-
gineering challenges: large amounts of image and video data must
be processed in a highly non-sequential manner, and the models
often require differentiation of large and complex computational
graphs. In this section, we will discuss recent advances in tools that
can help to overcome these problems.

4.6.1. Storage

Saturating a GPU with data in particular for neural rendering is
challenging: often, each pixel of images or videos is treated as a
separate data point. Methods require random iteration over the en-
tire pool of pixels in the dataset, in case of temporal reconstruction
often across the entire sequence for a single batch. Flexible storage
solutions should take this into account.

NVIDIA AIStore [AMB19] is a general purpose storage solution
that allows to monitor throughput per drive and implements tiered

https://github.com/Kai-46/PhySG
https://github.com/cgtuebingen/NeRD-Neural-Reflectance-Decomposition
https://github.com/google/nerfactor

20 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

architectures for loading and shuffling, while abstracting these lay-
ers away from the user. Independent of the storage backend, shard-
ing has tremendous benefits through 1) allowing to shuffle data in
memory while 2) using mostly sequential reads within the shards.
Tensorflow [AAB∗15] has built-in support sharded storage through
the tfrecord file format, whereas webdataset W offers sim-
ilar convenient features for PyTorch [PGM∗19].

4.6.2. Hyperparameter Search and Experiments

With long runtimes and complex configuration hierarchies, neu-
ral rendering experiments require good techniques for experiment
management and hyperparameter search. Hydra [Yad19] excels at
configuring even the most complex experiments and offers inte-
grated support for hyperparameter search, for example using the
AX adaptive experimentation framework W . However, running all
experiments for a sweep until convergence, even for smartly picked
parameters using Bayesian hyperparameter search, might be too
time consuming. Ray tune [LLN∗18] has implementations of algo-
rithms like ASHA [LJR∗20] and Hyperband [LJRT18], which can
dynamically assign computational and time budgets to experiments
for a faster hyperparameter search.

4.6.3. Differentiable Rendering and Autodiff

Neural Rendering has high demands towards differentiability: com-
plex computational graphs need to be built and, depending on the
application, be executed either on large inputs vectorized (macro
AD—for brevity we refer to auto-differentiation as AD throughout
this section) or on large amounts of small inputs (micro AD). De-
pending on the application, the AD package might have to be used
low level (e.g., in CUDA), or high level (e.g., in Python). A power-
ful AD library for C++ is STAN [CHB∗15]. We refer to the accom-
panying paper for a comprehensive overview and evaluation of AD
libraries until its publication in 2015, which is beyond the scope of
this article. A noteworthy more recent AD package for C++17 is
the autodiff W package. Enzyme AD [MC] is taking a partic-
ularly versatile approach for low-level AD: it leverages the LLVM
ecosystem as a whole. This is particularly powerful, because of the
concept of frontends, the LLVM IR and backends. In broad strokes,
LLVM frontends translate a language, for example C++, to the
LLVM intermediate representation (IR). This representation is an
abstract, language-agnostic representation of low-level commands,
and it is the same for all frontends. This is where Enzyme comes
in: it is an extension that can create derivatives of functions in this
IR. That means that it works for all languages that LLVM supports.
LLVM backends emit code from the IR: this could be for x86, ARM
or GPU processors. This means, that Enzyme supports a variety of
processors, including GPUs. Another C++ package specifically for
processing images and graphics is Halide [LGA∗18]. Its standout
feature is flexible scheduling for parallel processing of pixels.

Difftaichi [HAL∗20] offers differentiable programming in
Python for physical simulation with applications in rendering.
Enoki [Jak19] is a very versatile and high performance AD com-
ponent for physically-based differentiable rendering and is the core
component of the Mitsuba 2 renderer [NDVZJ19]. Jax [BFH∗18]
is a Python framework for differentiable and accelerated linear al-
gebra with compilation options for GPUs and TPUs. JaxNeRF W

is a reference implementation for NeRF using Jax. The Swift pro-
gramming language provides AD as a first class use case W , and
was heavily used for developing a Tensorflow integration W .

4.6.4. Raycasting and Rendering

Several packages exist for providing high-level rendering and ag-
gregation primitives. NVIDIA OptiX W is a high performance
library for ray-casting and ray-intersection and provides to date
the only possibility to use the hardware acceleration on NVIDIA
RTX hardware for ray intersection. Teg [BMM∗21] is a differen-
tiable programming language which provides primitives for opti-
mizing integrals with discontinuous integrands, as frequently found
in rendering. Redner [LADL18b] is a framework for differentiable
ray tracing; Mitsuba 2 [NDVZJ19] provides an even more gen-
eral framework for physically based differentiable rendering and
path tracing. psdr-cuda [LZBD21] improves over Redner by us-
ing better gradient calculation techniques and sampling strategies.
PyTorch3D [RRN∗20] offers a broad suite of tools around differ-
entiable rendering and graphics, tightly integrated with PyTorch.
Tensorflow Graphics [VKP∗19] has a similar goal for Tensorflow.

5. Open Challenges

After covering a wide variety of computer graphics and vision
problems to which neural volumetric representations can be suc-
cessfully applied, we now take a look at problems where only clas-
sical representations have been used. Thus, there are various av-
enues for future research. We further discuss multiple open chal-
lenges in the field. Many of the points discussed in the following
are related to each other.

Seamless Integration and Usage. Most computer graphics algo-
rithms and techniques developed over more than half a century as-
sume meshes or point clouds as 3D scene representations for ren-
dering and editing. In contrast, neural rendering is such a young
field that this notion was used for the first time just a few years ago
in 2018 [ERB∗18]. Thus, inevitably, there is still a gap between the
spectrum of available methods that can operate on classical 3D rep-
resentations and those that are applicable to neural representations.
Furthermore, many methods exist to edit classical representations,
e.g., widely-used tools such as Blender [Com18] and Maya [Aut]
support meshes and texture maps, whereas their counterparts for
neural representations have to be developed from scratch. On the
other hand, it is foreseeable that this gap will decrease with further
improvement in the field and more and more widespread adoption
and integration of neural representations. Moreover, modern hard-
ware accelerators are designed for classical computer graphics and
could in the future be similarly tailored to neural representations.

Another related challenge is interpretability of the learned repre-
sentations, which concerns deep learning in general. Thus, learned
neural network weights are notoriously hard to interpret in terms
of the target quantities (e.g., point colors and opacities in the 3D
space). At the same time, they aim to replace the graphics pipeline,
which is well understood and relies on analytically derived steps.

https://github.com/webdataset/webdataset
https://ax.dev
https://autodiff.github.io
https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/apple/swift/blob/main/docs/DifferentiableProgramming.md
https://github.com/tensorflow/swift
https://developer.nvidia.com/optix

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 21

Figure 14: 3D reconstruction for a room with keyframes (shown
in red) obtained by iMAP [SLOD21]. iMAP is a real-time SLAM
system for a single handheld RGB-D camera that can efficiently
fill in occluded regions. Despite the first successful steps, learning
neural representations for large-scale scenes has still many open
challenges. Image adapted from [SLOD21].

Ultimately, to improve controllability and enable seamless integra-
tion of learned volumetric models in computer graphics tools, we
would like to be able to modify the scene parametrization to change
the scene in a desired direction. While this is likely not tractable for
arbitrary scenes parametrized by global MLPs, composing a full
scene out of local neural representations might make it tractable by
opening up the intriguing possibility of re-introducing aspects of
classical graphics.

Scalability. Most of the works on volumetric neural rendering fo-
cus on single objects and relatively simple composite scenes (e.g., a
human and a background, several humans in the same environment,
a street with moving cars) with or without background. Learning
neural representations for large-scale scenes—which can only be
partially observed in each input frame—is still challenging. Al-
though the first successful and impressive steps in this direction
have been made (we refer here to Nerf in the Wild [MBRS∗21]
and the neural SLAM system iMAP [SLOD21], see Figure 14),
many open challenges remain. For instance, the approaches for
scene editing, relighting, and compositionality developed for sin-
gle objects cannot be straightforwardly extended to handle large-
scale scenes. Moreover, a global representation for large-scale en-
vironments becomes unfeasible starting from some scene size, even
when applying space partitioning policies such as those used in
PlenOctrees [YLT∗21]. Thus, a new generation of storage and re-
trieval techniques need to be developed for efficient neural models
for large-scale scenes, along the lines of VoxelHashing [NZIS13]
for TSDFs. First, they should make the scene completion more ef-
ficient (i.e., without the need to constantly recompute the entire
model from scratch) and, second, enable easy retrieval of partial
contents. Both these points are related to the open challenge of in-
terpretability discussed above.

Generalizability. Only a few initial but promising methods ex-
ist for generalizable and instantiable volumetric neural represen-
tations. For example, StereoNeRF [CBLPM21] uses only a dozen
spread-out views to generate novel views of a rigid scene with the

visual accuracy comparable to the original NeRF [MST∗20] af-
ter fine-tuning, while pixelNeRF [YYTK21] can infer volumetric
models of rigid scenes unseen at training time just from a single
image. This class of approaches is data-driven and requires large-
scale multi-view datasets with a sufficiently wide baseline. Conse-
quently, these methods can produce views at arbitrary novel view-
points if the datasets provide sufficient viewpoint coverage. Reduc-
ing this strong dependency is an exciting direction for future work.
Another open challenge is the generalizability of instantiable ap-
proaches to scenes with non-rigid deformations. The inputs can
be sparse sets of spatiotemporal observations or even single im-
ages at the extreme (in this case, the task becomes scene animation
from a single image). One straightforward direction towards such
techniques would be relying on multi-view datasets of deformable
scenes, which would likely increase required dataset sizes by a
multitude. Another possible way would be to disentangle deforma-
tion modes and scene shapes and appearances at rest. Furthermore,
while there exists some work on generating neural scene represen-
tations (e.g., using hypernets [SRF∗21]), there is less progress on
designing neural operators that take neural scene representations as
input to work on them, for example to complete a partial scene or to
regress semantic labels for an existing representation. No operator
analogous to mesh convolutions for meshes or 3D convolutions for
voxel grids exists. Such an operator would ideally be trained only
once and then be generally applicable.

Multi-Modal Learning. Multi-modal learning means going be-
yond visual signals and incorporating other data types such as
semantics, textual descriptions and sound. For example, telepres-
ence and augmented reality would highly benefit from a method
that can not only render novel views of dynamically interacting
and talking humans but also synthesize the corresponding novel
sounds; existing work can, for instance, synthesize stereo audio
from mono audio inputs [RMG∗21]. Synthesizing textual descrip-
tions and semantics of the scene (e.g., semantic segmentation la-
bels) can be very useful for downstream applications based on vol-
umetric neural representations. While some prior work addresses
this goal [KSW20,ZLLD21], this remains an open challenge. More
detailed and scenario-specific modeling could take into account
such information as the camera capture system (e.g., as already
shown in TöRF [ALG∗21] for depth cameras), whether the cam-
era is using rolling or global shutter, or if there is motion blur in
the input images. Other sensors like IMUs, Lidar, or event streams
could all potentially be modeled in a continuous fashion. (Ultra-
sound and x-rays could be continuously modeled at arbitrary reso-
lution for medical imaging.) It is also conceivable to optimize for
certain capture properties that are not trivial to measure like color
calibrations of a multi-view capture setup. This extends to physi-
cal simulation in general, where neural scene representations offer
an exciting venue to “learn less and know more" by incorporating
differentiable physics simulators; e.g., for physically motivated de-
formation models or physically correct light transport.

Other Questions. Can we increase quality? Reconstructing objects
with many high-frequency details, shading, and view-dependent
appearance remains a largely unsolved problem. Can we decrease
training time? Although there has been progress on very fast infer-
ence for novel view synthesis at test time, improving the training
time remains a big challenge. Are fewer input images sufficient?

22 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

Fewer input views might be sufficient to reach a similar visual fi-
delity as fully converged models requiring hundreds of views. Cur-
rently, partial observations (e.g., parts of the scene observed only
in a subset of images) tend to be blurrier than the rest of the scene.

Beyond the immediate use case of AR/VR, there is little re-
search on using neural scene representations in other contexts like
robotics, with the notable exception of the real-time SLAM system
iMAP [SLOD21] (see Figure 14). How can we obtain, incorporate,
and predict object affordances or other annotations like tempera-
ture? Are there advantages to using neural scene representations
for motion prediction or planning?

The list of future directions discussed in this section does not
aim for completeness. We expect to see many improvements on
more aspects of coordinate-based neural volumetric representations
already in the near future.

6. Social Implications

Neural approaches discussed in this state-of-the-art report achieve
a very high degree of realism for synthesized novel views. Rapid
developments in the field already influence and will continue in-
fluencing society in many positive and potentially negative ways
which we discuss in this section.

Research and Industry. The fields which are starkly impacted
by the new volumetric neural representations are computer vi-
sion, computer graphics as well as augmented and virtual reality,
which can benefit from increased photo-realism of rendered envi-
ronments. The fact that the state-of-the-art volumetric models rely
on well-understood and elegant principles lowers the barrier to en-
try for research on photogrammetry and 3D reconstruction. More-
over, this effect is magnified by the ease of use of the methods and
publicly available codebases and datasets. Since neural rendering is
still not mature and well understood, end-user tools like Blender do
not yet exist, putting these novel methods out of reach for both 3D
hobbyists and industry as of now. However, more widespread un-
derstanding of the technology inevitably impacts developed prod-
ucts and applications. With that, we foresee decreased effort in con-
tent creation for games and special effects for movies. The possi-
bility to render photo-realistic novel views of a scene from a few
input images is a significant advantage compared to existing tech-
nology. This can potentially reshape the entire established pipeline
for content design used in the visual effects (VFX) industry.

Trustworthiness. However, at the same time, photo-realism cre-
ates the possibility to misuse the technology and create syn-
thetic content that malicious actors may falsely claim to be real,
in particular, when neural rendering approaches focus on human
faces [TZS∗16, TZN19, GTZN21]. In response to these potential
misuses, methods to automatically detect such fake content are be-
ing developed by the research community [CRT∗21, RCV∗19] and
security measures including encryption and block chain measures
are being explored. And there are a number of other mitigations
that could be explored to minimize these risks. For example, while
there are cases where we expect users not to object to seeing syn-
thetic photo-real content (e.g., when watching movies), synthetic

content could be labelled or otherwise identified as such to inform
users. Further user studies could investigate people’s judgement of
the need to label synthetic content in different contexts. On the col-
lection side, people could provide explicit and informed consent
that their identity can be used for creating synthetic content in a
specified context.

Environment. Since current neural volumetric scene representa-
tions are deep-learning-based, the GPUs used for training them
consume a sizable amount of energy. Since more and more labo-
ratories are working on neural rendering, the use of high-end and
multi-GPU systems increases accordingly. If the resources for man-
ufacturing and the electricity for operating the GPU clusters are
not taken predominantly from renewable sources, training volumet-
ric neural representations can negatively influence the environment
and global climate in the long term. In an attempt to soften the need
for computational resources and hence electricity and hardware,
there are many architectures that require less compute power for
training than NeRF-based methods. Last but not least, high GPU
demand potentially implies that not all groups can afford to con-
tribute on equal footing as experimenting with volumetric repre-
sentations is not the most lightweight task.

7. Conclusion

In this state-of-the-art report, we have reviewed the recent trends on
neural rendering techniques. The methods covered learn 3D neu-
ral scene representations based on 2D observations as inputs for
training, and enable synthesis of photo-realistic imagery with con-
trol over different scene parameters. The field of neural rendering
has seen rapid progress during the last few years and continues to
grow fast. Its applications range from free-viewpoint videos of rigid
and non-rigid scenes to shape and material editing, relighting, and
human avatar generation, among many others. These applications
have been discussed in detail in this report.

At the same time, we believe that neural rendering is still an
emerging field with many open challenges that can be addressed.
To this end, we identify and discuss multiple directions for future
research. In addition, we discuss social implications, which arise
from the democratization of neural rendering along with its capa-
bility to synthesize photo-realistic image content. Overall, we con-
clude that neural rendering is an exciting field, which is inspiring
thousands of researchers across many communities to tackle some
of computer graphics’ hardest problems, and we look forward to
seeing further developments on the topic.

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 23

References

[AAB∗15] ABADI M., AGARWAL A., BARHAM P., BREVDO E., CHEN
Z., CITRO C., CORRADO G. S., DAVIS A., DEAN J., DEVIN M.,
GHEMAWAT S., GOODFELLOW I., HARP A., IRVING G., ISARD M.,
YANGQING J., JOZEFOWICZ R., KAISER L., KUDLUR M., LEVEN-
BERG J., MANÉ D., MONGA R., MOORE S., MURRAY D., OLAH C.,
SCHUSTER M., SHLENS J., STEINER B., SUTSKEVER I., TALWAR K.,
TUCKER P., VANHOUCKE V., VASUDEVAN V., VIÉGAS F., VINYALS
O., WARDEN P., WATTENBERG M., WICKE M., YU Y., ZHENG X.:
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/, 2015. 20

[AL20] ATZMON M., LIPMAN Y.: Sal: Sign agnostic learning of shapes
from raw data. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2020), pp. 2565–2574. 6

[ALG∗20] ATTAL B., LING S., GOKASLAN A., RICHARDT C., TOMP-
KIN J.: MatryODShka: Real-time 6DoF video view synthesis using
multi-sphere images. In Proc. ECCV (Aug. 2020). URL: https:
//visual.cs.brown.edu/matryodshka. 6

[ALG∗21] ATTAL B., LAIDLAW E., GOKASLAN A., KIM C.,
RICHARDT C., TOMPKIN J., O’TOOLE M.: Törf: Time-of-flight ra-
diance fields for dynamic scene view synthesis. In Neural Information
Processing Systems (NeurIPS) (2021). 14, 16, 21

[ALKN19] AZINOVIC D., LI T.-M., KAPLANYAN A., NIESSNER M.:
Inverse path tracing for joint material and lighting estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2019), pp. 2447–2456. 8

[AMB19] AIZMAN A., MALTBY G., BREUEL T.: High Performance I/O
For Large Scale Deep Learning. IEEE International Conference on Big
Data (2019), 5965–5967. 19

[AMBG∗21] AZINOVIC D., MARTIN-BRUALLA R., GOLDMAN D. B.,
NIESSNER M., THIES J.: Neural rgb-d surface reconstruction. 12

[Ano22] ANONYMOUS: StyleneRF: A style-based 3d aware generator for
high-resolution image synthesis. In Submitted to The Tenth International
Conference on Learning Representations (2022). under review. URL:
https://openreview.net/forum?id=iUuzzTMUw9K. 13, 14

[ASK∗20a] ALIEV K.-A., SEVASTOPOLSKY A., KOLOS M., ULYANOV
D., LEMPITSKY V.: Neural point-based graphics. arXiv:2110.
06635. 5

[ASK∗20b] ALIEV K.-A., SEVASTOPOLSKY A., KOLOS M.,
ULYANOV D., LEMPITSKY V.: Neural point-based graphics. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXII 16 (2020), Springer,
pp. 696–712. 8

[Aut] AUTODESK, INC.: Maya. URL: https://autodesk.com/
maya. 20

[AXS21] ALLDIECK T., XU H., SMINCHISESCU C.: imghum: Implicit
generative models of 3d human shape and articulated pose. In Interna-
tional Conference on Computer Vision (ICCV) (2021). 17

[BBJ∗21] BOSS M., BRAUN R., JAMPANI V., BARRON J. T., LIU C.,
LENSCH H. P. A.: NeRD: Neural reflectance decomposition from image
collections. ICCV (2021). 1, 19

[BFH∗18] BRADBURY J., FROSTIG R., HAWKINS P., JOHNSON M. J.,
LEARY C., MACLAURIN D., NECULA G., PASZKE A., VANDERPLAS
J., WANDERMAN-MILNE S., ZHANG Q.: JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL: http://github.
com/google/jax. 20

[BFO∗20] BROXTON M., FLYNN J., OVERBECK R., ERICKSON D.,
HEDMAN P., DUVALL M., DOURGARIAN J., BUSCH J., WHALEN M.,
DEBEVEC P.: Immersive light field video with a layered mesh represen-
tation. ACM Trans. Graph. (SIGGRAPH) 39, 4 (2020). 6

[BGP∗21] BAATZ H., GRANSKOG J., PAPAS M., ROUSSELLE F.,
NOVÁK J.: Nerf-tex: Neural reflectance field textures. In Eurographics
Symposium on Rendering (June 2021), The Eurographics Association. 5

[BKK19] BAI S., KOLTER J. Z., KOLTUN V.: Deep equilibrium models.
NeurIPS (2019). 6

[BKW21] BERGMAN A. W., KELLNHOFER P., WETZSTEIN G.: Fast
training of neural lumigraph representations using meta learning. In Pro-
ceedings of the IEEE International Conference on Neural Information
Processing Systems (NeurIPS) (2021). 8, 14

[BMM∗21] BANGARU S., MICHEL J., MU K., BERNSTEIN G., LI T.-
M., RAGAN-KELLEY J.: Systematically differentiating parametric dis-
continuities. ACM Trans. Graph. 40, 107 (2021), 107:1–107:17. 20

[BMT∗21] BARRON J. T., MILDENHALL B., TANCIK M., HEDMAN P.,
MARTIN-BRUALLA R., SRINIVASAN P. P.: Mip-nerf: A multiscale rep-
resentation for anti-aliasing neural radiance fields. ICCV (2021). 12

[BNT21] BUROV A., NIESSNER M., THIES J.: Dynamic surface func-
tion networks for clothed human bodies. 5

[BXS∗20] BI S., XU Z., SRINIVASAN P. P., MILDENHALL B.,
SUNKAVALLI K., HAŠAN M., HOLD-GEOFFROY Y., KRIEGMAN D.,
RAMAMOORTHI R.: Neural reflectance fields for appearance acquisi-
tion. arXiv:2008.03824. 18, 19

[CBC∗01a] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL
T. J., FRIGHT W. R., MCCALLUM B. C., EVANS T. R.: Reconstruction
and representation of 3d objects with radial basis functions. In Proceed-
ings of the 28th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 2001), SIGGRAPH ’01, Associa-
tion for Computing Machinery, p. 67–76. URL: https://doi.org/
10.1145/383259.383266, doi:10.1145/383259.383266.
4

[CBC∗01b] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL
T. J., FRIGHT W. R., MCCALLUM B. C., EVANS T. R.: Reconstruction
and representation of 3d objects with radial basis functions. In Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques (2001), pp. 67–76. 5

[CBLPM21] CHIBANE J., BANSAL A., LAZOVA V., PONS-MOLL G.:
Stereo radiance fields (srf): Learning view synthesis from sparse views
of novel scenes. In Computer Vision and Pattern Recognition (CVPR)
(2021). 13, 21

[CHB∗15] CARPENTER B., HOFFMAN M. D., BRUBAKER M., LEE D.,
LI P., BETANCOURT M.: The Stan Math Library: Reverse-Mode Au-
tomatic Differentiation in C++. URL: http://arxiv.org/abs/
1509.07164, arXiv:1509.07164. 20

[Chu06] CHUMPUSREX: Craniale computertomogra-
phie, 2006. URL: https://de.wikipedia.org/
wiki/Computertomographie#/media/Datei:
Ct-workstation-neck.jpg. 4

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Inter-
active reconstruction of monte carlo image sequences using a recur-
rent denoising autoencoder. ACM Trans. Graph. 36, 4 (July 2017),
98:1–98:12. URL: http://doi.acm.org/10.1145/3072959.
3073601, doi:10.1145/3072959.3073601. 3

[CL96] CURLESS B., LEVOY M.: A volumetric method for building
complex models from range images. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (1996),
pp. 303–312. 5

[CLI∗20] CHABRA R., LENSSEN J. E., ILG E., SCHMIDT T., STRAUB
J., LOVEGROVE S., NEWCOMBE R.: Deep local shapes: Learning local
sdf priors for detailed 3d reconstruction. In European Conference on
Computer Vision (Proceedings of the European Conference on Computer
Vision) (2020). 6

[CMK∗21] CHAN E., MONTEIRO M., KELLNHOFER P., WU J., WET-
ZSTEIN G.: pi-gan: Periodic implicit generative adversarial networks for
3d-aware image synthesis. In CVPR (2021). 1, 13, 14

[Com18] COMMUNITY B. O.: Blender - a 3D modelling and rendering
package. Blender Foundation, Stichting Blender Foundation, Amster-
dam, 2018. URL: http://www.blender.org. 20

http://tensorflow.org/
https://visual.cs.brown.edu/matryodshka
https://visual.cs.brown.edu/matryodshka
https://openreview.net/forum?id=iUuzzTMUw9K
http://arxiv.org/abs/2110.06635
http://arxiv.org/abs/2110.06635
https://autodesk.com/maya
https://autodesk.com/maya
http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/2008.03824
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
http://arxiv.org/abs/1509.07164
http://arxiv.org/abs/1509.07164
http://arxiv.org/abs/1509.07164
https://de.wikipedia.org/wiki/Computertomographie##/media/Datei:Ct-workstation-neck.jpg
https://de.wikipedia.org/wiki/Computertomographie##/media/Datei:Ct-workstation-neck.jpg
https://de.wikipedia.org/wiki/Computertomographie##/media/Datei:Ct-workstation-neck.jpg
http://doi.acm.org/10.1145/3072959.3073601
http://doi.acm.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
http://www.blender.org

24 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

[CRBD18] CHEN R. T. Q., RUBANOVA Y., BETTENCOURT J., DUVE-
NAUD D. K.: Neural ordinary differential equations. In Advances in
Neural Information Processing Systems (2018), vol. 31. 15

[CRT∗21] COZZOLINO D., ROSSLER A., THIES J., NIESSNER M.,
VERDOLIVA L.: Id-reveal: Identity-aware deepfake video detection. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (2021), pp. 15108–15117. 22

[CTZ20] CHEN Z., TAGLIASACCHI A., ZHANG H.: Bsp-net: Generat-
ing compact meshes via binary space partitioning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 45–54. 6

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for image syn-
thesis. In SIGGRAPH (1993), pp. 279–288. 12

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2019), pp. 5939–5948. 6, 10, 11

[DGY∗20] DENG B., GENOVA K., YAZDANI S., BOUAZIZ S., HINTON
G., TAGLIASACCHI A.: Cvxnet: Learnable convex decomposition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (2020), pp. 31–44. 6

[DLZR21] DENG K., LIU A., ZHU J.-Y., RAMANAN D.: Depth-
supervised nerf: Fewer views and faster training for free. arXiv preprint
arXiv:2107.02791 (2021). 11

[DNJ20] DAVIES T., NOWROUZEZAHRAI D., JACOBSON A.: Overfit
neural networks as a compact shape representation, 2020. arXiv:
2009.09808. 6

[DZW∗20] DUAN Y., ZHU H., WANG H., YI L., NEVATIA R., GUIBAS
L. J.: Curriculum deepsdf. In European Conference on Computer Vision
(2020), Springer, pp. 51–67. 6

[DZY∗21] DU Y., ZHANG Y., YU H.-X., TENENBAUM J. B., WU J.:
Neural radiance flow for 4d view synthesis and video processing. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (2021). 14, 15

[EGO∗20] ERLER P., GUERRERO P., OHRHALLINGER S., MITRA
N. J., WIMMER M.: Points2surf learning implicit surfaces from point
clouds. In Proceedings of the European Conference on Computer Vision
(2020), Springer, pp. 108–124. 6

[ERB∗18] ESLAMI S. A., REZENDE D. J., BESSE F., VIOLA F., MOR-
COS A. S., GARNELO M., RUDERMAN A., RUSU A. A., DANIHELKA
I., GREGOR K., ET AL.: Neural scene representation and rendering.
Science 360, 6394 (2018), 1204–1210. 20

[FBD∗19] FLYNN J., BROXTON M., DEBEVEC P., DUVALL M., FYFFE
G., OVERBECK R., SNAVELY N., TUCKER R.: Deepview: View
synthesis with learned gradient descent. In Proc. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 2367–2376. 6, 10

[FNPS16] FLYNN J., NEULANDER I., PHILBIN J., SNAVELY N.: Deep
stereo: Learning to predict new views from the world’s imagery. In Proc.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (2016). 10

[GCL∗21] GUO Y., CHEN K., LIANG S., LIU Y., BAO H., ZHANG J.:
Ad-nerf: Audio driven neural radiance fields for talking head synthe-
sis. In IEEE/CVF International Conference on Computer Vision (ICCV)
(2021). 14, 16

[GCS∗20] GENOVA K., COLE F., SUD A., SARNA A., FUNKHOUSER
T.: Local deep implicit functions for 3d shape. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 4857–4866. 6

[GCV∗19] GENOVA K., COLE F., VLASIC D., SARNA A., FREEMAN
W. T., FUNKHOUSER T.: Learning shape templates with structured im-
plicit functions. In Proceedings of the International Conference on Com-
puter Vision (2019), pp. 7154–7164. 6

[GKJ∗21] GARBIN S. J., KOWALSKI M., JOHNSON M., SHOTTON J.,
VALENTIN J.: Fastnerf: High-fidelity neural rendering at 200fps. arXiv
preprint arXiv:2103.10380 (2021). 9, 10, 11

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M.,
XU B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO
Y.: Generative adversarial nets. In Advances in Neural Information
Processing Systems (2014), Ghahramani Z., Welling M., Cortes C.,
Lawrence N., Weinberger K. Q., (Eds.), vol. 27, Curran Associates, Inc.
URL: https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.
9

[GSHG98] GREGER G., SHIRLEY P., HUBBARD P. M., GREENBERG
D. P.: The irradiance volume. IEEE Computer Graphics and Applica-
tions 18, 2 (1998), 32–43. 4, 6

[GSKH21] GAO C., SARAF A., KOPF J., HUANG J.-B.: Dy-
namic view synthesis from dynamic monocular video. arXiv preprint
arXiv:2105.06468 (2021). 14, 15

[GSL∗20] GAO C., SHIH Y., LAI W.-S., LIANG C.-K., HUANG J.-
B.: Portrait neural radiance fields from a single image. arXiv preprint
arXiv:2012.05903 (2020). 13, 14

[GTZN21] GAFNI G., THIES J., ZOLLHÖFER M., NIESSNER M.: Dy-
namic neural radiance fields for monocular 4d facial avatar reconstruc-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2021), pp. 8649–8658. 14, 16,
22

[GYH∗20] GROPP A., YARIV L., HAIM N., ATZMON M., LIPMAN Y.:
Implicit geometric regularization for learning shapes. arXiv preprint
arXiv:2002.10099 (2020). 6

[HAL∗20] HU Y., ANDERSON L., LI T.-M., SUN Q., CARR N.,
RAGAN-KELLEY J., DURAND F.: Difftaichi: Differentiable program-
ming for physical simulation. ICLR (2020). 8, 20

[Har96] HART J. C.: Sphere tracing: A geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Computer 12, 10
(1996), 527–545. 8

[HCC∗14] HANNUN A., CASE C., CASPER J., CATANZARO B., DI-
AMOS G., ELSEN E., PRENGER R., SATHEESH S., SENGUPTA S.,
COATES A., Y. NG A.: DeepSpeech: Scaling up end-to-end speech
recognition. 16

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J.,
STUETZLE W.: Surface reconstruction from unorganized points. SIG-
GRAPH (1992). 5

[HLA∗19] HU Y., LI T.-M., ANDERSON L., RAGAN-KELLEY J., DU-
RAND F.: Taichi: a language for high-performance computation on spa-
tially sparse data structures. ACM Transactions on Graphics (TOG) 38,
6 (2019), 201. 8

[HRRR18] HENZLER P., RASCHE V., ROPINSKI T., RITSCHEL T.:
Single-image tomography: 3d volumes from 2d cranial x-rays. In Eu-
rographics (2018). 10

[HSM∗21] HEDMAN P., SRINIVASAN P. P., MILDENHALL B., BARRON
J. T., DEBEVEC P.: Baking neural radiance fields for real-time view
synthesis. arXiv (2021). 9, 10, 11

[HSW89] HORNIK K., STINCHCOMBE M., WHITE H.: Multilayer
feedforward networks are universal approximators. Neural Networks 2,
5 (1989), 359–366. URL: https://www.sciencedirect.com/
science/article/pii/0893608089900208, doi:https:
//doi.org/10.1016/0893-6080(89)90020-8. 4

[ID18] INSAFUTDINOV E., DOSOVITSKIY A.: Unsupervised learning
of shape and pose with differentiable point clouds. In Proceedings of
the IEEE International Conference on Neural Information Processing
Systems (NeurIPS) (2018), pp. 2802–2812. 8

[IKH∗11] IZADI S., KIM D., HILLIGES O., MOLYNEAUX D., NEW-
COMBE R., KOHLI P., SHOTTON J., HODGES S., FREEMAN D., DAVI-
SON A., FITZGIBBON A.: Kinectfusion: Real-time 3d reconstruction
and interaction using a moving depth camera. In UIST ’11 Proceedings

http://arxiv.org/abs/2009.09808
http://arxiv.org/abs/2009.09808
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 25

of the 24th annual ACM symposium on User interface software and tech-
nology (October 2011), ACM, pp. 559–568. 5

[IPOS14] IONESCU C., PAPAVA D., OLARU V., SMINCHISESCU C.:
Human3.6m: Large scale datasets and predictive methods for 3d human
sensing in natural environments. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) 36, 7 (2014), 1325–1339. 17

[JA21] JANG W., AGAPITO L.: Codenerf: Disentangled neural radi-
ance fields for object categories. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (October 2021),
pp. 12949–12958. 18

[JAC∗21] JEONG Y., AHN S., CHOY C., ANANDKUMAR A., CHO M.,
PARK J.: Self-calibrating neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) (Octo-
ber 2021), pp. 5846–5854. 12

[JAFF16] JOHNSON J., ALAHI A., FEI-FEI L.: Perceptual losses for
real-time style transfer and super-resolution. In Computer Vision – ECCV
2016 (Cham, 2016), Leibe B., Matas J., Sebe N., Welling M., (Eds.),
Springer International Publishing, pp. 694–711. 9

[Jak19] JAKOB W.: Enoki: structured vectorization and differentiation
on modern processor architectures, 2019. https://github.com/mitsuba-
renderer/enoki. 20

[Jar08] JAROSZ W.: Efficient Monte Carlo Methods for Light Transport
in Scattering Media. PhD thesis, UC San Diego, September 2008. 9

[JDV∗14] JENSEN R., DAHL A., VOGIATZIS G., TOLA E., AANÆS H.:
Large scale multi-view stereopsis evaluation. In Computer Vision and
Pattern Recognition (CVPR) (2014). 13

[JJHZ20] JIANG Y., JI D., HAN Z., ZWICKER M.: Sdfdiff: Differen-
tiable rendering of signed distance fields for 3d shape optimization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (2020). 6

[JSM∗20] JIANG C. M., SUD A., MAKADIA A., HUANG J., NIESSNER
M., FUNKHOUSER T.: Local implicit grid representations for 3d scenes.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recogni-
tion (Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition) (2020). 6

[JXX∗21] JIAKAI Z., XINHANG L., XINYI Y., FUQIANG Z., YANSHUN
Z., MINYE W., YINGLIANG Z., LAN X., JINGYI Y.: Editable free-
viewpoint video using a layered neural representation. In ACM SIG-
GRAPH (2021). 1, 18

[Kaj86] KAJIYA J. T.: The rendering equation. In Proceedings of the 13th
annual conference on Computer graphics and interactive techniques
(1986), pp. 143–150. 3

[KB04] KOBBELT L., BOTSCH M.: A survey of point-based tech-
niques in computer graphics. Computers and Graphics 28, 6
(2004), 801–814. URL: https://www.sciencedirect.com/
science/article/pii/S0097849304001487, doi:https:
//doi.org/10.1016/j.cag.2004.08.009. 7

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic opti-
mization. CoRR abs/1412.6980 (2014). URL: http://arxiv.org/
abs/1412.6980, arXiv:1412.6980. 9

[KBS15] KALANTARI N. K., BAKO S., SEN P.: A Machine Learn-
ing Approach for Filtering Monte Carlo Noise. ACM Transactions on
Graphics (TOG) (Proceedings of SIGGRAPH 2015) 34, 4 (2015). 3

[KHM17] KAR A., HÄNE C., MALIK J.: Learning a multi-view stereo
machine. In NeurIPS (2017). 10

[KJJ∗21] KELLNHOFER P., JEBE L., JONES A., SPICER R., PULLI K.,
WETZSTEIN G.: Neural lumigraph rendering. In CVPR (2021). 6, 8

[KSW20] KOHLI A., SITZMANN V., WETZSTEIN G.: Semantic Implicit
Neural Scene Representations with Semi-supervised Training. In Inter-
national Conference on 3D Vision (3DV) (2020). 6, 21

[KSZ∗21] KOSIOREK A. R., STRATHMANN H., ZORAN D., MORENO
P., SCHNEIDER R., MOKRÁ S., REZENDE D. J.: NeRF-VAE: A Ge-
ometry Aware 3D Scene Generative Model. URL: http://arxiv.
org/abs/2104.00587, arXiv:2104.00587. 13

[KTEM18] KANAZAWA A., TULSIANI S., EFROS A. A., MALIK J.:
Learning category-specific mesh reconstruction from image collections.
In Proceedings of the European Conference on Computer Vision (2018),
pp. 371–386. 6

[KUH18] KATO H., USHIKU Y., HARADA T.: Neural 3D mesh renderer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2018), pp. 3907–3916. 8

[LADL18a] LI T.-M., AITTALA M., DURAND F., LEHTINEN J.: Differ-
entiable monte carlo ray tracing through edge sampling. In ACM Trans-
actions on Graphics (proceedings of ACM SIGGRAPH ASIA) (2018),
ACM, p. 222. 8

[LADL18b] LI T.-M., AITTALA M., DURAND F., LEHTINEN J.: Dif-
ferentiable monte carlo ray tracing through edge sampling. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 222:1–222:11. 20

[LB14] LOPER M. M., BLACK M. J.: Opendr: An approximate differen-
tiable renderer. In Proceedings of the European Conference on Computer
Vision (2014), Springer, pp. 154–169. 8

[LFS∗21] LI J., FENG Z., SHE Q., DING H., WANG C., LEE G. H.:
Mine: Towards continuous depth mpi with nerf for novel view synthesis.
In International Conference on Computer Vision (ICCV) (2021). 12

[LGA∗18] LI T.-M., GHARBI M., ADAMS A., DURAND F., RAGAN-
KELLEY J.: Differentiable programming for image processing and deep
learning in Halide. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018),
139:1–139:13. 20

[LGL∗20] LIU L., GU J., LIN K. Z., CHUA T.-S., THEOBALT C.: Neu-
ral sparse voxel fields. Proceedings of the IEEE International Confer-
ence on Neural Information Processing Systems (NeurIPS) (2020). 6, 9,
10, 11

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, Associa-
tion for Computing Machinery, p. 31–42. URL: https://doi.org/
10.1145/237170.237199, doi:10.1145/237170.237199.
9

[LHL∗21] LYU L., HABERMANN M., LIU L., TEWARI A., THEOBALT
C., ET AL.: Efficient and differentiable shadow computation for inverse
problems. arXiv preprint arXiv:2104.00359 (2021). 8

[LHR∗21] LIU L., HABERMANN M., RUDNEV V., SARKAR K., GU J.,
THEOBALT C.: Neural actor: Neural free-view synthesis of human actors
with pose control. ACM Trans. Graph.(ACM SIGGRAPH Asia) (2021).
14, 17

[LJR∗20] LI L., JAMIESON K., ROSTAMIZADEH A., GONINA E., BEN-
TZUR J., HARDT M., RECHT B., TALWALKAR A.: A SYSTEM FOR
MASSIVELY PARALLEL HYPERPARAMETER TUNING. MLSys 2
(2020). arXiv:1810.05934v5. 20

[LJRT18] LI L., JAMIESON K., ROSTAMIZADEH A., TALWALKAR A.:
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Op-
timization. Journal of Machine Learning Research 18 (2018), 1–
52. URL: http://jmlr.org/papers/v18/16-558.html.,
arXiv:1603.06560v4. 20

[LK10] LAINE S., KARRAS T.: Efficient sparse voxel octrees–analysis,
extensions, and implementation. NVIDIA Corporation 2 (2010). 6

[LKL18] LIN C.-H., KONG C., LUCEY S.: Learning efficient point
cloud generation for dense 3d object reconstruction. In AAAI Confer-
ence on Artificial Intelligence (2018). 8

[LLCL19] LIU S., LI T., CHEN W., LI H.: Soft rasterizer: A differ-
entiable renderer for image-based 3D reasoning. In Proceedings of the
International Conference on Computer Vision (2019), pp. 7708–7717. 7,
8

[LLN∗18] LIAW R., LIANG E., NISHIHARA R., MORITZ P., GONZA-
LEZ J. E., STOICA I.: Tune: A research platform for distributed model
selection and training. arXiv preprint arXiv:1807.05118 (2018). 20

https://www.sciencedirect.com/science/article/pii/S0097849304001487
https://www.sciencedirect.com/science/article/pii/S0097849304001487
https://doi.org/https://doi.org/10.1016/j.cag.2004.08.009
https://doi.org/https://doi.org/10.1016/j.cag.2004.08.009
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2104.00587
http://arxiv.org/abs/2104.00587
http://arxiv.org/abs/2104.00587
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
http://arxiv.org/abs/1810.05934v5
http://jmlr.org/papers/v18/16-558.html.
http://arxiv.org/abs/1603.06560v4

26 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

[LMR∗15] LOPER M., MAHMOOD N., ROMERO J., PONS-MOLL G.,
BLACK M. J.: SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia) 34, 6 (2015), 248:1–248:16. 17

[LMTL21] LIN C.-H., MA W.-C., TORRALBA A., LUCEY S.: Barf:
Bundle-adjusting neural radiance fields. In IEEE International Confer-
ence on Computer Vision (ICCV) (2021). 12

[LMW21] LINDELL D. B., MARTEL J. N., WETZSTEIN G.: Autoint:
Automatic integration for fast neural volume rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2021). 9, 10, 11

[LNSW21] LI Z., NIKLAUS S., SNAVELY N., WANG O.: Neural scene
flow fields for space-time view synthesis of dynamic scenes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2021), pp. 6498–6508. 14, 15, 16

[LSCL19] LIU S., SAITO S., CHEN W., LI H.: Learning to infer implicit
surfaces without supervision. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (2019), pp. 8295–
8306. 8

[LSS∗19] LOMBARDI S., SIMON T., SARAGIH J., SCHWARTZ G.,
LEHRMANN A., SHEIKH Y.: Neural volumes: Learning dynamic ren-
derable volumes from images. ACM Trans. Graph. 38, 4 (July 2019),
65:1–65:14. 10, 17

[LSS∗21] LOMBARDI S., SIMON T., SCHWARTZ G., ZOLLHOEFER
M., SHEIKH Y., SARAGIH J.: Mixture of volumetric primitives for
efficient neural rendering. ACM Trans. Graph. 40, 4 (July 2021).
URL: https://doi.org/10.1145/3450626.3459863, doi:
10.1145/3450626.3459863. 1, 14, 17

[LSZ∗21] LI T., SLAVCHEVA M., ZOLLHOEFER M., GREEN S., LASS-
NER C., KIM C., SCHMIDT T., LOVEGROVE S., GOESELE M., LV
Z.: Neural 3D Video Synthesis. URL: http://arxiv.org/abs/
2103.02597, arXiv:2103.02597. 14, 16

[LTJ18] LIU H.-T. D., TAO M., JACOBSON A.: Paparazzi: surface edit-
ing by way of multi-view image processing. ACM Transactions on
Graphics (proceedings of ACM SIGGRAPH ASIA) 37, 6 (2018), 221–
1. 8

[LZ21] LASSNER C., ZOLLHÖFER M.: Pulsar: Efficient sphere-based
neural rendering. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2021). 5, 8

[LZBD21] LUAN F., ZHAO S., BALA K., DONG Z.: Unified Shape
and SVBRDF Recovery using Differentiable Monte Carlo Render-
ing. Computer Graphics Forum 40, 4 (2021), 101–113. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
cgf.14344, doi:https://doi.org/10.1111/cgf.14344.
20

[LZP∗20] LIU S., ZHANG Y., PENG S., SHI B., POLLEFEYS M., CUI
Z.: Dist: Rendering deep implicit signed distance function with differ-
entiable sphere tracing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2020). 6, 8

[LZZ∗21] LIU S., ZHANG X., ZHANG Z., ZHANG R., ZHU J.-Y., RUS-
SELL B.: Editing conditional radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) (2021).
17, 18

[Max95] MAX N.: Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 1, 2 (1995), 99–
108. doi:10.1109/2945.468400. 9

[MBRS∗21] MARTIN-BRUALLA R., RADWAN N., SAJJADI M. S. M.,
BARRON J. T., DOSOVITSKIY A., DUCKWORTH D.: NeRF in the Wild:
Neural Radiance Fields for Unconstrained Photo Collections. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2021). 9, 12, 21

[MC] MOSES W. S., CHURAVY V.: Instead of Rewriting Foreign Code
for Machine Learning, Automatically Synthesize Fast Gradients. URL:
https://enzyme.mit.edu. 20

[MC10] MAX N. L., CHEN M. S.: Local and global illumination in the
volume rendering integral. In Scientific Visualization: Advanced Con-
cepts (2010). 9

[MCL∗21] MENG Q., CHEN A., LUO H., WU M., SU H., XU L., HE
X., YU J.: Gnerf: Gan-based neural radiance field without posed camera.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) (October 2021), pp. 6351–6361. 12

[MGK∗19] MESHRY M., GOLDMAN D. B., KHAMIS S., HOPPE H.,
PANDEY R., SNAVELY N., MARTIN-BRUALLA R.: Neural rerendering
in the wild. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2019), pp. 6878–6887. 2

[MLL∗21] MARTEL J. N., LINDELL D. B., LIN C. Z., CHAN E. R.,
MONTEIRO M., WETZSTEIN G.: Acorn: Adaptive coordinate networks
for neural representation. ACM Trans. Graph. (SIGGRAPH) (2021). 6,
9

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space. In CVPR (2019). 11

[MPJ∗19] MICHALKIEWICZ M., PONTES J. K., JACK D., BAKTASH-
MOTLAGH M., ERIKSSON A.: Implicit surface representations as layers
in neural networks. In Proceedings of the International Conference on
Computer Vision (2019), pp. 4743–4752. 6

[MSOC∗19] MILDENHALL B., SRINIVASAN P. P., ORTIZ-CAYON R.,
KALANTARI N. K., RAMAMOORTHI R., NG R., KAR A.: Local light
field fusion: Practical view synthesis with prescriptive sampling guide-
lines. ACM Trans. Graph. (SIGGRAPH) 38, 4 (2019). 6, 10

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). 1, 2, 3, 5, 7, 9, 10,
11, 12, 14, 17, 21

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A retargetable forward and inverse renderer. Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). doi:
10.1145/3355089.3356498. 8, 20

[NFS15] NEWCOMBE R. A., FOX D., SEITZ S. M.: Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2015), pp. 343–352. 5

[NG20] NIEMEYER M., GEIGER A.: GIRAFFE: Representing Scenes
as Compositional Generative Neural Feature Fields. URL: http://
arxiv.org/abs/2011.12100, arXiv:2011.12100. 13

[NG21a] NIEMEYER M., GEIGER A.: CAMPARI: Camera-Aware De-
composed Generative Neural Radiance Fields. 46–48. URL: http:
//arxiv.org/abs/2103.17269, arXiv:2103.17269. 13, 14

[NG21b] NIEMEYER M., GEIGER A.: Giraffe: Representing scenes as
compositional generative neural feature fields. In Computer Vision and
Pattern Recognition (CVPR) (2021). 9, 14, 18

[NMOG20] NIEMEYER M., MESCHEDER L., OECHSLE M., GEIGER
A.: Differentiable volumetric rendering: Learning implicit 3d represen-
tations without 3d supervision. In CVPR (2020). 6, 8, 10, 11

[NPLT∗19] NGUYEN-PHUOC T., LI C., THEIS L., RICHARDT C.,
YANG Y.-L.: Hologan: Unsupervised learning of 3d representations
from natural images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (2019), pp. 7588–7597. 13, 14, 18

[NSLH21] NOGUCHI A., SUN X., LIN S., HARADA T.: Neural artic-
ulated radiance field. In International Conference on Computer Vision
(ICCV) (2021). 14, 17

[NSP∗21] NEFF T., STADLBAUER P., PARGER M., KURZ A.,
MUELLER J. H., CHAITANYA C. R., KAPLANYAN A., STEINBERGER
M.: DONeRF: Towards Real-Time Rendering of Compact Neural Ra-
diance Fields using Depth Oracle Networks. Computer Graphics Forum
40, 4 (2021), 45–59. arXiv:2103.03231, doi:10.1111/cgf.
14340. 9, 10, 11

https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863
https://doi.org/10.1145/3450626.3459863
http://arxiv.org/abs/2103.02597
http://arxiv.org/abs/2103.02597
http://arxiv.org/abs/2103.02597
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14344
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14344
https://doi.org/https://doi.org/10.1111/cgf.14344
https://doi.org/10.1109/2945.468400
https://enzyme.mit.edu.
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
http://arxiv.org/abs/2011.12100
http://arxiv.org/abs/2011.12100
http://arxiv.org/abs/2011.12100
http://arxiv.org/abs/2103.17269
http://arxiv.org/abs/2103.17269
http://arxiv.org/abs/2103.17269
http://arxiv.org/abs/2103.03231
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1111/cgf.14340

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 27

[NZIS13] NIESSNER M., ZOLLHÖFER M., IZADI S., STAMMINGER
M.: Real-time 3d reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (TOG) (2013). 5, 21

[OMN∗19] OECHSLE M., MESCHEDER L., NIEMEYER M., STRAUSS
T., GEIGER A.: Texture fields: Learning texture representations in func-
tion space. In ICCV (2019). 5, 6

[OMT∗21] OST J., MANNAN F., THUEREY N., KNODT J., HEIDE F.:
Neural Scene Graphs for Dynamic Scenes. In Conference on Computer
Vision and Pattern Recognition (CVPR) (2021). 18

[OPG21] OECHSLE M., PENG S., GEIGER A.: Unisurf: Unifying neural
implicit surfaces and radiance fields for multi-view reconstruction. arXiv
preprint arXiv:2104.10078 (2021). 8, 12

[PBDCO19] PETERSEN F., BERMANO A. H., DEUSSEN O., COHEN-
OR D.: Pix2vex: Image-to-geometry reconstruction using a smooth dif-
ferentiable renderer. arXiv preprint arXiv:1903.11149 (2019). 8

[PCPMMN21] PUMAROLA A., CORONA E., PONS-MOLL G.,
MORENO-NOGUER F.: D-NeRF: Neural Radiance Fields for Dynamic
Scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021). 9, 14, 15

[PD84] PORTER T., DUFF T.: Compositing digital images.
SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 253–259.
URL: https://doi.org/10.1145/964965.808606,
doi:10.1145/964965.808606. 9

[PDW∗21] PENG S., DONG J., WANG Q., ZHANG S., SHUAI Q., BAO
H., ZHOU X.: Animatable neural radiance fields for human body mod-
eling. arXiv preprint arXiv:2105.02872 (2021). 1, 14, 17

[PFAK20] POURSAEED O., FISHER M., AIGERMAN N., KIM V. G.:
Coupling explicit and implicit surface representations for generative
3d modeling. In European Conference on Computer Vision (2020),
Springer, pp. 667–683. 6

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. CVPR (2019). 6, 11

[PGM∗19] PASZKE A., GROSS S., MASSA F., LERER A., BRADBURY
J., CHANAN G., KILLEEN T., LIN Z., GIMELSHEIN N., ANTIGA L.,
DESMAISON A., KOPF A., YANG E., DEVITO Z., RAISON M., TE-
JANI A., CHILAMKURTHY S., STEINER B., FANG L., BAI J., CHIN-
TALA S.: Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems (2019),
vol. 32, Curran Associates, Inc. 20

[PNM∗20] PENG S., NIEMEYER M., MESCHEDER L., POLLEFEYS M.,
GEIGER A.: Convolutional occupancy networks. In European Confer-
ence on Computer Vision (Proceedings of the European Conference on
Computer Vision) (2020). 6, 13

[PSB∗21] PARK K., SINHA U., BARRON J. T., BOUAZIZ S., GOLD-
MAN D. B., SEITZ S. M., MARTIN-BRUALLA R.: Nerfies: Deformable
neural radiance fields. ICCV (2021). 1, 6, 14, 15, 16, 17

[PSDV∗18] PEREZ E., STRUB F., DE VRIES H., DUMOULIN V.,
COURVILLE A.: Film: Visual reasoning with a general conditioning
layer. In Proceedings of the AAAI Conference on Artificial Intelligence
(2018), vol. 32. 14

[PSH∗21] PARK K., SINHA U., HEDMAN P., BARRON J. T., BOUAZIZ
S., GOLDMAN D. B., MARTIN-BRUALLA R., SEITZ S. M.: Hypern-
erf: A higher-dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228 (2021). 14, 15, 16

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.:
Surfels-surface elements as rendering primitives. In ACM Transactions
on Graphics (Proc. ACM SIGGRAPH) (7/2000 2000), pp. 335–342. 5

[PZX∗21] PENG S., ZHANG Y., XU Y., WANG Q., SHUAI Q., BAO H.,
ZHOU X.: Neural body: Implicit neural representations with structured
latent codes for novel view synthesis of dynamic humans. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (June 2021), pp. 9054–9063. 14, 17

[RCV∗19] RÖSSLER A., COZZOLINO D., VERDOLIVA L., RIESS C.,
THIES J., NIESSNER M.: Faceforensics++: Learning to detect manipu-
lated facial images. In ICCV 2019 (2019). 22

[RFS21a] RÜCKERT D., FRANKE L., STAMMINGER M.: Adop: Ap-
proximate differentiable one-pixel point rendering. arXiv:2110.
06635. 5

[RFS21b] RÜCKERT D., FRANKE L., STAMMINGER M.: Adop: Ap-
proximate differentiable one-pixel point rendering. arXiv preprint
arXiv:2110.06635 (2021). 8

[RMBF21] REMATAS K., MARTIN-BRUALLA R., FERRARI V.: ShaRF:
Shape-conditioned Radiance Fields from a Single View. URL: http:
//arxiv.org/abs/2102.08860, arXiv:2102.08860. 13

[RMG∗21] RICHARD A., MARKOVIC D., GEBRU I. D., KRENN S.,
BUTLER G., DE LA TORRE F., SHEIKH Y.: Neural synthesis of bin-
aural speech from mono audio. In International Conference on Learning
Representations (ICLR) (2021). 21

[ROUG17] RIEGLER G., OSMAN ULUSOY A., GEIGER A.: Octnet:
Learning deep 3d representations at high resolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition (2017),
pp. 3577–3586. 6

[RPLG21] REISER C., PENG S., LIAO Y., GEIGER A.: KiloNeRF:
Speeding up Neural Radiance Fields with Thousands of Tiny MLPs.
URL: http://arxiv.org/abs/2103.13744, arXiv:2103.
13744. 4, 10, 11

[RRN∗20] RAVI N., REIZENSTEIN J., NOVOTNY D., GORDON T., LO
W.-Y., JOHNSON J., GKIOXARI G.: Accelerating 3d deep learning with
pytorch3d. arXiv:2007.08501 (2020). 7, 20

[RROG18] ROVERI R., RAHMANN L., OZTIRELI C., GROSS M.: A net-
work architecture for point cloud classification via automatic depth im-
ages generation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2018), pp. 4176–4184. 8

[RSH∗21] REIZENSTEIN J., SHAPOVALOV R., HENZLER P., SBOR-
DONE L., LABATUT P., NOVOTNY D.: Common objects in 3d: Large-
scale learning and evaluation of real-life 3d category reconstruction. In
International Conference on Computer Vision (2021). 13

[RZS∗20] RAJ A., ZOLLHOEFER M., SIMON T., SARAGIH J., SAITO
S., HAYS J., LOMBARDI S.: Pva: Pixel-aligned volumetric avatars. In
arXiv:2101.02697 (2020). 13

[SCT∗20] SITZMANN V., CHAN E. R., TUCKER R., SNAVELY N.,
WETZSTEIN G.: Metasdf: Meta-learning signed distance functions. In
NeurIPS (2020). 13

[SDZ∗21] SRINIVASAN P. P., DENG B., ZHANG X., TANCIK M.,
MILDENHALL B., BARRON J. T.: NeRV: Neural reflectance and vis-
ibility fields for relighting and view synthesis. CVPR (2021). 9, 19

[SHN∗19] SAITO S., HUANG Z., NATSUME R., MORISHIMA S.,
KANAZAWA A., LI H.: Pifu: Pixel-aligned implicit function for high-
resolution clothed human digitization. In Proceedings of the Interna-
tional Conference on Computer Vision (2019), pp. 2304–2314. 6, 13

[SK00] SHUM H., KANG S. B.: Review of image-based rendering tech-
niques. In Visual Communications and Image Processing 2000 (2000),
vol. 4067, International Society for Optics and Photonics, pp. 2–13. 12

[SLNG20] SCHWARZ K., LIAO Y., NIEMEYER M., GEIGER A.: GRAF:
Generative radiance fields for 3D-aware image synthesis. Advances
in Neural Information Processing Systems 2020-December, NeurIPS
(2020), 1–13. arXiv:2007.02442. 13, 14

[SLOD21] SUCAR E., LIU S., ORTIZ J., DAVISON A. J.: iMAP: Im-
plicit Mapping and Positioning in Real-Time. URL: http://arxiv.
org/abs/2103.12352, arXiv:2103.12352. 21, 22

[SLPS20] SCHOPS T., LARSSON V., POLLEFEYS M., SATTLER T.:
Why having 10,000 parameters in your camera model is better than
twelve. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2020). 7

https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/964965.808606
http://arxiv.org/abs/2110.06635
http://arxiv.org/abs/2110.06635
http://arxiv.org/abs/2102.08860
http://arxiv.org/abs/2102.08860
http://arxiv.org/abs/2102.08860
http://arxiv.org/abs/2103.13744
http://arxiv.org/abs/2103.13744
http://arxiv.org/abs/2103.13744
http://arxiv.org/abs/2007.02442
http://arxiv.org/abs/2103.12352
http://arxiv.org/abs/2103.12352
http://arxiv.org/abs/2103.12352

28 A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering

[SMB∗20] SITZMANN V., MARTEL J. N., BERGMAN A. W., LINDELL
D. B., WETZSTEIN G.: Implicit neural representations with periodic
activation functions. In Conference on Neural Information Processing
Systems (NeurIPS) (2020). 6, 14

[SP04] SAINZ M., PAJAROLA R.: Point-based rendering tech-
niques. Computers and Graphics 28, 6 (2004), 869–879. URL:
https://www.sciencedirect.com/science/article/
pii/S0097849304001530, doi:https://doi.org/10.
1016/j.cag.2004.08.014. 7

[SRF∗21] SITZMANN V., REZCHIKOV S., FREEMAN W. T., TENEN-
BAUM J. B., DURAND F.: Light field networks: Neural scene represen-
tations with single-evaluation rendering. In arXiv (2021). 10, 11, 13,
21

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast parallel surface and solid
voxelization on gpus. ACM Trans. Graph. 29, 6 (Dec. 2010).
URL: https://doi.org/10.1145/1882261.1866201, doi:
10.1145/1882261.1866201. 4

[SSS06] SNAVELY N., SEITZ S. M., SZELISKI R.: Photo tourism: Ex-
ploring photo collections in 3d. In SIGGRAPH Conference Proceedings
(New York, NY, USA, 2006), ACM Press, pp. 835–846. 12

[SSSJ20] SAITO S., SIMON T., SARAGIH J., JOO H.: Pifuhd: Multi-
level pixel-aligned implicit function for high-resolution 3d human dig-
itization. In Computer Vision and Pattern Recognition (CVPR) (2020).
17

[STB∗19] SRINIVASAN P. P., TUCKER R., BARRON J. T., RA-
MAMOORTHI R., NG R., SNAVELY N.: Pushing the boundaries of view
extrapolation with multiplane images. In CVPR (2019). 10

[STH∗19] SITZMANN V., THIES J., HEIDE F., NIESSNER M., WET-
ZSTEIN G., ZOLLHÖFER M.: Deepvoxels: Learning persistent 3d fea-
ture embeddings. In CVPR (2019). 6, 10

[SYZR21] SU S.-Y., YU F., ZOLLHOEFER M., RHODIN H.: A-nerf:
Surface-free human 3d pose refinement via neural rendering. In Confer-
ence on Neural Information Processing Systems (NeurIPS) (2021). 14,
17

[SZW19] SITZMANN V., ZOLLHÖFER M., WETZSTEIN G.: Scene rep-
resentation networks: Continuous 3d-structure-aware neural scene repre-
sentations. In NeurIPS (2019). 6, 8, 10, 11, 13

[TET∗20] THIES J., ELGHARIB M., TEWARI A., THEOBALT C.,
NIESSNER M.: Neural voice puppetry: Audio-driven facial reenactment.
ECCV 2020 (2020). 16

[TFT∗20] TEWARI A., FRIED O., THIES J., SITZMANN V., LOMBARDI
S., SUNKAVALLI K., MARTIN-BRUALLA R., SIMON T., SARAGIH J.,
NIESSNER M., PANDEY R., FANELLO S., WETZSTEIN G., ZHU J.-Y.,
THEOBALT C., AGRAWALA M., SHECHTMAN E., GOLDMAN D. B.,
ZOLLHÖFER M.: State of the art on neural rendering. EG (2020). 2, 3

[TFT∗21] TEWARI A., FRIED O., THIES J., SITZMANN V., LOM-
BARDI S., XU Z., SIMON T., NIESSNER M., TRETSCHK E., LIU L.,
MILDENHALL B., SRINIVASAN P., PANDEY R., ORTS-ESCOLANO
S., FANELLO S., GUO M., WETZSTEIN G., ZHU J.-Y., THEOBALT
C., AGRAWALA M., GOLDMAN D. B., ZOLLHÖFER M.: Advances
in neural rendering. In ACM SIGGRAPH 2021 Courses (New York,
NY, USA, 2021), SIGGRAPH ’21, Association for Computing Machin-
ery. URL: https://doi.org/10.1145/3450508.3464573,
doi:10.1145/3450508.3464573. 15

[TLY∗21] TAKIKAWA T., LITALIEN J., YIN K., KREIS K., LOOP C.,
NOWROUZEZAHRAI D., JACOBSON A., MCGUIRE M., FIDLER S.:
Neural geometric level of detail: Real-time rendering with implicit 3D
shapes. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (2021). 6, 8

[TMW∗21] TANCIK M., MILDENHALL B., WANG T., SCHMIDT D.,
SRINIVASAN P. P., BARRON J. T., NG R.: Learned initializations for
optimizing coordinate-based neural representations. In CVPR (2021). 13

[TS20] TUCKER R., SNAVELY N.: Single-view view synthesis with mul-
tiplane images. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (2020), pp. 551–560. 6

[TSM∗20] TANCIK M., SRINIVASAN P. P., MILDENHALL B.,
FRIDOVICH-KEIL S., RAGHAVAN N., SINGHAL U., RAMAMOORTHI
R., BARRON J. T., NG R.: Fourier features let networks learn high fre-
quency functions in low dimensional domains. NeurIPS (2020). 5

[TTG∗20] TRETSCHK E., TEWARI A., GOLYANIK V., ZOLLHÖFER M.,
STOLL C., THEOBALT C.: Patchnets: Patch-based generalizable deep
implicit 3d shape representations. In European Conference on Computer
Vision (2020), Springer, Springer International Publishing, pp. 293–309.
6

[TTG∗21] TRETSCHK E., TEWARI A., GOLYANIK V., ZOLLHÖFER M.,
LASSNER C., THEOBALT C.: Non-rigid neural radiance fields: Recon-
struction and novel view synthesis of a dynamic scene from monocular
video. In IEEE International Conference on Computer Vision (ICCV)
(2021), IEEE. 6, 14, 15, 16, 17

[TY20] TREVITHICK A., YANG B.: GRF: Learning a General Radiance
Field for 3D Representation and Rendering. URL: http://arxiv.
org/abs/2010.04595, arXiv:2010.04595. 1, 13

[TZEM17] TULSIANI S., ZHOU T., EFROS A. A., MALIK J.: Multi-
view supervision for single-view reconstruction via differentiable ray
consistency. In CVPR (2017). 10

[TZN19] THIES J., ZOLLHÖFER M., NIESSNER M.: Deferred neural
rendering: Image synthesis using neural textures. ACM Trans. Graph.
38, 4 (2019), 1–12. 5, 22

[TZS∗16] THIES J., ZOLLHÖFER M., STAMMINGER M., THEOBALT
C., NIESSNER M.: Face2face: Real-time face capture and reenact-
ment of rgb videos. In Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE (2016). 16, 22

[VKP∗19] VALENTIN J., KESKIN C., PIDLYPENSKYI P., MAKADIA A.,
SUD A., BOUAZIZ S.: Tensorflow graphics: Computer graphics meets
deep learning. 20

[Vla09] VLADSINGER: Surface control point diagram used in freeform
modeling, 2009. URL: https://en.wikipedia.org/wiki/
B-spline#/media/File:Surface_modelling.svg. 4

[VSP∗17] VASWANI A., SHAZEER N., PARMAR N., USZKOREIT J.,
JONES L., GOMEZ A. N., KAISER L. U., POLOSUKHIN I.: Attention
is all you need. In Advances in Neural Information Processing Systems
(2017), Guyon I., Luxburg U. V., Bengio S., Wallach H., Fergus R.,
Vishwanathan S., Garnett R., (Eds.), vol. 30, Curran Associates, Inc.
URL: https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
5

[WBL∗20] WANG Z., BAGAUTDINOV T., LOMBARDI S., SIMON T.,
SARAGIH J., HODGINS J., ZOLLHÃ¶FER M.: Learning compositional
radiance fields of dynamic human heads, 2020. arXiv:2012.09955.
14, 16

[WGSJ20] WILES O., GKIOXARI G., SZELISKI R., JOHNSON J.:
Synsin: End-to-end view synthesis from a single image. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (6 2020). 5, 8

[WLG∗17] WANG P.-S., LIU Y., GUO Y.-X., SUN C.-Y., TONG X.: O-
cnn: Octree-based convolutional neural networks for 3d shape analysis.
ACM Transactions On Graphics (TOG) 36, 4 (2017), 1–11. 6

[WLL∗21] WANG P., LIU L., LIU Y., THEOBALT C., KOMURA T.,
WANG W.: Neus: Learning neural implicit surfaces by volume rendering
for multi-view reconstruction. NeurIPS (2021). 12

[WLR∗21] WEI Y., LIU S., RAO Y., ZHAO W., LU J., ZHOU J.: Nerf-
ingmvs: Guided optimization of neural radiance fields for indoor multi-
view stereo. In ICCV (2021). 12

[WPYS21] WIZADWONGSA S., PHONGTHAWEE P., YENPHRAPHAI J.,
SUWAJANAKORN S.: Nex: Real-time view synthesis with neural basis
expansion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021). 6, 11

[WWG∗21] WANG Q., WANG Z., GENOVA K., SRINIVASAN P., ZHOU

https://www.sciencedirect.com/science/article/pii/S0097849304001530
https://www.sciencedirect.com/science/article/pii/S0097849304001530
https://doi.org/https://doi.org/10.1016/j.cag.2004.08.014
https://doi.org/https://doi.org/10.1016/j.cag.2004.08.014
https://doi.org/10.1145/1882261.1866201
https://doi.org/10.1145/1882261.1866201
https://doi.org/10.1145/1882261.1866201
https://doi.org/10.1145/3450508.3464573
https://doi.org/10.1145/3450508.3464573
http://arxiv.org/abs/2010.04595
http://arxiv.org/abs/2010.04595
http://arxiv.org/abs/2010.04595
https://en.wikipedia.org/wiki/B-spline##/media/File:Surface_modelling.svg
https://en.wikipedia.org/wiki/B-spline##/media/File:Surface_modelling.svg
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2012.09955

A. Tewari & J. Thies & B. Mildenhall & P. Srinivasan et al. / Advances in Neural Rendering 29

H., BARRON J. T., NOAH R. M.-B., FUNKHOUSER T., TECH C.: IBR-
Net : Learning Multi-View Image-Based Rendering. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), 4690—-4699. 13

[WWX∗21] WANG Z., WU S., XIE W., CHEN M., PRISACARIU V. A.:
NeRF−−: Neural radiance fields without known camera parameters.
arXiv preprint arXiv:2102.07064 (2021). 12

[XAS21] XU H., ALLDIECK T., SMINCHISESCU C.: H-nerf: Neural ra-
diance fields for rendering and temporal reconstruction of humans in mo-
tion. In Advances in Neural Information Processing Systems (NeurIPS)
(2021). 14, 17

[XFYS20] XU Y., FAN T., YUAN Y., SINGH G.: Ladybird: Quasi-Monte
Carlo sampling for deep implicit field based 3D reconstruction with sym-
metry. arXiv preprint arXiv:2007.13393, 2020. 6

[XHKK21] XIAN W., HUANG J.-B., KOPF J., KIM C.: Space-time
neural irradiance fields for free-viewpoint video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021), pp. 9421–9431. 14, 15, 16

[XPMBB21] XIE C., PARK K., MARTIN-BRUALLA R., BROWN M.:
Fig-nerf: Figure-ground neural radiance fields for 3d object category
modelling. arXiv preprint arXiv:2104.08418 (2021). 13

[XWC∗19] XU Q., WANG W., CEYLAN D., MECH R., NEUMANN U.:
Disn: Deep implicit surface network for high-quality single-view 3d re-
construction. In Proceedings of the IEEE International Conference on
Neural Information Processing Systems (NeurIPS) (2019), vol. 32, Cur-
ran Associates, Inc. 6

[XXH∗21] XIANG F., XU Z., HAŠAN M., HOLD-GEOFFROY Y.,
SUNKAVALLI K., SU H.: NeuTex: Neural texture mapping for volu-
metric neural rendering. CVPR (2021). 19

[Yad19] YADAN O.: Hydra - a framework for elegantly configuring com-
plex applications. Github, 2019. URL: https://github.com/
facebookresearch/hydra. 20

[YAK∗20] YIFAN W., AIGERMAN N., KIM V. G., CHAUDHURI S.,
SORKINE-HORNUNG O.: Neural cages for detail-preserving 3d defor-
mations. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition) (6 2020). 6

[YGKL21a] YARIV L., GU J., KASTEN Y., LIPMAN Y.: Volume render-
ing of neural implicit surfaces, 2021. arXiv:2106.12052. 4

[YGKL21b] YARIV L., GU J., KASTEN Y., LIPMAN Y.: Volume render-
ing of neural implicit surfaces. arXiv preprint arXiv:2106.12052 (2021).
8, 12

[YKG∗20] YOON J. S., KIM K., GALLO O., PARK H. S., KAUTZ J.:
Novel view synthesis of dynamic scenes with globally coherent depths
from a monocular camera. In Computer Vision and Pattern Recognition
(CVPR) (2020). 15

[YKM∗20] YARIV L., KASTEN Y., MORAN D., GALUN M., ATZMON
M., BASRI R., LIPMAN Y.: Multiview neural surface reconstruction by
disentangling geometry and appearance. In NeurIPS (2020). 6, 8, 12

[YLT∗21] YU A., LI R., TANCIK M., LI H., NG R., KANAZAWA A.:
PlenOctrees for real-time rendering of neural radiance fields. In arXiv
(2021). 9, 10, 11, 21

[YRSH21] YIFAN W., RAHMANN L., SORKINE-HORNUNG O.:
Geometry-consistent neural shape representation with implicit displace-
ment fields, 2021. arXiv:2106.05187. 6

[YSW∗19a] YIFAN W., SERENA F., WU S., ÖZTIRELI C., SORKINE-
HORNUNG O.: Differentiable surface splatting for point-based geometry
processing. ACM Transactions on Graphics (proceedings of ACM SIG-
GRAPH ASIA) 38, 6 (2019). 5

[YSW∗19b] YIFAN W., SERENA F., WU S., ÖZTIRELI C., SORKINE-
HORNUNG O.: Differentiable surface splatting for point-based geometry
processing. ACM Transactions on Graphics (proceedings of ACM SIG-
GRAPH ASIA) 38, 6 (2019). 8

[YTB∗21] YENAMANDRA T., TEWARI A., BERNARD F., SEIDEL H.-
P., ELGHARIB M., CREMERS D., THEOBALT C.: i3dmm: Deep im-
plicit 3d morphable model of human heads. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 12803–12813. 6

[YYTK21] YU A., YE V., TANCIK M., KANAZAWA A.: pixelnerf:
Neural radiance fields from one or few images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021). 13, 21

[ZLLD21] ZHI S., LAIDLOW T., LEUTENEGGER S., DAVISON A. J.:
In-place scene labelling and understanding with implicit scene represen-
tation. Proc. ICCV (2021). 21

[ZLW∗21] ZHANG K., LUAN F., WANG Q., BALA K., SNAVELY N.:
PhySG: Inverse rendering with spherical gaussians for physics-based
material editing and relighting. CVPR (2021). 19

[ZPVBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Sur-
face splatting. In Proc. Conf. on Computer Graphics and Interactive
techniques (2001), ACM, pp. 371–378. 8

[ZPVBG02] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Ewa
splatting. IEEE Transactions on Visualization and Computer Graphics
8, 3 (2002), 223–238. 8

[ZRSK20] ZHANG K., RIEGLER G., SNAVELY N., KOLTUN V.:
Nerf++: Analyzing and improving neural radiance fields. arXiv preprint
arXiv:2010.07492 (2020). 9, 12

[ZSD∗21] ZHANG X., SRINIVASAN P. P., DENG B., DEBEVEC P.,
FREEMAN W. T., BARRON J. T.: NeRFactor: Neural factorization of
shape and reflectance under an unknown illumination. SIGGRAPH Asia
(2021). 1, 19

[ZTF∗18] ZHOU T., TUCKER R., FLYNN J., FYFFE G., SNAVELY N.:
Stereo magnification: Learning view synthesis using multiplane images.
ACM Trans. Graph. (SIGGRAPH) (2018). 6, 10

[ZYQ21] ZHANG J., YAO Y., QUAN L.: Learning signed distance field
for multi-view surface reconstruction. arXiv preprint arXiv:2108.09964
(2021). 8

https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
http://arxiv.org/abs/2106.12052
http://arxiv.org/abs/2106.05187

