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Fig. 1. Our high speed tracker accurately tracks one and two handed interactions from both head mounted (ego-centric) and front facing depth camera configurations.

The state of the art in articulated hand tracking has been greatly advanced
by hybrid methods that fit a generative hand model to depth data, leverag-
ing both temporally and discriminatively predicted starting poses. In this
paradigm, the generative model is used to define an energy function and a
local iterative optimization is performed from these starting poses in order
to find a “good local minimum” (i.e. a local minimum close to the true pose).
Performing this optimization quickly is key to exploring more starting poses,
performing more iterations and, crucially, exploiting high frame rates that
ensure that temporally predicted starting poses are in the basin of conver-
gence of a good local minimum. At the same time, a detailed and accurate
generative model tends to deepen the good local minima and widen their
basins of convergence. Recent work, however, has largely had to trade-off
such a detailed hand model with one that facilitates such rapid optimiza-
tion. We present a new implicit model of hand geometry that mostly avoids
this compromise and leverage it to build an ultra-fast hybrid hand tracking
system. Specifically, we construct an articulated signed distance function
that, for any pose, yields a closed form calculation of both the distance
to the detailed surface geometry and the necessary derivatives to perform
gradient based optimization. There is no need to introduce or update any
explicit “correspondences” yielding a simple algorithm that maps well to
parallel hardware such as GPUs. As a result, our system can run at extremely
high frame rates (e.g. up to 1000fps). Furthermore, we demonstrate how
to detect, segment and optimize for two strongly interacting hands, recov-
ering complex interactions at extremely high framerates. In the absence
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of publicly available datasets of sufficiently high frame rate, we leverage a
multiview capture system to create a new 180fps dataset of one and two
hands interacting together or with objects.
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1 INTRODUCTION
Fully articulated hand tracking holds the potential to become a
first class input mechanism. In order for this promise to be fulfilled,
however, the bar for robustness and accuracy must continue to be
increased and latency reduced. Further, tracking must not fail when
a hand starts interacting with another hand, an object, the body
or the scene. In this paper, we extend the state of the art on hand
tracking by creating an implicit detailed model of hand geometry,
that can be rapidly fit to data using gradient based methods, in order
to improve robustness and accuracy while reducing latency. Further,
we jointly optimize for two hands strongly interacting and improve
upon current hand segmentation techniques to allow the hand to
be comfortably close to the body.

The problem that we seek to solve is to estimate the pose θ (i.e. the
joint angles and global orientation) of a hand from a depth image
I. Classical approaches typically build a generative model and fit
this to the image using local optimization from the pose output
from the previous frame, and are thus prone to getting trapped in
local minima. In contrast, discriminative models typically break the
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dependency on the previous frame by learning a mapping directly
from image to pose, but struggle to generalize to images not repre-
sented in the training data. Recently, researchers have elucidated
the benefits of combining generative and discriminative methods
into a hybrid approach that continuously attempts to “reinitialize”
the generative tracker from a discriminative prediction allowing
recovery from tracking failures.
In this framework, the generative model is fit to the image data

by defining an appropriate energy function that can be locally opti-
mized in the hopes of finding a “good local minimum” (i.e. a local
minimum that corresponds to the correct hand pose). The accuracy
of the implicit or explicit surface model and the details of the en-
ergy formulation determine the availability of such a good local
minimum and the size of its basin of convergence. On the other
hand, these factors also influence how much time is required to
descend such a basin of convergence. As a consequence, the number
of starting points one can explore, the number of iterations one
can perform and the frame rate one can run at ultimately decides
whether the system manages to land in the basin of convergence
of a good local minimum or whether the system has “lost track”.
It is then crucial to choose a model and energy formulation that
are both accurate, as to ensure good local minima exist with lower
energies than all other poor local minima, and that can be rapidly
optimized, as to ensure that the basin of convergence of one of these
good local minima can be fully descended. In this paper, we present
such a formulation that delivers the robustness of hand tracking at
kilohertz speeds without the loss of accuracy that typically comes
with using a less detailed model.

To bothmotivate and differentiate our approach, we first re-explore
a simplified and somewhat abstract paradigm for fitting a surface
S(θ ) ⊆ R3 parameterized by a vector of pose parameters θ ∈ RJ to
a set of 3D data points {xn }Nn=1 ⊆ R

3. The goal is to decrease the
squared distance D(x ,θ ) from each data point x ∈ R3 to the surface
by minimizing the energy

Edata(θ ) =
N∑
n=1

D(xn ,θ )
2 =

N∑
n=1

min
y∈S(θ )

∥xn − y∥
2 . (1)

Without making any assumptions on the form of S(θ ), it is not
obvious how to effectively perform the inner minimization, let alone
optimize the entire energy function.

Most approaches “pull the min out” of the sum, as e.g. described
in [Taylor et al. 2014], by introducing a set of correspondences
U = {un }

N
n=1 ⊆Ω and a map S :Ω × RJ → R3 to the posed surface

so that1

Edata(θ ) =
N∑
n=1

min
y∈S(θ )

∥xn − y∥
2 (2)

=

N∑
n=1

min
u ∈Ω
∥xn − S(u,θ )∥

2 (3)

=min
U

N∑
n=1
∥xn − S(un ,θ )∥

2 . (4)

One can then focus on minimizing the “lifted” energy Êdata(θ ,U ) =∑N
n=1 ∥xn − S(un ,θ )∥

2, after noticing that it strictly bounds the
original energy (i.e. Edata(θ ) ≤ Êdata(θ ,U ) for anyU ).
For some models, closed form or fast methods are available to

solve for the correspondences U while holding the pose θ fixed
making alternation strategies such as ICP appealing [Qian et al.
2014; Tagliasacchi et al. 2015; Tkach et al. 2016]. Such strategies,
however, admit the possibility of convergence problems caused by
having to take many small axis aligned steps to descend a long non
axis aligned energy valley.

To avoid these problems, [Cashman and Fitzgibbon 2013; Khamis
et al. 2015; Taylor et al. 2016, 2014] smoothly parameterize S(u,θ )
using a detailed but smooth subdivision surface so that Levenberg
optimization can be jointly performed over all J + 2N parameters
in θ and U simultaneously. Although, the sparsity in the Gauss-
Newton approximation of the Hessian allows one to avoid the cubic
complexity one would normally expect to see in solving for a pa-
rameter update, exploiting this sparsity on highly parallelizable
hardware seems problematic (e.g. there would be many kernel calls
with complex dependencies and data shuffling on the GPU).

If instead one is able to “leave the min in” (1) and directly calcu-
late D(x ,θ ) = miny∈S(θ ) ∥x − y∥ and its derivatives with respect
to the pose θ , a small dense non-linear optimization2 of pose can
be performed. In this way the convergence problems that alterna-
tion strategies might yield can still be avoided without introducing
the complexities of performing a large sparse non-linear joint opti-
mization of pose and parameterized correspondences. For a rigid
object, [Fitzgibbon 2003] shows that for any rotation R ∈ SO(3) and
translation t ∈ R3, D(x ,R, t) = D(R−1(x − t); I , 0) and thus a single
single dense distance transform of the object in the base pose I , 0
can be precomputed and interpolated to provide closed form access
to the required distances and derivatives. In [Schmidt et al. 2014],
this is extended by decomposing an articulated object into a set of
C rigid parts and setting D(x , {Rc , tc }Cc=1) = minc Dc (x ,Rc , tc ), but
artifacts and creases will arise at articulation points where these
distance functions interact. Similarly, [Qian et al. 2014; Tagliasacchi
et al. 2015; Tkach et al. 2016] decompose explicit surface models into
a set of C primitives such as spheres or cylinders where Dc (x ,θ )
and its derivatives are easy to compute. This again arises in bumps
at primitive intersections (i.e. a discontinuity of normals but not
surface geometry), and a large number of such primitives need to
be used in order to increase detail and decrease the intensity of the
bumps in the model.

The primary technical contribution of this paper is to show how
to create a detailed and largely smooth implicit model of an articu-
lated surface so that one can “leave the min in” (1) as to enable its
fast optimization and ultra-fast surface registration. Specifically, we
show how to volumetrically deform a single dense signed distance
field (SDF) using a skinned tetrahedral mesh (see Fig. 2). The SDF

1Note that θ , Ω and S (u ; θ ) have been left intentionally abstract. They could respec-
tively be, for example, a vector of blend shape coefficients, the set of vertex indices of
a corresponding blend shape model and a function to evaluate the 3D position of an
indexed vertex using the blend shape coefficients.
2Note that the sparsity of a non-linear optimization refers to the sparsity of the Gauss-
Newton Hessian approximations typical non-linear optimizers, such as the Levenberg
algorithm, employ.
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smoothly captures geometric detail using tricubic interpolation of a
dense grid, while the skinned tetrahedral mesh allows this detail to
be transformed into different poses. Although the tetrahedral mesh
warp can introduce creases (e.g. discontinuous first derivatives),
these only occur at articulation points and the severity of these
bumps can be addressed by densifying the mesh in these areas. In
contrast to [Schmidt et al. 2014] where a strict piecewise rigid as-
sumption is made, which may be quite unnatural for a human hand,
we can apply arbitrary mesh skinning techniques to deform a single
SDF. Indeed, we believe that the decoupling of the deformation func-
tion (through the skinned tetrahedral mesh) and the representation
of detail (through the SDF) is a key feature of this representation
allowing future work to potentially “fuse” static geometry, such as
a watch or a ring, into the SDF.
More crucially though, this representation allows us to use a

detailed model of the hand while enabling a highly parallelizable
algorithm amenable to execution on modern day GPUs. Leveraging
recent work on efficient high frame rate active-stereo depth estima-
tion [Fanello et al. 2017a,b] we use depth sensors that are capable
of producing 1280 × 1024 depth maps at a maximum of 210fps. Al-
though, we only have access to depth cameras that can run at a
maximum of 210fps and ground truth sequences captured at 180fps
our tracker can run at 1000fps on precaptured data using an NVIDIA
Titan X. Despite the likely validity of the pose from the previous
frame in such scenarios, we also leverage a coarse reinitializer to
maintain robustness to the occasional tracking failures.
In addition, we demonstrate two handed interaction, by first

detecting and segmenting the left and right hands and formulating
an appropriate energy function that can recover from slight left/right
hand mis-segmentations. As shown in the supplementary video,
we demonstrate both one and two handed tracking, recovering
complex interactions, at high frame rates and low latencies. Finally,
we capture a new dataset that is significantly higher frame rate than
what is publicly available, contains difficult two handed interactions
and hand with object interactions.3

2 RELATED WORK

2.1 Hand Detection
As hands are very complex articulated objects, it is common to rely
either on simple color based heuristics or existing skeleton trackers
for hand detection. Color based detectors typically look for skin
colored objects in the scene [de La Gorce et al. 2011; Oikonomidis
et al. 2011; Sridhar et al. 2013] or a wristband [Tagliasacchi et al. 2015;
Tkach et al. 2016], and typically assume a single hand in the scene as
there is no mechanism to distinguish between left and right hands.
Depth based detectors in [Sharp et al. 2015; Tang et al. 2015; Taylor
et al. 2016] depend on Kinect’s skeleton tracker to estimate a rough
location for potentially multiple hands. Such trackers themselves
often rely on Randomized Decision Forests (RDF) for body part
classification [Shotton et al. 2011], and this method is also used in
[Tompson et al. 2014] for binary per-pixel classification into hand
and background classes. For our much more complex setting that

3Note that despite the inclusion of object interactions in the dataset, our algorithm is
not designed to work with object interactions unless a perfect segmentation can be
provided.

Fig. 2. We use a skinned tetrahedral mesh (center) to warp a precomputed
signed distance field (left) into a new pose (right) to create an articulated signed
distance field. In the volumetric visualizations of the signed distance functions
(left and right), voxels are shaded red or blue to indicate whether they contain
negative (i.e. inside) or positive signed distances (i.e. outside).

involves strongly interacting hands, we propose a Convolutional
Neural Network (CNN) based approach and compare our method to
RDFs with novel features. As this is essentially a complex semantic
segmentation task with very limited computational budget, we rely
on a kind of Fully Convolutional Network (FCN) [Long et al. 2014]
that is suitable for fast per-pixel classification.

2.2 Learning Based Hand Pose Estimation
Most methods train a machine learning method such as an RDF [Ke-
skin et al. 2012; Sun et al. 2015; Tang et al. 2016, 2015], Convolu-
tional Neural Network (CNN) [Ge et al. 2016; Mueller et al. 2017;
Oberweger et al. 2015a,b; Wan et al. 2017; Ye et al. 2016] or their
combination [Tompson et al. 2014] to produce a mapping from input
images to hand pose. These methods typically do not depend on the
previous frame, are fast and generally bypass incorporating prior
knowledge of hand kinematics and/or surface geometry. A refine-
ment step [Oberweger et al. 2015a] or inverse kinematics [Tompson
et al. 2014] can follow the initial estimation phase but incorporation
of prior knowledge of hand kinematics and surface geometry can be
avoided. Recent work in [Sinha et al. 2016] employs a joint matrix
factorization and completion method to determine hand pose.

2.3 Hybrid Hand Pose Estimation
Despite considerable advances in learning based hand pose esti-
mation, systems that employ generative models of explicit hand
kinematics and surface geometry and fit these models to depth
data using local optimization have produced the most compelling
systems. Even then, these methods are typically “hybrid” methods
that employ a discriminative predictor to “reinitialize” the system
when it loses track. Generally this is done by proposing new starting
poses, augmenting the pose from the previous frame, that can be
refined for a final selection by an energy or score function [Melax
et al. 2013]. Ultimately though, the line between generative and
discriminative models continues to blur as more prior knowledge
of hand kinematics [Zhou et al. 2016] and surface geometry get
incorporated into learning based methods.

Conceptually, the most holistic generative optimization strategy
is to simply render the generative model and compare to the image
observations [de La Gorce et al. 2011; Oikonomidis et al. 2011; Sharp
et al. 2015; Tan et al. 2016]. In practice, this results in an energy that
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is difficult to optimize and thus proxy formulations, such as a the
“sum of Gaussians” model [Sridhar et al. 2013], that are easier to
optimize are employed.

The point cloud registration energy (1) explored in the introduc-
tion is perhaps the most popular such proxy.4 Methods that “pull
the min out” of (1) and perform alternation over correspondences
and pose, leveraging cheap optimal correspondences calculations
are [Melax et al. 2013; Tagliasacchi et al. 2015; Tkach et al. 2016].
Other work that “pulls the min out” but instead performs joint non-
linear optimization of correspondences and pose simultaneously
[Cashman and Fitzgibbon 2013; Khamis et al. 2015; Taylor et al. 2016,
2014]. Work that “leaves the min in” include [Fitzgibbon 2003] for
rigid models and [Schmidt et al. 2014] for articulated structures.
Although the introduction alludes to the relative pros and cons of
“pull/leave the min out/in” strategies, it is difficult to draw strong
conclusions from hand tracking systems that contain so many other
confounding factors. The work of [Hong and Fitzgibbon 2015], how-
ever, performs a controlled quantitative analysis of similar strategies
in the context of matrix factorization.

The value of a detailed and accurate generative model was shown
for monocular hand tracking in [de La Gorce et al. 2011] and for
multiview in [Ballan et al. 2012]. Indeed, recent work has demon-
strated the importance of such shape adaptation [Khamis et al. 2015;
Remelli et al. 2017; Tan et al. 2016; Taylor et al. 2014; Tkach et al.
2017].

An important instance of exploiting an SDF for 3D surface align-
ment is monocular depth based reconstruction [Izadi et al. 2011].
But when this has been extended to the deformable case [Dou et al.
2016, 2015; Innmann et al. 2016; Newcombe et al. 2015], the rep-
resentation is switched for alignment by first extracting a surface
mesh from the SDF.
The most relevant work to ours is that of [Schmidt et al. 2014]

who create an articulated distance function by taking the min over
a set of rigidly moving and kinematically consistent signed distance
functions (see Sec. 1).

While most of these methods can be easily extended to track two
hands in isolation, few published approaches allow for interaction
between the hands [Oikonomidis et al. 2012; Tzionas et al. 2016].

3 METHOD
We parameterize the pose θ ∈ RJ of the hand using the standard four
joint articulations of each of the five fingers, two degrees of freedom
at the wrist and six degrees of freedom for global orientation. We
over-parameterize 3-DOF global rotation using a quaternion so that
θ is J = 29 dimensional. In the following, we show how to fit this
model, formulated as an articulated SDF to the depth data.

3.1 Hand Detection and Segmentation
Given a depth image I, either a CNN or a RDF (see below) is used
to produce probability maps P left ∈ [0, 1]W ×H , P right ∈ [0, 1]W ×H
and Pbg ∈ [0, 1]W ×H that encodes for each pixel, the probability
of that pixel belonging to the left hand, the right hand and the
background respectively. To detect the right hand we temporarily

4Note that many other terms are typically added to (1) to regularize under constrained
poses, enforce joint limits, etc.

Fig. 3. Some examples of left (blue), right (green) and background (red) seg-
mentation using our CNN. Black pixels are not sufficiently confident in their
decisions.

Fig. 4. The FCN used to segment left and right hands from an input depth
image.

set all values of the probability map P right to zero that are below a
high valueηhigh ∈ [0, 1], convolve the output with a large bandwidth
Gaussian filter, and then use the location of the maximum value.
We then remove outliers from the original segmentation P right by
setting to zero the value of any pixels whose probability is less
than ηlow ∈ [0,ηhigh] or whose 3D location is not contained in a
sphere of radius r sphere ∈ R around the hand detection. The latter
ensures that pixels far from the most prominent hand (e.g. pixels
on other peoples hands in the background) do not contaminate the
segmentation while the former allows the machine learning method
to discard nearby pixels that are recognized as not belonging to the
hand (e.g. pixels on the user’s chest). The pixels that pass this test
are then backprojected into 3D space using the camera parameters
to form a point cloud {xn }Nn=1 ⊆ R

3 as to define (1).

3.1.1 CNN based Segmenter. To produce these probability we
maps, we typically use a CNN that takes a lower resolution ver-
sion of the depth image and applies a series of transformations to
produce the map. To ensure translational equivariance, we refrain
from using fully connected layers that discard locality information,
and only rely on convolutions, essentially forming a Fully Convolu-
tional Network (FCN)[Long et al. 2014]. FCNs combine coarse, high
layer information with fine, low layer information using a series
of convolution, pooling and deconvolution operations. We further
enhance this network with batch normalization layers placed after
each convolution and deconvolution in order to teach the network
to preprocess the depth images automatically. We employ dropout
(p = 0.1) at the input layer to reduce overfitting.

The actual size of the local neighborhood used to infer class labels
is determined by the receptive fields of the neurons in the final layer.
Unfortunately, a local region around an isolated hand in a depth
image may not contain enough information to differentiate between
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hand pixels from the left and right hands. We therefore require a
large receptive fields large enough to “see” the arms and the body
as to disambiguate these pixels. To accommodate this, we convolve
pooled feature maps with increasingly large kernels. The entire
CNN is depicted in Fig. 4 and Fig. 3 shows a few examples on real
test images.

3.1.2 RDF based Segmenter. As a baseline, we also train an RDF
classifier to produce the segmentation probability maps. RDFs typi-
cally employ depth and translation invariant features that are par-
ticularly suitable for processing depth images, which threshold the
depth difference of two pixels at depth-normalized offsets around
the central pixel [Keskin et al. 2012; Sharp et al. 2015; Shotton et al.
2011; Tang et al. 2015; Tompson et al. 2014]. For each pixel p at coor-
dinate (u,v) in the depth image I, a split node in the tree evaluates
the function:

I

(
u+

∆u1
Γ
,v+

∆v1
Γ

)
−I

(
u+

∆u2
Γ
,v+

∆v2
Γ

)
> τ (5)

where Γ is I(u,v), ∆ui and ∆vi are the two offsets and τ is the
threshold for that split node. This feature is well suited formost tasks,
but they are inefficient in handling cases where the classification
task is invariant to rotations, e.g. a single extended hand. To enhance
the feature pool for such subtasks, we introduce a new rotationally
invariant family of features. To this end, let R(u,v, r ,I) be the sum
of the K depth pixels found on a circle in the image of depth-scaled
radius r around (u,v). These features then measure the difference

R(u,v, r1,I)

K
−
R(u,v, r2,I)

K
> τ (6)

of two average depths corresponding to two such co–centric rings.
As R(u,v, r ,I) gets costlier for larger rings, in practice we approxi-
mate this value using a fixed number of points k as

R(u,v, r ,I) =
k∑
i=1
I

(
u +

r cos(i2π/k)
Γ

,v +
r sin(i2π/k)

Γ

)
. (7)

We also define a unary version of this feature as
R(u,v, r1,I)

k
− Γ > τ (8)

using only a single ring. At training time, we sample from a pool
of binary and unary rotationally dependent and invariant features
using a fixed ratio, found using grid search. For each considered
feature, we uniformly sample multiple τ values from a fixed range,
and pick the one that maximizes the information gain.

3.2 Deformable Signed Distance Function
In this section, we formulate a function that, given a pose θ gives
the signed distance D(x ,θ ) to the posed surface implicitly defined
by our hand model. The basic idea is to use a linear blend skinned
tetrahedral mesh to deform a precomputed signed distance field
into an arbitrary pose (see Fig. 2).5 To this end, we assume that
we are given access to a dense grid of signed distances (see Sec.
5.3) in the base pose θ0 and use tricubic interpolation [Lekien and
Marsden 2005] to define the signed distance D(x ;θ0) = D̃(x) ∈ R to

5Note that our LBS deformation function includes a single fixed scale hyperparameter
that we can manually modify to account for each users hand size.

Fig. 5. An illustration of how a tetrahedral mesh could deform a signed distance
field D̃(x ) implicitly encoding a finger. In this 2D example, the cross section of
the end of a finger (black curve) in the base pose θ0 (top) represents the zero
crossings {p : D̃(p) = 0} of the signed distance field. The finger is contained
inside a triangular mesh (the 2D equivalent of a tetrahedral mesh). When the
mesh is deformed (bottom), each triangle defines an affine warp between the
base pose and the query pose θ . Using the inverse warps we can implicitly define
a signed distance field D(x, θ ) as follows. For a query point x that falls inside
the deformed mesh, the triangle τ ’s affine inverse warp sends the query point
to Bτ (x, θ ) where the distance to the implicitly encoded surface can be queried
as D̃(Bτ (x, θ )). For a point y that falls outside the deformed tetrahedral mesh
(bottom), the closest point qτ (y, θ ) is used to warp back to the base pose to
query its distance to the implicitly encoded surface. To this value, the distance
from the query point y to the closest point is added. These are the two cases
defined in (3.2). Note that the zero crossings {x : D(x, θ ) = 0} implicitly
defines a deformed finger surface (black curve in the bottom). Also note that
the mesh is only used to deform joints, allowing an arbitrary amount of “static
detail”, such as the finger nail, to be encoded in the original sdf.

the surface for any point x ∈ R3. Note that tricubic interpolation
also gives us access to smooth first and second order derivatives
with respect to x .

In order to define the signed distance field D(x ,θ ) for an arbitrary
pose θ , we rely on a tetrahedral volumetric mesh whose vertices are
deformed via linear blend skinning (see Sec. 5.3). For any tetrahedron
τ , letV τ (θ ) ∈ R3×4 be a matrix with the positions of the tetrahedron
τ ’s four vertices in pose θ stored in its columns. Let β̂τ (x ,θ ) ∈ R4
be the barycentric coordinate of the closest point in the tetrahedron
τ under pose θ . That is

β̂τ (x ,θ ) = argmin
β ∈B

∥x −V τ (θ )β ∥ (9)
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where B = {β ∈ [0, 1]4 : β⊤β = 1}. The closest point can then be
reconstructed as

qτ (x ,θ ) = V τ (θ )β̂τ (x ,θ ) . (10)

Similarly, a corresponding point in the base pose can be recon-
structed as

Bτ (x ,θ ) = V τ (θ0)β̂
τ (x ,θ ) . (11)

We can use this point in the base pose to perform queries on our
precomputed signed distance function D̃(·). It is possible, however,
for the deformation of the tetrahedral mesh to cause the query point
x to actually fall in multiple overlapping tetrahedra so let

T(x ,θ ) = {τ : qτ (x ,θ ) = x} (12)

be the set of such tetrahedra that contain x . We can then choose a
single tetrahedron

τ ∗(x ,θ ) =

{
argminτ ∈T(x,θ ) |D̃(Bτ (x ,θ ))|, T(x ,θ ) , ∅
argminτ ∥x − qτ (x ,θ )∥, T(x ,θ ) = ∅ .∗

that will be used to warp this point back into the base pose. The first
case selects the tetrahedron that will return the minimum absolute
distance to the unposed surface when it is warped back to the base
pose and evaluated in the precomputed signed distance function.
The second case deals with the case where the query point does
not land in a single tetrahedron by simply selecting the tetrahedron
that the point is closest to. We can then define the distance to the
surface to be

D(x ,θ ) = ∥x − qτ
∗(x,θ )(x ,θ )∥ + D̃(Bτ

∗(x,θ )(x ,θ )) (13)

where the first term measures the distance to the closest point in the
selected tetrahedron and the second term warps that closest point
back to the base pose to evaluate the signed distance to evaluate its
distance to the surface (see Fig. 5).
Note that computing (3.2) is not necessarily the most efficient

operation as the simplest algorithm will have to, for each data point,
test whether it is contained in every tetrahedron. Nonethless, such
an implementation is highly parallel and very fast to execute on a
GPU.

Note also that this definition divides the space into a discrete set
of cells as τ ∗(x ,θ ) jumps from one tetrahedron to another. When
x lands in at least one tetrahedra, an affine warp defined by the
selected tetrahedron maps the space in the current pose back into
the base pose for sdf evaluation. When x lands outside the tetrahe-
dral mesh, the closest tetrahedron is selected and the affine warp is
similarly used for sdf evaluation using the closest point on that tetra-
hedrons boundary. In this case, however, the distance from x to that
closest point on the tetrahedron boundary is added. Although the
function is continuous everywhere and differentiable within each
cell, there are bumps in the function as τ ∗(x ,θ ) varies. Nonetheless,
the intensity of those bumps are directly related to how different the
transformation between neighbouring cells is and so one can add
more tetrahedra near the joints to lessen this intensity. Crucially
though, in rigid components of the model, neighbouring cells will
apply the same transformation and thus it is not beneficial to add
more tetrahedra there (e.g. on the back of the hand). Indeed, a key
advantage of this formulation is that the representation of static de-
tail occurs in the reference volume and is thus largely independent

of the amount of tetrahedra used to warp this detail into different
poses. Much like a triangular mesh, more tetrahedra can be added
to “smooth” out bumps around joints, but unlike a triangular mesh
more tetrahedra do not need to be added to add more static detail to
the model.

3.3 Energy
In this section, we define an energy that evaluates the goodness of a
particular pose θ allowing us to calculate derivatives. In particular,
the energy that we seek to minimize is

E(θ ) =Edata(θ ) + λnormalEnormal(θ )

+ λpriorEprior(θ ) + λlimitElimit(θ ) (14)

where the date term arrives from simply plugging (13) into (1). Note
that this energy does not penalize self or background intersection
which allows fingers to self-intersect or leak into the background
when left otherwise unconstrained by the data and priors. We hope
that future work will resolve these limitations by formulating penal-
ties that properly leverage our articulated SDF formulation.

3.3.1 Normal Term. The normal term Enormal(θ ) leverages the
fact that the gradient of the articulated signed distance function
with respect to position will point away from the surface, so we
estimate the surface normal as

ϒ(x ,θ ) =
▽xD(x ,θ )

∥▽xD(x ,θ )∥
. (15)

We thus encourage the surface normal to agree with the estimated
normal x⊥n at data point n by defining

Enormal(θ ) =
N∑
n=1
∥ϒ(x ,θ ) − x⊥n ∥

2 . (16)

Note that although the current formulation leaves discontinuities in
Enormal(θ ) as τ ∗(x ,θ ) varies, the jumps are generally not substantial.
Nonetheless, we leave it as future work to force continuity of this
term across cells, either by interpolating a fake normal field or using
a higher order interpolant (e.g. quadratic or cubic) in the tetrahedral
warp.

3.3.2 Pose Prior. Similar to [Tan et al. 2016; Taylor et al. 2016]
we use a multivariate Gaussian with mean µ ∈ R22 and covariance
matrix Σ ∈ R22×22 to provide constraints under occlusion or oth-
erwise under–constrained scenarios. This is embedded in the pose
prior term

Eprior(θ ) = (ψ (θ ) − µ)
⊤Σ−1(ψ (θ ) − µ) (17)

where ψ (θ ) ∈ R22 extracts the 22 parameters of the pose θ corre-
sponding to joint articulations (i.e. not global orientation).

3.3.3 Joint Limits. Similar to [Tan et al. 2016; Taylor et al. 2016]
we encode a set of joint limits ζ low ∈ R22 and ζ high ∈ R22 and
penalize violations of these limits through

Elimit(θ ) =
22∑
i=1
I(ψi (θ ) < ζ

low
i )(ψi (θ ) − ζ

low
i )2

+

22∑
i=1
I(ψi (θ ) > ζ

high
i )(ψi (θ ) − ζ

high
i )2 (18)
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Fig. 6. 6 DOF estimation of the hand pose by the reinitializer. The per–pixel
votes for each joint are aggregated and a mode finding method is used to detect
the joint locations, which are used to form the global translation and rotation
for the reinitialization poses.

where I() is the indicator function.

3.4 Energy Optimization
In order to minimize (14) we perform Levenberg optimization from
a set of K + 1 starting poses, one of which comes from the previous
frame and the rest of which come from reinitialization. We then
report the resulting pose with the lowest energy.

3.4.1 Reinitialization. Our hand segmenter outputs a segmented
depth imageR per hand, which is used by the reinitializer to produce
a set of pose estimates {θRk }

K
k=1 that are used as starting poses to

locally optimize from in the energy. We tackle this by using an RDF
to estimate the 6DOF hand pose via a per–pixel offset regression
[Girshick et al. 2011]. Specifically, we use the RDF to locate three
joints on the palm (assumed to be planar) in the world space.We pick
the wrist joint qw , the base of the index metacarpophalangeal (MCP)
joint qi and the base of the pinky MCP qp , to estimate the 6 DOF
pose. We convert these three anchor points into a reinitialization
pose by setting the global translation to qw , and compute the global
orientation by finding the orientation of the 3D triangle the anchor
points define. We then sample a set of finger poses randomly from
the pose prior (see Sec. 3.3.2) to produce the pose estimates {θRk }

K
k=1.

To locate the anchor points, the RDF is evaluated for each pixel p
in R to produce a single vote for the 3D offset of each joint relative
to p. The RDF relies on the feature family given in (5) for this task, as
unlike classification, offset regression is rotationally dependent. The
trees are trained with a regression objective to minimize the vote
variance in the leaves. At test time, each pixel votes for all the joints,
which are aggregated separately to form a vote distribution per joint.
The modes of these distributions are selected as final estimates of
for the anchor points, which are found via mean shift [Comaniciu
and Meer 2002] (see Fig. 6).

3.4.2 Levenberg Minimization. To perform local optimization of
(14) we first rewrite it, as to perform Levenberg optimization, in a
sum of squares form

E(θ ) = r (θ )⊤r (θ ) (19)

where r (θ ) ∈ RD is a vector ofD residuals. We calculate the Jacobian
J (θ ) ∈ RD×29 and perform a Levenberg update as

θ ← θ + (J (θ )⊤ J (θ ) + γ I29×29)
−1 J (θ )⊤r (θ ) (20)

where γ is the standard Levenberg dampener, raised or lowered as
steps fail or succeed to lower the energy.

4 EXTENSION TO TWO HANDS
In order to track two hands we jointly optimize over the poses Θ =
{θ left,θ right} and a set of right handed assignments ϒ = {ηn }Nn=1 ⊆
{0, 1}which implicitly define a set of left handed assignments Γ(ϒ) =
{1 − ηn }Nn=1. To this end, we reformulate (14) as

E(θ ; ϒ) =Edata(θ ; ϒ)+λnormalEnormal(θ ; ϒ)
+λpriorEprior(θ ) + λlimitElimit(θ ) (21)

where the data term is adapted to

Edata(θ ; ϒ) =
N∑
n=1

ηnD(xn ;θ ) (22)

and likewise for the normal term Enormal(θ ; ϒ). We then formulate
the full energy to be optimized as

Ẽ(Θ) =E(θ left; Γ(ϒ)) + E(θ right; ϒ)

+ λassign

N∑
n=1

(
ηnγ

right
n + (1 − ηn )γ leftn

)
(23)

where areγ leftn andγ rightn are penalties output from the segmentation
method for assigning data point n to the right and the left hand
pose respectively. To optimize this function, we perform alternation
between Θ and ϒ, updating the former with Levenberg updates and
the latter by discretely considering whether assigning the data point
to the left or right hand will lower the energy.

5 IMPLEMENTATION DETAILS

5.1 Segmenter Training
To train the CNN and RDF based segmenters explained in Sec. 3.1,
we captured large 100K instance dataset for both the ego-centric and
front facing camera scenarios from multiple people. The subjects
wore colored gloves so that automatic labelling of depth pixels could
be performed using a calibrated color camera. A grid search over
parameters was done using leave–one–subject–out evaluation in
order to optimize for generalization capability. The class imbalance
problem was dealt with by simply undersampling the background
pixels in each image. We did not preprocess the depth images and in
both cases, we aimed for the segmentation to take less than 0.5ms.
The CNN was trained using stochastic gradient descent with

an initial learning rate of 0.1, weight decay 0.001 and momentum
0.9. The learning rate and the weight decay were gradually and
adaptively decreased during training, which took 300 epochs. Us-
ing the entirety of each dataset for parameter estimation proved
to be intractable as training took more than 5 days on a Titan X.
Therefore, we used every fifth image to reduce training times. We
also experimented with the number of pooling operations, kernel
sizes and number of filters and picked the network in Fig. 4. The
balanced accuracy (i.e. average recall) of the final network is 85.5%.

We implemented a GPU based trainer for RDFs and used bagging
to ensure variance amongst trees. Tests revealed that four trees of
depth 19 gave the best results within our computational budget.
Optimal forests preferred a 50%-50% split between rotationally de-
pendent and invariant features, where nodes in the higher levels
typically chose the latter type. Data augmentation was done by
assigning random rotations, horizontal flips and scale variations to
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Fig. 7. Balanced accuracy for leave–one–subject–out tests using i) Type 1 Raw:
single tree, rotationally dependent features without data augmentation, ii) Type
1 Aug: same with augmentation, iii) Type 1-2 Aug: both types of features with
augmentation, iv) 2 Trees: sames as iii), 2 trees, v) 3 Trees: sames as iii), 3 trees,
vi) 4 Trees: sames as iii), 4 trees, and vii)FCN: our CNN based model, which
outperforms RDFs.

each example. Fig. 7 shows the balanced accuracy averaged over
left–out subjects, with respect to tree depth, forest size and feature
types used. Evidently, data augmentation prevents early overfitting
and pushes the optimal depth from 16 to 19. The best forest achieved
an accuracy of 81.1%.

5.2 Regression Forest Training
To train the offset regressor, we used the data captured from a multi-
view capture system (see Fig. 8 and Sec. 6.1) to generate high quality
pose estimates and per-pixel ground truth labels. Optimal parame-
ters were selected with grid search using a leave–one–subject–out
technique. Three trees of depth 18 were trained with 12K images
each due to GPU memory constraints, and the mean joint error
averaged over left-out subjects was 3.8cm.

5.3 Articulated Signed Distance Function
We built a hand model in blender [Blender Online Community 2016]
by skinning a coarse triangular mesh to a skeleton using linear blend
skinning. To construct a dense signed distance field in the base
pose, this mesh can be densified and for each voxel, an exhaustive
calculation of distances to all triangles, edges and vertices can be
used to find the distance to the mesh. We then dilate the original
coarse mesh to create a larger “cage” around the “implicit surface”
encoded as zero crossings in the SDF. We then use TetGen [Si 2015]
to “triangulate” these vertices into a tetrahedral cage.

6 EXPERIMENTS
In this section, we introduce our new dataset Cheetah motivated
by the desire to create a multi-handed dataset captured at the high
frame rates that our system expects. We also evaluate our tracker
against state of the art methods on three publicly available datasets
in the one-handed scenario. Furthermore, we qualitatively display
the robustness, flexibility and the low latency of our system in our
demo video.

Fig. 8. Our three camera rig captures depth data from three views at 180 fps.
We use calibrated RGB cameras to perform segmentation of the two hands,
each contained in a different glove from both each other and other objects.

6.1 The Cheetah dataset
Existing 3D hand pose datasets [Sharp et al. 2015; Sridhar et al. 2013;
Tang et al. 2016; Tompson et al. 2014; Yuan et al. 2017] vary in cap-
turing device, quantity, modality or annotation. In order to facilitate
evaluation of our algorithm in the settings it was designed for (high
frame rate, rapid motion, two hands interacting strongly), we col-
lected a new dataset that we call Cheetah . This dataset consists of
24 sequences from six subjects, each performing one single-handed,
one single-hand-with-an-object, one two-interacting-hands and one
two-hands-interacting-with-an-object sequences. Each sequence
has 3000 RGBD frames in two different viewpoints: front facing
and egocentric. To accomplish this, we built a two camera capture
system (see Fig. 8) that captures RGBD data from both front facing
and ego-centric views. The subjects wear different colored gloves
so that ground truth segmentation masks of the two hands can be
extracted (even in the presence of objects). Due to bandwidth and
synchronization limitations, we were only able to capture at 180fps
– well below the speed of our tracker. To obtain (quasi)-ground
truth, we used six different manually customized hand models and
fit these models to the full 3D data offline using 20 iterations and 10
starting points. For frames where the fit looked good, we extracted
the positions of the five finger tips and the wrist of each hand. We
believe that the frame rate, complexity of motions, interactions and
the diversity of scenarios (e.g. two hands, objects) of this dataset
is far more sophisticated and challenging than what is currently
available. Indeed, one can see from the large errors that our own
method achieves (see Fig. 11), that there is plenty of room for future
improvement.

6.2 Self Analysis
To decide the optimal number of LM iterations, we conducted an
experiment on all one-handed sequences from Cheetah . Fig. 9 (a)
shows that 6-iterations is much better than 3, and the accuracy on
difficult cases are further improved by 9-iterations whilst saturation
occurs at 12-iterations. Being able to run at a high frame rate is the
main advantage of our SDF tracker. To demonstrate that tracking
benefits from high frame rate, we subsampled the 180fps one-handed
sequences to simulate 60fps and 30fps. Fig. 9 (b) shows that indeed
accuracy at 180 fps is the best. Due to the restrictions of capturing
device, we were not able to test at higher frame rates.

We also conducted a set of experiments with Cheetah as a baseline
for future comparisons. As expected, the two-handed scenario is
more difficult than the one-handed, and hand(s) interacting with
objects caused catostrophic failures (see Fig. 11). Moreover, due to
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Fig. 9. (a) Running the SDF tracker with different iterations on one-handed
sequences. (b) Running the SDF tracker at different frame rates on one-handed
sequences.
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Fig. 10. There are six subjects with personalized models in our Cheetah
dataset. To prove the benefits of shape personalization, we fit one sequence
of Subject 2 with all six different models. As expected, results show that
fitting with Subject 2’s model is significantly better.

larger occlusions, the accuracy in the egocentric view is generally
lower than from the front-facing view. To remove the dependency
on the segmenter, we also ran the SDF tracker with ground truth
segmentation obtained from colored gloves. Not surprisingly, in the
case of hand(s) interacting with objects, ground truth segmentation
helped. However, ground truth segmentation did not drastically
improve the two-hand-interacting scenario as much. This is because
our segmenter already tries to disambiguate left and right hands, and
this information is fed into the energy to be optimized. Qualitative
results are shown in Fig. 14.

Note that our system does not currently account for shape varia-
tion and thus custommodels were used for each user. To understand
the impact of using the wrong shape for each user, we tried using
all six models on one of the Cheetah sequences. As shown in Fig.
10, using the correct model unsurprisingly has a substantial impact
on accuracy. Although it is not obvious how to build a parametric
shape model for our system as other approaches have done, we
are hopeful that our SDF formulation will instead facilitate novel
methods for dynamically integrating shape data into our SDF in a
non-parametric fashion.

6.3 Comparison on Dexter
In order to compare to the state of the art, we use the dataset Dexter
from [Sridhar et al. 2013]. We would like to emphasize that this
dataset is only captured at a frame rate of 25fps and that our tracker
is designed for frame rates of more than 180fps. Indeed, at such a
slow frame rate large motions between frames can occur and thus
a highly accurate reinitialization strategy is crucial, whereas we
only use a coarse reinitializer. Nonetheless, we actually exceed the

Subject 1 2 3 4 5 6
DART asym. 32.0 34.4 47.4 21.3 19.1 35.6
DART symm. 14.1 12.0 24.7 14.4 12.6 26.8
SDF Tracker 32.3 12.2 25.2 18.1 33.8 16.5

Table 1. A comparison of average error in mm between our SDF Tracker
and [Schmidt et al. 2014] on the six subjects in the MSRA dataset.

state of the art in the low error regime (see left of curve in Fig. 12)
but not surprisingly struggle a bit in the higher error regime as our
tracker misses some frames as our coarse reinitializer struggles to
reset tracking (see right of curve in Fig. 12).

6.4 Comparison onMSRA
In order to compare to [Schmidt et al. 2014] we use theMSRA dataset
from [Qian et al. 2014]. Not surprisingly we generally outperform
the asymmetric version of the algorithm in [Schmidt et al. 2014]
that is most similar to our own algorithm and are competitive with
the symmetric version. This may indicate the benefit of the more ac-
curate modelling that our formulation can afford using a continous
volumetric warp instead of a decomposition into rigid components.
This also hints at the value of formulating an appropriate back-
ground to obtain the advantages they appear to recieve through
their symmetric term.

6.5 Comparison on Handy
Lastly, we also compare to the state of the art on the Teaser sequence
in Handy (see Fig. 15) from [Tkach et al. 2016]. Although we do
fairly well here (likely due to the high frame rate), our system seems
to respond very poorly to what looks like “flying pixels” consistently
derailing our frame to frame tracking.

6.6 Qualitative Comparison to [Tkach et al. 2016]
In our supplementary video, we perform a side-by-side qualitative
comparison of our tracker with the tracker from [Tkach et al. 2016].
The first thing to notice is that their tracker requires the use of
a wristband to localize and segment the hand. Even if this is not
giving an explicit prior on 3-DOF position, this will be implicitly
communicated to the tracker through the near perfect segmentation.
In contrast, our tracker has to deal with a noisy segmentation at
the wrist. The second thing to notice is that the tracker appears
to assume that the forearm aims towards the ground, as the hand
model immediately jumps up the arm (see Fig. 13).

6.7 User Interaction in Virtual Reality
Many efforts aim to bring vision-based hand tracking to Virtual
Reality with the promise to enable dexterous interaction for more
seamless and immersive experiences. Technologies, such as the Leap
Motion controller already demonstrate compelling applications, in
which users can use gestures to interact with objects in simulated
physics environments. However, ego-centric hand tracking is chal-
lenging due to the non-static nature of the captured background and
proneness to self-occlusion. Also, interaction techniques typically
do not go beyond interactions with virtual buttons in midair or user
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Fig. 11. Quantitative results on our Cheetah dataset. Row 1: tracked with front facing camera only. Row 2: tracked with ego–centric camera only. Column 1 4:
single hand, single hand with an object, two interacting hands, two hands interacting with an object. Results of SDF tracker and SDF tracker conditioned on ground
truth segmentation are presented.
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Fig. 12. Comparison of SDF tracker, [Taylor et al. 2016], [Sridhar et al. 2015],
[Joseph Tan et al. 2016] and [Tagliasacchi et al. 2015] on Dexter.

Fig. 13. Both our tracker and that of [Tkach et al. 2016] track basic poses
well (left), but more complex poses, possibly due to frame rate differences
between the cameras, seem to fail more often (right) and there seems to be a
heavy assumption that the hand is pointed upwards as the model immediately
jumps to the back of the forearm when the hand becomes 90 degrees (center).
A qualitative side-by-side comparison demonstrating their reliance on a blue
wristband and the considerable improvement in robustness and flexibility our
tracker offers is demonstrated in the supplementary video.

interface (UI) elements around the user’s hands, dynamic and static
hand gestures.

We integrated our hand tracker into the HTC Vive VR headset
and explored bi-manual interaction techniques that involve touch-
ing UI elements, such as buttons, 1D sliders and 2D track pads,
mapped to specific regions of the hands. These techniques come
with the advantages of allowing users to interact without looking at
the interface itself using their proprioceptive sense and providing
passive haptic feedback, something that midair UI lack.
In a preliminary informal study, we identified 16 interior and

seven exterior touch points on the hand that are suited for blind
touch input that stand out due to their tactile sensitivity and clearly
identifiable texture. These points include the inner joint creases
(three on each finger, two on the thumb, one on the palm and one
on the wrist), and the tips on each digit and the creases on the outer
side of the palm. We also identified five areas that are suited for 1D
slider input, four along the full length of the inner side of each finger
and one along the outer edge of the palm. The palm is suited as a
large track pad for relative 2D input, such as panning or scrolling
(please see the supplementary video).

7 CONCLUSION
We have presented a system for robustly and accurately tracking
the articulations of two hands interacting. At the core of this sys-
tem is a new implicit representation of an articulated surface that
allows for extremely fast gradient based optimization. Crucial to
the robustness of this system is an effective method for segmenting
out the hands and assigning each pixel a probability of belonging to
a left hand, right hand or background. We demonstrate competitive
performance against state of the art methods on standard sequences,
but as our method is designed to run at 180fps or above, we in-
troduce a new high frame rate dataset Cheetah including multiple
hands and object interaction.
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Fig. 14. Qualitative results on the Cheetah dataset. Each row is the result from one frame in Cheetah . Blue points are from the front facing camera and green
points from the ego–centric one. Colored gloves are for ground truth annotation and not used during testing. Due to larger occlusion, failures in ego–centric view
happen more frequently than the front facing view, e.g. , row 3 and row 7.
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Fig. 15. Comparison of SDF tracker, [Taylor et al. 2016], [Sharp et al. 2015],
[Tkach et al. 2016] and [Tagliasacchi et al. 2015] on Handy.
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