
c©Copyright 2019

Amanda Swearngin



Expanding Interface Design Capabilities 
through Semantic and Data-Driven Analyses 

Amanda Swearngin 

A dissertation 
submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

University of Washington 

2019 

Reading Committee: 

Amy J. Ko, Chair 

James Fogarty, Chair 

Rastislav Bodik 

Program Authorized to Offer Degree: 
Paul G. Allen School of Computer Science & Engineering 



University of Washington 

Abstract 

Expanding Interface Design Capabilities 
through Semantic and Data-Driven Analyses 

Amanda Swearngin 

Co-Chairs of the Supervisory Committee: 
Professor Amy J. Ko 

The Information School 

Professor James Fogarty 
Paul G. Allen School of Computer Science & Engineering 

The design of an interface can have a huge impact on human productivity, creativity, safety, and 

satisfaction. Therefore, it is crucial that we provide user interface designers with the tools to 

make them efficient, more creative, and better understand their users. However, designers face 

key challenges in their tools throughout the design process. Designers explore alternatives of 

their interface layouts when prototyping. However, they are limited to exploring the layouts they 

can ideate and sketch, create in their prototyping tools, or find in other examples not containing 

their interface elements. In usability testing, designers can conduct large-scale studies and deploy 

their interfaces to gather data from crowdworkers, however, such studies can be expensive, 

time consuming, and difficult to conduct iteratively throughout the design process. Finally, 

designers often find that existing interfaces can be a platform for prototyping and enabling new 

forms of interaction, but existing interfaces are often rigid and difficult to modify at runtime. 

In this dissertation, I explore how we can use advanced technologies from program analysis 

and synthesis and machine learning, to enable semantic and data-driven analyses of interfaces. 

If we augment interface design tools with the capabilities of understanding, transforming, 

augmenting, and analyzing an interface design, we can advance designers’ capabilities. Through 

semantic analysis of interfaces, we can help designers ideate more rapidly, prototype more 



efficiently, and more iteratively and cheaply evaluate the usability of their interface designs. I 

demonstrate this through four systems that (1) let designers rapidly ideate alternative layouts 

through mixed-initiative interaction with high-level constraints and feedback, (2) help designers 

adapt examples more efficiently by inferring semantic vector representation from an example 

screenshot, (3) enable designers to quickly and cheaply analyze a key aspect of the usability of 

their interfaces through a machine learning approach for modeling mobile interface tappability, 

and (4) prototype new modalities for existing web interfaces through applying program analysis 

to infer an abstract model of interface commands. 



Table of Contents 

Page 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Design Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Key Challenges in Design Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Chapter 2: Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

2.1 Interface Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

2.1.1 High-Level Constraints Based on Design Principles . . . . . . . . . . . . . . 10 

2.1.2 Computational Evaluation of Design Principles . . . . . . . . . . . . . . . . 14 

2.1.3 Tappability, Signifiers & Affordances . . . . . . . . . . . . . . . . . . . . . . . 16 

2.2 Constraints in User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.2.1 Solvers and Constraint Priorities . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.2.2 Origins & Modern Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

i 



2.2.3 Key Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.3 Semantic Analysis of Interface Structure & Presentation . . . . . . . . . . . . . . . 23 

2.3.1 Inferring Interface Structure from Screenshots . . . . . . . . . . . . . . . . . 23 

2.3.2 Runtime Modification and Control of Interfaces . . . . . . . . . . . . . . . . 25 

2.4 Semantic Analysis of Interface Usability & Visual Design . . . . . . . . . . . . . . . 29 

2.4.1 Computational Measures of Usability . . . . . . . . . . . . . . . . . . . . . . 29 

2.4.2 Computational Measures of Layout Quality and Aesthetics . . . . . . . . . 31 

2.4.3 Integrating Computations of Usability, and Aesthetics into Design Tools . 32 

2.5 User Interface Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

2.5.1 Defining Requirements for Alternatives . . . . . . . . . . . . . . . . . . . . . 34 

2.5.2 Visualizing & Creating Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 36 

2.5.3 Algorithms to Generate Alternatives . . . . . . . . . . . . . . . . . . . . . . . 37 

2.5.4 Exploring Alternatives through Examples . . . . . . . . . . . . . . . . . . . . 39 

2.6 Data-Driven User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

2.6.1 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

2.6.2 Large-Scale Design Analysis & Insights . . . . . . . . . . . . . . . . . . . . . 41 

2.6.3 Adapting Analysis & Insights into Design Prototyping . . . . . . . . . . . . 42 

2.7 Digital Interface Design Prototyping Tools . . . . . . . . . . . . . . . . . . . . . . . . 43 

Chapter 3: Mixed-Initiative Exploration of Design Alternatives . . . . . . . . . . . . . . 46 

3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

3.1.1 Specifying Hierarchy and High-Level Constraints . . . . . . . . . . . . . . . 49 

3.1.2 Feedback & Layout Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

3.2 Architecture & Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3.2.1 Generating a Layout Alternative . . . . . . . . . . . . . . . . . . . . . . . . . 53 

3.2.2 Ranking Layouts by Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . 54 

3.2.3 Feedback & Layout Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

3.2.4 Constraint Encodings & Design Variables . . . . . . . . . . . . . . . . . . . . 58 

3.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

3.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

3.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

3.3.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

3.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

ii 



3.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

3.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Chapter 4: Interface Design Assistance from Examples . . . . . . . . . . . . . . . . . . . 86 

4.1 Formative Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

4.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

4.3 Architecture & Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

4.3.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

4.3.2 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

4.3.3 Layout Beautification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

4.4 Technical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

4.4.2 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

4.5 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

4.5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

4.5.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

4.5.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 

4.5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

4.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 

4.6 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

4.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

Chapter 5: Modeling Mobile Interface Tappability . . . . . . . . . . . . . . . . . . . . . . 115 

5.1 Understanding Tappability at Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

5.1.1 Crowdsourcing Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

5.1.3 Signifier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

5.2 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

5.2.1 Feature Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

5.2.2 Model Architecture & Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

5.2.3 Model Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

iii 



5.3 Human Consistency & Model Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . 129 

5.3.1 Usefulness of Individual Features . . . . . . . . . . . . . . . . . . . . . . . . . 131 

5.4 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

5.5 Informal Designer Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

5.5.1 Visualizing Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

5.5.2 Exploring Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

5.5.3 Model Extension and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

5.6 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

5.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

Chapter 6: Prototyping Input Retargeting for Web Interfaces . . . . . . . . . . . . . . . . 138 

6.1 Architecture & Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

6.1.1 Command Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 

6.1.2 Command Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

6.1.3 Command Property Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

6.1.4 Command Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

6.1.5 Describing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

6.1.6 Invoking Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

6.1.7 Genie API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 

6.2 Interface Prototypes & Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 

6.2.1 Automatic Speech Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

6.2.2 Automatically Generated Keyboard Shortcuts . . . . . . . . . . . . . . . . . 155 

6.2.3 A Command Line Interface for Web Automation . . . . . . . . . . . . . . . . 156 

6.2.4 Keyboard-Based Mouse Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 

6.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 

Chapter 7: Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

7.0.1 Inference and Prototyping with Existing Webpage Commands . . . . . . . 162 

7.0.2 Mixed-Initiative Exploration of Alternatives . . . . . . . . . . . . . . . . . . 163 

7.0.3 Modeling Human Perception of Usability . . . . . . . . . . . . . . . . . . . . 166 

7.0.4 Building a Dataset of Design Documents . . . . . . . . . . . . . . . . . . . . 167 

iv 



7.0.5 Advancing Design Prototyping Tools . . . . . . . . . . . . . . . . . . . . . . . 168 

Chapter 8: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 

Appendix A: Mixed Initiative Exploration of Design Alternatives . . . . . . . . . . . . . . 196 

A.1 Formalized Constraint Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 

A.1.1 Position & Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 

A.1.2 Basic Design Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 

A.1.3 Layout Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 

A.1.4 Baseline Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 

A.1.5 Grouping & Arrangement Constraints . . . . . . . . . . . . . . . . . . . . . . 202 

A.1.6 Emphasis Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 

A.1.7 Alternate Group Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 

A.1.8 Repeat Group Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 

A.2 Sample Task Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 

A.2.1 Baseline Task Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 

A.2.2 Scout Task Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 

A.3 Quality Evaluation Rubric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 

A.4 Qualitative Interview Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 

A.4.1 Scout Post-Task Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 

A.4.2 Baseline Post-Task Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 

A.4.3 Post Study Interview Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 229 

v 



List of Figures 

Figure Number Page 

1.1 During ideation, Scout (top-left) enables designers to explore alternative lay-
outs using high-level design constraints. During prototyping, Rewire (top-right) 
enables designers to adapt example screenshots by generating three modes of 
vectorized output from a screenshot. During prototyping, Genie (bottom-left) lets 
designers prototype new forms of interaction on top of existing web interfaces. 
During usability testing, TapShoe (bottom-right) enables designers to analyze 
the tappability of mobile interface designs. . . . . . . . . . . . . . . . . . . . . . . . 5 

2.1 The proximity principle relates to human perception of grouped elements. (1) 
These circles are perceived to be a similar group. (2) People perceive these circles 
as two separate groups, as the groups are separated by whitespace that is larger 
than the separation between individual circles within each group. (3) Color can 
be used with proximity to visually separate elements, however (4) proximity 
overpowers other signals like color (1-4, Andy Rutledge, 2009 [1]). Here, the 
interface designer uses proximity to group together the elements of each list item 
(i.e., image, label subtext) while using a larger amount of whitespace to separate 
them from other list items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

vi 



2.2 A layout grid, shown below in Adobe XD, divides a layout into regions including 
(1) columns (i.e., vertical containers for placing elements on the canvas, (2) 
gutters (i.e., spacing between columns where elements must not be placed, and 
(3) margins (i.e., spacing on the outside of the canvas that all elements must 
be placed inside). Designers can (4) specify which layout grid they want to 
use by providing the number of columns, gutter, and column width. A baseline 
grid divides a layout into horizontal sections, to guide horizontal spacing and 
alignment. In Adobe XD, this is actualized as a square grid of both horizontal 
and vertical lines (5). Designers can specify the square size (6) to set the vertical 
distance between the baseline grid lines. . . . . . . . . . . . . . . . . . . . . . . . . 12 

2.3 The current version of the Spotify iOS app, showing two cards with information 
on premium and student subscriptions. Designers frequently use rounded corners 
to indicate elements are tappable. However, these cards are not tappable, leading 
to a false signifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

2.4 Constraints define spatial relationships between interface elements on a layout 
(1). Commercial prototyping tools include features for defining constraints (2-4) 
largely enabling responsive resizing of individual elements. . . . . . . . . . . . . . 18 

2.5 Apple’s AutoLayout Interface Builder enables creating constraints by dragging 
arrows between elements to define relationships (2). When a designer defines 
a relationship, the interface builder displays a list of suggested constraints (3). 
The interface builder displays all of the active constraints in the view hierarchy 
panel (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.6 Zipt helps designers discover usability issues in their apps. A designer can use 
the flow visualization to pinpoint where a usability issue might be occurring, and 
then examine the associated app screens to determine the specific usability issue. 30 

2.7 In Juxtapose [85] (1), designers can create and view side-by-side alternatives 
and dynamically adjust them through code-based tuning of design parameters. 
Subjunctive Interfaces [133] (2) lets users set up, view, and control alternate 
scenarios within a single interface. An example is this simulation of ant foraging 
behavior where a user can simultaneously view and update the parameters for 
multiple scenarios. Parameter Spectrums [205] (3) lets a user preview the effects 
of editing commands with a range of a parameters. . . . . . . . . . . . . . . . . . . 35 

2.8 DesignScape [164] (1) provides designers interactive layout suggestions for 
graphic designs, consisting of refinement ("Tweaking") and brainstorming sug-
gestions that a designer can directly apply to their design canvas. Sketchplore 
(2) provides a designer realtime layout suggestions it infers by predictive models 
of usability and aesthetics as they sketch on a canvas. . . . . . . . . . . . . . . . . . 36 

vii 



2.9 Adaptive Ideas [120] (1) is a design tool for webpages that lets designers search 
and adapt stylistic elements directly from examples (bottom) into their own 
designs in a design canvas (top). D.Tour [179] lets designers search for examples 
using stylistic keywords (e.g., colorful image-heavy). . . . . . . . . . . . . . . . . . 39 

2.10 SILK (1) is an early tool for sketching graphical user interfaces on a tablet. DENIM 
(2) is a tool for prototyping website design at multiple levels of abstraction. . . 43 

3.1 The Scout interface has four main panels: (1) Designers import their interface 
elements by dragging their SVGs into the Widgets panel. (2) Designers create 
hierarchy and high-level constraints (e.g., grouping, order, emphasis) in the 
Outline panel. (3) Designers control generation of alternatives through the 
Feedback panel, which they can activate by clicking an element in the Outline 
panel or on an element in the Layout Ideas panel. (4) The Layout Ideas panel 
presents alternative layouts, which a designer can save, discard, or zoom in on. 47 

3.2 (1) Designers can click on nodes in Scout’s Outline panel to make them the 
primary selection, which highlights corresponding elements in each canvas on 
the Layout Ideas panel. (2) Designers can hover their mouse over a layout 
canvas, and Scout highlights conflicting feedback annotations. (3) Designers can 
export their saved layouts into SVG canvases which they can import into their 
prototyping tools, such as Adobe XD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.3 Scout System Overview: (1) A designer gives input to Scout via an outline 
of interface elements and feedback on layout alternatives. (2) A web server 
generates layouts by launching multiple solver threads. (3) Each solver thread 
searches over variable assignments. (4) A constraint resolver checks the assign-
ments against constraints. (5) A feedback resolver applies designer feedback and 
repairs layouts. (6) A quality model ranks resulting layouts. . . . . . . . . . . . . 53 

3.4 The components I provided designers for the Social Media and Weather scenarios, 
including alternate images for the profile picture and sunny icon. . . . . . . . . . 62 

3.5 To illustrate our spatial diversity score, the least diverse (left) and most di-
verse (right) pairs of participant-produced Social Media layouts. . . . . . . . . . . 66 

3.6 Violin plots of the spatial diversity scores for each set of pairs by a designer within 
an Interface/Scenario combination demonstrating that the Scout designs had 
higher spatial diversity for both scenarios. . . . . . . . . . . . . . . . . . . . . . . . . 68 

3.7 Violin plots of the spatial diversity scores across all pairs of designs by all designers 
within a Interface/Scenario combination showing that the Scout layouts had 
higher overall spatial diversity than the Baseline layouts for both the weather 
and social media scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

viii 



4.1 Rewire’s Full Vector design assistance mode, in the Adobe Experience Design 
(XD) canvas. Designers activate the mode by right-clicking on a screenshot, that 
they drag into an artboard in the design document. Designers can then edit the 
properties and layering of the vectorized output in XD’s Properties and Layers 
panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

4.2 Commercial vectorization tools, like Illustrator’s ImageTrace, require a designer 
to specify a complex number of vectorization options (1). They represent their 
output with path objects (2) representing boundaries in an image. A designer 
cannot change font size and color because there isn’t text box to edit. To adjust a 
rectangle’s corner radius, they need to drag and resize each individual corner. . 88 

4.3 Rewire provides three modes of design assistance. Full Vector (a) creates vector 
objects for shapes in the image. Designers can highlight the vector objects by 
toggling the pink Highlights layer. Designers can then update and redesign the 
vectorized artboard, as shown on the right. Smart-Snap (b), displays alignment 
and spacing guides to help designers align newly drawn shapes to shapes in 
the screenshot. Wireframe (c), generates abstract wireframes of the screenshot, 
removing most visual details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 

4.4 System overview of Rewire. The system input is a screenshot. Rewire segments 
shapes from the image and classifies them by primitive shape type (1), extracts 
properties of segments to create vector shapes (2), and beautifies (i.e., aligns & 
normalizes) the resulting layout (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

4.5 Rewire extracts the baseline, line height, and font size of text shapes. . . . . . . . 96 

4.6 The original bitmap, and the Prefab extracted segments. Prefab discovered the 
background color, border color, border thickness, and corner radius by segmenting 
the image bitmap into 6 regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

4.7 Histograms of Rewire’s f-score, precision, and accuracy on the dataset of real 
artboards collected from popular design sharing galleries. The height of each 
bar represents the amount of artboards at that accuracy level. . . . . . . . . . . . 103 

4.8 The original screenshot (a), variations (b), and design specifications that design-
ers recreated for the Rewire user study (c). . . . . . . . . . . . . . . . . . . . . . . . 105 

4.9 The left shows a box-plot of the the designers’ task completion times for Rewire 
(Smart-Snap and Full Vector) and baseline (Ideal Vector and Screenshot Only) 
conditions. The right shows amount of error in the designers’ output, as measured 
by the average of pixel color distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

4.10 The designers’ overall rankings of design assistance mode from most to least 
preferred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

ix 



5.1 Our deep model learns from a large-scale dataset of mobile tappability collected 
via crowdsourcing. It predicts tappability of interface elements and identifies 
mismatches between designer intention and user perception, and is served in 
the TapShoe tool that can help designers and developers to uncover potential 
usability issues about their mobile interfaces. . . . . . . . . . . . . . . . . . . . . . . 117 

5.2 The interface that workers used to label the tappability of UI elements via crowd-
sourcing. It displays a mobile interface screen with interactive hotspots that can 
be clicked to label an element as either tappable or not tappable. . . . . . . . . . 118 

5.3 The number of tappable and not-tappable elements in several type categories 
with the bars colored by the relative amounts of correct and incorrect labels. . . 121 

5.4 Heatmaps displaying the accuracy of tappable and not tappable elements by 
location where warmer colors represent areas of higher accuracy. Workers labeled 
not-tappable elements more accurately towards the upper center of the interface 
and tappable elements towards the bottom center of the interface. . . . . . . . . . 122 

5.5 The aggregated RGB pixel colors of tappable and not-tappable elements clustered 
into the 10 most prominent colors using K-Means clustering. . . . . . . . . . . . . 123 

5.6 A deep neural network model for predicting tappability, leveraging semantic, 
spatial and visual features. The model produces a prediction and continuous 
probability of an interface element being perceived as tappable. . . . . . . . . . . 126 

5.7 The scatterplot of the tappability probability output by the model (Y axis) versus 
the consistency in the human worker labels (X axis) for each element in the 
consistency dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

5.8 The TapShoe interface. An app designer drag and drops a UI screen on the left. 
TapShoe highlights interface elements whose predicted tappability is different 
from its actual tappable state as specified in its view hierarchy. . . . . . . . . . . . 132 

6.1 Genie uses program analysis techniques to reverse engineer a web application’s 
interactive commands (1-2). Designers can create interaction prototypes (3) to 
prototype new interactions with input modalities for existing web applications. 
With Genie, I created several application-agnostic prototypes that automatically 
retarget input to add speech, keyboard, and command-line input capabilities to 
arbitrary web applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

6.2 The Hextris web game (hextris.io) shown with a list of speech commands cre-
ated by Genie. Speaking the bolded text label for each command triggers the 
corresponding actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

6.3 Genie abstract data model properties, metadata, and behaviors. . . . . . . . . . . 142 

x 



6.4 Genie parses the event listener source code to extract data dependency (DD) and 
side effect (SE) expressions, used to evaluate a command’s availability (enabled). 
Genie extracts imperative statements and command metadata to describe and 
label commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 

6.5 Inputs and outputs of Genie’s command description algorithm for the rotate-
HexagonLeft event listener. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 

6.6 A calculator interface with incomplete keyboard support (a-calculator.com), 
enhanced to provide a keyboard shortcut for each command, as enabled by 
Genie’s analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

6.7 This event listener references the clientX property of the event object. This is 
stored in the variable relativeX which is referenced in the conditional statement, 
which guards a side effect. Genie detects these dependencies and determines 
that the command is dependent upon mouse location . . . . . . . . . . . . . . . . . 151 

6.8 This event listener references the keyCode property of the event object and 
compares it to the value. Genie returns the value 13 and the corresponding side 
effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 

6.9 (1) A Genie-enabled command line terminal that allows command automation 
and macro creation, and (2) a graph builder augmented with Genie’s input grid 
for capturing mouse coordinates via keyboard . . . . . . . . . . . . . . . . . . . . . 154 

xi 



List of Tables 

Table Number Page 

3.1 Summary counts of the number and proportion of high-level constraints of each 
type specified by designers following the Scout task, and the percentage of 
designers who specified each type of high-level constraint. . . . . . . . . . . . . . . 65 

3.2 Summary statistics of the quality scores awarded by the expert evaluators to 
designers’ layouts from the Scout user study including visual balance (VB), 
typographical hierarchy (TH), emphasis (E), alignment (A), whitespace (W), and 
overall layout quality (LQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

4.1 The summary statistics for the total and number of elements of each type per 
artboard included in Rewire’s technical evaluation dataset. . . . . . . . . . . . . . 101 

5.1 The number of elements labeled by the crowd workers in two rounds, along the 
precision and recall of human workers in perceiving the actual clickable state of 
an element as specified in the view hierarchy metadata. . . . . . . . . . . . . . . . 120 

5.2 A confusion matrix for the balanced dataset, averaged across the 10 cross-
validation experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

A.1 Quality evaluation rubric that the independent designer panel used to assess the 
quality of Scout and Baseline designs created by the designers in the Scout user 
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 

xii 



Acknowledgments 

First and foremost, I would like to thank my advisors James Fogarty and Amy Ko who have 

taught me so much throughout this process. Amy taught me how to transform a disorganized 

mess of research ideas into a crisp and clear direction. She also taught me how to distinguish 

between engineering and research problems, enabling me to make quicker progress in my 

research over getting bogged down in engineering details. She provided so much encouragement 

and support I needed to gain confidence in myself and my abilities when I was just getting started 

in my Ph.D. James provided me with many valuable insights that transformed my research, and 

could always come up with just the right piece of literature to move the research forward. I 

enjoyed the many hours spent in his office brainstorming how to move my research forward. 

Both advisors provided me detailed critiques of my research papers that I built upon to develop 

my skills to write an engaging and high quality research paper. They provided me with valuable 

connections to industry researchers in order to find internships and full-time opportunities after 

I graduate. They both supported me immensely throughout the Ph.D. process, and targeted 

much of their advising toward my specific industry career goals. Without them, this dissertation 

would not have been possible. 

xiii 



I am also very thankful for my committee members, Ras and Audrey. Ras provided me with 

several key insights for how to move Scout forward and provided valuable feedback during my 

examples. Audrey, my GSR, helped me think about my work from a designer’s perspective, and 

also provided valuable feedback. 

I would also like to give a huge thanks to all of my wonderful mentors and friends from 

my industry internships, without which much of the work in this thesis would not have been 

possible. Joel Brandt gave me my first industry research internship opportunity and was an 

outstanding mentor. Together, we came up with the initial ideas for Rewire, which started me 

on the focus in interface design tools. Morgan Dixon was an awesome mentor on this project, 

and helped me find technical direction. In fact, it was Morgan’s work that initially drew me 

to apply to UW. Mira Dontcheva and Wilmot Li taught me so much about industry research, 

and gave me great guidance during my second internship at Adobe. The Miracles at Adobe 

during summer 2017 helped me make it through the CHI deadline push, including Daniel, Ailie, 

Jasper, and Yeasul. It was a pleasure to have hands-on experience learning machine learning 

and data-driven research from Yang Li at Google during my internship. I also had the pleasure 

of working with Shamsi Iqbal at Microsoft Research who was incredible to work with, and 

helped me find organization and direction on a disarray of project ideas and supported me in 

learning how to navigate collaboration and communication between multiple product teams. 

Many thanks to my labmates in James’ lab "Fogies" including Annie, Ravi, Jessie, Jina, Alex, 

and all new Fogies. I would also like to thank some of the the "Old Fogies" who gave feedback 

on my work and presentations including Daniel, who was an awesome labmate, and Xiaoyi, 

who has also generously helped me with my industry job search. I would also like to thank my 

friends and fellow grad students in HCI at UW who provided me social connection and gave 

valuable feedback on my work. 

During my Ph.D., I had the awesome pleasure to be a member of Amy’s Code & Cognition 

lab, and I thank them immensely for being there for me throughout my Ph.D. process, listening 

xiv 



to my "Woos and Boos", giving feedback on my practice talks, and providing critiques on my 

research. I would specifically like to thank fellow Ph.D. students Dastyni, Benji, Yim, Greg, 

Kyle, Mina, Neil Ryan, and Alannah Oleson, who was also an awesome collaborator on Scout. I 

would also like to thank former member of Amy’s lab Brian Burg, who met with me for lunch a 

couple times to give awesome advice on internships and Ph.D. life. Among this group, I would 

also like to thank the iSchool cohort of friends I made in my first-year in Jake’s class who helped 

me make it through this process and feel a part of their community. 

I am quite certain that I could not have made it through my Ph.D. without my awesome 

fellow PLSE labmates as well including Chandra, Eunice, Jared, Max, Martin, Remy, Pavel, Talia, 

Sam, James, John, Doug, Sarah, and all other current and former labmates and professors for 

facilitating an awesome lab culture. Without them, I would not have felt like such a member of 

the UW CSE community. With the PLSE group, I had many discussions, fun social hangouts, 

and a community of friends. Specifically, I would like to thank Chandra for being my closest 

confidant and friend at UW throughout my Ph.D. and for joining me on countless movie and 

dinner outings. I would like to also thank Chenglong, who was a fantastic collaborator for Scout 

and contributed significantly to that project’s success. 

I would also like to thank my Seattle family, friends, and board game crew, without which 

I would not have had a way to escape the stresses of Ph.D. life and integrate myself into the 

Seattle community. I would like to thank my church friends who supported me in this process 

sand welcomed me into their communities. I would also like to thank my fellow choir members 

of Joyful! Noise in Seattle, who supported me, and its directors, who have built an awesome 

community of singers. 

Finally, I would like to thank my family, without whom none of this work would have been 

possible. Thank-you immensely to my two best friends and sisters, Stephanie and Elizabeth, 

who provided me with lots of emotional support, laughs, and encouragement to make it through 

my Ph.D, and even in some cases, house cleaning and meals to get me through paper deadlines. 

xv 



The biggest thanks go to my mom and dad who gave me the independence to discover my 

passions in life. They provided me with a strong foundation to develop my curiosity, dedication, 

and a strong will without which I could not have made it through my Ph.D. 

This work was financially supported by the National Science Foundation through the Grad-

uate Research Fellowship Program, and through research grants CCF-1153625, IIS-1053868, 

IIS-1314399, and IIS-1702751. This work was also supported through two internships at Adobe 

Research, and an internship at Google Research. 

xvi 



Dedication 

To my mom, my dad, my favorite big sister, and my favorite little sister. 

xvii 



1 

Chapter 1 

Introduction 

Interface design can have a huge impact on human productivity, satisfaction, and numerous 

other factors [194]. Good interface design can help business make more money [174], keep 

people safe [194], and can empower people to be creative. In contrast, bad user interface design 

can cause user frustration, dissatisfaction, and errors [194]. Due to the importance of user 

interface design, it is crucial that we provide the designers of user interfaces with the tools to 

make them more efficient, creative, and better understand their users. There are an estimated 

238,000 user interface designers in the United States alone [6], and companies rely on these 

trained professionals for improving their interfaces. Giving designers the tools they need to 

succeed can help them make their software useful, usable, and enjoyable. 

1.1 Design Activities 

In this dissertation, I explore how we can build better software tools for interface designers 

to accelerate their capabilities in key design activities. To understand the context of these 



2 

activities, I first describe a process that designers follow of design thinking1. This model of 

design consists of five stages including 1) emphasize, where designers observe, understand, and 

engage with their target audience, 2) define the problem, where the designer states the users 

core problems based on findings from the emphasize stage, 3) ideation, where the designer 

ideates and explores a large set of alternate solutions, 4) prototyping, where the designer creates 

one or more digital or physical prototypes of their ideas (e.g., sketch, paper prototype, digital 

mockup), and 5) testing the solution with one or more potential users. Design thinking is not 

necessarily linear as designers will often return to previous design stages to iterate and improve 

upon their design. In this dissertation, I consider three design activities designers use during 

ideation, prototyping, and testing to create better interface designs. 

During ideation, interface designers explore alternative designs. Exploring alternatives is 

highly valuable because it can result in higher-quality outcomes and more diverse solutions 

[47,66]. Designers can ideate by sketching [47], or they can look for examples in online design 

galleries [120], existing interfaces, or other sources. Viewing and using examples during design 

can make designers more creative [112]. 

Prototyping is a key part of the design process that interface designers use to demonstrate 

and evaluate their ideas. Prototyping not only helps designers concretely evaluate their designs, 

but can also be a powerful tool for idea generation and design exploration [127]. During 

prototyping, interface designers create low-fidelity paper prototypes [188] or high-fidelity 

prototypes in tools like Sketch [19] or Adobe XD [98] that demonstrate the visual design and 

layout of one or more interface screens in detail. Designers can also create software prototypes 

in code [158] (e.g., HTML/CSS) to get feedback on early versions of an interface, or they can 

prototype new interactive features on top of existing interfaces to explore new interactions [63]. 

Testing is a crucial design activity that designers use to discover problems in their interfaces, 

and to collect user interaction data. In usability testing [158], designers can evaluate low-fidelity, 

high-fidelity, or software prototypes. Designers can conduct these evaluations through the use 

1http://dschool.stanford.edu/resources/getting-started-with-design-thinking/ 



3 

of heuristics [159], in a lab where they have users complete tasks using a paper or digital 

prototype [188], or through crowdsourcing [60,106] or remote usability testing where users 

complete tasks or provide first impressions through online services [16,17]. 

1.2 Key Challenges in Design Activities 

In this dissertation, I explore a number of challenges designers face during ideation, prototyp-

ing, and testing of user interfaces. Exploring alternatives is a key ideation activity [66, 87]. 

However, interface designers face several challenges when exploring alternatives and examples. 

First, designers frequently sketch on paper or whiteboards to visualize multiple alternative 

designs [47]. However, they are limited in how many alternatives they can explore by how many 

they ideate and sketch by hand. Second, designers gain inspiration for new design alternatives 

by browsing examples, yet it can be difficult to visualize these examples with the designers own 

set of interface elements. Finally, designers may "fixate" [99] on a single alternative, finding it 

difficult to ideate alternative designs outside of what they have already seen. 

For prototyping, research and industry have developed sophisticated tools (e.g., Adobe 

XD [98], Sketch [19], Figma2) to ease the prototyping process. However, interface designers 

still face a number of challenges in prototyping. First, designers need to decide which interface 

elements to use and where to place them, which requires a deep understanding of usability 

(e.g., Nielsen’s Principles [158]) and visual design (e.g., Gestalt [109]) principles. Additionally, 

designers may find an inspiring example in an online example gallery, however, these designs 

are typically shared as screenshots. If a designer wants to adapt elements of the example into 

their own design, they need manually recreate the shapes and properties of interface elements 

they want to modify. Some commercial tools for vectorizing examples into editable documents 

exist 3, however, they represent their output as vector paths rather than semantic shapes (e.g., 

rectangles, text boxes), which can be difficult to edit. 

During usability testing, designers can conduct large-scale studies where they can deploy 

2https://www.figma.com/ 
3https://www.adobe.com/products/illustrator.html 



4 

their interfaces to gather data from crowd workers [106]. While crowdsourcing such studies 

can be cheaper and quicker than lab studies, they can still be expensive and time consuming 

to conduct. These type of studies typically require having a full interface prototype, which 

means that any design problems found at this stage will be more difficult to fix. This may 

also make it challenging for designers to understand which properties of a design are leading 

to a usability issue [180]. Additionally, designers do not have a common infrastructure for 

collecting and sharing usability data across interface designs and companies. Such a dataset 

could help designers discover high-level design insights beyond the design languages of their 

own organizations. 

Finally, designers must consider the needs of people with diverse abilities and expertise through-

out the design process. People who are blind or low-vision may need to use screen readers 

to interact with interfaces [40]. People with motor impairments may need to use alternate 

input devices to interact with an interface [70]. While it is ideal to develop interfaces with 

these needs in mind, many interfaces released into the world, especially web interfaces [22], do 

not support these needs. Thus, researchers have developed techniques to enable designers to 

prototype new interactions for existing interfaces to modify them at runtime [51,62,221,229]. 

However, such frameworks still rely on understanding and interacting with an application’s 

visible features (i.e., interface elements) or information exposed through accessibility APIs. 

Web interfaces contain many non-visible behaviors (i.e., keyboard events, touch gestures) that 

can make predicting the behavior of interactive commands difficult. Second, web interface 

customization scripts and frameworks [39, 41] typically modify a specific website or aspect 

of behavior. Designers do not have a generic way to create application-agnostic prototypes to 

enable new interactions and input modalities for existing web applications. 

Common across all of these challenges is that for interface designers, an interface design 

(i.e., sketch or prototype) is an artifact. A designer may need to do some manual work to 

transform it into another medium (e.g., a prototype into an alternative, an example screenshot 

into a design prototype). Current design prototyping tools do not let a designer easily make this 

transformation. To aid this transition, we can augment interface design tools with semantic 



5

Export to Adobe XD

Layout Ideas

Scout: Rapidly Exploring Layout Alternatives 
through High-Level Design Constraints

Interface 
Elements

High-Level Constraints 
(e.g., order, emphasis)

Id
ea

tio
n

Rewire: Interface Design Assistance from Examples
Full Vector RedesignedWireframe

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵
⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵
⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

Screenshot Smart-Snap

Prototyping

Genie: Input Retargeting for Web Pages

Start
Pause

Command 
Objects

Command 
Metadata

…
onClick = 
function(e) {

login(); 
}

Pr
ot
ot
yp

in
g

PrototypingPrototypes

Original Interface
Modeling Mobile Interface Tappability

through Crowdsourcing and Deep Learning

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Element Pixels Screen Pixels

VisualSpatial

BOW 
Embedding

Semantic

Bounding 
Box

Fully Connected

Fully Connected

Tap (1,0), Tap Probability

Type

U
sability Testing

TapShoe

Model

Labels
Dataset

Figure 1.1: During ideation, Scout (top-left) enables designers to explore alternative layouts
using high-level design constraints. During prototyping, Rewire (top-right) enables designers to
adapt example screenshots by generating three modes of vectorized output from a screenshot.
During prototyping, Genie (bottom-left) lets designers prototype new forms of interaction on top
of existing web interfaces. During usability testing, TapShoe (bottom-right) enables designers
to analyze the tappability of mobile interface designs.

analysis capabilities to understand, analyze, transform, and augment an interface design.

Enhancing design tools with such capabilities can aid the design process by making it more

efficient, more creative, and less rigid. Through this dissertation, I demonstrate the following

thesis statement:

Augmenting interface design tools with high-level semantic knowledge gained through

semantic and data-driven analyses can help designers more easily analyze, transform,

and augment a design. This can enable them to ideate and prototype more efficiently,

and more thoroughly analyze the usability of their interface designs.

To demonstrate this thesis, I present four systems, shown in Figure 1.1, that aid interface

designers in ideating, prototyping, and testing. Each system expands upon designers’ capabilities

to automatically analyze higher-level interface semantics that make an interface designs more



6 

malleable, more easily transformed, and annotated with interaction data. In these systems, I 

apply recent technological advances from program synthesis, machine learning, and data-driven 

design to enable these transformations. These systems consist of: 

• Scout - a system that supports mixed-initiative interaction with high-level constraints and 

design feedback to help designers rapidly visualize layout alternatives. 

• Rewire - a system that infers a vector representation from an interface screenshot where 

each UI component is a separate object with editable shape and style properties, which 

can help designers avoid manual recreation of design prototypes from example screenshots. 

• TapShoe - an approach on gathering usability data on mobile interface tappability at scale, 

and a machine learning model to help designers explore the tappability of their interfaces 

without the need to collect any data. With this approach, designers can avoid the time 

and cost of a usability study and can rapidly evaluate the usability of their designs during 

prototyping. 

• Genie - a system that reverse engineers an abstract model of web interface commands 

and provides a prototyping framework to enable designers to quickly prototype existing 

interfaces under new input modalities (e.g., speech, keyboard, command line input) and 

presentations. 

1.3 Outline 

Chapter 2 gives an overview of related work. First, I review a set of design principles that I 

formally model in projects throughout this dissertation. Then, I discuss constraints and their 

applications in user interface layout tools. I also define semantic analysis within the context 

of this dissertation, and I review how I have applied it to discover interface structure and 

computationally examine interface usability and aesthetics. Later, I describe key approaches 

in tools to aid designers in exploring alternatives. Finally, I review the work in data-driven 

design and describe opportunities that I see to apply these techniques within interface design 

prototyping tools. 

Chapter 3 describes a mixed-initiative system, Scout, that lets designers define high-level 



7 

constraints to explore alternative interface layouts. Scout formalizes a set of design principles 

into high-level constraints that designers can use to specify the high-level layout of alternatives 

that Scout then translates into low-level constraints to rapidly generate alternate layouts. 

Designers can also give feedback to Scout to explore and refine the set of alternatives. 

Chapter 4 presents a system, Rewire, that helps designers leverage example screenshots 

through automatically inferring a vector representation that represents each UI component 

as an object with editable shape and style properties. Rewire provides three modes of design 

assistance that help designers reuse or redraw components of the example design. 

Chapter 5 presents TapShoe, a crowdsourcing approach for gathering usability data at-scale 

on mobile app tappability. I analyzed a set of signifiers people use to distinguish tappable and 

non-tappable elements, and I built a deep neural network model that predicts how likely a 

user will be to perceive an interface element as tappable. Such a model can help designers 

avoid the time and cost of conducting this type of usability study, and it can potentially help 

designers understand the effect on tappability of their design choices if integrated into their 

design workflow during prototyping. 

Chapter 6 presents Genie, a system that automatically reverse engineers an abstract model of 

the underlying commands in a web application and provides a framework that enables designers 

to prototype new interactions with that functionality through alternative interfaces and other 

input modalities (e.g., speech, keyboard, command line input). 

Finally, Chapter 7 summarizes future directions in integrating computational techniques 

into design prototyping tools including 1) enabling better prototyping with existing interfaces, 

2) advancing mixed-initiative exploration of alternatives, 2) modeling and predicting human 

perception of usability, 3) building a dataset of design documents to support data-driven design 

interactions, and 4) integrating semantic analysis and data-driven design features into interface 

prototyping workflows. 



8 

Chapter 2 

Background & Related Work 

In this chapter, I review areas of past work that provide definitions, theories, and tools for 

this work, and areas of past work that I am building upon in my research. This chapter is 

divided into 7 sections. 

• In section 2.1, I review and give examples for a set of design principles, and describe how we 

can use them to encode formal and informal design knowledge into high-level constraints, 

cost functions, and models that can aid designers in applying them in interactive design 

tools. 

• In section 2.2, I review and give examples of constraints and describe their scope within 

modern interface layout and design tools. I then review the key research challenges with 

constraints in interactive constraint-based layout systems that my work aims to advance 

the research in or address. 

• In section 2.3, I give an overview of past work that applies semantic analysis techniques 

to discover interface structure from incomplete inputs (e.g., interface screenshots, code) 

that can be used to aid designers in adapting examples, and in adapting interfaces to 



9 

alternate input modalities and presentations. 

• In section 2.4, I review related work in semantic analysis of interface usability and visual 

design. Researchers have applied a variety of approaches to automatically or rapidly 

evaluate interface usability and visual design through formalized cost models of design 

principles, crowdsourcing, and machine learning based approaches. There is a huge 

opportunity to scale these approaches and build techniques for automatically evaluating 

different aspects of usability and visual design across a diverse set of interface designs. 

• In section 2.5, I describe interactive systems and techniques for aiding designers in explor-

ing alternatives. There are two key approaches described in previous work. Designers can 

define high-level rules and behaviors, and a system generates alternatives automatically, 

or designers can explore alternatives through examples of other designers work. Few 

techniques presented in past systems for exploring alternatives have been actively explored 

within interface design prototyping tools. 

• In section 2.6, I review data-driven interface design and describe opportunities for applying 

these techniques within interface design tools, specifically in using machine learning 

models to automatically provide usability evaluations. 

• In section 2.7, I review the history and current state of digital interface design prototyping 

tools, and I describe gaps in design support where the work in this dissertation can 

contribute. 

2.1 Interface Design Principles 

In this section, I define and give examples for a set of design principles, frequently used by 

interface designers to improve their designs, that I will refer to throughout this dissertation. 

I will describe in later chapters how we can use them to encode formal and informal design 

knowledge into high-level constraints, cost functions, and models that can aid designers in 

applying them in interactive design tools. 

According to Lidwell, et al. [126], a design principle is a law, guideline, heuristic, theory of 

human bias, or a general design consideration that can be used to enhance usability, influence 



10 

perception, increase appeal, teach, and make better design decisions. Perhaps the most com-

monly taught set of principles by Nielsen and Molich [145] include heuristics such as Visibility 

of System Status which states that "A system should keep users informed of what is going on, 

through appropriate feedback within reasonable time", and Consistency and Standards which 

states that "Users should not have to wonder if different words, situations, or actions mean 

the same thing. Use platform conventions." Other design principles include theories of human 

perception like Gestalt Theory [109] which is a set of theories for how people visually organize 

information, or The Big 4 [177] (i.e., alignment, contrast, repetition, and proximity) which are 

a set of graphic design principles frequently applied in user interface design. 

Throughout the projects I introduce in this dissertation, I apply, formalize, model, predict, 

and design interactions around a set of interface design principles. My goal is to encode both 

formal and informal design knowledge and guidelines into systems that can automatically 

evaluate or aid designers, and especially novices in applying them. In Chapter 3, I apply or 

model design principles in two ways. First, I develop a cost function based on graphic design 

principles (e.g., alignment, balance) to rank Scout’s generated layout alternatives by their layout 

quality. Second, I use design principles to develop high-level constraints that a designer can 

use to rapidly explore layout alternatives. In Chapter 4, I apply graphic design principles (i.e., 

alignment, distribution) through a constraint optimization problem to beautify the layout of 

designs that have been inferred from a screenshot. In Chapter 5, I build a deep learning model 

to predict human perception of mobile interface tappability which can help designers more 

quickly understand peoples’ perceptions of which elements are interactive in their designs. In 

the following sections, I detail the design principles underpinning each of these chapters. 

2.1.1 High-Level Constraints Based on Design Principles 

In Chapter 3, I use a set of common usability and visual design principles to develop a language 

of high-level constraints a designer can use to rapidly explore layout alternatives. In this 

section, I describe each of the design principles I used to develop Scout’s high-level constraints. 

Chapter 3 details how I used these design principles to develop high-level constraints a designer 



11 

1

3

52

4

Figure 2.1: The proximity principle relates to human perception of grouped elements. (1) These 
circles are perceived to be a similar group. (2) People perceive these circles as two separate 
groups, as the groups are separated by whitespace that is larger than the separation between 
individual circles within each group. (3) Color can be used with proximity to visually separate 
elements, however (4) proximity overpowers other signals like color (1-4, Andy Rutledge, 
2009 [1]). Here, the interface designer uses proximity to group together the elements of each 
list item (i.e., image, label subtext) while using a larger amount of whitespace to separate them 
from other list items. 

can specify to describe the space of layout alternatives to explore, and how a system can use 

these constraints to generate layout alternatives automatically. 

Creating a Clean Layout and Hierarchy 

Interfaces should have a clear and organized hierarchy [126]. The structure principle [55] states 

that interfaces should keep related things together and unrelated things separate. Interface 

elements that are close together on the screen will be seen as related [157]. This is motivated 

by the proximity principle of Gestalt theory [109] which defines a set of laws for how people 

organize visual information. Figure 2.1.1 shows a set of circles that people perceive as a single 

group, while Figure 2.1.2 shows the same set of circles separated into two groups of circles in 

0 This is pe,,-ce,i/e,:/ {" be Me 0 We pe,,-ce,ve {wt, {Jl"'tJVPS hel"'e, 0 1,,,- -~ 
9,,-tJV P ,:;11,:/ {he c-,,,.,p,,11e,is ,:;,,,,:I v,,,,:le,,-s{,:;,1,:/ {h,:;{ {hel"'e ,:;/"'e • ' SM1ehtJw l"'e/,:;{e,:/ {" e,:;C-h of.her'. ,:/,ffel"'erlt'eS be{wee11 {hem. I ·-

ueoo VIVABH? 9:41 AM 142% ~ 

•••• •• •• NEARBY a. 

•••• •• •• ~~-
Breakfast at Night 
ThetrUhaboulbreaklasl 

' , . •••• •• •• .Llr Office Setup 101 •••• •• •• 5etup~rWOfkstalion ln second 

Pl"'M1M1{Y tJl/el"'PtJwel"'S of.he,,-
Flowers and Roses 

0 TheSe {Jl"'tJVP, ,:;ppe,:;I"' {" be 0 RoseslorValenune"sday 

sep,:;,,-,:;{e,:/ by c-,,;,,,,- ,,,,- C-M{l"',:;S{ S1(}11t:;/S t,f 171Sfil1C(:1M, ,:;S See11 
i11 {his e/,:;mp/e 

' A 
Orchids blooming 
FOfyouandyaufl'iends 

•• •• •• •• •• •• •• •• Red and velvet 
Redvelvel, violet 

•• •• •• •• r •• •• •• •• - =--) 



12

1 2 3

4

6

5

Figure 2.2: A layout grid, shown below in Adobe XD, divides a layout into regions including (1)
columns (i.e., vertical containers for placing elements on the canvas, (2) gutters (i.e., spacing
between columns where elements must not be placed, and (3) margins (i.e., spacing on the
outside of the canvas that all elements must be placed inside). Designers can (4) specify
which layout grid they want to use by providing the number of columns, gutter, and column
width. A baseline grid divides a layout into horizontal sections, to guide horizontal spacing and
alignment. In Adobe XD, this is actualized as a square grid of both horizontal and vertical lines
(5). Designers can specify the square size (6) to set the vertical distance between the baseline
grid lines.

close proximity visually separated by whitespace. Color can also be used in combination with

proximity for visual separation (Figure 2.1.3), however, proximity overpowers color as a signal

of distinction as seen in Figure 2.1.4. Interface designers can use the proximity principle to

visually organize a hierarchy, as shown in Figure 2.1.5 where the mobile app design groups

each list item close together while using a larger amount of whitespace to visually separate

them from other list items.

Another way to create a clear and organized hierarchy is through the use of layout grids

and baseline grids. A layout grid is a common method that designers use to place elements

on a layout canvas. Using a layout grid can improve the alignment, balance, consistency, and



13 

visual organization of a layout [212]. A layout grid, illustrated in Figure 2.2, consists of margins 

(i.e., spacing on the outside of the canvas that all elements must be placed inside), columns 

(i.e., vertical containers for placing elements on the canvas), and gutters (i.e., spacing between 

columns where elements must not be placed). A key requirement of a layout grid is that all 

elements should typically begin and end on the edge of column. There are many different 

types of layout grids (e.g., manuscript grid, modular grid), however, the layout grid shown in 

Figure 2.2 is an example of a column grid. Designers typically use multiple layout grids to adapt 

their designs across multiple device dimensions. 

A baseline grid is another type of layout grid typically applied in combination with a column 

layout grid. A baseline grid, illustrated in Figure 2.2.5, defines the vertical spacing of a design, 

aids horizontal alignment, and creates hierarchy [28]. It consists of horizontal lines at even 

intervals down the layout to which all elements should align. 

Layout grid features have become common in interface design prototyping tools like Adobe 

XD [98], shown in Figure 2.2.4, where a designer can specify the layout grid they want to use 

by providing a value for columns, gutters, and column width. In Adobe XD, a baseline grid is 

set using a square grid, shown in Figure 2.2.6, where designers can specify the vertical distance 

between baseline grid lines by specifying the square size. 

Drawing the Person’s Eye 

Emphasis is a principle to enhance usability in interface design [213], stating that interfaces 

should have a main focal point to let a person know what to do next [5]. Emphasis is a strategy 

of drawing a person’s eyes to a an important interface element (e.g., button, logo) or design 

element. To add emphasis to an element, designers can use colors, lines, size, shape, position of 

an element on the page, or other visual elements [5]. One way of adding emphasis or removing 

emphasis from an interface element is by changing the element’s size or position in relation to 

other elements [213]. 



14 

Creating a Usable and Accessible Layout 

A key principle in creating a usable and effective interface is that elements should be placed in 

the order they are used for a task [159] (i.e., Match Between the System and the Real World). 

This principle is also expressed by the Structure Principle which states that "Designers should 

organize the interface purposefully, in meaningful and useful ways, based on clear and consistent 

models that are apparent and recognizable to the users." [55]. 

Beyond the order interface elements are placed, the sizing of elements that are touch targets 

is also a key factor in good usability. When touch targets are too small, users take longer to tap 

them [71], especially those who have lower physical dexterity (e.g., children [10]). According 

to a study by Parhi, Karlson, and Bederson [169], touch targets in a mobile interface should 

be at least 1cm x 1cm to prevent touch errors and support reasonable selection time. Because 

of this, industry companies have developed their own guidelines for the minimum sizing of 

touch targets. Apple’s Human Interface Guidelines [14] state "Provide ample touch targets for 

interactive elements." Try to maintain a minimum tappable area of 44pt x 44pt. Androids 

Accessibility Guidelines [13] state that touch targets should be at least 48 x 48 dp (density 

independent pixels) and provide a separate minimum size for pointer targets (44 x 44 dp). 

Beyond the size of touch targets, minimum sizing guidelines should be followed for text 

elements. If the font size for text elements is too small, it could compromise readability for 

visually impaired users [37]. Apple’s Human Interface Guidelines [20] specify a minimum font 

size of 17pt for body text to ensure text is readable for mobile interface designs. Material 

Design Guidelines [11] specify the minimum size for body text should be 16pt. 

2.1.2 Computational Evaluation of Design Principles 

In Chapter 4 and Chapter 3, I present systems that encode design principles into formalized cost 

functions that these systems use to beautify and rank interface layouts. These functions rely on 

the following 4 design principles: alignment, balance, consistency, and simplicity. Next, I define 

each principle. In Chapter 4 and Chapter 3, I describe how I formalize these principles into cost 



15 

functions for layout beautification and ranking to help designers prioritize layout alternatives. 

The principle of alignment in design is defined as "the placement of elements such that edges 

line up along common rows or columns, or their bodies align along a common center" [126]. 

Alignment can create unity and cohesion across a design improving its aesthetic. It can also be 

used to indicate related sets of elements by aligning them across a similar axis (e.g., left, right, 

center). Elements can also be aligned to the edges of a design canvas. While most alignments 

are generally defined by rows and columns, other types of alignment can occur (e.g., diagonal, 

circular). However, in this dissertation all uses of alignment refer to the standard alignment of 

elements along a row (i.e., top, bottom, y-center) or column (i.e., left, right, x-center). 

The principle of balance in design states that "the aesthetics, stability, and unity of a design can 

be improved by placing elements and whitespace in such a way that no area of the design overpowers 

another" [126]. Balance is defined as having an even distribution of visual weight and can 

be symmetrical or asymmetrical. With symmetrical balance, the visual weight is distributed 

evenly, either horizontally or vertically. With symmetrical balance, you should be able to draw 

a horizontal or vertical line through the center of the design and the weight of the elements 

should be equivalent on both sides. Balance can also be asymmetrical where the elements are 

placed to create tension, and are not distributed evenly across axes. 

The principle of consistency states that the usability and aesthetics of a system can be 

improved when similar parts are expressed in similar ways [126, 145, 188]. There are four 

kinds of consistency including aesthetic (i.e., consistency of style and appearance), functional 

(i.e., consistency of meaning and action), internal (i.e., consistency with other elements in the 

system), and external (i.e., consistency of with other elements in the environment or across 

systems). In this dissertation, I focus on aesthetic and internal consistency. 

The principle of simplicity states that interfaces should be as simple as possible, and remove 

unnecessary and extraneous information [145]. This is analagous to Occam’s Razor [126] which 

states that given the choice between two functionally equivalent designs, the simplest one should 

be selected. Beyond functionality, interfaces can be simplified by reducing unnecessary visual 

clutter [177]. In the interaction design book About Face [56], Cooper states that "Unnecessary 



16 

variation is the enemy of a coherent, usable design. If the spacing between two elements is nearly 

the same, make that spacing exactly the same. If two typefaces are nearly the same size, adjust 

them to be the same size. Every visual element and every difference in color, size, or other visual 

property should be there for a reason.". 

Another component of the simplicity principle is that a design should avoid being too 

cluttered. One way to avoid clutter is to use whitespace (i.e., the areas in a design that do not 

contain content) effectively [213]. Using whitespace effectively can enhance readability and 

simplify a design by breaking it down into discrete chunks that can help the user process the 

information more effectively [4]. 

2.1.3 Tappability, Signifiers & Affordances 

Tapping is an extremely important gesture in mobile touchscreen interfaces, yet people learning 

to use an interface still may need to learn which elements are tappable (i.e., interactive) through 

trial and error. In Chapter 5, I present an approach to model interface element tappability that 

can automatically predict which interface elements a human will perceive as tappable. Here I 

describe the design principle of discoverability and related concepts of signifiers and affordances 

and describe how a lack of signifiers and affordances can lead to a lack of discoverability. 

Fundamental design guidelines by Don Norman [160] include the principle of discoverability 

which states that "Interfaces should make it possible to determine what actions are possible 

and the current state of the device". Based on this principle, mobile interfaces should support 

discoverability by ensuring that users can quickly understand which elements are interactive. 

One way that designers can support discoverability is through signifiers [162] which indicate 

to a user the affordances of an interface element. Affordances were originally described by 

Gibson [76] as the actionable properties between the world and actor (i.e., person). Don 

Norman [160,161] popularized the idea of affordances of everyday objects, such as a door, and 

later introduced the concept of a "signifier" as it relates to user interfaces [161]. Gaver [75] 

described the use of graphical techniques to aid human perception (e.g., shadows or rounded 

corners) and showed how designers can use signifiers to convey an interface element’s perceived 



17 

Tappability Signifiers

Figure 2.3: The current version of the Spotify iOS app, showing two cards with information 
on premium and student subscriptions. Designers frequently use rounded corners to indicate 
elements are tappable. However, these cards are not tappable, leading to a false signifier. 

affordances. 

Designers can use visual properties (e.g., color, depth) to signify an element’s "clickability" [3] 

or "tappability" in mobile interfaces. Perhaps the most ubiquitous signifiers in today’s interfaces 

are the blue color and underline of a link and the design of a button which both strongly signify 

to the user that they should be clicked. These common signifiers have been learned over time 

and are well understood to indicate clickability [161]. 

While some design guidelines for clickability and tappability exist [3], designers do not 

always use correct signifiers, or they may want to experiment with new signifiers. Users may 

still need to learn what is tappable in a new interface through trial and error. This can lead 

to users potentially not discovering a functionality that could be useful to them (i.e., poor 

discoverability [160]) or in a false signifier [75] where they tap on an element and receive 

no response [3, 7]. Figure 2.3 shows the Spotify iOS mobile app on a page for advertising 

premium services. The interface contains two cards advertising premium student and premium 

individual options. Designers frequently use rounded corners to make elements look tappable, 



18 

3
1

2

4

header.x == canvas.width –
(header.x + header.width)

subtext.y == header.y
+ header.height + 20

Figure 2.4: Constraints define spatial relationships between interface elements on a layout (1). 
Commercial prototyping tools include features for defining constraints (2-4) largely enabling 
responsive resizing of individual elements. 

as shown. However, the cards in this Spotify page are not actually tappable. This is an example 

of a false signifier [75]. Chapter 5 describes an analysis of signifiers that are having an impact 

on tappability across a large dataset of mobile interfaces. 

2.2 Constraints in User Interfaces 

Chapter 3 and Chapter 4 present systems that use constraints as a tool to encode rules about user 

interface layouts and design principles into a layout specification. In the domain of user interface 

layouts, a constraint is a rule defining a spatial relationship between one or more interface 

elements or to the layout canvas that should hold across any potential layout configuration 

(e.g., across alternate device dimensions) [42]. Figure 2.4.1 shows an example constraint (red) 

stating that the left (i.e., header.x) and right margin (i.e., canvas.width - (header.x + 

header.width)) of the "Green Smoothie" header should be equal. A constraint below (green) 

states that the margin between the bottom of the header (i.e., header.y + header.height) 

and the top of the subtext (i.e., subtext.y) should be equal to 20. A developer or designer 

e e e ~ Design Protctype ... • v (\ D ► 85.5% v -

0. 

El 

• 

;;;;;;. ..... iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii--.-- -

O j/ ~ ~~~··· 
/ ~-----···=·---.-. --1---' 

~ reen ~-~~-~~~'._:___ • ,., " c "' 
By+ oey M. ~-~-- ►• I 

I 
14 MIN () 

88CAL 0 

_);-~-,~, ~.--~.---o 
- I 

: A.J:o L'.wi~.a 

I 
I 

: I- -i 
I 
I 

[:10:>% -----

I L!J: F r- r-

L L \, 

C M.arkhrF,pn,t 

Constraints ■ 
I t- Left .., Left 

+ 
Scale 

Right 

Left & Right 

0 Fix position when scrollin~ Center 

Scale 

RESIZING V 

+ rO-<jl •• 0-,0 

Pin to Edge Fix Size Preview 



19 

expresses a constraint and a user interface management or prototyping tool uses a constraint 

solver (e.g., Cassowary [43], Z3 [57]) to maintain the constraint across alternate configurations 

of the layout. A constraint is a declarative statement of what the desired properties of the system 

should be rather than how they should be maintained [42]. 

2.2.1 Solvers and Constraint Priorities 

Constraint solvers are a key part of constraint-based layout tools. After the designer produces 

a set of constraints, either through direct manipulation or as a spatial equations, the system 

converts them into a set of formalized equations and specifies them to a solver which will 

return whether the set of constraints is satisfiable. If so, the solver provides a solution or 

multiple solutions to the set of constraints. In the case of an interface layout, a solution typically 

consists of sizes (e.g., width, height) and positions (e.g., x, y) for interface elements. Many 

constraint-based layout systems use linear or quadratic programming [31,92,135], and some 

have recently used SMT solvers to support a wider variety of layout specifications [100]. 

Constraint solvers used in constraint-based layout typically support constraint priorities which 

they use to penalize layouts that deviate from desired aesthetics. Support for priorities consists 

of letting the user specify hard and soft constraints. Hard constraints must be satisfied by every 

solution. Soft constraints need not be satisfied by every solution but the solver will typically 

try to maximize the number of soft constraints through an objective function. Frequently, 

solvers let users specify weights on their constraints so that they can specify that some soft 

constraints should have a higher likelihood of being satisfied. In a constrained optimization 

problem, a solver uses an objective function to minimize the value of a cost function (e.g., 

human performance [74], layout quality [226]). 

Z3 [57] is a powerful SMT (Satisfiability Modulo Theory) solver that I use in the systems I 

present in this dissertation. An SMT solver determines the satisfiability of a logical formula. 

Given the formulas 0 < x < 360 and {0 < y < 640}, solutions would include {x = 44, 

y = 320} and {x = 1, y = 1} but not {x = -2, y = 700}. Beyond linear constraints, 

Z3 supports encoding other types of constraints (e.g., boolean constraints, first-order logic, 



20 

functions) and supports constraint priorities (i.e., hard and soft constraints). Z3 has been used 

for a variety of recent applications including verifying webpage accessibility [168], generating 

a set of statistical tests to use from a study design and set of assumptions [101], and to enable 

specifying OR constraints in GUI layout managers [100]. 

2.2.2 Origins & Modern Usage 

Initially introduced in Sketchpad [197], constraints became widely used to define interface 

element relationships in early GUI builders [49,86,96,150,191,223,224]. Constraints in these 

early interface builders are mainly specified by writing low-level spatial equations or through 

direct manipulation by dragging elements around on a canvas. Constraints were later adapted 

to web interfaces through a CSS based framework [30] and webpage design interface [42] for 

specifying constraints in webpage design. 

Constraints have more recently become features in commercial interface builders including 

Apple’s AutoLayout [9] (Figure 2.5) and Android Interface Builder [8]. Apple’s AutoLayout [9] 

enables specifying constraints by dragging interface elements on an interface builder. When 

a designer drags elements near each other (Figure 2.5.2), the interface builder displays a 

drop-down menu (Figure 2.5.3) with a list of suggested constraints based on the location of the 

selected elements. These constraints manifest as a list of spatial equations (Figure 2.5.1) in the 

element view hierarchy panel. In Android Interface Builder 1, constraints are specified similarly 

to AutoLayout but the interface does not provide any suggestions of constraints to apply. 

Constraint-based features have also been introduced recently in popular UI prototyping tools 

like Adobe XD 2 (Figure 2.4.2), Sketch 3 (Figure 2.4.4) and Figma 4 (Figure 2.4.3). Constraint 

support in these tools is currently limited to defining a limited set of resizing rules for elements 

when the size of the layout canvas changes. 

1https://developer.android.com/training/constraint-layout/ 
2https://www.adobe.com/products/xd.html 
3https://www.sketch.com/docs/layer-basics/constraints/ 
4https://help.figma.com/article/54-constraint 



21 

1

32

Figure 2.5: Apple’s AutoLayout Interface Builder enables creating constraints by dragging 
arrows between elements to define relationships (2). When a designer defines a relationship, 
the interface builder displays a list of suggested constraints (3). The interface builder displays 
all of the active constraints in the view hierarchy panel (1). 

2.2.3 Key Research Challenges 

Recent research in constraint-based layout has focused on several core problems in constraint-

based layout systems: (1) resolving constraint ambiguities, (2) prevention or repair of overcon-

strained or invalid layouts, and (3) the creation of high-level constraint abstractions and tools 

to make constraints easier to specify. 

One key challenge in constraint-based layout systems is that ambiguities can occur in con-

straint specification. Ambiguities occur when the designer does not specify enough constraints 

on the goal layout. Therefore, there will be multiple solutions to a layout specification. Pro-

gramming by Manipulation [93] presents a set of direct manipulation techniques to resolve 

ambiguities in constraint-based data visualization layouts. For graphic design layouts, Xu et 

al. [219] present an interface to facilitate ambiguity resolution within a constraint-based layout 

• ► ~ AmandaTest ) iPhone XR Amandalest: Ready Today at 2:54 PM • 
88 < leJ Amandalest ) . Amandalest ) II Main.storyboard ) I Main.storyboard (Base) ) 1!!'1 View Controller Scene ) 0 View Controller ) 

• f!I View Controller Scene 

't" 0 View Controller 

't" (C] vicw 
II) satc Area 

~ Green Smoothie 

[I} By Zocy M. 

T [±] Constraints 

0 ji"Gr~~~-s-~thi;~~~t~,x-;-sat; A,;;~-;,~t~;x-: 
JO By Zocy M .. top : Green Smoothic.bonom + 16 i 

Ci'il First Responder -------------------------------

1!1 Exit 

➔ Storyboard Entry Po;nt 

0 

9 :41 AM 

[] View as: iPhone 8 ( •C , R) 



22 

beautification system. In contrast to previous works which have focused on resolving ambiguity 

in constraints, I present Scout in Chapter 3 which embraces ambiguities in constraints to let a 

designer explore many alternate layouts satisfying a single set of constraints. 

Another key challenge in constraint-based layouts is that the layout can be overconstrained or 

conflicting (e.g., no single solution exists that satisfied all constraints). Resolving such conflicts 

can be challenging, even for experienced programmers [93]. The ALE [225] presents a GUI 

builder that helps designers create layouts with simple, direct manipulation operations, which 

do not require any direct constraint editing. ALE guarantees that each edit operation leads to a 

single, non-overlapping solution, with no conflicts. PBM [93] presents a set of techniques to 

prevent conflicts in data visualization layouts. Because Scout (Chapter 3) embraces ambiguities 

in constraints, conflicts in these constraints can arise. Scout adopts a multi-faceted approach to 

explain and highlight conflicts to help designers resolve them if they occur. 

Finally, constraints in interface layout systems are often specified using low-level spatial 

constraints, like those seen in Figure 2.5. Some systems infer constraints to make them easier 

to specify through direct manipulation (e.g., Rockit [102], Peridot [150], ALE [225], PBM [93]). 

However, a recent thread of recent work has explored the creation of high-level constraints 

to ease the constraint specification burden. Many are specialized for domains outside of user 

interface layouts like visualization design [147], specifying graph layouts [88], and automating 

statistical analyses [101]. For GUI layout, the ALE presents some high-level constraints [135] 

(e.g., rows, columns), yet these are still based on concepts from GUI layout managers. In the 

ORC layout editor [100], a designer specifies high-level patterns of elements that should be 

maintained which limits the number of alternative layouts that can be explored. In Chapter 3, 

I present high-level constraints for interface layout, based on interface design principles. 

developed these through the lens of visual design (e.g., layout grids, emphasis) and usability 

principles (e.g., order, structure principle) for developing clear and compelling layouts. 

I 



23 

2.3 Semantic Analysis of Interface Structure & Presentation 

Chapter 4 presents a system to generate vectorized design documents from screenshots of 

interfaces. Chapter 6 describes a system to enable prototyping new interactions for existing 

interfaces. Both projects apply a form of semantic analysis of interfaces. In this dissertation, I de-

fine semantic analysis as any form of automated analysis that can infer and understand interface 

structure from incomplete inputs (e.g., screenshots, web interface code) or encode constraints 

about interface structure that enable validating or generating interfaces automatically. 

In this section, I review work related to Chapter 4 on methods to infer interface structure 

from a screenshot to generate interface code or mockups. This can bridge the gap between 

interface design screenshots and the code a developer or designer needs to modify them. I also 

review related work for Chapter 6 on methods to modify the behavior and inputs to interfaces 

at runtime, requiring semantic analysis of interface elements and source code. 

2.3.1 Inferring Interface Structure from Screenshots 

Currently a gap exists between pixel-based interface screenshots and the code developers or 

designers need to modify them. An important step in prototyping is in creating digital mockups 

in order to demonstrate design concepts. Designers frequently create these prototypes in tools 

like Photoshop, Adobe XD [98], or Sketch [19]. They may then share these in design galleries 

(e.g., Dribbble, Behance) for other designers to use for inspiration [47,87]. Screenshots can 

be easy for designers to capture, however, they are unstructured and difficult to edit. Thus if 

a designer wants to edit or adapt the example design, they first need to recreate its shapes, 

properties, and structure by hand. Another challenge is that when a designer has created a 

design they are ready to move to production, designers may give these prototypes to developers 

as a screenshot to translate them into code. This process has been demonstrated by past studies 

to be time-consuming and error prone [148]. Recent work has shown that developers are still 

spending a lot of time re-creating design documents in a different tool [140]. 



24 

Inferring Interface Code from Screenshots 

A recent focus in semantic interface analysis is in reverse engineering screenshots of high-fidelity 

interface prototypes or implementations into interface code or screenshot mockups. A number 

of pixel-based methods have inferred interface structure from screenshot inputs [34,50,62,221] 

to modify or control the behaviors of an interface at runtime. 

Remaui [155] presented the first approach to transform mobile app screenshots into code 

through computer vision and optical character recognition (OCR) techniques. Recently, machine 

learning approaches have advanced the quality of the generated interface code from screenshots 

[35,53,146]. These approaches apply deep learning models trained on large-scale mobile app 

datasets to generate Android interface code [53,146] and HTML webpages [35] with reasonable 

levels of accuracy (i.e., ~70 to 90 percent). 

Beyond digital mockups, researchers and industry companies have explored converting 

hand-drawn sketches into interface code. Sketching is a key part of the design process [47]. 

Researchers [115,130] and more recently industry companies such as AirBnB5 and Microsoft6 

have created systems to support rapid sketching into interface code to streamline the rapid 

prototyping process. 

Inferring Design Documents from Screenshots 

Designers frequently adapt interface screenshots, found from inspiring sources or design galleries, 

into their digital prototypes created in tools like Sketch [19]. Yet, most recent systems created 

by researchers and industry companies aim to automate the entire prototyping and interface 

implementation process, going from screenshots and sketches directly to interface code. This 

highlights an important gap in design tooling where interface designers could benefit, as they 

currently need to manually adapt examples in order to modify them. In Chapter 4, I present a 

system that automatically infers a vectorized design document from an interface screenshot. 

5https://airbnb.design/sketching-interfaces/ 
6https://www.microsoft.com/en-us/ai/ai-lab-application-samples 



25 

Rather than inferring interface code like prior work [35, 146, 155], it infers semantic vector 

shapes (e.g., rectangle, text) and design properties (e.g., font, color). Semantic shape types 

(e.g., rectangles, text areas) are a more useful format to infer for designers as prototyping tools 

(e.g., Sketch, Adobe XD) represent designs with these shapes. 

Another challenge with previous systems is that they analyze inputs with existing structure 

(e.g., Android app hierarchies [53,146]) and require labeling training examples. They operate 

on extremely large datasets of app designs that have been collected and cleaned for training 

machine learning algorithms. In Chapter 4, I present a system that infers useful structure from 

flat screenshots of user interfaces, which are a convenient format for designers to collect and 

share. This approach does not require training on a large UI design dataset. 

A challenge for future work is to explore creating a generalized interface design dataset that 

could be used to apply machine learning models within UI prototyping tools. Machine learning 

approaches that generate interface code [35,53,146] could potentially improve the accuracy 

of the approach I present in Chapter 4. However, a large-scale UI design dataset would be 

needed. Unfortunately, such a dataset does not yet exist for UI design prototyping documents. 

Such a dataset would be challenging to collect given the diversity in interface prototyping tools, 

their output formats, and the diversity of design formats shared in online design galleries. A 

challenge for future work is to explore creating a generalized interface design dataset that could 

be used to apply machine learning models within UI prototyping tools. 

2.3.2 Runtime Modification and Control of Interfaces 

A diverse set of techniques and systems have explored modifying interfaces at runtime. Key 

motivations of this work are for making an interface more accessible, and enabling developers, 

designers, and end users to prototype new interactions and behaviors for existing interfaces. 

Both of these areas provide related work and motivation for Chapter 6 which dynamically infers 

a web application’s commands and their current state to enable designers to prototype new 

interactions that let users interact with them in alternate ways at runtime. 



26 

Making Interfaces More Accessible 

Chapter 6 presents a method to discover commands and behaviors of web applications, enabling 

them to be controlled through alternate input modalities and presented in different ways in a 

webpage-agnostic manner. One motivation for the work presented in Chapter 6 is that it could 

improve the accessibility of an interface by enabling those who could not access the interface 

through its default input method (e.g., mouse) to use an alternate input method to access it 

(e.g., voice). Past research has explored methods to modify interfaces at runtime to make them 

more accessible [39,44,45,95] and methods of automatically generating interfaces to customize 

them for a person’s physical needs [24,74]. 

To make a webpage accessible, web designers and developers should add support for ARIA7 

attributes. These attributes enable screen readers to interpret web content, and several prior 

works have dynamically analyzed and injected ARIA attributes into a website. One method 

describes dynamic updates by monitoring and dynamically injecting ARIA attributes onto 

the updated content [44]. Another method detects and makes static content accessible [45]. 

However, these methods primarily operate within the existing input modality of the page, 

improving the interaction for people who could already access the page via that modality, but 

not enabling access via entirely new modalities. 

Other approaches have used crowdsourcing and collaboration to identify web accessibility 

issues and apply fixes, including AccessMonkey [39] and CAN [95]. These systems enable 

developers to write scripts to fix specific accessibility issues. However, these scripts are mostly 

written for a specific website or subset of websites. They typically modify a specific aspect 

of behavior or add a new functionality. One limitation of these systems is that they do not 

provide a generic way of discovering and describing existing functionality of an interface that 

can support providing alternate forms of access to that functionality across interfaces. 

Prior work also explores automatically generating interfaces to make them more accessible 

or efficient to use. SUPPLE [74] had users take a one-time performance test that enabled 

7https://www.w3.org/WAI/standards-guidelines/aria/ 



27 

generation of a custom interface suited to personal abilities, improving efficiency of generated 

interfaces. The EKOGI system [24] accounted for a person’s abilities and the interactions that 

best suit those abilities, generating a tailored interface. These systems as presented are limited 

to working for a single interface. Such systems could benefit from a more application-agnostic 

model of commands that would notify them when commands are available, and enable them to 

select and use an alternate input modality that is more appropriate to a person’s abilities. 

Only a few prior works have analyzed source code for enhancing accessibility or usability. 

Ko et al. [108] applied program analysis to detect paths in a web application that did not result 

in any feedback in the interface. Many works have analyzed source code and accessibility APIs 

to understand the structure of web applications for software testing [136, 154, 189]. There 

are numerous opportunities to use static and dynamic program analysis techniques to support 

automatic interface adaptation and analyses to improve usability. 

Dynamically Modifying an Interface’s Presentation, Inputs, and Behaviors 

Chapter 6 presents a method of discovering and modifying the inputs and command behaviors 

of web interfaces at runtime to enable them to be controlled through alternate inputs and 

presented in alternate ways. Methods to modify interfaces at runtime have long been an active 

area of research for prototyping new visual effects or interactions on top of existing interfaces 

[62,68,69,166,228] and to let users customize their own applications [39,41,195,204]. 

Edwards et al. [69] present a method to transform the output of graphical user interfaces. 

Olson et al. [165] introduce techniques to implement interface attachments that augment 

interface functionality. User Interface Facades [195] and WinCuts [204] enable users to modify 

interfaces themselves by cutting out and combining multiple screen regions. One limitation 

of these methods is that they require modifying existing applications, windowing systems, or 

toolkits limiting their applicability across platforms. In contrast, non-toolkit based approaches 

require inferring the location and structure of interface elements to control or modify them. 

These methods use pixels as input (i.e., Prefab [62]), combined with code based descriptions 

(i.e., Vismap [228]), screenshots (i.e., Sikuli [221]), software videos (i.e., Waken [34]), and 



28 

accessibility APIs (i.e., PAX [51]). Pixel-based methods [34, 62, 221, 228] can only infer an 

application’s visible behaviors. In Chapter 6, I show that we can take advantage of the open 

access to source code and DOM structure in web pages to infer information about a web 

application’s non-visible behaviors. 

Several systems have both detected and enabled modifying the behavior of an application’s 

interactive components. Runtime toolkit overloading in Scotty [68] is one approach, a tech-

nique for supporting manual program analysis for adding functionality to existing runtime 

behavior. Prefab [62], Sikuli [221], and Waken [34] all use pixel-based analyses to discover 

interface components through templates and machine vision techniques. These systems also 

enable modifying the behavior of the detected interface components. However, because these 

methods only have access to the pixel-level appearance of an application’s interface, but not 

the application’s source code, they can only understand visible behaviors. Pixel-based methods 

have no understanding about whether the components can currently be interacted with, nor 

any way of predicting their behavior. Using program analysis methods, as I present in Chapter 6, 

we can discover the current state of an interfaces input commands, in order to let users know 

when they are currently available. 

Researchers have long studied methods of modifying the inputs of interfaces to let users 

control them through alternate modalities and interactions. Pixel-based methods have realized 

this through intermediate controllers (i.e., Sikuli [221], VisMap [228]), input and output 

redirection (i.e., Prefab [62]), and runtime toolkit overloading (i.e., Scotty [68]). In the web, 

input modification can be achieved with scripting languages such as Chickenfoot [41] and 

AccessMonkey [39]. However, these scripts typically modify a specific website, or a specific 

aspect of behavior. They do not provide a generic method of discovering and describing interface 

functionality to support adding alternate input modalities. 

Recently, such alternate input modalities have been enabled in mobile phones to control 

them with gestures [118] and 3D printed tactile interfaces [231]. Gesture Avatar [118] allowed 

people to interact with an existing mobile interface through gestures. Their method operated 

on the pixel level, creating a mapping between gestures and their corresponding objects in 



29 

the interface. Their approach creates custom mappings from one input domain (i.e., gestures) 

to another. Chapter 6 presents a system that enables the creation of generic input mappings 

(e.g., speech, keyboard) through input retargeting which enables the control of web applications 

through alternate input modalities. 

2.4 Semantic Analysis of Interface Usability & Visual Design 

Semantic analysis approaches have been explored to automatically evaluate usability and 

visual design aspects of an interface. Past work has automatically evaluated designs through 

crowdsourcing and machine learning based approaches, and through formalized cost models and 

functions based on design principles. Researchers have also identified several key requirements 

to integrating these computational approaches into designers’ workflows and tools. I identify 

gaps in recent systems where these requirements are not being satisfied. 

2.4.1 Computational Measures of Usability 

In Chapter 5, I present an approach and deep learning model to automatically measure the 

tappability of mobile apps. This project required collecting data on a large scale to enable the 

use of a machine learning approach. Data-driven design [113] is a large-scale approach to 

design mining of design data from user interfaces to support design interactions (e.g., design 

search). Recently, these approaches have been used to identify usability issues [60] and collect 

mobile app design data at scale [59,61]. 

One such system, Zipt [60], shown in Figure 2.6, enables comparative user performance 

testing at scale. Zipt uses crowd workers to construct user flow visualizations through apps 

that can help designers visualize the paths users will take through their app for specific tasks. 

From these visualizations, designers can pinpoint where a usability issue might be occurring. 

With this approach, designers manually examine the visualizations for anomalies, and then 

examine the interface to determine what what specific issue might be causing the anomaly 

in user behavior. It can be challenging to diagnose these issues as there might be multiple 

factors impacting the usability on a single screen. In Chapter 5, I present a system that can help 



30 

Figure 2.6: Zipt helps designers discover usability issues in their apps. A designer can use the 
flow visualization to pinpoint where a usability issue might be occurring, and then examine the 
associated app screens to determine the specific usability issue. 

designers identify a specific usability issue – cases where false affordances or missing signifiers 

will cause a user to misidentify a tappable or not-tappable interface element. 

Large-scale crowdsourcing approaches, like Zipt [60], can collect crowdsourced user data 

to aid the diagnosis of usability issues. Amazon’s Mechanical Turk has previously provided a 

platform for large-scale usability [152] and human subjects experiments [106,110,186] and 

gathering data about the visual design of user interfaces [78,134,218]. Few of these previous 

works have used this data to build machine learning models that learn from the crowdsourced 

data. In Chapter 5, I describe a machine learning model that learns from this crowdsourced 

data to automatically examine a key aspect of usability (i.e., tappability). 

Some previous work has built deep learning models to identify specific usability issues 

automatically. Deep learning [119] is an effective approach to learn from a large-scale dataset. 

User f= low Visualization 

o:okl~ 

Users forget 
to select a 
unit on this 

form 

Data E::ntry Screen 

21% of users 

encountered 
this error 

E::rror Notification Screen 



31 

Recent work applies learning approaches to predict human performance on mobile apps for 

tasks such as grid [172] and menu selection [123]. These approaches rely on both lab-collected 

and crowdsourced datasets, via Mechanical Turk, of human grid and menu selection tasks. 

Bylinskii et al. [48] crowdsourced a dataset of human importance annotations, and built a 

deep learning model to identify salient elements in graphic designs and interfaces [48]. No 

work has yet applied deep learning models to predicting the tappability of interface elements, 

nor collected a large-scale dataset of tappability annotations across a diverse set of mobile 

interfaces. Using a deep learning approach can enable leveraging a rich set of features involving 

the semantic, spatial, and visual properties of an element without extensive feature engineering. 

2.4.2 Computational Measures of Layout Quality and Aesthetics 

In Chapter 3, I present Scout, which lets designers explore a set of layout alternatives. Scout 

ranks these alternatives using a cost function to help the designer prioritize them. This cost 

function builds on top of a large body of prior work that attempts to formally measure human 

perception of visual design properties (e.g., saliency, clutter, balance, alignment, symmetry). 

Prior work has built computational models to measure layout quality through formalizing 

principles of layout (e.g., balance, symmetry). Ngo et al. [153] present a set of 14 aesthetic 

measures for graphical layouts (e.g., balance, symmetry, density, rhythm) that they compute 

based on the positions, sizes, and relative placement of elements in a layout. Zheng et al. [232] 

adopt a pixel-based approach to compute low-level image statistics to analyze the perceived 

layout structure of a website (e.g. symmetry, balance, equilibrium). O’Donovan et al. [163] 

use an energy based model to evaluate the quality of graphic design layouts based on a set of 

"energy" terms (e.g., alignment, balance, whitespace, flow). Their models take inspiration from 

formalized measures of aesthetics for document layouts [32,82]. 

Other work has focused on measuring human perception of interfaces through saliency, 

visual clutter, and visual complexity models. Rozenholz et al. [181] present a model to predict 

the saliency of graphical design elements, and later developed a combined model [182] that 

measures both saliency and visual clutter. Reinecke et al. [176] developed a model of visual 



32 

complexity and colorfulness based on human annotations of the aesthetics of web pages. They 

then use their model to predict users impressions of the aesthetics of web page. Wu et al. [216] 

developed an approach to measure the visual complexity of webpages using web mining and 

machine learning. 

Researchers are recently exploring how to combine these models and metrics into an overall 

"goodness" score of interface design aesthetics by computing both layout quality measures 

(e.g., balance, symmetry) and models of human perception (e.g., saliency) on the pixels and 

elements of an interface design. Minukovich et al. [142] introduce eight automatic measures 

of GUI interface aesthetics (e.g., visual clutter, symmetry, grid quality, whitespace) and tested 

the measures on both iPhone apps and webpages. Riegler et al. [178] present a element-based 

method specifically for analysis of mobile interfaces which includes metrics such as alignment, 

balance, density, color complexity, and typographical complexity. 

2.4.3 Integrating Computations of Usability, and Aesthetics into Design Tools 

Although researchers have developed many computational models of aesthetics and layout 

quality and validated them against human annotations of aesthetics, few have studied how 

to integrate these metrics into user interface design tools as part of the workflow of design 

creation and evaluation. With DesignEye [180], researchers studied the challenges of integrating 

computational models of aesthetics into designers workflows. One challenge they discovered 

is that designers struggled to understand the model output and how they could improve it (i.e., 

what design elements are causing the model to compute or predict a value and how can they 

improve or change the output). A second challenge was that designers wanted to be able to 

easily compare multiple versions of a design to see how various changes affect the model’s output. 

Finally, designers wanted to have these tools integrated into their prototyping workflow so that 

they could have automatic "goodness" calculations of their designs. 

Some recent research has explored the integration of computational models of aesthetics 

into design tools. One way is through a webpage that lets designers upload and evaluate 

their designs according to a variety of visual metrics (Zen et al. [227], AIM [167]). However, 



33 

designers cannot easily explore multiple variants of a design to see how it affects the metric, nor 

are these tools integrated into other design tools (e.g., Photoshop, Sketch) such that a designer 

does not need to use a separate tool to use the aesthetics models. 

Bylinskii et al. [48] present a graphic design prototyping tool to evaluate and view real-time 

saliency heatmaps for design elements. Their system lets designers move elements around a 

design canvas in a prototyping tool to see real-time saliency heatmap, solving two of the key 

challenges summarized by DesignEye [180]. However, their system does not evaluate any other 

measures of aesthetics (e.g., layout quality, clutter), and does not give the designer a way to 

compare among alternatives to see how the model is affected. 

DesignScape [164] and Sketchplore [209] present interactive graphic design and interface 

sketching tools that use aesthetic and layout quality models to automatically generate and rank 

layouts. However, these systems do not expose their results of these metrics to the designer. 

2.5 User Interface Alternatives 

Creating multiple alternative designs in parallel results in higher-quality and and more diverse 

solutions [47,67] and enables designers to make stronger critiques and better decisions [65,210]. 

Designers also frequently need to create alternatives to suit the needs of diverse users [74] or 

to design for diverse device dimensions or platforms [226]. 

Due to the benefits and needs for creating alternatives, research has explored systems and 

interaction techniques to help designers ideate and brainstorm [104,111,114,120,138,139, 

164,209], visualize the outcome of a range of parameters [84,133,137,205,206], create cross 

device and cross platform user interface designs [54, 73, 129, 156, 156, 192, 220, 226], and 

improve the accessibility of their interfaces by creating alternative interfaces for those who need 

them [24,74,195,211]. 

To address these motivations, researchers have explored (1) interaction techniques to define 

and create alternatives, (2) algorithms to automatically generate alternatives, (3) tools to 

manage alternatives once created, and (4) systems to explore and adapt example designs from 

other designers. I discuss related work in each of these areas in the following sections. 



34 

2.5.1 Defining Requirements for Alternatives 

In order to help a system create alternatives, designers need to define the rules and models that 

those alternatives should satisfy. Perhaps one of the earliest methods introduced for defining 

these rules was model-based user interfaces [196,203,223] where a designer or developer defines 

a high-level model specification their interface should satisfy and a system generates an interface 

or alternative interfaces that maintain the specification in the model. A more recent application 

of this approach was in creating cross-platform and cross-device user interfaces, exemplified 

by Smart Templates [156] and Damask [129] which present parameterized templates and 

high-level patterns to specify when interface conventions should be applied across platforms. 

A similar concept to model-based user interfaces is high-level constraints which are con-

straints a user specifies that must be maintained across alternatives that a system, typically a 

constraint solver, generates. High-level constraints are typically more abstract and than low-level 

constraints, which are typically in the form of an equation or mathematical expression that get 

encoded into a constraint solver. In one recent work [135], high-level constraints consist of GUI 

layout concepts (e.g., rows, columns); a designer uses them to specify a set of elements that 

should be contained in a particular row or column. Recent applications of high-level constraints 

have been presented in diverse domains to encode best practices into formalized constraints 

to enable automatic generation of alternatives. Draco [147] formalizes visualization design 

principles and uses a solver to synthesize visualizations satisfying these principles. SetCola [88] 

provides a high-level language for specifying graph layout. Tea [101] presents a high-level 

language for specifying study design, assumptions, and hypotheses and generates a set of valid 

statistical tests for an experiment. 

For ideation and brainstorming in 2D and 3D modeling, generative design tools like 

DreamLens [139] and GEM-NI [222] enable specifying high-level constraints through an in-

terface [139, 222] or through sketching [104]. These systems generate a set of 2D graphic 

designs [222] or 3D models [104,139] satisfying the designers’ constraints. 

For user interface layout, many systems rely on a developer or designer to specify low-level 



35 

1

2 3

Figure 2.7: In Juxtapose [85] (1), designers can create and view side-by-side alternatives 
and dynamically adjust them through code-based tuning of design parameters. Subjunctive 
Interfaces [133] (2) lets users set up, view, and control alternate scenarios within a single 
interface. An example is this simulation of ant foraging behavior where a user can simultaneously 
view and update the parameters for multiple scenarios. Parameter Spectrums [205] (3) lets a 
user preview the effects of editing commands with a range of a parameters. 

equations and spatial relationships [9], either through direct manipulation operations or through 

editing low-level constraints. Several systems systems infer constraints automatically (e.g., 

Rockit [102], Peridot [150], ALE [225]) through a GUI layout builder. None of these systems 

have explored supporting high-level constraints based on design principles and best practices, 

so that designers can use familiar concepts at a high level of abstraction to explore alternatives, 

an approach I explore in Chapter 3. Additionally, these systems are typically limited to the 

creation of alternatives for alternate device dimensions [225], and they are not typically used 

for ideation and brainstorming as I explore in Chapter 3. 

0 i Source EditorF 

AlerNlM! 1 JII I AletNtlW!2 QI I 
.iarpore f.l=h·!J"""'· Tr"n"to.-.; 

1.'Tport fl!IS!l,~OJ:1,Coior iransform; 

cl=s Pl.&shApp.1.icati~n l 
stat~c var <>pp: Plo,.hApphcac:..cn; 

/l//lll/l/ll l//lll/l/lll//ll//(/l///ffl//l/lil/ 
/I global vui,il>lea to modifr: 
v,u >,!.......t,......,,.l;'!ll <""l«afou.o.l"" " = 1,,a:...,; 

v"r local:Str!eetPont~:ize:)lunho,c = U; //(JAAltGI 1 

v:.r ecd, Q'llf/b~r-01 //tm;u,,cz - :155 .. :155 

v;u: gree0:Cf~u=0 1 //tRA,-,:;r - 255 . • 25S 
v;u: blue: xwroer =O; //~! - 255 •• 255 

v=: l>rigbtnes:,,: liwrber= LOO; //(iiU.N6£ 0 

//~ong t .. ~ ~t= 

fanct10n Ila3hAn:il.1ee.tion() l 

0 evaporation 
rate 

6 

6 

diffusion 
rate 

2 

-it1-' --

.:. 

Runtime Interface r 1 ..... i-.. 

............ ,._..,, ... . _., .. : ➔: 

number 
of ants 

50 

.. = y-· 
-·· . iii -~'- - i 

_.::.d{t I I --:7 
l ....-.r::~ tr •1 

- 11 i r-= 1
1·1_- · 

. \::.1 lii:..: .... 11 II 11 !....'- f. I~ r-: 
/"-• ii~ - I ~•-- If _·;:_."::• 

i ! 1 ~- ,. j I ... l ! ll I~ I :_7 -
i . ~:. '~ I I'; _;- -•- ' / ~ 

0 ~ View para.me-ten 

Bffort 

tI 
[!'.] circle 

/\fler 

/\pply 



36 

1 2

Figure 2.8: DesignScape [164] (1) provides designers interactive layout suggestions for graphic 
designs, consisting of refinement ("Tweaking") and brainstorming suggestions that a designer 
can directly apply to their design canvas. Sketchplore (2) provides a designer realtime layout 
suggestions it infers by predictive models of usability and aesthetics as they sketch on a canvas. 

2.5.2 Visualizing & Creating Alternatives 

A key interaction technique for creating alternatives for user interfaces, visualizations, and 

graphic designs is through parameter previews [85,133,137,205,206]. Marks [137] presents 

Design Galleries, a graphical design tool that automatically generates and presents a range of 

visual outcomes for different input parameters (e.g., to help users select illumination values 

for an image). Side Views [205] presents an interface mechanism (i.e., Parameter Spectrums, 

shown in Figure 2.7.3) to preview the effects of editing commands. However, a user could 

not ultimately instantiate more than one of these alternatives. Parallel Paths [206] enables an 

interaction technique, based on Side Views [205], that lets users instantiate multiple command 

previews within a single interface to enable comparing and manipulating multiple alternative 

solutions simultaneously. Subjunctive interfaces [133] (Figure 2.7.2) provides mechanisms for 

the setup, viewing, and controlling of alternate scenarios for information processing tasks. 

Juxtapose, shown in Figure 2.7.1, [85] was the first to extend these ideas to interface 

design. In Juxtapose, a designer can create and view side-by-side interface alternatives through 

code-based tuning of design parameters. They can compare, combine, and manipulate multiple 

alternatives at once through linked editing. One thing in common with these previous systems 

is that they focus on low-level parameter tuning or the previewing of alternative outcomes 

for commands rather than helping designers ideate and brainstorm. Supporting designers 

•• 
--

--WiMH ··· _ . 
- x _~t ;al" 

I /\/'" I ~ -==:c=~-=:-------:-
- - 1 .. :~~ 

'/ ' 

< > 

O · 



37 

in exploring alternatives for ideation and brainstorming imposes additional challenges for 

automatic alternative generation (i.e., generating diverse, high quality alternatives). I explore 

solutions to these challenges in Chapter 3. 

Two recent systems have enabled designers to explore alternatives in design prototyping. 

DesignScape [164], shown in Figure 2.8.1, provides designers automatically generated alter-

native suggestions for graphic design layouts using an energy-based model based on design 

properties (e.g., alignment, whitespace). Sketchsplore [209], shown in Figure 2.8.2, is an 

interface sketching tool that provides alternatives generated by human performance models 

(e.g., visual search, clutter). One limitation of these two systems is that a designer does not 

have any direct control over the space of alternatives the system explores and cannot give 

feedback on design alternatives to refine and explore different sets of alternatives. In Chapter 3, 

I present techniques that let designers give feedback on properties of alternatives they like and 

don’t like, which can give them control over the space of alternatives the system generates. 

Sketchplore and DesignScape also do not let designers define high-level constraints to describe 

the semantics (e.g., ordering) and emphasis of their interfaces, described in Section 2.5.1, 

which can enable these systems to violate the high-level properties a designer desires. I present 

high-level constraints for interface layout alternatives in Chapter 3. 

2.5.3 Algorithms to Generate Alternatives 

Chapter 3 presents a system that enables rapid generation of alternatives through constraint 

solving techniques [30,42,102,219,224,225]. Constraint solving has been used to generate 

alternative interfaces by past work. In constrained optimization, an a solver uses an objective 

function to produce higher quality alternatives according to some criteria. One example of this 

is Supple [74] which generates alternative interfaces through an optimization function based on 

human motor capabilities. This approach has also been applied to generate alternative interfaces 

for alternate devices and screen orientations. Decor [192] presents a system that recommends 

multi-device responsive interfaces that it ranks through an objective function based on design 

heuristics. Zeidler, et al. [226] generate alternative layouts for different screen orientations 



38 

through an objective function that measures layout quality as determined by aesthetic criteria. 

For interface design, Sketchplore [209] provides alternate layout suggestions for designs as 

a designer sketches them on a canvas and ranks them with an objective function based on 

predictive models of human performance and visual perception. 

One limitation of past constraint-based layout systems [30,42,102,219,224,225] is that they 

often produce only a single solution. Hotellier, et al. [93], in Programming by Manipulation, 

exploit ambiguities in constraints to generate alternative data visualizations. Jiang, et al. [100] 

also embrace such ambiguities to generate adaptive GUI layouts. However, their approach 

relies on specifying high-level patterns, and thus cannot generate layouts that do not exist in an 

existing pattern. Magellan [138] uses a genetic algorithm to generate alternatives. However, 

they support only a limited set of mutations which can limit the set range of alternatives their 

system can generate. In Chapter 3, I explore an approach that can generate a significantly larger 

set of alternatives by not relying on patterns or a fixed set of mutations. 

Machine learning has also been applied to explore alternatives by transforming the content 

of an interface into the style and layout of another [114]. DesignScape [164] uses an energy-

based model with encoded design principles to generate alternate graphic design layouts. 

LayoutGAN [122] synthesizes alternative layouts using a generative adversarial network based 

on the modeling of geometric relations of 2D elements. Key challenges with machine learning 

based approaches are that a designer can have no control over the attributes of the alternatives 

that the algorithms explore, and they require a large dataset of pre-existing designs. In Chapter 3, 

I present an approach that utilizes constraint solving which does not require a design dataset 

to generate alternatives. It also enables a designer to have more control over the space of 

alternatives the system generates. 

Beyond these approaches, algorithms based on generative design [104,139,222] have been 

used to generate alternatives for 3D modeling [104,139] and 2D graphic designs [222]. These 

algorithms can be computationally unfeasible for interactive systems. In some cases [139], 

it make take more than a day to create a generative design dataset that a designer can then 

explore through an interactive system. My approach, in Chapter 3, can be used interactively 



39 

1 2

Figure 2.9: Adaptive Ideas [120] (1) is a design tool for webpages that lets designers search 
and adapt stylistic elements directly from examples (bottom) into their own designs in a design 
canvas (top). D.Tour [179] lets designers search for examples using stylistic keywords (e.g., 
colorful image-heavy). 

and does not require the alternatives to be pre-generated. 

2.5.4 Exploring Alternatives through Examples 

Designers seeking to explore alternatives also frequently look for examples to gain inspiration 

from and adapt ideas from the work of other designers [87,120]. An extremely common practice 

among today’s interface designers is to explore examples shared online through design galleries 

like Behance8 and Dribble9. Designers can find examples of interaction and design patterns 

through pattern repositories like UI Patterns10 or gain inspiration from image sharing sites like 

Flickr11 or Pinterest12. 

Tools for exploring and adapting examples from design galleries have not yet become 

8https://www.behance.net/ 
9https://dribbble.com/ 

10http://ui-patterns.com/ 
11https://www.flickr.com/ 
12https://www.pinterest.com/ 

colo,fol l~gf: MilYV Go 



40 

commonplace as features in interaction design tools, yet some research has explored interaction 

techniques to support these scenarios. D.Tour [179] allows designers to search for examples 

by color and style, but they cannot adapt them into their own designs. WebCrystal [50] lets 

designers extract and reuse design and structural information from webpage examples. Lee et 

al. [120] present Adaptive Ideas, a system that lets designers search and adapt stylistic elements 

directly from examples into their own designs in a design canvas. Bricolage [114] lets designers 

transform the layout of a webpage into the content and style of another. 

One challenge with popular design galleries is that examples are frequently shared as 

screenshots. This means that designers must spend some time re-creating properties and shapes 

in the screenshot to modify them in a prototyping tool. In Chapter 4, I present a system that helps 

designers adapt example screenshots with less manual effort in re-creation, taking inspiration 

from tools and interaction techniques for example adaptation. 

Another challenge with example galleries is that a designer cannot easily visualize the 

example designs with their own elements. In Scout (Chapter 3), designers can quickly explore 

a large number of layout alternatives, all based on their own elements and content, without 

needing to manually rearrange or restyle other examples. 

2.6 Data-Driven User Interface Design 

Data-driven design [113] is an approach to mining large-scale design data from the web and 

mobile apps to support design search, design curation, and data-driven interactions. This 

approach frequently relies on large-scale collection of design data (i.e., screenshots, structural 

layout metadata) from user interfaces such as webpages [113] and mobile apps [185]. 

2.6.1 Origins 

For mobile applications, Shirazi et al. [185] analyzed the top 400 Android applications to yield 

design insights. They found that the complexity of mobile interfaces differs across application 

categories (e.g., shopping, social networks) and identified commonly used interface widgets 

and combinations that can be used to develop optimized widgets and tools for recommendation. 



41 

Beyond these insights, they were the first to present a static design mining approach to automat-

ically download (i.e., from the Google Play store) and disassemble Android applications from 

their APKs (application programming kits) to extract screenshots and layout structure metadata 

(XML) to enable automated analyses of Android app design at a large scale. 

Shirazi’s approach [185] enabled several large-scale static data-driven design analyses such 

as that of Alharbi et al. [25] who present a framework for studying design pattern adoption 

which can be used to yield high-level insights (e.g., there are 5 common patterns used for 

navigation across apps) on the patterns are being used across apps at scale. Such insights can 

yield answers to questions such as: Which design patterns are used for which types of apps? 

and Why are some design patterns rarely adopted? Tian et al. [207] also adopted a static design 

mining approach to analyze the characteristics that distinguish high and low-rated apps (e.g., 

app size, code complexity). 

While static design mining approaches can yield useful insights, a static approach cannot 

capture dynamic data and thus cannot be used to yield any insights to aid in the dynamic 

components of an app’s design. The Erica system [61] presents interaction mining which is an 

approach that uses a web interface and app crawlers to enable capturing both static (e.g., UI and 

layout) and dynamic (e.g., interaction traces, motion details) of an app’s design. In Erica, crowd 

workers interact with an app through a web interface, connected to a physical Android device, 

while Erica captures screenshots, view hierarchies (i.e., structural representation of interfaces), 

and user interactions. Erica’s data was used to build machine learning classifiers to detect 23 

common user flows (i.e., sequences of user states making up a semantically meaningful task 

such as searching, logging in, or composing). 

2.6.2 Large-Scale Design Analysis & Insights 

After demonstrating the benefits of an interaction mining approach with Erica [61], the authors 

used a platform similar to Erica’s to create Rico [59], a large repository of mobile app design data, 

containing visual, structural, and interactive design properties of more than 72 thousand unique 

app screens. Rico was created with the goal of supporting a variety of data-driven applications 



42 

such as design search, UI layout and code generation, and user interaction modeling and 

prediction. 

The Rico dataset has since been used to discover large-scale UI patterns for design analytics 

and design search. Doosti et al. used Rico to analyze the impact of Google’s Material Design [11] 

finding that the use of Material Design was positively correlated with app quality as measured 

by user ratings. Such large-scale analyses can yield useful insights for debates over common 

patterns such as the Floating Action Button and Navigation Drawer [11]. Wu et al. [217] used 

Rico to build a model to predict human perception of brand personality, defined as "a set of 

human characteristics associated to a brand". 

Rico has also been used develop classifiers to semantically annotate UI elements and icons 

automatically [132]. These semantic annotations can potentially enable design-based search 

interactions (e.g. allowing a designer to search examples by components, interactions, or 

user flows). Swire [94] introduces a system for retrieving relevant design examples from a 

hand drawn interface sketch, using Rico to develop the sketch dataset and to train a model for 

searching relevant interface design examples. 

Beyond applications in design analytics and search, the Rico dataset has been used to better 

understand a key aspect of app privacy through studying the use of login features [141]. Another 

promising use of this dataset is in improving app accessibility through analysis of accessibility 

features [183] and through building a framework to support developers in annotation and 

repair of accessibility issues [230]. 

2.6.3 Adapting Analysis & Insights into Design Prototyping 

Most recent work reviewed here in data-driven design has focused on large-scale insights 

while little has been integrated into design prototyping tools (e.g., Sketch, Adobe XD) directly. 

Although high level insights can be useful to designers, they do not have much impact on the 

daily work of designers when they are using their prototyping tools. In contrast to previous 

work, I seek to integrate data-driven design ideas directly into design prototyping tools. In 

Chapter 4, I present a system that lets designers adapt example screenshots into their designs. 



43 

1 2

Figure 2.10: SILK (1) is an early tool for sketching graphical user interfaces on a tablet. DENIM 
(2) is a tool for prototyping website design at multiple levels of abstraction. 

In Chapter 5, I use Rico [61] to collect human perception of tappability data to help designers 

discover false affordances and missing signifiers for tappable elements in mobile interfaces. 

Such an interface can be integrated directly into the app prototyping process so that an app 

designer can understand tappability, and potentially other key aspects of visual design and 

usability, while they are prototyping. This can potentially help them better understand how a 

visual design change they are making can affect human perception and usability of their design. 

2.7 Digital Interface Design Prototyping Tools 

In addition to the research my work directly advances upon, understanding the background 

that led to current digital interface design prototyping tool is important. Interface designers use 

digital prototyping tools to create low and high fidelity prototypes. Digital prototyping tools 

have a long history in research and industry. This dissertation can motivate features that can be 

made a part of future interface prototyping tools. 

While there is no universally agreed upon definition for a prototype, Moggridge defines a 

prototype as a "representation of a design before the final solution exists" [144]. According to 

Lim et al. [127], prototypes are "the means by which designers organically and evolutionarily 

learn, discover, generate, and refine designs." In the software engineering literature, prototypes 

are commonly manifested as working software prototypes that enable experimentation [125]. 

In interface design, designers create both low-fidelity (e.g., paper prototypes, wireframes) and 

"6,,,y 

~>-~j 
.~ 
·II 



44 

high-fidelity (e.g., digital mockups) prototypes to demonstrate their designs [144]. These 

prototypes are valuable tools for designers to get feedback, iterate, and refine their designs. 

Digital prototyping tools enable designers to prototype their interface designs at both a low 

and high-fidelity. These tools have a rich history in user interface design. Early research in 

introduced the idea of interactive sketching to create user interface design mockups. The SILK 

system [115] (Figure 2.10.1) introduced a tool for sketching graphical user interfaces on a tablet. 

Designers sketch the interface while stroke recognizer recognizes the interface elements they 

are drawing. They can assemble multiple screens together to create storyboards and link them 

together by drawing transitions from interface elements. DENIM [130] (Figure 2.10.2) extends 

these ideas to the domain of web interface design, enabling designers to zoom based on the level 

of detail (e.g., overview, sitemap, storyboard, sketch). The Designer’s Outpost [107] enables 

team collaboration on website prototyping. Designers can affix post-it notes to a digital display 

and link them through a digital pen to capture the hierarchy. For mobile interfaces, DeSa’s 

mixed-fidelity prototyping tool [58] enables designers to create prototypes across multiple levels 

of resolution (e.g., wireframes, code). 

Since these works, research has explored how to go beyond prototyping a single interface 

through enabling alternative prototyping and suggestion of alternatives. For creating multiple 

versions of a design, Damask [128] facilitates designers in prototyping cross-device user inter-

faces. Juxtapose [85] lets designers create multiple alternative prototypes, edit them through 

parameter tuning, and view them side by side. D.Note [83] gives designers the ability to track, 

visualize, and create revisions of design prototypes. Rather that having the designer create 

each alternative, or generate them through parameters, recent tools provide designers with 

brainstorming alternatives suggestions automatically [164,209]. Research has also explored 

how to enable crowds to work together to create a design. With Apparition [117], a designer 

sketches and describes an interface, and crowd workers translate the designers input into user 

interface elements. In SketchExpress [121] designers describe their prototype while crowd 

workers create replayable animations through the SketchExpress interface. 

Since the early digital prototyping tools (i.e., Denim [130], Silk [115]), the landscape of 



45 

digital prototyping tools has vastly changed. In 2008, Myers et al. [149] conducted a survey and 

found the most common digital prototyping tools were Adobe Photoshop, Adobe Dreamweaver, 

and Microsoft Powerpoint. According to a recent survey 13, the most popular digital wireframing 

and interface design tools were Sketch, Figma, Adobe Photoshop, and Adobe XD. Designers 

use digital tools for wireframes and high-fidelity design, however, the most popular tool for 

brainstorming and ideation is still pen and paper. While these tools have been enabling many 

advanced features (e.g., layout grid support, resizing constraints, cross-device prototyping), 

there is still little support for brainstorming and ideation within these tools, either with an 

interface designer’s own interface elements, or through exploring examples of other designers’ 

work. Support for modifying and adapting examples is limited. The work in this dissertation 

can inspire ways to adapt these features into prototyping tools. 

13https://uxtools.co/survey-2018/ 



46 

Chapter 3 

Mixed-Initiative Exploration of Design Alternatives 

During ideation, designers explore alternatives which results in higher-quality outcomes and 

more diverse solutions [47,66]. When designers explicitly compare these alternatives, it can 

enable them to make stronger critiques and better decisions [65,210]. Designers can explore 

examples through design galleries [120] (e.g., Behance) to help them ideate or sketch out their 

alternative design ideas to visualize them on paper or a whiteboard. Exploring alternatives is a 

key part of the ideation stage of design, although it does frequently appear throughout other 

stages of the design process (e.g., prototyping). 

Currently, designers face many barriers in creating high-quality and diverse alternatives. 

First, it is difficult to overcome fixation to think of completely new ideas [99]. Designers often 

sketch alternatives on paper [47], but such sketches can be difficult to change and a designer is 

still limited by the ability to envision new ideas to sketch. Additionally, some designers may 

brainstorm new layout ideas by moving elements around on a prototyping canvas which may 

make it even more difficult to avoid fixation. Example galleries [87] (e.g., Behance, Dribble), 

can help designers find inspiration from other design examples. However, a designer still needs 



47 

1 2 3 4

Saved 
Layout Ideas

Invalid 
Layout Idea

Alternate 
Placeholder 
Images

Feedback 
Annotation

Layout 
Canvas

Figure 3.1: The Scout interface has four main panels: (1) Designers import their interface 
elements by dragging their SVGs into the Widgets panel. (2) Designers create hierarchy and 
high-level constraints (e.g., grouping, order, emphasis) in the Outline panel. (3) Designers 
control generation of alternatives through the Feedback panel, which they can activate by clicking 
an element in the Outline panel or on an element in the Layout Ideas panel. (4) The Layout 
Ideas panel presents alternative layouts, which a designer can save, discard, or zoom in on. 

to manually adapt the example into a design alternative. This may require low-level resizing, 

restyling, and relocating of interface elements. This can be particularly challenging for novice 

designers, as they need to have knowledge of usability and visual design principles [126,159] 

to maintain quality across alternatives. 

To aid designers in exploring and creating alternatives, I present Scout, shown in Figure 3.1, 

a mixed-initiative system to help designers rapidly explore layout alternatives. A designer can 

use Scout to express their interface elements and constraints at a high level (e.g., grouping, order, 

emphasis), and Scout then generates multiple alternative layouts satisfying those constraints to 

augment the designer’s ideation. 

Scout applies constraint solving techniques to automatically generate alternatives. Con-

straints have a rich history in interface design and visualization [42,93,102,219,224,226]. 

However, such research has generally focused on reducing ambiguity in constraints to produce 

a single design. In contrast, my goal with Scout is to leverage a constraint solver to generate 

t 

_!_J 
I 

Green Smoothie 

ByZOfY-fM 

O,>g - d '°"-p6S\o& 

ntMooc dc-nmt, h:::re 

--~~ 
t 

• 
t --= 

f 

0 

Green Smoothie 

By Zoey M. ---c:::c=:!:::11!:11:Z:3 

Keeparra"lgCflleflthorizoncal. --- · = ~i) ·-o:::m:::::a 

Order Important 

Empt,HIS 

sue EBB Keef,1 Prevent 

LfflCOlumn 

Right Column 

carwas 

Alignment 

Arrangemem 

II Kileµ Pre·,1:m; 

■ KM<p ;>y~ 
- Kl"r,t)rrl'!wint 

Arrnrgl'!m~t 

111!11 Kees; P,evt:n; 

Alignment 1111111 Kttp Pr-t 

Padding Ill Ket:p Pu:·.ient 

Gfoup Alignment 11:1111 K("eJ) ?r--.t 

c.,., .. ..... 100 ... u. , .. ,~ '• 1 0 • ,_ 

- -I 

.- -a,...n Smoo1hi. 

t 

- ---

... 

• '-------------' -

•••• -I 
-·-
t -

0 

I -



48 

many diverse designs. 

Additionally, constraint-based systems have generally focused on low-level spatial constraints 

(e.g., see Chapter 2, Section 2.2 for an example in Apple’s AutoLayout [9] that looks like 

mathematical equation). Such constraints can be confusing and difficult for designers to 

construct. Scout lets designers specify high-level constraints based on usability and visual design 

principles like emphasis [5] and clear hierarchies [109, 213]. Scout translates a designer’s 

high-level constraints into low-level spatial constraints that a constraint solver uses to generate 

alternatives satisfying the designer’s constraints. 

Through this work, I aim to further my goal of formalizing interface design principles into 

rules that can enable applying them automatically in interactive design tools. If we augment 

interface design tools with high-level semantic knowledge of interface design concepts, we 

can help designers more rapidly visualize interface layout alternatives by transforming their 

high-level design goals into flexible layout specifications that enable generating a large set of 

concrete layout ideas. Scout adopts a mixed-initiative approach [26,91] which is a method of 

interaction where a person and an intelligent system collaborate to achieve a person’s goals. 

Scout relies on the designer to define high-level goals, generates layouts satisfying them, and 

enables the designer to control the exploration by updating high-level goals and giving granular 

feedback. The key contributions of this chapter are are: 

• Scout, a system to help designers rapidly visualize many layout alternatives through 

interaction with high-level constraints and feedback on alternatives. 

• A set of constraint encodings based on design principles, with solving algorithms that 

enable generating a range of diverse layouts for a set of interface elements. 

• An evaluation with 18 interface designers, finding: (1) that Scout can help them create 

more spatially diverse designs with similar quality to those created with paper and a 

baseline prototyping tool, and (2) qualitative feedback demonstrating Scout’s potential as 

a tool for early ideation and breaking out of a linear design process. 



49 

3.1 Motivating Example 

To describe and motivate Scout, consider an example scenario in which Eunice, a UX designer, 

is redesigning a landing page for a recipe app. Eunice has conducted a desirability study [36] 

of the current page. In such a study, participants assign emotional and descriptive keywords to 

a design (e.g., “creative”, “simple”). The top keywords assigned to Eunice’s current design were 

“dull” and “unrefined”. Eunice would like to change reactions to her landing page by using Scout 

to explore alternatives. First, Eunice imports a set of interface components from her company’s 

design library into Scout’s widgets panel (Figure 3.1.1). Then, Eunice clicks on elements in the 

widgets panel to add instances to her design’s outline panel. Specifically, she adds 3 alternatives 

for a smoothie placeholder image, a header and subtext, calorie and time labels and icons, and 

a “View Recipe” button. Her elements appear in Scout’s outline panel (Figure 3.1.2). 

3.1.1 Specifying Hierarchy and High-Level Constraints 

Eunice next specifies high-level constraints on her elements. Scout lets designers group related 

elements, specify a relative order, and give elements high, normal, or low emphasis. I designed 

Scout’s high-level constraints from common design principles for clear and usable layouts 

(e.g., [55, 109, 126]). For a review of the design principles I apply in Scout, see Chapter 2, 

Section 2.1. 

Eunice’s first goal is to create a hierarchy. A key design principle is that interfaces should 

have a clear and organized hierarchy [126]. Similarly, the structure principle [55] states that 

interfaces should keep related things together and unrelated things separate, motivated by 

Gestalt theory [109]. In Scout’s Outline panel (Figure 3.1.2), Eunice creates a group for the 

“Green Smoothie” and “By Zoey M.” labels. For each group, Scout creates constraints to ensure 

these elements appear as visually distinct groups in layouts Scout generates. 

Eunice next wants to specify that the "Green Smoothie" label should always appear before 

the "By Zoey M." label. A usability principle is that elements should appear in the order they are 

used for a task [159]. Scout lets Eunice specify the order is important or unimportant for each 



50 

group. When order is important, Scout encodes a constraint to maintain the spatial reading 

order of elements in a group (i.e., left to right and top to bottom). Additionally, Scout lets 

Eunice specify an element should appear first (e.g., a header) or last (e.g., a footer) on a canvas. 

Many interfaces include repeating patterns of elements (e.g., a list, a grid). Scout supports 

repeat groups to ensure the layout of subgroups is consistent. Eunice creates a repeat group 

for the calories and minutes labels and icons (Figure 3.1.2). When Scout generates layouts 

(Figure 3.1.3), the layout of these subgroups is kept consistent (i.e., alignment, arrangement, 

order, padding). Scout also infers repeating patterns of elements within a group to suggest 

when this constraint can be applied. 

Finally, Eunice wants to see layouts that use alternate versions of the smoothie image place-

holder. She creates an alternate group with 3 different placeholders (Figure 3.1.2, "Alternate"). 

When Scout creates layouts, it uses only one of the three placeholders in each layout. 

Eunice has created her initial high-level constraints, so she clicks “See more layout ideas” 

at the top of Scout’s Outline panel (Figure 3.1.2). Scout displays an initial set of 20 canvases 

satisfying Eunice’s high-level constraints in the Layout Ideas panel (Figure 3.1.4). Eunice sees 

that some layouts show the smoothie image too small and the calorie icon pairs too large in 

relation to other elements. She decides to set emphasis levels for these elements. Emphasis is a 

principle in interface design [213], stating that interfaces should have a main focal point to let 

a person know what to do next [5]. Scout allows specifying High, Normal, or Low emphasis. 

Eunice specifies in the Feedback panel that the smoothie placeholder should have High Emphasis 

and that the minutes and calories repeat group should have Low Emphasis. Scout will therefore 

adjust the size and position of her elements to make them more or less visually prominent. 

3.1.2 Feedback & Layout Curation 

After reviewing Scout’s generated layouts, Eunice decides to use a horizontal layout for the 

minutes and calories group. She clicks a layout with a horizontal group, and Scout displays a 

pink outline around the selected element (Figure 3.2.1) to indicate the Feedback panel is active 

for that element. That element is now the primary selection. Scout highlights the corresponding 



51 

element in other layout idea canvases in below to set them as the secondary selection. 

The Feedback panel displays feedback properties that let Eunice “Keep” or “Prevent” specific 

property values in the alternatives (e.g., “Keep alignment left”). Eunice clicks the “Keep” button 

next to the arrangement dropdown for the minutes and calories group to tell Scout to use 

a horizontal arrangement for the group in future alternatives. Eunice’s feedback appears in 

Scout’s Outline panel as a feedback annotation (i.e., “Keep arrangement horizontal”). Eunice 

can also activate the Feedback panel by clicking an element in the Outline panel. In that case, 

Scout will set each feedback property dropdown to “Vary” until a “Keep” or “Prevent” feedback 

is applied. Scout supports multiple “Keep” and “Prevent” values for a property (e.g., “Keep 

arrangement horizontal OR vertical”). Scout lets Eunice give several types of feedback, including 

on the top-level canvas (e.g., “Keep layout grid 4 columns”), groups (e.g., “Keep arrangement 

1 2

3

Hover

Adobe XD

Primary 
Selection

Secondary 
Selection

Alternatives

Figure 3.2: (1) Designers can click on nodes in Scout’s Outline panel to make them the primary 
selection, which highlights corresponding elements in each canvas on the Layout Ideas panel. 
(2) Designers can hover their mouse over a layout canvas, and Scout highlights conflicting 
feedback annotations. (3) Designers can export their saved layouts into SVG canvases which 
they can import into their prototyping tools, such as Adobe XD. 

0 \ 
l!!d,j;M :;} 

Green Smoothie 

By Zoey M. 

Green Smoothie 

• YIEWRECIPE 

IIIEWRECPF 

Green Smoothie t 
14 MINQ) 88 CAL('.) 

• 
Green Smoothie 

i 

Green Smoothie 

By Zoey M. 

0 
+ Repeat 

i•ttltdit1i·H,ttii h\tl#fiffi,i-MH 
r Keep arrangement horizontal. - , 

VIEW RECIPE 

Green Smoothie 

• 
Green Smoothie 

* ' ®. 
Green Smoothie 

ElyZoeyM. 

• 

I Green Smoothie 

14 MINC) 88CAL() By Zoey M. 



52 

horizontal”), and elements (e.g., “Keep location here”). 

Values that a designer “Keeps” or “Prevents” can cause a conflict in existing layouts. Eunice 

sees that Scout has put red diagonal stripes over two of her layouts. She hovers her mouse 

over one of the canvases, and Scout highlights the conflicting feedback, labeled with "Keep 

arrangement horizontal.", in red (Figure 3.2.2). This means that layout has a conflict because 

the minutes and calories repeat group does not have a horizontal arrangement. When Scout 

detects such conflicts, Scout tries to repair the layout to match Eunice’s feedback. If it cannot 

repair the layout, Scout retrieves a new layout to replace it, ensuring that Eunice’s Layout Ideas 

panel is continually filled with new layouts as she applies her feedback. 

Using Scout, Eunice explores over 100 layouts. She discards several by clicking the trashcan 

icon above each layout. As she finds layouts she likes, she saves them for export by clicking 

the star icon above each layout. Scout pins these layouts to the top of the Layout Ideas panel 

(Figure 3.1.4). After Eunice has found and saved 3 diverse layouts, she decides to refine them 

by exporting them out of Scout to edit in her favorite interface design tool (Figure 3.2.3). Scout 

exports each layout as an SVG with editable shapes and properties. Using Adobe XD, Eunice 

adjusts the alignment and relative size of the layouts until she feels they are ready for further 

feedback from her colleagues. 

3.2 Architecture & Implementation 

Before developing the current version of Scout, I conducted informal interviews with 6 interface 

designers, including their use and feedback on an early version of the tool. I draw upon their 

insights to support several key system design choices, including: (1) prioritizing interactive 

performance, (2) improving design quality through a design quality ranking model and utilizing 

a layout grid, and (3) preserving a designer’s current set of designs through a feedback resolver 

which can repair designs that conflict with new designer feedback. 

Figure 3.3 illustrates Scout’s architecture. A designer provides a set of interface elements, 

each as an SVG (Figure 3.3.1). When the designer requests new layouts, Scout sends their 

interface elements and high-level constraints to the server (Figure 3.3.2), which launches 



53

Green 
Smoothi
e

All Vars
Assigned

Outline Layout Ideas

Search Constraint
Resolver

Solver Thread Solver Threads

Valid

NO

YES

Ranked Layouts

Valid

Check 
Validity

YES
…

NO || YES
NO

Update 
Validity

Apply
Feedback

Layout 
Repair

NO

Designer

Scout Quality Model  

…

Feedback Resolver

Feedback Repaired 
Layouts

Web Server

Launch Solver Threads

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

3 4

6

2

5

1 See Layout Ideas

Elt1.Column

Group1.Arrangement

Canvas.Margin

Variables

…

Assigned

Assignment

Margin = 16

Padding = 16
Columns = 4… Basic Design Quality

Grouping, Order, Emphasis

Layout Grid

Constraints

…
Alignment

BalanceDensity

Cost Metrics

…

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

Green 
Smoothie

Figure 3.3: Scout System Overview: (1) A designer gives input to Scout via an outline of
interface elements and feedback on layout alternatives. (2) A web server generates layouts by
launching multiple solver threads. (3) Each solver thread searches over variable assignments.
(4) A constraint resolver checks the assignments against constraints. (5) A feedback resolver
applies designer feedback and repairs layouts. (6) A quality model ranks resulting layouts.

multiple solver threads to generate layouts with interactive performance (Figure 3.3.3-5). Each

thread produces a layout, consisting of an x position, y position, width, and height for each

element. Scout ranks each layout by a score computed with a quality model (Figure 3.3.6)

based on design quality metrics (e.g., alignment, balance). Scout then displays the ranked set

of layouts to the designer visually as an SVG layout canvas. A designer can give feedback on

layouts, and a feedback resolver (Figure 3.3.5) applies the feedback and attempts to repair

conflicting layouts. Scout currently supports mobile interface dimensions, but could be extended

in the future to support arbitrary device dimensions.

3.2.1 Generating a Layout Alternative

Scout generates layouts through a modified branch and bound search [184], which generates a

satisfying set of variable assignments (e.g., alignment, arrangement) (Figure 3.3.3) with respect

to a set of design and high-level constraints on interface elements (Figure 3.3.4). Each variable

has a domain of values Scout can assign through its search (e.g., alignment is one of top, left,

x-center, y-center, bottom, right). Each constraint is a formalized as an equation encoded into

the Z3 [57] constraint solver operating on one or more variables (e.g., element size and position).



54 

Throughout this section, I format constraint names in a typewriter font and variable names 

in italics. The next section details Scout’s constraints and variables. 

Figure 3.3 shows Scout’s process to generate a layout. First, Scout’s search process (Fig-

ure 3.3.3) generates a single variable assignment for an element or group. The constraint 

resolver (Figure 3.3.4) then uses the Z3 [57] constraint solver to determine whether the assign-

ment is valid. The constraint resolver translates high-level constraints specified by designers 

into formalized low-level variables and constraints on interface elements and layout behavior, 

which I detail in a later section. If the assignment is not valid, Scout backtracks in the search 

and reassigns the variable. If the assignment is valid and other variables remain unassigned, 

Scout assigns another variable and checks it through the constraint resolver. Finally, when Scout 

has assigned all variables, it produces a layout canvas which has a position and size for each 

interface element. 

To ensure spatially diverse layouts, Scout randomizes the assignment order of variables and 

values using a uniform distribution. After Scout produces a layout, it encodes a constraint that 

prevents that same layout from appearing again. If a solver thread cannot produce a layout, 

Scout discards that thread. Scout can be configured to launch a variable number of threads 

based on system capabilities. For the evaluation, I configured Scout to launch 20 solver threads 

each time the designer requests new layouts. On the machine I used (Ubuntu 18.10 with AMD 

Ryzen 7 1800x processor, 8 cores x 16 threads, 32 GB memory), Scout typically returned 15 

layouts per request in less than 5 seconds. Such resources are common for many designers 

(e.g., who also work with image and video data), but Scout could also run in a configuration 

with solver threads shifted to a scalable cloud service. 

3.2.2 Ranking Layouts by Quality Metrics 

Scout’s layout search space is extremely large (i.e., trillions). Some layouts are not well-aligned 

or visually pleasing, and designers need a way to prioritize higher-quality layouts during their 

exploration. We created a quality model (Figure 3.3.6) to compute a layout quality score for 

each layout, formalizing some design principles described in interface design literature. Scout 



55 

uses these scores to rank higher-scored layouts toward the top of the Layout Ideas panel. We 

adapted this model from [178], which presents a set of metrics to computationally measure 

mobile interface complexity (e.g., misalignment, imbalance, density). 

Scout’s layout quality score formalizes the design principles of alignment, balance, and 

simplicity. For an overview of these principles, see Chapter 2 (Section 2.1). Simplicity is a broad 

principle that covers several aspects of a design including functional elements of behavior, which 

elements are included in an interface, and visual simplicity which can be improved by reducing 

visual noise and clutter. Scout formalizes visual simplicity by measuring the density of a layout, 

under the assumption that an interface should be neither too dense (i.e., too little whitespace 

which can cause the design to seem cluttered) or too sparse (i.e., too much whitespace). One 

limitation of this is that preferences for interface density differ across cultures. Some cultures 

prefer interfaces that are more cluttered and some prefer interfaces that are more sparse [175]. 

This indicates a need to consider designing culturally adaptive cost functions in future work. 

Computation of Layout Quality Score 

For each group of elements G = {e1, . . . , en} in a layout, Scout computes qualityg(G) which 

consits of three parts: element size, balance, and alignment. Here I describe each part and 

include definitions of the design principles that provide motivation and rationale for each part 

of the layout quality score, qualityg(G). 

qualityg(G) = ssize(G) + sbalance(G) + salignment(G) 

Minimum Sizing Design Principle: Small elements tend to be more difficult to interact with. 

Elements that are touch targets should not be too small. Avoid making font size of text elements 

too small, which could compromise readability for visually impaired users [37,71,169]. 

Clear Hierarchy/Emphasis Principle: Too many excessively large elements in an interface 

can compete for the users attention, causing a poor visual hierarchy [126,213]. 

The size score penalizes groups with excessively large or small elements. It computes the 



56 

sum of the normalized width and height of each element (i.e., normalized by the width and 

height of the canvas), divided by the number of elements. 

X1 e.w e.h 
ssize(G) = ( + )

2|G| W H e∈G 

Balance Design Principle: The aesthetics, stability, and unity of a design can be improved 

by placing elements and whitespace in such a way that no area of the design overpowers another. 

Balance is defined as having an even distribution of visual weight [126]. 

The balance score rewards groups with evenly-spaced margins between consecutive pairs 

of elements. It computes the difference between the average horizontal and vertical margins 

G.avg_marginh, G.avg_marginv and the maximum horizontal and vertical margins G.max_marginh, 

G.max_marginv. 
1 G.avg_marginh G.avg_marginvsbalance(G) = ( + )
2 G.max_marginh G.max_marginv 

Alignment Design Principle: The placement of elements such that edges line up along common 

rows or columns, or their bodies align along a common center. Alignment can create unity and 

cohesion across a design improving its aesthetic [126]. 

The alignment score measures the quality of alignment within a group by maximizing the 

number of alignment edges between elements. For each pair of elements e1, e2, NumAlignment 

returns the number of horizontal (i.e., top, y-center, bottom) and vertical (i.e., left, x-center, 

right) alignments between those elements. NumPossibleAlignments returns the maximum num-

ber of alignments the two elements could have. For example, if e1 and e2 are horizontally 

arranged and have the same height, they can have a maximum of 3 alignments (i.e., top, 

y-center, bottom). The score therefore measures the proportion of alignment pairs out of the 

total number of alignments. 

1 X NumAlignment(e1, e2)salign(G) = 
|G| NumPossibleAlignment(e1, e2)(e1,e2)∈G 

Visual Simplicity/Density Design Principle: Use whitespace effectively to simplify your inter-



57 

face and separate unrelated elements. Without whitespace, your design may seem cluttered. [213]. 

Finally, Scout computes an overall layout quality score as a weighted-average of each group 

quality score qualityg(G), where each group is weighted by its area. The layout quality score 

also includes: (1) a density score sd to measure the ratio of the entire layout area covered by 

elements, and (2) a group quality score treating the top-level set of groups as an additional 

group (i.e., to measure the quality of layout of those top-level groups on the canvas). 

P 
G.area · qualityg(G) 

qualityl(L) = 
G∈L 
P + sd + qualityg(L)G.area 
G∈L 

3.2.3 Feedback & Layout Repair 

After Scout produces an initial set of layouts, a designer can update the outline (i.e., change the 

grouping, emphasis, or order of elements) or give feedback on variables (i.e., canvas, group, or 

element variables), prompting Scout’s feedback resolver (Figure 3.3.5) to recheck the validity of 

each layout. For any “Keep” feedback, Scout encodes a equality constraint into the solver (e.g., 

group.arrangement = “vertical”). Conversely, “Prevent” feedback is encoded as an inequality 

constraint (e.g.,group.arrangement 6= “vertical”). Scout checks validity of each layout with 

respect to the outline and constraints, then updates their validity in the interface (i.e., with red 

diagonal stripes over invalid layouts). Scout uses Z3’s [57] unsat core to obtain the smallest 

set of constraint clauses that cannot be satisfied. When a designer hovers over an invalid layout, 

Scout examines these conflicting clauses and highlights the corresponding feedback annotations. 

A designer can apply feedback that makes many layouts invalid. To prevent the designer 

from needing to frequently request new layouts, Scout continuously generates layouts as a 

designer applies feedback. To minimize change to the current set of layouts, Scout tries to return 

similar layouts through a layout repair module (Figure 3.3.5). Layout repair iteratively removes 

a variable assignment from an existing invalid layout until it becomes valid (Figure 3.3.4, Layout 

Repair). To prevent overwhelming a designer with too many layouts, Scout does not repair or 

generate new layouts if the number of valid layouts in the Layout Ideas panel is more than 50 



58 

(i.e., the number that could reasonably be visible on a 24-inch monitor). However, a designer 

can still explicitly request new layouts with the “See more layout ideas” button. 

3.2.4 Constraint Encodings & Design Variables 

Scout generates layouts through an assignment of concrete values to a set of variables, allow-

ing it to explore many combinations of element arrangement, alignment, position, and size. 

Scout defines canvas variables (e.g., layout grid, margin, baseline grid), group variables (e.g., 

arrangement, alignment, padding), and element variables for position (e.g., x, y), and size (e.g., 

width, height). Each variable has a domain of values, curated from design guidelines [11] and 

layout design literature [28], together with constraints that define its behavior. Scout uses these 

constraints, together with a designers high-level constraints, to check the validity of a layout 

(Figure 3.3.4). 

The following sections give high-level descriptions of these constraints and a set of general 

design quality constraints that Scout enforces. I provide detailed descriptions and formalized 

low-level equations for each constraint in Appendix A, Section A.1. The constraints in Appendix A 

demonstrate the form of the constraints that Scout encodes into Z3 [57] in the constraint resolver 

to validate against the current set of variable assignments (Figure 3.3.4). 

Ensuring Basic Design Quality 

Scout encodes three basic design quality constraints for every layout, an approach also 

used by Beilik et al. [38] in encoding a set of “Robustness Properties” for Android layouts. 

For each element, Scout enforces a stay-in-bounds constraint that keeps elements inside 

the bounds of the layout canvas (implemented the same as inside_screen in [38]). Scout 

also encodes a pairwise non-overlapping constraint on the bounding boxes of each element. 

Finally, Scout encodes minimum and maximum sizing constraints for each element, based on 

design guidelines (e.g., touch targets should be at least 48x48 pixels [11]). 



59 

Placing Elements on the Layout Canvas 

Scout uses a layout grid to place elements on a canvas by encoding constraints on an element’s 

bounding box. A layout grid is a common method designers use to place elements, which 

can improve alignment, consistency, and visual organization [212]. It consists of margins 

(i.e., spacing on the outside of the canvas that all elements must be placed inside), columns 

(i.e., vertical containers for placing elements on the canvas), and gutters (i.e., spacing between 

columns where elements must not be placed). To see an example layout grid with these 

components highlighted, see Figure 2.2. Mobile interfaces typically use a 2 to 4 column layout 

grid [11], within which elements or groups must begin and end on a column and not in a gutter. 

Scout defines 4 layout grid variables for a canvas: margin, columns, gutter width, and column 

width. Based on these variables’ values, Scout encodes layout grid constraints that require 

the left and right edges of elements and groups that are direct children of the canvas to begin 

and end on the edge of a column. 

Baseline grids define the vertical spacing of a design, aid horizontal alignment, and create 

hierarchy [28]. They consist of horizontal lines at even intervals to which all components 

should align. Figure 2.2 in Chapter 2 shows an example of a baseline grid in an interface 

prototyping tool (i.e., Adobe XD). Scout defines a baseline grid variable that allows designers 

to examine different baseline grid options. Based on this, Scout encodes baseline grid 

constraints specifying that elements have a y position aligned to a baseline grid line and a height 

that is a multiple of the baseline grid value. 

Resizing Elements 

To explore different element sizes, Scout defines a size variable for each element with a domain 

of the form (width, height, sizing_factor), where sizing_factor is used to enforce consistent 

resizing within groups and repeat groups. Scout pre-computes width and height domains using 

two strategies: maintain aspect ratio and increase width. For both strategies, Scout computes a 

set of (width, height, sizing_factor) triples along baseline grid increments, where width values 



60 

range from a minimum determined by element type to the canvas width. For maintain aspect 

ratio elements (e.g., images, icons), height values vary from a minimum for each element to the 

canvas size. For increase width, height values do not vary. Scout encodes the minimum sizes for 

each element based on its type, which it determines based on usability principles for minimum 

sizing of elements [13,14,169]. Scout encodes each pre-computed set of triples as the domain 

to a size variable. This is a performance optimization because Z3 does not efficiently compute 

multiplication constraints (i.e., needed for maintaining an aspect ratio). 

Grouping and Order 

Designers can group elements in the Outline panel to keep them together. Scout varies layout 

of grouped elements based on three variables: alignment, arrangement, and padding. Scout 

encodes constraints aligning grouped elements along 6 possible alignment axes: left, x-center, 

right, top, y-center, and bottom. Scout currently aligns all elements within a group to a single axis. 

Scout defines four arrangement domain values for each group: horizontal, vertical, balanced 

rows, and balanced columns. Each arrangement constraint encodes rules based on the position 

and size of grouped elements. Scout defines padding constraints that work with arrangement 

constraints to add spacing between grouped elements while keeping them relatively close to 

other. Finally, Scout defines visual hierarchy constraints to keep the within-group padding 

smaller than the group’s distance to other groups in the layout to visual separate them. 

To allow designers to control the order of elements, Scout allows specifying order as important 

or unimportant in a group. For groups with important order, Scout encodes an ordering 

constraint that combines with arrangement constraints to keep the elements in the fixed order 

specified in the outline. For groups with unimportant order, Scout encodes a constraint on the 

height and width of the group bounding box, according to the arrangement variable. This allows 

elements to change position if other constraints are met (e.g., horizontal arrangement). If order 

is important for the top-level canvas, Scout encodes a constraint on each pair of elements such 

that the bottom edge of an element must be above any element that is later in the ordering. 

Scout also allows specifying that an element should be first or last in a group, which enables 



61 

specifying a fixed position for elements like a label, header, or footer. Scout encodes constraints 

requiring these elements to be first or last in the group. For the top-level canvas, Scout encodes 

pairwise constraints stating the top edge of any first element should be above all other elements 

and the bottom edge of any last element should be below all other elements. 

Emphasis 

To support designers specifying a visual hierarchy, Scout includes emphasis constraints based 

on design guidelines [213] that state emphasis can be increased or decreased by modifying an 

element’s size in relation to other elements. Scout supports 3 levels of emphasis levels: low, 

normal, and high. All elements have normal emphasis by default. For elements with low or 

high emphasis, Scout encodes a size decrease only or size increase only constraint on 

the element’s size variable that allows the element’s size to decrease or increase. Scout also 

specifies an area constraint stating that (1) elements with high emphasis should have a larger 

area than elements without high emphasis, and (2) elements with a larger area should appear 

earlier in the order. Scout encodes similar low emphasis constraints, constraining low emphasis 

elements to have a smaller area and constraining smaller elements to appear later in the order. 

Alternate Representations and Repeating Patterns 

Alternate groups let a designer show alternate elements (i.e., SVGs) in different layouts. For 

each alternate group, Scout creates a representation variable with a domain corresponding to 

the elements the designer groups. Scout’s search (Figure 3.3.3) assigns a value to this variable, 

which a designer could “Keep” or “Prevent” like other variables. 

Repeat groups indicate a layout should be kept consistent across multiple subgroups (e.g., a 

list, a grid). A repeat group contains a set of subgroups, each with the same number of elements, 

the same types (e.g., button, text, image), in the same order. Each element in a subgroup has a 

corresponding element in all other subgroups, determined by their order. Figure 3.1.2 shows 

a repeat group containing two pairs of icon and label (i.e., minutes and calories labels with 



62 

Profile Picture

Alternate 1

Profile Picture

Alternate 2

Sunny Icon

Alternate 2

Felipe M.
Independent Designer

Follow

265
Followers

427
Mentions

112
Following

44°
Sunny

Monday, March 11th

Seattle

Winds, S 14mph

Tues Wed Thur

Weather2

Sunny Icon

Alternate 1

Social Media1

Figure 3.4: The components I provided designers for the Social Media and Weather scenarios, 
including alternate images for the profile picture and sunny icon. 

corresponding icons that should always be arranged similarly). For each subgroup in a repeat 

group, Scout encodes a constraint that requires the arrangement, alignment, padding, and order 

variable values of all subgroups to be equal. Scout also requires the size variable increase or 

decrease be the same for corresponding elements in each subgroup. 

3.3 User Study 

To understand Scout’s benefits and limitations, and to examine how different designers might 

use mixed-initiative layout ideation, I conducted a within-subjects, mixed-methods evaluation 

centered on three research questions: 

• RQ1: Does Scout help designers of varying expertise generate more diverse interface 

layouts than with a baseline tool? 

• RQ2: Does Scout help designers of varying expertise generate higher quality interface 

layouts than with a baseline tool? 

• RQ3: How does Scout affect designer processes of exploring potential interface layouts? 

1 -6.-
/ I ' 

( ) 

0 0 



63 

3.3.1 Participants 

I recruited 18 interface designers (5M, 13F, ages 18-32), 9 in each of 2 Experience Level groups: 

(1) Professional Designers, with >=1 year of professional UI/UX design experience; and (2) Non-

Professional Designers, who had taken at least one interface design course and/or built a complete 

interface prototype, but had <1 year of professional experience. Professional designers reported 

a range of professional experience (1 to 3 years of experience: 5; 3 to 5 years: 2; more than 

5 years: 2). Five Non-Professional designers self-reported no professional UI/UX experience, 

while four reported less than 1 year of experience. 

3.3.2 Procedure 

Each participant completed two 30-minute wireframe prototyping tasks, varying Interface to use 

Scout and a Baseline prototyping tool, Adobe Experience Design (XD). To better examine the 

use of Scout, rather than participant learning of Scout’s interface, participants completed a 20-

minute Scout tutorial and warmup task (i.e., exploring layouts for a To Do List). After the tutorial 

and before proceeding with the task, participants demonstrated how to use Scout’s outline 

grouping and its alternate and repeat group constraints. All participants had experience with 

Adobe XD and had used similar tools (e.g., Figma, Sketch), so I did not include a corresponding 

Baseline warmup task. I collected screen and audio recordings and notes while participants 

completed tasks, then interviewed them after each task to reflect on their process using each 

Interface and on differences in using Scout versus their current process. The total amount of 

time for each session was 1 1/2-2 hours based on the length of the interview portion. 

I developed two Scenario as a hypothetical setting for participant tasks: redesigning two app 

screens for a design agency: (1) a Social Media profile screen (Figure 3.4.1), and (2) a Weather 

app screen (Figure 3.4.2). I asked the participants to create three diverse alternative layouts for 

both the Social Media and Weather app screens. I selected familiar screen types so designers 

could focus on improving screen layout rather than the content. As in the scenario with Eunice 

described earlier, the task scenarios described that the agency had conducted a desirability 



64 

study [36] and that keywords assigned to the weather and social media app screens were 

“dull” and “familiar”. The instructions asked the designers to redesign for the keywords “clean” 

(i.e., "uncluttered and well-aligned") and “compelling” (i.e., "has a clear point of emphasis"), 

attributes of good layouts from design guidelines [5,126,213]. 

3.3.3 Materials 

I provided pre-created wireframe components for the original design, 2 alternate profile pictures 

for Social Media, and two alternate sunny icons for Weather (Figure 3.4). The task content 

encouraged using Scout’s repeat group (e.g., for the days of the week and weather icons), but I 

did not require participants to use any particular constraint. The app screens were similar in 

complexity (e.g., number of components, groups of elements). 

Because Scout is focused on layout, I limited participant use of Adobe XD to spatial features 

(e.g., position, size, font size) and not non-spatial features (e.g., color, font type). I required 

participants to use only the provided components without overlapping or rotating them. 

I limited each task to 30 minutes. I allowed sketching on scratch paper in both Interface con-

ditions. In Baseline, participants could use available time to sketch and create their alternatives. 

For Scout, I told participants to use Scout for 20 minutes, save 3 alternative layouts, and spend 

10 minutes refining and finalizing the layouts in Adobe XD. I include the task instructions for 

the Baseline - Social Media and Scout - Weather conditions in Appendix A, Section A.2. 

3.3.4 Analysis 

To address learning or other carryover effects, I counterbalanced Interface (i.e., Scout or Baseline) 

and Scenario (i.e., Social Media or Weather) using a Latin square design. I performed the analysis 

using mixed effect models, treating Participant as a random effect and modeling Interface, 

Scenario, and Experience Level as fixed effects. 



65 

Group RG AG Order Emphasis Feedback 
Count (% of 180) 36 (20%) 15 (9%) 16 (9%) 44 (24%) 38 (21%) 31 (17%) 

% Designers (n=18) 94% 78% 89% 94% 83% 72% 

Table 3.1: Summary counts of the number and proportion of high-level constraints of each type 
specified by designers following the Scout task, and the percentage of designers who specified 
each type of high-level constraint. 

3.3.5 Results 

Overall, the designers explored a large number of layout ideas using Scout during the session, 

generating an average of 97 layouts (min: 19, max: 280, SD: 81). At the end of the Scout 

task, each designer had an average of 10 high-level constraints specified (min: 6, max: 17: SD: 

3.8). Note that we did not capture modifications to high-level constraints that the designers 

made during the study. We instead counted the types and amounts of high-level constraints 

that were currently specified by each designer in Scout’s Outline panel at the end of the Scout 

task. Therefore, designers likely specified a larger amount of high-level constraints in Scout 

because we observed many of them iteratively modifying the high-level constraints throughout 

the study after viewing the Scout layouts. Most designers specified high-level constraints of all 

types supported by Scout (i.e., group, alternate group, repeat group, order, emphasis, feedback). 

Table 3.1 summarizes the percentage of designers that used each type of high-level constraint 

and the number of high-level constraints of each type specified at the end of the study. Next, I 

summarize the results per each research question. 

RQ1: Does Scout help designers of varying expertise generate more diverse interface layouts than 

with a baseline tool? 

I wanted to understand Scout’s impact on helping designers explore more diverse layouts. Given 

Scout’s focus on spatial arrangement, I defined diversity as spatial diversity. Although there 

are existing computer vision dissimilarity metrics [143], they are not suitable to compare the 

wireframes from the Scout study (i.e., the fact that wireframes are primarily whitespace causes 

I I I I I I 



66 

Spatial Diversity = 0.194 Spatial Diversity = 1.53

Figure 3.5: To illustrate our spatial diversity score, the least diverse (left) and most diverse (right) 
pairs of participant-produced Social Media layouts. 

these approaches to fail). I collaboratively developed a spatial diversity score to estimate the 

effort needed to adapt one layout to another (i.e, transformation distance [80]). Gajos et al. [73] 

present a dissimiliarity metric capturing transformation distance by comparing each layout 

along a set of dimensions (e.g., orientation, representation). With Scout, we adopt a similar 

approach, defining a spatial diversity score for a pair of layouts containing the same elements in 

terms of 3 metrics: (1) mean position change (sdist ) computes the mean of the distance that each 

element moved between the two layouts, (2) mean size change (ssize) computes the mean of 

how much the area of each element changed between the two layouts, and (3) mean relational 

distance change (srel ) measures the mean of the position change of an element in relation to all 

other elements in the layout. We compute these scores as follows. 

First, the mean position change score sdist computes the mean position change between the 

centers for each matching element in the two layouts. Given two layouts L and L0 with elements 

L = {e1, . . . , en} and L0 = {e1 
0 , . . . , en 

0 }, Scout calculates sdist as follows: 

X
Æ 

sdist(L, L0) = 
1 
· 

n 

(e.x − e0.x)2 + (e.y − e0.y)2 

n 
i=1 

112 26S 427 

t Felipe M. -, 11,,.,. ~ ·.,~,.,,, .... 
., i.,,, , d , . , 1 >~• p ,., 

Felipe M. 
Fel ipe M. 
l11.:h~:~111C~i7c· 

112 ~11, ... ,, . 

· 12 ;:o:> 4L• 
r .. w,,. r.,,,,. ... ,.,, i;,.. 

265 ~II,,·~·• 

427 . .... . i;,. ,.. 

Felipe M. 
ml~pm:f+w' OH:;ium.r ® 

( ~olbw ) 
( ) Foll~w 



67 

Second, the mean size change score ssize measures the average change in size for each matching 

pair of elements in the two layouts. Given two layouts L = {e1, . . . , en} and L0 = {e1 
0 , . . . , en 

0 }, 

Scout calculates ssize as follows: 

X1 
· 

n 

|ei.wid th · ei.height − ei 
0 .wid th · e0 i.height|ssize(L, L0) = 

n 
i=1 

Third, we compute a relational distance score score to measure how much each element 

moved in relation to all other elements in the layout. Given two layouts L = {e1, . . . , en} and 

L0 = {e1 
0 , . . . , en 

0 }, we calculate the relational distance score srel as follows: 

X2 
srel(L, L0) = · |dist(ei, ej) − dist(e0 i, e

0 
j)|n(n − 1) 

1≤i< j≤n 

Æ 
where dist(ei, ej) = (ei.x − ej.x)2 + (ei.y − ej.y)2 calculates the distance between centers of 

the two elements. 

Finally, we compute an overall spatial diversity score sdiversity for a pair of layouts as the 

weighted sum of the three metrics sdist, ssize, srel: 

sdiversity = wdist · sdist + wsize · ssize + wrel · srel 

To ensure each metric is weighted equally, we normalize the metrics into the range of [0, 1]. 

Given the entire set of layouts designers created in our evaluation {L1, . . . Ln}, we compute 
1 1 1the weights wdist = = = max_rel_dist_change . where each weight max_dist_change , wsize max_size_change , wrel 

(wdist, wsize, wrel) divides a score by the maximum distance change, size change, and relational 

distance change for any pair of elements in the evaluation set of layouts created by our designer 

participants, Li, L j, respectively. Figure 3.5 shows two pairs of designs that designers created in 

the Scout study that received the smallest and largest spatial diversity scores. 

To examine Scout’s impact on spatial diversity within designs created by an individual 

designer, I conducted a within-designer analysis. I computed the spatial diversity score, sdiversi t y , 



68 

0.0

0.5

1.0

1.5

2.0

Social MediaTask

S
pa

tia
l D

iv
er

si
ty

 S
co

re

baseline scout

 Weather

Figure 3.6: Violin plots of the spatial diversity scores for each set of pairs by a designer within 
an Interface/Scenario combination demonstrating that the Scout designs had higher spatial 
diversity for both scenarios. 

for each pair of designs created by a designer with each Interface, excluding the original design 

(i.e., 3 pairs per designer per Interface). Figure 3.6 shows violin plots by Interface and Scenario. 

The 54 pairs of Scout designs were 12 percent more spatially diverse (M = 0.880, SD = 

0.290) than the 54 Baseline pairs (M = 0.788, SD = 0.356). Spatial diversity scores were not 

normally distributed, so I conducted an aligned-rank-transform analysis [215], which indicated 

a significant effect of Interface on spatial diversity (F1,86 = 5.05, p < 0.027, d = 0.435). The 

analysis did not find a significant effect of Experience Level on spatial diversity score (F1,14 = 0.009, 

p < 0.926). 

To examine whether Scout helped designers create layouts that were more spatially diverse 

relative to the original design, I computed a spatial diversity score for each layout relative to 

the original (i.e., 3 pairs per designer per Interface). Scout helped designers create layouts that 

were 15 percent more spatially different (F1,86 = 5.35, p < 0.023, d = 0.45) than the original 

design (Scout : M = 0.926, SD = 0.343, Basel ine : M = 0.807, SD = 0.315). Although the 

effect of Experience Level on spatial diversity was not significant (F1,14 = 0.038, p < 0.848), the 

analysis showed a significant interaction effect between Interface and Experience Level (F1,86 = 

4.46, p < 0.038). Using Scout increased spatial diversity by 35% for Non-Professional participants 

(Basel ine : 0.749, Scout : 1.01), while decreasing spatial diversity for Professional participants 



69 

0.0

0.5

1.0

1.5

2.0

Weather Task

S
pa

tia
l D

iv
er

si
ty

 S
co

re

baseline scout

Social Media

Figure 3.7: Violin plots of the spatial diversity scores across all pairs of designs by all designers 
within a Interface/Scenario combination showing that the Scout layouts had higher overall 
spatial diversity than the Baseline layouts for both the weather and social media scenarios. 

by 2 percent (Basel ine : 0.866, Scout : 0.847). An interaction contrast, corrected with Holm’s 

sequential Bonferroni procedure, indicated this difference when using Scout according to 

Experience Level was significant (χ2(1, n = 27) = 4.46, p < 0.035, d = 0.41). 

Finally, I examined Scout’s effect on overall spatial diversity across designers. I computed 

the entire set of pairwise spatial diversity scores within the Social Media and Weather scenarios. 

Figure 3.7 shows Scout increased the overall mean spatial diversity score for the Social Media 

scenario by 26 percent (Basel ine : M = 0.811, SD = 0.290, n = 351, Scout : M = 1.02, SD = 

0.289, n = 351) and for the Weather scenario by 10 percent (Basel ine : M = 0.926, SD = 

0.296, n = 351, Scout : M = 1.02, SD = 0.306, n = 351). Spatial diversity scores were not 

normally distributed (Shapiro-Wilk W > 0.974, p < .0001). Using the Wilcoxon rank sum test, 

I found a significant difference in means for both the Social Media (W = 50640, p < .0001, r = 

0.342) and Weather (W = 37243, p < .0001, r = 0.154) scenarios. 

RQ2: Does Scout help designers of varying expertise generate higher quality interface layouts than 

with a baseline tool? 

I assessed the quality of participant designs with a panel of 2 independent interface designers, 

each with at least 3 years of professional UX design experience, who each evaluated each 



70 

n = 54 VB TH E A W LQ 

Scout (M) 2.67 3.07 2.39 2.5 2.82 5.37 
Scout (Std) 0.97 0.84 1.09 0.82 0.87 1.0 

Baseline (M) 3.09 3.01 2.65 2.83 2.77 5.73 
Baseline (Std) 0.96 0.79 1.13 0.88 0.98 1.24 

Table 3.2: Summary statistics of the quality scores awarded by the expert evaluators to designers’ 
layouts from the Scout user study including visual balance (VB), typographical hierarchy (TH), 
emphasis (E), alignment (A), whitespace (W), and overall layout quality (LQ). 

design on a layout evaluation rubric. The rubric included 5 items. The first 3 focused a design 

being “compelling”: (1) visual balance - “The layout is easy to scan, and all elements are 

aligned with respect to axes of symmetry”, (2) typographical hierarchy - “All elements follow 

a typographical hierarchy and are easily readable and proportionally sized with respect to each 

other.”, and (3) clear point of emphasis - “The wireframe has a clear point of entry or a 

single visually salient feature, that does not overwhelm the design.”. The final 2 focused on a 

design being “clean”: (4) alignment - “All elements in the wireframe are aligned with one or 

more other elements.”, and (5) whitespace - “Whitespace effectively used to separate unrelated 

components.” The designers score each rubric item as “Great” (2 points), “Good” (1 point), or 

“Needs Improvement” (0 points). Appendix A, Section A.3 presents the full rubric, including 

the concrete criteria for assigning a score for each rubric item. I developed this rubric with the 

aid of the first designer, who first evaluated a subset of the designs, and we updated the rubric 

together based on their feedback. Both designers then evaluated the entire set of designs using 

the updated rubric. 

For each design, I computed an overall layout_quality score as a weighted sum of the 

“compelling” (i.e., visual balance (vb), typographical hierarchy (th), and emphasis (e)) and 

“clean” (i.e., alignment (a) and whitespace (w)) scores, summed across the two designers (d). 

X vb + th + e a + w
layout_quality(L) = + 

3 2
d∈D 

Overall, the Scout designs had slightly lower layout_quality scores (M = 5.37, SD = 1.0, n = 



71 

54) than the Baseline (M = 5.73, SD = 1.24, n = 54). The layout quality scores were not normally 

distributed, so I assessed their significance using an aligned-rank-transform analysis [215] 

which indicated the difference in the mean layout_quality score was not significant (F1,87 = 2.35, 

p < 0.13). Table 3.2 shows the results for individual quality rubric items, suggesting that Scout 

designs can be improved for visual balance, emphasis, and alignment. 

RQ3: How does Scout affect designer processes of exploring potential interface layouts? 

I asked designers to reflect on the process they used to explore alternative layouts. After each task, 

I conducted semi-structured interviews asking designers to describe the strategy they followed to 

develop diverse, compelling, and clean designs. I then conducted an additional semi-structured 

interview at the end of the session, asking designers to compare their experiences using each 

tool to discuss how they might or might not use a tool like Scout in their design process. I 

include the full set of interview questions in Appendix A, Section A.4. To analyze this data, I 

collaboratively conducted a qualitative inductive content analysis with another researcher [170] 

on my notes, with a sensitizing concept of differences across design processes when using Scout 

versus using other tools. Overall, I organized the results into 3 key themes that reflect Scout’s 

impact on diversity, quality, and design process. I also summarize the designers’ envisioned uses 

of Scout, and their suggestions for improvement. 

While I was able to capture audio recordings of most sessions, a malfunction with the 

recording software led to the loss of audio for about half of the sessions. This meant I could 

not retrieve direct quotes from those participants’ sessions. However, a collaborator on this 

project compared my notes to audio recordings I did have, and found that the notes were 

reasonably accurate representations of what participants said, since I had tried to capture 

participants’ statements as accurately as possible. Below, I present the most salient themes from 

the interviews, supported by direct quotes (in italics) when available, and evidence from my 

notes if not (in prose format). 



72 

Impact on Ideation 

Our interviews with designers revealed two main themes on the positive outcomes that Scout 

had on the designs that designers created in the user study. These themes were that Scout 

helped designers come up with new ideas they thought they might not have thought of on their 

own, and Scout helped designers surface new perspectives on conventional design concepts, and 

break out of their personal design style. 

Scout helped designers come up ideas they might not have thought of on their own. 

Nine designers mentioned that Scout helped them think of new ideas they might not have had 

on their own. P2 mentioned in the Baseline task they had struggled to come up with three 

diverse designs: 

“I feel like I was able to get two really good designs, but the middle one I really don’t like. I 

wasn’t able to come up with a third one...I feel like I probably just needed more time...” 

After the Scout task, P2 described Scout helping them create a design that they would not 

otherwise have come up with: 

“[T]he way Scout helped with that was, I wasn’t even looking to make something like the third 

layout. I wouldn’t have thought to put the image at the bottom of the page, this gigantic one. 

So I think Scout helped with that.” 

Another designer, P16, mentioned that Scout helped them consider combinations of elements 

that they wouldn’t have thought of, leading to a good wireframe. 

“The first one is pretty similar, but it has a different font size and locations. I wouldn’t have 

thought to use the larger font size with the smaller header. So it’s pretty fascinating. I would 

not have ever made the font so big in comparison to the photo. Its a good wireframe.” 

Scout can surface new perspectives on conventional design concepts. 

11 designers mentioned that some or all of their Scout layouts were different than a typical 

weather or social media profile screen. In particular, P10 mentioned that it could be challenging 

to brainstorm when designing a screen that typically uses conventional layouts, like a weather 

or social media screen. She mentioned that because there were so many weather apps out 



73 

there, it was easy to come up with the normal one, but that it looks kind of boring and normal 

and like many other weather apps. For the social media profile page that she created without 

Scout, she had tried to be creative and think of different layouts, but she mentioned that she 

was constrained by her previous experience in terms of a social media profile page. 

Some designers reflected on the fact that they had a strong bias towards specific styles or 

patterns of elements. For one designer, Scout helped her in exploring options for low-level 

layout patterns in the social media profile screen. She was at first adamant that the number 

should be placed below the "Followers" header and other labels. Scout showed her some other 

options that had the numbers above the labels, and she expressed that Scout helped her see 

that as an option. Another designer, P17, reflected that Scout could potentially "remove the bias" 

that comes from getting used to other designers’ styles. 

Because we asked the designers to create diverse layouts for our study, coming up with new 

patterns for common layouts was desirable. However, 2 designers noted that breaking design 

conventions might not always be desirable. For instance, P4 mentioned they preferred to follow 

typical design conventions, even though they felt constrained by it: 

“When you look at weather reports on television, right, on the weather channel, there is only so 

much iteration on the ways they present the information. Because if you try to break the mold, 

if you try to diversify too much, it only serves to be distracting or confusing for the user...It was 

a bit of a struggle to diversify the different ideas just because I felt my creativity was constrained 

by [that]. I prioritized more on usability and familiarity and less on diversity.” 

Scout can help designers break out of their personal style. 

P9 mentioned that they tend to focus on their own personal style, and thought that Scout could 

help them break out of that and open their eyes to atypical ways that things could be arranged. 

“I focus on my personal style. Scout breaks out of that by showing a broad range of ideas. I 

could generate new ideas and have it show me more. [Scout] shows me more possibility and 

opens my eyes to how things could be arranged that are atypical. Often times when I design, its 

based on what I have seen and what I’ve liked. It [Scout] comes up with its own things.” 



74 

P18 explicitly explained that she initially was adamant that she would only want to use the 

rounded placeholder icon for the social media screen and nothing else. However, because Scout 

gave her to option to easily look at ideas with other shapes, she was more open to it. 

“I thought, wow it’s square and I don’t like it, but because it said diverse and I had the option 

to easily look at different ideas with different shapes, I was more open to it. If I had done this 

on my own, I probably would have used the circle and nothing else.” 

Impact on Design Diversity & Quality 

In the interviews, I asked designers to reflect on which tool workflow helped them come up 

with more diverse, clean, and compelling designs. Overall, designers viewed the designs they 

created using Scout to be more diverse, more compelling, but less clean. 

Designers viewed Scout layouts as more diverse. 

When comparing the sets of designs the designers produced in the Scout and Baseline conditions, 

12 designers thought that the designs they produced with Scout were more diverse, while 4 

designers thought they were the same. Four designers thought their Baseline designs were more 

diverse. P2 said her Scout designs were more diverse, stating that some of the elements were 

portrayed in a way that she didn’t think of before. She said she was able to take some aspects 

of each design and mix them up, and that was helpful. She felt she could build on them. 

On the other hand P6 felt that neither her Scout or her Baseline designs were more diverse. 

She felt that what Scout did was to eliminate some sort of brainpower and just randomize the 

ways of putting things together, letting her just set the constraints and tell the machine to do it. 

She felt that between the two workflows, it might just be the process getting to the final result 

that is different. 

When comparing the diversity of his Scout and Baseline designs, P7 reflected on the challeng-

ing nature of creating alternatives in the Baseline task, saying he had to imagine the possibilities 

and contest with his own self-assessment of not being able to meet the goals. His ego got in the 

way, and he was freed from that in Scout. Looking at the Baseline, he initially had no inspiration 



75 

for how to make it different. He self-assessed his own lack of inspiration and thought a better 

designer would have had more inspiration. This set the tone for his work as he went through 

creating the alternatives. 

Designers viewed Scout layouts as more compelling, interesting, and atypical. 

Eight designers felt their Scout designs were more “compelling” than the designs they made in 

the Baseline task, while 4 designers thought their Baseline designs were more compelling. P13 

described that with Scout, it gave her some good ideas she probably wouldn’t have thought of 

herself. She still felt like would need to go to Adobe XD to make it look clean and compelling, 

but that Scout gave her a foundation to improve upon. 

Through these reflections, we found that the designers often interpreted compelling in 

different ways. To the designers, “compelling” did not necessarily mean having a clear point of 

entry and clean hierarchy (i.e., as we defined in the task). Five designers interpreted “compelling” 

as “interesting”, or “atypical”, like P4: 

P4:“It does a good job with the compelling thing...The hierarchy is not dull or boring or and to 

some extent is not even familiar. ... Like this [Scout design], it breaks [design] cliches, that’s for 

sure. It does a good job of not being boring...” 

Designers viewed Scout layouts as less clean. 

On the other hand, when comparing their own Baseline and Scout designs, the majority of 

designers (10 designers) felt they produced “cleaner” designs in the baseline. P17 noted that the 

Baseline designs were more clean because she had to do a fair amount of cleanup of alignment 

and other issues on the Scout designs after exporting them to XD. However, she thought that 

it wasn’t particularly difficult to make her Scout designs clean as she could simply import the 

SVGs into XD, and the cleanup didn’t take long. P20 noted that making clean designs within 

Scout might take more work, by needing to specify more constraints: 

“You’d have to put a lot of rules on it to get it as clean as you’d want it to be. For example, this 

[Scout design I made] is not very clean-looking, but I could picture moving it around a bit, and 

it would be clean...it seemed like more effort to make it clean in Scout than it was in XD.” 



76 

Alternately, 5 designers thought their Scout designs were cleaner. P11 said that this was 

because the Scout designs helped her use whitespace more effectively, and she believed they 

looked cleaner as a result. She stated that she was not good at intentionally using whitespace, 

and that the designs she chose from Scout reflected her desire to be a more intentional user of 

whitespace. She pointed out two designs with different whitespace patterns, and said that she 

rarely comes up with wild uses of whitespace like Scout did in the early phases of design. 

Impact on Design Process 

In the interviews, I also had designers reflect on their process for exploring alternatives. I 

had them reflect on the last interface design they created before the study and discuss the 

process they followed to create alternative designs. I also had them compare and contrast the 

approaches they followed to create alternative designs with and without the use of Scout in our 

user study. These interviews revealed two key themes. The first was that designers considered 

the structure of of an interface over the details more when using Scout. With Scout, they were 

able to follow a less linear design process that contrasted with their reflections on the Baseline 

task and on the process they followed when creating alternatives for the last design they created 

before the study. 

Designers considered the structure of an interface more with Scout. 

Scout helped designers in the study consider the high-level structure of a design more than in the 

Baseline task. When comparing their design processes, more designers mentioned considering 

emphasis of elements with Scout (13 designers) than without (11 designers). More designers 

mentioned considering the high-level grouping structure with Scout (14 designers) than without 

(6 designers). Finally, more designers mentioned considering the order of elements with Scout 

(7 designers) than without (1 designer). 

Of these designers, some explicitly pointed out that Scout helped them have a more structured 

process, more intention, and a better mental model of the interface before beginning to design. 

One designer, P17, reflected that Scout gave her a more structured process. She said that in 



77 

Scout, she had more intention behind the choices she made. She contrasted that to when 

working on the Baseline task, she didn’t follow a process as much. She described trying out a 

bunch of things to see what worked. 

P10 commented that while she had to spend more initial time setting up the high-level 

constraints in Scout, she said it was a good way to keep her on the right track. She mentioned 

spending time early to consider which elements are more important than others, and figuring 

out the relationships between them. She likened it to "creating a spec before beginning". Another 

designer, P4, likened this to helping develop a better mental model of the interface content 

before beginning. 

“Being able to set the emphasis was pretty cool. This helped give me a better mental model of 

what I should be looking at.” 

Designers mentioned a linear design process less with Scout. 

When discussing a previous project or their experience with the Baseline task, 12 designers 

mentioned a linear process of looking at a design and thinking about how to change it into a 

new design. In contrast, only 2 designers mentioned a linear design process in Scout. When 

reflecting on their past approach to exploring alternatives, P21 mentioned: 

“It’s something I need to work on. Usually I just end up work on one [idea] and then iterating 

on that single idea.” 

She mentioned that she finds she struggles with not making the design to high fidelity right 

away. She found it useful to have bunch of different ideas that Scout gave her. P16 also stated 

that he has used a linear approach to creating alternatives in the past. He mentioned that he 

makes simple wireframes with groups, and once he has that, he continues to change the layouts 

and copy/paste elements to create alternatives. 

When asked to compare and contrast her process of creating alternatives using Scout and in 

the Baseline task, P2 described that in the Baseline task, she sketched out the first layout. For 

the second and third, she built off the ideas of the first idea, and progressively created different 

kinds of layouts based on the first one she designed. This was different from the process she 



78 

followed in Scout, which consisted of experimenting with setting constraints, and viewing the 

alternatives Scout generated in response while trying to select diverse alternatives. 

P7 hypothesized that Scout could help him break out of a reactionary design approach in the 

future. When asked how he could see Scout fitting into his design process, P7 mentioned that 

he would use Scout every day. He saw that a benefit of Scout was that it could free him from 

one linear approach. He mentioned using a "reaction style approach" where he follows one path 

of modifying a design into a new design. They envisioned that in a real-life context, a company 

could give Scout to individual teams of designers to use as a starting point for brainstorming, 

enabling them to follow different threads of design alternatives across teams. 

Designers Envisioned Uses of Scout 

To understand how designers might use Scout in their design process, I had designers reflect on 

the ways they could envision using Scout in the process of coming up with alternative designs. 

The themes reflected that the designers would use Scout during layout ideation, to get unstuck 

when they were in need of inspiration, and to quickly visualize and generate alternative ideas. 

Designers would use Scout during layout ideation. 

When asked to describe their current ideation strategies, designers mentioned sketching, white-

boarding, and looking for examples to come up with new layout ideas. 13 designers mentioned 

simply placing elements on a design tool’s canvas and moving them around to try to generate 

new ideas. After using Scout, 14 designers said they would use Scout to quickly ideate layouts, 

or when in need of inspiration. P9 and P18 thought that they would use Scout to help envision 

layouts physically versus relying on their brain to envision them. 

P18:“It would be good for seeing physical ideas to think it through and how it fits with what 

I’m trying to make. Rather than trying to envision something in my head, I’m seeing it here to 

envision it.” 

Nine designers mentioned that they liked how Scout helped them visualize lots of alternate 

combinations of element layouts. P9 said the whole idea of randomly generating the permuta-



79 

tions of these elements together was useful. This aspect of Scout was an opportunity for P7 to 

use an editorial skill set. By seeing a huge array of alternate arrangements, P7 found it useful to 

have both both effective an ineffective layouts to choose from. 

“It stretches your understanding of what’s possible. They were wide and broad and messy, and 

they draw attention to why they don’t work... You can look at it more as this is close but we 

need to change something a little bit to make it better.” 

Rather than using Scout for ideating at the beginning of designing, P1 thought she would 

use it halfway through as a divergent thought process. She thought that she would first make 

the concept in XD and draw some physical sketches. Once she was clear about which elements 

she wanted in her design, she would put the elements in Scout to see the alternatives. 

When asked to describe how Scout might fit into her design process, P6 mentioned that 

she typically sketches alternatives, and if she gets stuck, she goes to the internet to look for 

inspiration in different ways designers use to organize information and preexisting layouts that 

she can take inspiration from. She stated that Scout could fit into this process by letting her see 

alternatives that already contained their elements, rather than needing to imagine them based 

on other examples: 

“Definitely it helps. Instead of searching on the Internet for alternative layouts or existing 

things that are out there, [Scout] just makes it easy with what you already have. ... You 

already see what [the layout] could look like with the information that you have, and not other 

information.” 

Designers would use Scout to get unstuck. 

When asked how their approaches to creating alternatives differed with Scout versus the Baseline, 

6 designers mentioned that they struggled to think of ideas in the baseline task. P7 felt that 

compared to the baseline task, thinking of the alternative ideas by himself was exhausting work, 

and that seeing all of the alternatives right there with Scout was exciting. 

“I did get a big smile when I saw the different alternatives. It was exciting to see all of the 

ideas right there rather than the exhausting work of trying to come up with these ideas all by 



80 

yourself.” 

When thinking about the last time she came up with alternatives for a design, P8’s process 

was to sit and stare at a wall until she thought of something else. She would try to sketch her 

ideas on paper, but found that they often didn’t look as good as they did in her head. She 

mentioned it was easy for her to fixate on one idea, and could see herself using Scout just to get 

her brain out of her own head. 

P2 mentioned not feeling very successful at creating diverse designs in the Baseline task. 

She felt she was able to come up with two good designs, but was not able to come up with a 

third and needed more time to sketch. When asked how she might use Scout in her typical 

design process, P2 replied: 

“Most likely in the initial phase when I’m first designing. I could see Scout replacing sketching 

for me. I see it as helping start, or if I have a creative block I need to get rid of.” 

Designers would use Scout to quickly generate alternative ideas. 

Five designers mentioned that Scout would enable to them to quickly generate alternate ideas. 

P18 said that they thought that Scout would be useful just to generate a bunch of ideas really 

quickly and for testing out and visualizing alternate shapes quickly using the alternate groups 

feature. P4 pointed out that Scout made it quicker to come up with alternatives, compared to 

the Baseline task: 

“It was way quicker for me to come up with these three [Scout designs]. What I struggled 

with the most on the first [Baseline task] was really brainstorming and ideating, these sort of 

different variations. Scout made brainstorming a much easier process for me, personally.” 

P5 described how the Baseline task was more time consuming because of the manual effort 

required to move elements around to see if they would work. 

“It was definitely more time consuming because I wanted to see a bunch of different things 

upfront, just to see if different concepts would even work...[P5 describes different ways they 

moved the elements around the screen.] It would have been nice to quickly see that, like, I didn’t 

want every [element] up there [top of screen], I just wanted profile picture, name and title.” 



81 

Designers Suggestions for Improvement 

Finally, my interviews with designers revealed that Scout could be improved in several different 

ways including by giving designers more control over the space of layout alternatives it generates, 

scaffolding designers learning of constraints, and improving the presentation of feedback options. 

Scout could be improved by giving designers more control 

After completing both the Scout and Baseline tasks, I asked the designers to reflect on what 

aspects of Scout were useful and not useful in their alternative creation task. Five designers 

expressed that they would like to have more control over the aspects of variation that Scout 

explores. P2 typically is very picky about font sizes, so she wanted to be able to set a typography 

hierarchy or a range of font sizes that Scout would use, as she thought that Scout made too 

many variations in the font sizes. Controlling font size variations was also a request of P13. P4 

suggested allowing initializing Scout’s range of alternatives from a company style guide, which 

typically specific a range of header and label options, and element-specific alternatives. 

Four designers mentioned the alternate group constraint as a useful feature of Scout. How-

ever, several designers requested more nuanced control. P7 thought that it would be useful 

to point Scout to a library of alternative icons, and then use the feature to quickly generate 

alternatives using each icon. P8 and P20 found the alternate group helpful, but would want 

to be able to toggle the alternate group on a layout to another option so they could quickly 

visualize the same layout idea with a different alternate. 

The desire to specify an emphasis hierarchy was also a common theme among the designers. 

Eight designers mentioned and used emphasis levels during the study, and six designers men-

tioned this as a useful aspect of Scout. However, P16 and P18 mentioned they wanted to have 

more emphasis levels to enable a more fine-grained specification of the visual hierarchy. 

Eleven designers mentioned seeing parts of different Scout layouts that they liked, but would 

change an aspect of the layout or use only part. In our study, the designers were able to refine 

the Scout designs once they had exported them from Scout, and some designers saved and 

exported layouts that they liked only part of and then combined the part they liked with the 



82 

remaining elements from a layout. P2 enjoyed this aspect of Scout and liked that they were able 

to pick aspects of different layouts, and mix and match the different elements of each that she 

liked. Several designers mentioned it would help if Scout could make it easier to mix and match 

designs, or explore variations to sub-parts of a design rather than changing the entire layout. 

Scout could be improved by scaffolding designers’ learning of constraints 

Five designers mentioned it was initially confusing to understand how to use each type of group 

in Scout’s high-level constraints outline (i.e., alternate group, repeat group, regular group). P16 

noted that he used groups a lot, but struggled to use them initially. He said he initially used a 

lot of groups because it makes the process really clean and provides a good mental model. With 

Scout, he found the grouping terminology "tricky" because groups are normally a static thing 

and do not have other functionality, while in Scout, groups are "smart" with other functionalities 

and behaviors (e.g., order). Once he learned how each group worked, he was enthusiastic 

about them. Overall, designers feedback on the challenges of learning how to use the groups 

suggests that Scout could better scaffold designers’ learning. Additionally, designers suggested 

that it would be helpful if group behavior could be changed (i.e., a group to an alternate group) 

by modifying a property, rather than having to create another type of group. 

Scout could present the feedback options better. 

Seven designers mentioned confusion over some of Scout’s feedback options. P11 mentioned 

that being able to specify feedback was powerful and helpful, however, she was reluctant to try 

them sometimes because she felt like she could lose some of the layout ideas and not be able to 

go back. She suggested that it would be helpful to make applying feedback "feedforward" and 

provide a preview option to see what would happen before applying the feedback. P21 found 

all of the feedback options "a bit overwhelming", but felt that in any new prototyping tool there 

are typically a lot of functions as a new user that you really don’t learn until you have used the 

tool for a while. Overall, the designers’ feedback on "feedback" suggests that providing tooltips 

to describe each feedback option, and a preview of feedback feature could be potential ways to 

help them overcome their initial confusion. 



83 

Summary 

In summary, my interviews revealed that Scout can aid designers in ideation by helping them 

think of new ideas, and surface new design concepts outside of common patterns. Overall, 

while the designers saw their Scout designs as less clean, they viewed their Scout designs as 

more diverse and more compelling. When examining the processes designers used in our study, 

the process designers followed using Scout was less linear. Rather than iteratively transforming 

designs into alternatives, Scout can enable them to visualize a number of diverse designs as a 

starting point. Many of our designers did envision themselves using Scout for ideation, and 

to quickly visualize many combinations of elements in a layout. They also thought that Scout 

could help them overcome creative blocks. 

Although these findings demonstrate mainly positive outcomes of Scout, designers did 

struggle with some elements of Scout. Some designers were confused over some of the feedback 

options, and thought that Scout’s high-level grouping constraints were difficult to learn. They 

gave some useful suggestions for improvement including better scaffolding of learning and 

providing a preview of feedback behavior. Designers also wanted to have more control over 

Scout’s generated alternatives by being able to control the range of variation (e.g., specify the 

font sizes to explore), and by being able to mix and match different parts of designs to create 

better combinations. 

3.4 Discussion 

Scout can enhance designer ideation by helping them rapidly visualize many layouts through 

mixed-initiative interaction with high-level constraints and feedback on alternatives. An evalua-

tion found Scout can aid designers in creating layout ideas they do not believe they would have 

otherwise thought of, can help designers avoid developing too early of a focus on a single design, 

and can help designers consider layouts different from established patterns. Scout designs were 

also more spatially diverse both within and across designers. 

Although not statistically significant, the quality analysis I conducted found Scout designs 

were awarded slightly lower overall quality scores by expert designers. This suggests opportuni-



84 

ties to improve Scout in terms of balance, emphasis, and alignment. However, participants also 

had access to the functionality of Adobe XD to refine their designs after Scout ideation (i.e., the 

same tool used in the baseline). Any difference in quality may therefore be due to a lack of 

time. Scout required upfront time for specifying elements as well as their grouping, ordering, 

and emphasis before designers can see layouts, which may have left less time for refinement of 

designs at the end of the task. Future work could explore integrating capabilities developed in 

Scout as a feature in an existing design tool (e.g., Adobe XD), such that elements, grouping, 

ordering, and emphasis could be inferred from an existing layout to generate new alternatives. 

Scout points to a new approach to using constraints to support ideation and presents new 

techniques for providing feedback to systems applying constraint solving. Future systems 

can explore: (1) formalizations of interface design principles into tools that help designers 

apply those principles, especially when supporting novice designers, (2) scaling interactive 

constraint solving to larger interfaces (e.g., webpages), and (3) defining more layout variables 

and constraints to enable systems like Scout to explore larger and higher-quality spaces of 

alternatives. 

3.5 Contributions 

This work was conditionally accepted to CHI 2020 as Scout: Rapid Exploration of Interface 

Layout Alternatives through High-Level Design Constraints [202] with co-authors Chenglong 

Wang, Alannah Oleson, James Fogarty, and Amy Ko. This publication was not yet public at the 

time of this writing, therefore I do not have the complete reference. In the future, it can be 

found by searching the above publication title in the ACM DL. A preliminary version of the 

work was published as a demo at UIST 2018 [200] along with co-authors James Fogarty and 

Amy Ko. James and Amy helped in developing the initial ideas for Scout, and gave valuable 

guidance and feedback throughout the project. I developed the Scout interface & system, along 

with encoding of design principles into formalized constraints. I also conducted the Scout 

evaluations, and quantitative analyses in the paper. Alannah Oleson and I collaborated in 

evaluation planning, developing the set of qualitative interview questions for the evaluation, 



85 

and in qualitative coding of the Scout interviews. Alannah transcribed quotes and drafted 

the qualitative evaluation section for the Scout paper. Chenglong Wang and I collaborated to 

develop the Scout cost model for ranking layout ideas, and the spatial diversity score used in 

the Scout evaluation, and experimentation with the Scout synthesis algorithms. Once published 

in the CHI proceedings, you will be able to find a demo video for Scout on the publication page 

under "Source Materials". 



86 

Chapter 4 

Interface Design Assistance from Examples 

Examples play a critical role in the interface design process. During ideation, designers 

browse and curate example galleries for inspiration [47,87] and explore alternative solutions [67, 

87]. During prototyping, designers frequently use examples as building blocks when developing 

new designs [120]. Designers use examples throughout the design process, and they are often 

pivotal to the success of projects [87]. 

During prototyping, designers create prototypes in tools like Sketch [19] or Adobe XD [98], 

demonstrating the visual design and layout of one or more interface screens in detail. In this 

process, designers may want to reuse or edit parts of example designs they have collected. 

For instance, a designer may want to edit the colors of interface elements to explore different 

palettes, change text labels based on the target application, or reuse part of an example interface 

in a new design. Performing such operations requires example designs to be represented in 

an editable way, predominantly as vector graphics where interface elements are specified as 

objects with properties that define their shape and appearance. 

While vector representations enable reuse and editing, example designs are frequently not 



87 

Layers Panel Properties Panel

Screenshot

Vectorized 
Example

Figure 4.1: Rewire’s Full Vector design assistance mode, in the Adobe Experience Design (XD) 
canvas. Designers activate the mode by right-clicking on a screenshot, that they drag into an 
artboard in the design document. Designers can then edit the properties and layering of the 
vectorized output in XD’s Properties and Layers panels. 

shared in this form. Designers may also find examples in real interfaces, where they cannot 

access a vector representation, and may want to quickly take a screenshot of the example. Thus 

designers frequently collect example designs in the form of screenshots (i.e., raster images). 

Most devices have shortcuts to copy portions of the screen to an image, which makes it easy for 

designers to capture examples. At the same time, unlike vector graphics, screenshots are flat, 

unstructured, and hard to edit. As a result, when a designer wants to modify a design from 

an image, they need to reconstruct all or relevant parts of the content to produce an editable 

vector representation. This representation must be created by hand by drawing and specifying 

the properties of shapes through trial-and-error. 

Designers can use commercial vectorization tools, like Illustrator’s ImageTrace 1, shown 

in Figure 4.2, to ease this process. However, because these tools aim for visual fidelity, they 

represent their output with path objects representing visually distinct boundaries in an image. 

With paths, changing properties like rectangle corner radius requires editing many individual 

control points to modify the relevant boundaries. Changing font properties of text represented 

as a path is impossible without creating a text box. 

1https://www.adobe.com/products/illustrator.html 

II • • Desi~ P,ototfpe 

1\ll\1\1\ 

n,:~•' ,------

0 0' 

Ra: l ""'Q• 2 



88 

Vectorization 
Options

1

Output

2

Shapes represented 
as paths.

Text – Cannot 
change font size, color

Corners – Drag each 
corner to resize

Figure 4.2: Commercial vectorization tools, like Illustrator’s ImageTrace, require a designer to 
specify a complex number of vectorization options (1). They represent their output with path 
objects (2) representing boundaries in an image. A designer cannot change font size and color 
because there isn’t text box to edit. To adjust a rectangle’s corner radius, they need to drag and 
resize each individual corner. 

In this chapter, I present Rewire, a system that helps designers reuse example screenshots. 

Rewire infers a semantic vector representation from a screenshot where each interface element 

is an editable object with shape and style properties. With Rewire, I aim to infer higher-level 

semantic objects (e.g., rectangles, text boxes) with properties of common interface elements 

(e.g., corner radius, font type), rather than the vector paths as inferred by common features in 

commercial tools. Rewire applies semantic analysis using image analysis techniques to uncover 

semantic structure and properties from an interface screenshot. Through Rewire, I demonstrate 

that if we augment interface design prototyping tools with the capability to infer semantic 

structure from example screenshots, we can make it easier for designers to transform and adapt 

examples into another design. We can thus enable designers to ideate and prototype from 

example screenshots more efficiently. 

In addition to inferring a vector representation of an example screenshot, Rewire provides 

three design assistance modes from these inferred vectors. These modes can aid designers 

through different goals in example adaptation. Full Vector, shown in Figure 4.1 and 4.3 (a), 

creates an artboard with a set of vector shapes inferred from a screenshot. This mode allows 

designers to quickly reconstruct or edit the example design. Smart-Snap, shown in Figure 4.3 

GIIIIIIIIIIO 

~ ( 1a1,:a.111. 

.... lflllNIIMli---.....,..+.!-

( Cllllnl 



89 

(b), provides snapping guides that become active when drawing new shapes. These guides can 

assist designers in aligning new interface shapes with those in the example design. Wireframe, 

shown in Figure 4.3 (c), displays the inferred vector shapes with a simple black outline. This 

mode helps designers reuse the layout of the example design while abstracting away visual 

details. The contributions of this chapter include the following: 

1. An automatic method for extracting semantic vector objects from screenshots that com-

bines low-level image processing with UI-specific reverse engineering techniques. 

2. Three new design assistance modes that leverage the extracted vector objects to help 

designers create new designs. 

3. Quantitative and qualitative evaluations demonstrating the accuracy of Rewire’s pipeline 

and the benefits of Rewire’s design assistance modes in helping designers adapt and 

transform example designs. 

4.1 Formative Interviews 

I conducted formative interviews with 10 user interface designers working at both small and 

large companies to discover more about common use cases for Rewire. All designers frequently 

used screenshots in their work. In one extreme case, one designer recreated an entire legacy 

interface design to use as a template, spending days drawing a complex vectorized design 

document from a screenshot. However, most designers said that they mostly recreate only 

parts of a design they need to change for making quick mockups. Sometimes they will simply 

cut, paste, and resize parts of screenshots into their designs for quick prototyping, and then 

recreate interface shapes when moving to high-fidelity. Designers also mentioned recreating 

from screenshots when the original design assets were lost and when clients sent them interface 

screenshots to incorporate into their designs. 

4.2 Motivating Example 

From the use cases I observed in my formative interviews, I developed three design assistance 

modes that help designers leverage interface screenshots. I describe and motivate these modes 

in the context of an example scenario. In the scenario, Maria, a user experience designer, 



90 

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵
⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵
⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵⧵

Screenshot
(b) Smart-Snap

Full Vector Highlights Redesigned Artboard
(a) Full Vector

(c) WireframeScreenshots

Figure 4.3: Rewire provides three modes of design assistance. Full Vector (a) creates vector 
objects for shapes in the image. Designers can highlight the vector objects by toggling the pink 
Highlights layer. Designers can then update and redesign the vectorized artboard, as shown on 
the right. Smart-Snap (b), displays alignment and spacing guides to help designers align newly 
drawn shapes to shapes in the screenshot. Wireframe (c), generates abstract wireframes of the 
screenshot, removing most visual details. 

performs several design tasks using an existing vector-based design tool, Adobe Experience 

Design (XD), that has been augmented with the Rewire design assistance modes. 

Maria is creating a mockup for a shopping cart page. Her project manager sends her the 

screenshot shown in Figure 4.3 and asks for a similar design with realistic bag images in place 

of the grey bag icons. To accomplish the task, Maria opens the screenshot in XD and activates 

Rewire’s Smart-Snap (Figure 4.3, (b)) mode. As she drags an image of a leather purse onto 

the canvas, blue snapping guides visualize how the image aligns with the interface shapes in 

the example design. These guides enable Maria to quickly align and resize four realistic bag 

images over the original bag icons, without having to carefully manipulate the size and position 

of each image. 

... . '. ' . 
- ,. , ~., r-, 6 

....... 

••,,,1<• ... ~-· • .w1 
··""'-'•1 

□□ 

0 

Color, • • 

~

I 
511TH 

~ 

$910 

row, S1908 

D 

11 

E::::::: 
I 

Leather Backpac < 
$289 

L 

7 

I\ 

-

n 

c= 



91 

Maria’s next assignment is to modify the same shopping cart page to show a set of sample 

books rather than bags, with book titles and prices below each item. The project manager 

wants Maria to create several variations of the design with different color schemes. Instead of 

redrawing, retyping, and matching the properties of the screenshot by hand, Maria activates the 

Full Vector mode to automatically generate vectorized objects from the screenshot (Figure 4.3 

(a), Full Vector). To see the generated objects, Maria enables Rewire’s highlighting feature as 

shown in Figure 4.3 ((a), Highlights). Rewire renders shapes (e.g., rectangles, circles, lines) in 

pink with white outlines, and text objects with white backslashes to indicate they are editable. 

Maria edits the text for each book and modifies the header and button colors to create several 

design variations. In this setting, the Full Vector mode helps Maria to quickly create designs 

using the elements in the original screenshot. 

Finally, Maria’s manager sends her several screenshots of inspirational examples and asks 

her to show the client a range of potential designs based on these images. Since the goal is 

to present high-level ideas, Maria wants to show abstracted versions of the example designs 

that leave out unnecessary (and possibly distracting) design details like the specific fonts or 

icons. Maria drags the screenshots into XD and activates Rewire’s Wireframe mode, shown in 

Figure 4.3 (c), to automatically create wireframe representations. Rewire draws these with a 

simple black outline with no additional styling. Maria then labels the elements of the wireframe 

to highlight key parts of the app such as the header and shopping cart items. 

4.3 Architecture & Implementation 

I assume the input to Rewire to be an image of an interface. Because interfaces consist of 

an array of geometric shapes and natural images, contain complex hierarchies, and contain 

a large set of properties that frequently interact, Rewire focuses on detecting and vectorizing 

four primitive shape types: rectangles, circles, lines, and text. These shapes can be combined 

or used individually to represent most interface elements. The output of Rewire’s processing 

pipeline is a vectorized artboard containing editable shapes, as shown in Figure 4.4 (Output). 

These shapes contain styling (e.g. corner radius) and size properties. Rewire populates these 



92

1 3Segmentation

Screenshot

Beautification

Vectorized
Artboard

2
Vectorization

40px

40px

Corner 
Radius

Width

Height

5px#FE4F55
Background

Edge Finding Segment Merging Shape Identification

rectangle

text

Figure 4.4: System overview of Rewire. The system input is a screenshot. Rewire segments
shapes from the image and classifies them by primitive shape type (1), extracts properties of
segments to create vector shapes (2), and beautifies (i.e., aligns & normalizes) the resulting
layout (3).

shapes into a vector-drawing tool, where designers can edit, resize, or move them.

To support the Smart-Snap, Full Vector and Wireframe design assistance modes, each vec-

torized shape is presented as demonstrated in Figure 4.3. The screenshot processing pipeline

consists of three stages, as illustrated in Figure 4.4:

1. Segmentation. First, Rewire segments the screenshot into regions of distinct geometric

elements by leveraging existing low-level computer vision algorithms (Figure 4.4, Stage

1). Rewire also classifies segments into a predefined set of primitives (e.g. rectangles,

lines, circles, text).

2. Vectorization. For each segment, Rewire generates a corresponding vector object by

estimating the relevant shape (e.g., size, position) and style (e.g., color, border thickness)

properties (Figure 4.4, Stage 2).

3. Beautification. Finally, Rewire refines the properties of individual vector objects via a

global optimization to improve alignment and consistency across the whole artboard

(Figure 4.4, Stage 3).

Each design assistance mode uses the vectorized output in different ways. The Full Vector mode

presents the fully vectorized artboard to the designer. Wireframe mode removes all the style

properties and only preserves the shape of each object. Finally, the Smart-Snap mode creates

snapping guidelines based on the bounding box of each object but does not add the objects to

the artboard. I implemented each design assistance mode as an extension to Adobe XD.



93 

4.3.1 Segmentation 

The segmentation phase of Rewire’s processing pipeline consists of two sub-phases which are 

text box detection, and shape detection. 

Text Box Detection 

Rewire extracts primitive shapes from the input screenshot in two steps. First, Rewire detects 

all text regions via OCR and then segments the remaining parts of the screenshot. Identifying 

the text up front improves the quality of the subsequent segmentation because it allows the 

algorithm to filter out extraneous small segments that often arise within text regions. 

For text detection, Rewire uses an OCR library called Tesseract [193] to obtain bounding 

boxes that correspond to potential text shapes. To optimize Tesseract’s performance, Rewire 

sets the page segmentation mode to sparse text which tries to find as much text as possible, in 

no particular order. With these parameters, Tesseract outputs individual lines of text. 

To filter out obvious false positives, Rewire computes two geometric properties, solidity and 

extent, for the pixels contained within each text word. Prior work found these to be good at 

discriminating between text and non-text regions [77]. The system removes any text words 

with solidity greater than 0.3 and extent > 0.9, which I based on previous techniques [77,124] 

and experimentation with the example dataset. Finally, to create a concise and easily editable 

set of text segments, Rewire merges adjacent text lines that are close to each other and similar 

in color using the Golden Ratio Φ (1/1.618), a typography ratio that relates font size, line 

height, and line width in an aesthetically pleasing way. Rewire merges lines if the vertical 

distance between their bounding boxes is less than the Golden Ratio Φ times the mean line 

height and the correlation between their color histograms (measured via Pearson’s coefficient) 

is greater than 95%. I set these thresholds empirically and use them for all of Rewire’s results 

and experiments. 



94 

Shape Detection 

To segment the remaining parts of the screenshot, Rewire decomposes the image into an over-

complete set of candidate segments and then iteratively merges and classifies segments to obtain 

a final set of shapes. Rewire computes candidate segments by constructing an Ultra Metric 

Contour Map (UCM) [27], which uses low-level image features to partition the image into a set 

of closed regions. Because Rewire has already detected text regions, it removes UCM region 

boundaries that overlap with any of the extracted text, and use the remaining segments as its 

initial set of candidates. 

Given the candidate segments, Rewire iteratively merges or removes segments until it has 

attempted to merge all segments. The first step is to put all candidate segments into a working 

set S. For each segment s ∈ S, Rewire determines whether it is one of the primitive shapes (i.e. 

circle, rectangle, line) that Rewire handles. To detect rectangles and lines, Rewire counts the 

non-segment pixels within the axis-aligned bounding box of s. If there are no non-segment 

pixels and the height or width of the smaller dimension is less than 5px, Rewire classifies the 

s as a line. This threshold of 5px was set by a manual exploration of common patterns in 

hand-created designs. If s is not a line but the fraction of non-segment pixels is less than 90%, 

Rewire classifies it as a rectangle. Finally, if the s is not a line or a rectangle, Rewire computes a 

circle Hough transform [33] to check whether it is circular. 

If the segment s is classified as one of these shapes and its larger bounding box dimension is 

bigger than 20px, then Rewire removes it from the working set and add it to the final set of 

segments. Otherwise, Rewire tries to merge s with its adjacent segments. If s is a line, it tries to 

merge it with any adjacent co-linear line segments. If s is not a line, it merges it with adjacent 

segment t if they are a similar size (i.e., neither segment is more than three times larger than 

the other) or both s and t are small (i.e., have a width or height less than 5px). If s is merged 

with any segments, Rewire puts the resulting segment back in the working set S. If s is not 

merged with any segments, Rewire adds it to the final set of segments. Eventually, all segments 

are removed from the working set. 



95 

When the working set is empty, Rewire does one last clean-up pass, and removes any 

segments that are not primitive shapes and smaller than 25px in area. I discovered through 

experimentation that these segments frequently correspond to noise produced by the UCM 

segmentation. For each rectangle, Rewire removes any lines or nested rectangles that are within 

2px of the rectangle boundaries, since these extraneous segments typically correspond to styled 

rectangle borders. Finally, for every primitive shape, Rewire removes neighboring segments that 

are less than one tenth the size of the shape because they are likely to be edge segments from 

border effects or shadowing around the detected segments. The final output of the segmentation 

is a set of segments labeled with a primitive shape type. Rewire leaves segments not classified 

as a primitive shape unlabeled. 

4.3.2 Vectorization 

Rewire generates vector objects from the set of segments. In this phase, text segments become 

text objects, line segments become lines, circle segments generate circles, and unlabeled and 

rectangle segments become rectangles. For each segment, the position of the its bounding box 

determines the position of the corresponding vector object. To ensure shapes are correctly 

layered, Rewire builds a partial hierarchy of interface shapes based on visual containment. 

Rewire does not support vectorizing icons or complex vector graphics. Based on formative 

interviews, there are likely few cases where designers would want to reconstruct an entire 

logo from a screenshot. Instead, they typically want to abstract it away or replace it with a 

different icon or logo. Thus, Rewire’s aim is to reconstruct whole interface elements, which can 

be represented mainly with primitive shapes. Rewire computes the vector properties via the 

following segment-specific vectorization procedures. 

Text 

For each text segment, Rewire generates a text object and estimates the baseline, font size 

and color. For text segments containing more than one line of text, Rewire also estimates the 



96 

Lorem ipsum dolor sit amet

Lorem ipsum dolor sit amet. 
Lorem ipsum dolor sit amet Line Height

Font Size

Baseline

Figure 4.5: Rewire extracts the baseline, line height, and font size of text shapes. 

line height property (see Figure 4.5). 

To estimate the baseline, Rewire converts the region of the original image inside the 

bounding box of the text area into an edge detected image which contains only white and black 

pixels on edge boundaries. Rewire analyzes a y-coordinate distribution of the white pixels in 

the region and sets the baseline as the y-coordinate of the largest group with the highest 

y-coordinate. 

For text areas with more than one line, Rewire estimates the line height property by 

computing distances between adjacent baselines in a text area and by computing an average 

between adjacent baselines. 

To estimate the font size for text shapes, Rewire uses the bounding box height of the 

tallest text line in the text area, as shown in Figure 4.5, which directly converts into a fixed 

pixel value. Typography defines the font size as the distance between the highest ascender line 

(i.e., the capital letter L in Figure 4.5) and the lowest descender line (i.e., the bottom of the p 

in Figure 4.5) possible in a line of text. This means that Rewire’s font size estimate will be less 

accurate if the text line does not have ascender and descender lines. To address this, Rewire 

normalizes font size estimates during the beautification stage (Stage 3 in Figure 4.4), and snaps 

font size estimates upward toward similarly sized text shapes in the document. 

To extract text color, Rewire first finds the background color of the text by computing 

a histogram of all pixel colors found at the boundary of the text box and merging them into 

groups of indistinguishable colors using the Delta-E metric [187]. The finds the foreground 

color by clustering pixels in the foreground and computing a weighted average between the 

number of pixels in a group and the amount of contrast with the background, setting the font 



97 

Rectangle Image

{ Background: #FBFFBD, Border: 1px #B5BAB4, Radius: 5px }

Background BorderCorners

Fit Regions1

Extract 
Properties2 Vectorized Rectangle

Figure 4.6: The original bitmap, and the Prefab extracted segments. Prefab discovered the 
background color, border color, border thickness, and corner radius by segmenting the image 
bitmap into 6 regions. 

color to be the color of the group with the highest weighted average. 

Rectangles & Lines 

For rectangle segments, Rewire generates a rectangle object and estimates the background 

color, border color, border thickness, and corner radius. To enable this, I created a 

new rectangle model in Prefab [62], a system for reverse engineering the pixels of graphical 

user interfaces. Prefab recognizes widget shapes in an image by fitting the pixels of an image 

to nine sub-regions: the interior (background), four borders, and four corners. For Rewire, I 

created a simplified six-region Prefab model that only includes a single corner region. This 

makes the computation more efficient but restricts the system to generating rectangles with a 

single fixed corner radius (which is by far the common case). 

Prefab’s output is the size of each region, and the colors of the longest repeating patterns 

discovered in the border and background regions. From this, the model can infer the corner 

radius (i.e., width/height of the corner region) and border thickness (i.e., width/height of 

border regions). For background color and border color, if Prefab finds a single solid color, 

Rewire returns this color. If a solid color is not found, Rewire returns the most common color 

from this region. If the extracted border regions and background regions have the same color, 

0 

0 

\ 
\ 

\ 
\ 

I _ .. 



98 

Rewire collapses them and returns the background color and corner radius and does not 

return a border. Note that Rewire does not currently extract gradients or patterned fills for 

rectangles. Figure 4.6 shows an example image and the segments that Prefab infers through 

this process. Prefab first segments the image into the 6 regions (Figure 4.6.1), and infers 

the rectangles vectorized properties which in this case are {background: yellow, border: 

1px gray, corner_radius: 5px}. 

Rewire uses a six-region Prefab model for vertical and horizontal lines but allows the size of 

the side regions and corner regions to be zero. For lines, Rewire sets the background color 

and line thickness to the size and color of the background region of the Prefab model. 

Circles 

For circles, Rewire finds the radius based on the dimensions of the segment bounding box. 

It extracts the background color by clustering the pixels into foreground and background 

regions, and selecting the most common background color. Rewire does not currently extract 

border color and thickness for circles. However, I believe these could be extracted similarly 

to rectangles using a parametric Prefab [62] model. 

Non-text, non-primitive segment 

Rewire generates a rectangle shape that aligns with the segment bounding box and clips out 

the corresponding screenshot pixels. Although designers cannot easily edit the contents of such 

clipping regions, they can repurpose them by copying, scaling, and rearranging the clipped 

pixels. Figure 4.1 shows a lighthouse icon shape that can be rescaled and moved. 

4.3.3 Layout Beautification 

The first two stages of Rewire’s computer vision processing pipeline can introduce small mis-

alignments and inaccuracies in the properties of generated vectors. In particular, inexact edge 

detection (e.g., due to anti-aliasing or border effects) during segmentation can propagate to the 



99 

vectorized objects. Such inaccuracies impact the quality of the design by creating misalignment 

between objects or inconsistencies across related elements (e.g., text objects with slightly differ-

ent font sizes). This can violate the design principles simplicity, consistency, and alignment. I 

provide detailed definitions for these principles in Chapter 2, Section 2.1. 

One way to simplify an interface is to reduce visual clutter [177]. As Cooper notes in About 

Face [56], if the spacing between consecutive elements is nearly the same size, make it the same. 

Additionally, if the font size of neighboring fonts is nearly the same size, make it the same [56]. 

These unnecessary variations are also related to the consistency principle, which recommends 

to make elements have a consistent style and appearance [126]. Alignments line up elements 

along common rows, columns or centers [126]. To ensure that Rewire’s vectorized designs do 

not violate these principles, Rewire adjusts shape sizes, positions, and properties (e.g., font size, 

line height), and produces a new set of shape sizes, positions, and properties that better follow 

these design principles. 

Rewire repairs alignment by correcting small misalignments (e.g., less than 2px) between 

the boundaries and centers of shapes or baselines for text objects. Rewire ensures simplicity 

& consistency by checking for distribution relationships (i.e., nearly uniform gaps between 

neighboring aligned elements) and making them uniform. Rewire also ensures simplicity & 

consistency by repairing small differences in font size, line height, and baseline of pairs of text 

objects. To make these repairs, Rewire formulates the problem as a constrained optimization 

problem, defined in Chapter 2, Section 2.2, with the following soft and hard constraints. 

Soft Constraints 

Rewire uses soft constraints to discourage small differences in the size, alignment, distribution, 

and text properties of objects. For every pair of non-text vector objects, Rewire checks whether 

the widths or heights of the bounding boxes match within a small threshold and if so, adds 

a constraint penalizing the difference in the relevant dimension. For every pair of non-text 

objects, Rewire penalizes small misalignments between the boundaries (top, bottom, left, right) 

and centers (horizontal, vertical) of the bounding boxes. Similarly, for every pair of text vector 



100 

objects, Rewire penalizes misalignments along the vertical center and baseline axis, but does 

not add constraints for the other boundaries because it only makes sense to align text boxes 

along their baselines. For text/non-text pairs, Rewire adds constraints to align the bottom of 

the bounding box of the non-text shape to the baseline of the text shape. 

In addition, for groups of three or more objects that are approximately aligned along the 

same axis, Rewire checks for potential distribution relationships between the shapes (i.e., when 

the gaps between adjacent shapes are nearly uniform) and if so, add constraints that penalize 

discrepancies. Finally, for every pair of text objects, Rewire penalizes small differences between 

the baseline, line height, and font size. The assumption is that the original designer manually 

aligned the shapes in the original design, so small misalignments have likely appeared due to 

small inaccuracies of the screenshot processing pipeline. Rewire uses a threshold of 2 pixels to 

determine when to apply the non-text (size, alignment, distribution) constraints and a 1 pixel 

threshold for the text constraints. 

Hard Constraints 

To prevent the optimization from introducing new artifacts or transforming objects too drastically, 

Rewire imposes two types of hard constraints. First, it sets a hard limit on how much any shape 

or text property can change during the optimization. Through experimentation, I found a 

threshold of 2 pixels to work well. Second, Rewire constrains every object to stay contained 

within the bounds of its parent object, if it has one. Unlike the soft constraints, these hard 

constraints are guaranteed not to conflict. 

Optimization 

Rewire combines these constraints into a cost function which tries to maximize the number of 

soft constraints satisfied and minimize the distance the movement of shapes from their original 

locations. Given the set of soft and hard constraints and the cost function, Rewire uses Z3 [57], 

described in Chapter 2, Section 2.2, to obtain a solution through the Z3Py library’s optimize 



101 

# Elements Rect. Circ. Line Text Other 

Mean 27.5 7.6 1.8 0.9 10.8 0.6 
Median 25.5 6 1 0 9.5 0 
Min 7 0 0 0 2 0 
Max 55 31 10 6 23 6 

Table 4.1: The summary statistics for the total and number of elements of each type per artboard 
included in Rewire’s technical evaluation dataset. 

solver, which enables solving using a cost function and weighted soft constraints. 

4.4 Technical Evaluation 

To evaluate the accuracy of Rewire’s screenshot processing pipeline, and to understand the 

challenges in of using Rewire in the wild, I collected a dataset of interface designs in the form 

of vector drawings, ran Rewire’s pipeline on screenshot images of each drawing, and compared 

the vectorized output from Rewire to the ground truth vector representation. Here, I describe 

my process for creating the evaluation dataset and the evaluation metrics I used to measure 

Rewire’s performance. 

4.4.1 Dataset 

To obtain a representative collection of user interface designs, I collected vectorized design 

documents from popular online design sharing galleries, including Dribbble 2 and DesignerMill 3. 

I restricted my search to Adobe XD design files so that I could view all the vectorized designs 

with a single tool. In addition, to keep the evaluation dataset self-consistent, I only considered 

mobile interface designs, which accounted for 39% of the design files. Finally, since Rewire 

is not yet designed to identify or segment natural images, I filtered out designs with large 

background images that cover more than 80% of the artboard. I also removed any documents 

that contained only UI kits, which are large collections of vectorized widgets that typically do 

2https://dribbble.com/ 
3https://www.designermill.com/ 



102 

not contain any interface designs. Using these rules, I downloaded (on June 20, 2017) a total 

of 88 XD files containing 203 mobile design artboards across 6 websites. 

While these designs were representative, they did not have the appropriate vector structure 

to use directly as ground truth. Many designs include vector icons or logos that consist of many 

grouped geometric objects. Since the primary goal of Rewire’s pipeline is to reconstruct whole 

interface elements rather than their visual parts, it did not make sense to treat individual objects 

within icon or logo groups as part of the ground truth vector representation. However, the 

naming and granularity of such groups was not consistent, which made it hard to automatically 

extract the ideal vector structure from each design. In addition, some designs included objects 

hidden behind other parts of the drawing. Such objects are likely artifacts of the design process 

designers left behind by accident. 

To resolve these issues, I randomly selected a single design artboard from each of the 31 

XD design files in the dataset and manually edited its vector structure. Specifically, I removed 

any hidden objects and created specially named groups for sets of geometric primitives that 

form icons or logos. In all cases, icons and logos were easy to identify, and Figure 4.8 shows 

some examples (e.g. flower, car). After cleanup, I ended up with an evaluation dataset of 31 

ground truth vectorized design artboards, with a median of 25 vector objects (see Table 4.1 for 

statistics). 

4.4.2 Evaluation Method 

For the evaluation, I compare Rewire’s Full Vector output to the ground truth images. I evaluate 

the accuracy of Smart-Snap or Wireframe modes in combination with Full Vector mode because 

they use the same object boundaries as the Full Vector output. I compute precision, recall, and 

f-score for two different evaluation metrics: type detection and property accuracy. 

For type detection, I first find corresponding shapes between the Rewire output and ground 

truth. To measure precision, I consider each Rewire object, compute the standard intersection-

over-union (IoU) score for all ground truth objects, and I select the one with the highest IoU as 

the match. If the types of the two matched objects are the same, I count a hit. Otherwise, I 



103 

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision Recall F-Score

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision Recall F-Score

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision Recall F-Score

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision Recall F-Score

31 Artboards31 Artboards

31 Artboards 24 Artboards

Text Types Text Properties

Geometry Types Geometry Properties

Figure 4.7: Histograms of Rewire’s f-score, precision, and accuracy on the dataset of real 
artboards collected from popular design sharing galleries. The height of each bar represents the 
amount of artboards at that accuracy level. 

count a miss. To measure recall, I perform the inverse procedure starting with each ground truth 

object. This metric describes the accuracy of Rewire’s segmentation and shape identification. 

To measure the property accuracy, I consider each matching pair of Rewire and ground truth 

objects that have the same type. I check if the objects overlap enough (90% for rectangles and 

circles, and any amount for lines and text), and for lines I check if they are colinear. For each 

pair that meets these requirements, test for matching property values using a 2 pixel threshold 

for pixel-based properties and the Delta-E metric [187] for color similarity with a threshold of 

1. I measure property accuracy as the number of properties within this threshold across the 

artboard, and I report these results for Text and Geometry (i.e., rectangles, circles, lines). 

■ ■ ■ ■ ■ ■ 

■ ■ ■ ■ ■ ■ 



104 

4.4.3 Results 

Figure 4.7 shows the distribution of precision, recall, and f-scores for Text and Geometry for the 

type detection and property accuracy metrics. The Text Types histogram shows Rewire is able to 

identify most text shapes, and for both Geometry and Text objects, Rewire is able to successfully 

extract most properties. For Text Properties, 27 out of 31 artboards have f-scores over 70%, and 

for Geometry Properties 17 out of 24 artboards have f-scores over 70% accuracy. Note that the 

Geometry Properties histogram does not include the 7 artboards where Rewire did not match 

any of the Geometry Types well enough to extract their properties. 

In general, type detection is harder than property extraction because it requires the initial 

segmentation to be correct. Moreover, identifying the type for Geometry objects is challenging 

for three key reasons. Natural images result in many extra segments, as shown by the low 

precision scores in the Geometry Types histogram. If I remove the 12 artboards with natural 

images from the evaluation dataset, 60% of the remaining artboards have Geometry Type 

f-scores above 50%. Additionally, small objects are sometimes mistaken for noise and filtered out 

by Rewire’s segmentation. For example, 11 artboards in the evaluation dataset have standard 

mobile header bars with small elements. Finally, many designs use alternate representations 

for interface elements. For example, designers sometimes use closed paths to draw rectangles 

and circles, while Rewire treats all geometric shapes as primitives. Layering relationships can 

also be ambiguous. For the designs in Figure 4.3, the grey background layer extends beneath 

the black header rectangle. Rewire extracts two adjacent rectangles. In many cases, Rewire’s 

output may be equivalent in terms of utility and editability. 

Extracting more accurate Geometry objects is the biggest opportunity for improvement in 

Rewire’s processing pipeline. As I discuss later, there are many directions for future work to 

address the current limitations. Yet, as I demonstrate in my user study of Rewire, extracting 

even a subset of the interface shapes in a screenshot can have practical benefits for design tasks. 



105 

(a) Original (b) Variations

(c) Design Specifications

√

√

Figure 4.8: The original screenshot (a), variations (b), and design specifications that designers 
recreated for the Rewire user study (c). 

4.5 User Study 

To understand more about the benefits and limitations of Rewire’s design assistance modes, I 

conducted a user study with 16 professional interface designers. I investigated the following 

research questions: 

RQ1: Do Rewire’s modes of design assistance improve the accuracy and efficiency of 

designers when creating a vector graphics design from an example screenshot? 

RQ2: What aspects of each design assistance mode do designers like and dislike? 

Peonies 
Loretn ipsum dolo . consectetur . r sit ameL 

adipiscmg el,t. 

Logl11 

Julia's Floral 
no Delvering the perfect 

wers for every occasion. 

v.1.rr.,....... .. 

Cont11ct Us 

RoadTnps 

. -
. 

-

LOGIN 
- I 

. 
Browse Trips 

- I 



106 

4.5.1 Participants 

For the study, I recruited 16 former or current user interface designers (6M, 9F) between the 

ages of 21 and 50, all of whom had at least one year of professional experience. All participants 

completed four design tasks over the course of 1 hour using a version of Adobe Experience 

Design (XD) augmented with Rewire’s design assistance modes, shown in Figure 4.1, running 

on a MacBook Pro (OSX Sierra). While nine participants had little or no previous exposure to 

XD, they used very similar vector design tools like Bohemian Sketch and Axure in their daily 

work. The other six designers had at least one year of experience using XD. 

4.5.2 Procedure 

To evaluate RQ1, I used a within-subjects design with four conditions. Each condition included 

one task in which I asked participants to produce a vector representation of all of the interface 

elements of an interface (see Figure 4.8). Rather than asking them to produce an exact vector 

replica of the screenshot, I made versions of the designs with different text (see Figure 4.8b) and 

gave them the target designs on paper. I also gave them printed task instructions for reference. 

To reduce the overall study time, I told the designers to use the default font for all text, even if it 

didn’t match the screenshot. However, I did ask them to match other text properties (e.g., color, 

size) to preserve the overall appearance and layout of the design. I did not want the designers to 

vectorize icons, such as the lighthouse shown in Figure 4.8 (a), as it could take too much time. 

Thus, I instructed designers to use screenshots for all icons. Within XD, I provided the input 

screenshot in one artboard and asked designers to create the new design in an adjacent artboard. 

To facilitate tracing, I also added the screenshot to the working artboard as a background layer 

at 30% opacity. I asked participants to complete the task as quickly and accurately as possible 

and gave them a time limit of seven minutes. 

In the Baseline condition, the designer used standard XD tools. In the Smart-Snap and Full 

Vector conditions, the designers used the corresponding design assistance modes provided by 

Rewire. Finally, I also measured the performance of an "idealized" version of Rewire by creating 



107 

an Ideal Vector condition that provided a perfect vector representation of the screenshot. In 

this last condition, designers only needed to edit the text. Figure 4.1 shows the XD experience 

for the Full Vector condition. Designers were able to edit the properties and layering of the 

auto-generated vectors. The Smart-Snap and Screenshot Only modes started with no shapes in 

the layers panel, while the Ideal Vector contained the fully vectorized set of shapes. 

I did not include the Wireframe mode as a test condition because, as noted earlier, designers 

described this mode as being most useful in communicating with clients. In addition, since 

designers often create wireframes at various levels of fidelity based on the situation, the 

appropriate target output for a wireframing task is not as well defined. 

Before performing any tasks, I asked designers to recreate a small screenshot as a warm-

up to familiarize themselves with the task instructions and baseline XD features. After the 

warm-up, participants performed the tasks under each condition. I fixed the task order and 

counterbalanced the order of conditions using a Latin square. Before each of the Rewire 

conditions (Smart-Snap and Full Vector), I described the relevant features of the design assistance 

modes and let the designers experiment with them on a small screenshot. 

To evaluate RQ2, designers completed an open-ended survey after each task about what 

they liked and disliked about each condition. Additionally, they ranked all conditions in terms 

of preference and described contexts in which they would find the different modes most useful. 

4.5.3 Materials 

Since the Rewire study design counterbalanced the four conditions across the four tasks, it 

was important for the tasks to be equivalent in difficulty. I based the four tasks on an example 

interface from the evaluation dataset of online designs. I chose a design with a small number of 

elements to make the tasks manageable (Figure 4.8a), and with an average f-score of Rewire 

performance of 47% which was around the median of results for segmentation from the technical 

evaluation dataset. 

Using this example as a reference, I then created three variations that had the same number 

and distribution of object types and rendered the corresponding screenshots (Figure 4.8b). 



108 

Finally, I verified that Rewire produced similar quality output for all four input images (e.g., the 

number of incorrect properties or misclassified objects is comparable). 

4.5.4 Analysis 

To measure accuracy, I exported each of the designer’s artboards to a screenshot and computed 

the pixel difference using the Delta-E metric [187]. I averaged this metric across all pixels for 

each screenshot, and I assigned each designer an error score. I selected this metric because I 

instructed designers to match the original designs as close visually as possible. I did not expect 

that they should or could recreate the exact shapes and structure of the original artboards. Thus, 

I manually verified that every participant created shapes as instructed. 

To analyze task durations, I first ran a repeated measures ANOVA to check for significant 

differences between the conditions. Then, I ran pairwise t-tests (i.e., paired two sample for 

means) across the six pairs of conditions. I then used the Holm-Bonferroni post-hoc method [89] 

to analyze the significance of the paired conditions and did not reject any null hypothesis where 

the p-value was greater than this metric. I report the adjusted p-values in the results. I calculated 

the effect sizes using Cohen’s d. 

4.5.5 Results 

I report the results and analyses by each research question. 

RQ1: Do Rewire’s modes of design assistance improve the accuracy and efficiency of designers 

when creating a vector graphics design from an example screenshot? 

Figure 4.9 shows a box-plot of the designers’ times to completion. For the Full Vector condition, 

I found that designers were able to complete the tasks 52 seconds on average faster than the 

Smart-Snap condition (t(11) = 3.26, p0 < 0.008, d=0.91), and 65 seconds faster than the 

Screenshot Only condition (t(11) = 4.32, p0 < 0.002, d=1.07). For Smart-Snap, designers 

completed the tasks 13 seconds faster than the Screenshot Only condition (t(11) = 2.20, p0 < 



109 

400

Ti
m

e 
(S

)

Ideal 
Vector

Full 
Vector

Smart-
Snap

 Scrn.
Only

300

200

100

Er
ro

r (
Px

 D
is

ta
nc

e)
Ideal 
Vector

Full 
Vector

Smart-
Snap

Scrn.
Only

50
10

5

100

Figure 4.9: The left shows a box-plot of the the designers’ task completion times for Rewire 
(Smart-Snap and Full Vector) and baseline (Ideal Vector and Screenshot Only) conditions. The 
right shows amount of error in the designers’ output, as measured by the average of pixel color 
distance. 

0.025, d=0.36). However, since they still had to recreate all of the shapes, the time savings 

were not as significant as the Full Vector condition. Additionally, since I stopped designers after 

7 minutes, Smart-Snap and Screenshot Only conditions had a significant ceiling effect. For the 

Full Vector condition, most participants completed the tasks within the allotted time. Thus, the 

differences may have been more dramatic had there been no ceiling effect. The Ideal Vector 

was 5.5 minutes faster than Smart-Snap (t(11) = 23.12, p0 < 2.81E-10, d=7.01), 4.67 minutes 

faster than Full Vector (t(11) = 13.20, p0 < 8.70E-08, d=1.07), and 5.7 minutes faster than 

Screenshot Only (t(11) = 28.13, p0 < 4.02E-11, d=8.22). This demonstrates that we can find 

significant time improvements by being able to produce a perfectly vectorized output, providing 

a strong motivation to improve the accuracy of Rewire’s Full Vector mode. 

Figure 4.9 shows box-plots of the designers’ error score, measured by the average pixel 

distance. This shows that Ideal Vector has the lowest inter-quartile range, followed by Full Vector. 

I found no significant differences between any of the pairs of conditions demonstrating that 

Rewire’s design assistance modes helped designers complete the tasks faster with no trade-offs 

in accuracy. 

L 



110 

0
1
2
3
4
5
6
7
8

1 (Most Preferred) 2 3 4 (Least Preferred)
Ideal Vector Full Vector Smart-Snap Scrn. Only

Figure 4.10: The designers’ overall rankings of design assistance mode from most to least 
preferred. 

RQ2: What aspects of each design assistance mode do designers like and dislike? 

Figure 4.10 shows the designers’ rankings of the design assistance modes from 1 (Most Preferred) 

to 4 (Least Preferred), showing that 10 designers prefer the Ideal Vector mode the most, followed 

by Smart-Snap. Smart-Snap was most consistently ranked second, followed by Rewire’s Full 

Vector mode. The factors that most affected designers’ rankings were perceived effort and time, 

which were mentioned by 10 designers. However, the Full Vector mode required more fixes by 

designers so they perceived it as less accurate and more work than the Smart-Snap mode. 

Designers’ favorite part of having the ideal vector template was that it was more accurate, 

and required less effort. Designers liked not having to redraw shapes or manually align them 

(9 designers). P10 mentioned "It was way easier! Now I can spend my time working on actual 

design." However, designers did not always think that they would want it in every scenario. P13 

said "It would be easier if I wanted to copy the exact screenshot. I usually change up colours, shapes, 

etc., so this wouldn’t be helpful in that case." 

The second most preferred mode was Rewire’s Smart-Snap. The designers’ favorite part 

Smart-Snap was that it made it easier and quicker to achieve a more accurate alignment (8 

■ ■ ■ ■ 



111 

designers). P8 said "I was able to get an idea of where exactly each element is properly placed with 

close to pixel perfect alignment." P5 said "The snapping guidelines are helpful and make for most 

accurate tracing of shapes - much better than doing them by hand." Five designers also mentioned 

Smart-Snap’s help in drawing and matching the correct size for rectangles and other shapes. 

P11 said "I really like the snapping guidelines because it takes the guesswork out of shape sizes and 

where items are on the page." 

Smart-Snap seemed especially helpful for drawing rectangles and placing icon shapes; 

however, it was less helpful for text. Snapping guidelines did not always appear in the correct 

place to help align new text boxes to the baselines of image text, so designers still had to align 

them manually. The snapping condition also did not help with matching any text or shape 

properties, so designers still found that part of the task to be challenging. Additionally, four 

designers mentioned that adding support for snapping to help obtain corner radii for rectangles 

would be useful. Currently, Smart-Snap only displays snapping guidelines for vertical and 

horizontal axes. 

Rewire’s Full Vector mode was most frequently ranked third. Designers mostly would not 

want to use it if the Ideal Vector mode was available, since there were shapes and text that 

required fixes in the vectorized output. However, designers did like Full Vector mode’s auto-

generated shapes and text (9 designers), and they felt that Full Vector mode required less effort 

overall than the Screenshot-Only mode (4 designers). P5 mentioned "It was a nice balance of 

providing elements and still allowing the user to make decisions." 

The most common dislike (6 designers) for Full Vector was having to manually fix issues in 

the auto-generated output. Rewire’s Full Vector mode was not perfect. It may have required 

more cognitive load to detect and find the issues. P10 said "It requires more brain computing to 

determine how much more needs to be done. I would prefer to have it draw only the objects it is 

most confident about." P1 said "The fact that objects were not created accurately requires me to 

go through the auto-generated objects to make sure they are up to spec." Despite some designers’ 

dislike of the fixes required in this mode, three designers mentioned it was easier to make these 

fixes than recreating from scratch. 



112 

Text shapes confused some designers because Rewire generates masked vector shapes instead 

of editable text boxes when it cannot detect text. We instructed them of this behavior in the 

warm-up, but several designers found this behavior confusing, and they tried to edit the text 

before realizing Rewire had not generated the text box. Also, four designers mentioned it was 

difficult to distinguish Rewire’s vector shapes from newly drawn shapes, despite the Rewire 

Highlights panel. Rewire’s vector shapes are currently indistinguishable from hand-drawn 

shapes in the XD canvas. Thus it is difficult for designers to check them for accuracy. One 

designer suggested adding an indicator to distinguish them in the layers panel. 

As Figure 4.10 shows, the Screenshot-Only mode was most commonly ranked last. None of 

the designers preferred it most. The designers most common dislike was the lack of precision 

and accuracy (7 designers). Designers mentioned needing to use more strategies (e.g, zooming, 

eyeballing, using guides) to ensure accurate alignment of shapes to the image, and they disliked 

the precision in their output. Seven designers felt the task was more difficult, more work, and 

more tedious than other modes. However, designers liked having more control and freedom 

with this mode. Five designers mentioned having more trust in its accuracy since it is their 

current method. 

After ranking the modes, we had the designers describe scenarios in which they might find 

each mode most useful. For Smart-Snap, the designers thought it would be most useful for 

tracing and getting exact alignment (P12, P13) and when creating new shapes similar in size or 

layout to the screenshot but with different designs (P5, P13). They also thought it would provide 

more control than the other modes. Designers thought the Ideal Vector and Full Vector modes 

would be most useful for situations where the original assets were lost (P9, P13), having to 

match an interface or existing design language (P2, P3, P8), or in making quick mockups based 

an existing interface. However, accuracy was also important (P7, P11, P14). Designers felt 

that they would need to build trust in the auto-vectorized mode before integrating it into their 

design process. Screenshot-Only was only mentioned as useful when creating quick mockups if 

the designers did not care about accuracy or wanted a more loose recreation (P2, P8). 



113 

4.6 Discussion & Conclusion 

In this chapter, I presented Rewire, a system that automatically infers a semantic vector-based 

representation of interface shapes from a pixel-based input screenshot. Rewire provides new 

forms of design assistance to ease the adaptation of example screenshots directly in designs. If 

designers can save time in their prototyping from recreating interface elements, they would 

potentially have more time to consider alternative designs, which would lead them to better 

final products [65]. I believe that systems like Rewire can enable researchers to explore new 

forms of intelligent design assistance enabling new possibilities in user interface design. 

Rewire presents new tools for creating user interface designs based on example images. I see 

this work as an initial exploration of intelligent design assistance, and I see many opportunities 

to develop more sophisticated tools in the future. One area that could be explored is additional 

forms of design assistance. While evaluating Rewire, I discovered that interface design doc-

uments frequently contain complex hierarchies and shapes with ambiguous representations. 

Rewire could infer multiple hierarchies and shape types and allow the designer to select from 

these candidate representations. Also, because achieving a perfect vectorization is difficult and 

designers may have different preferences for the vectorized output that should be produced, 

Rewire could be a user-in-the-loop system where designers can repair the vectorized output 

while training Rewire to improve its accuracy. 

Additionally, deep learning could be used to improve the accuracy of Rewire’s vectorization 

pipeline. The pix2code system [35] presents a convolutional and recurrent neural network 

to infer interface code from screenshot images. The network represents the desired structure 

via a constrained domain-specific language (DSL) that encodes simple geometric relationships 

between a fixed set of UI components in addition to a small set of style properties, like color. Yet, 

this DSL is not designed to handle the much broader range of component types, appearances 

and arrangements that arise in many example screenshots. While adapting this network to 

output the type of structured representation that Rewire requires is an interesting direction for 

future work, the pix2code approach in its current form is not directly applicable to our problem. 

Training an end-to-end network would likely require either a lot of training data (e.g., collected 



114 

from online galleries and cleaned) or using data augmentation. Another option is to fine tune a 

pre-trained segmentation network (e.g., [29]) to handle interface screenshots. 

Another area for future work would be to explore better detection of natural images from 

interface shapes. To do this, researchers could potentially train a network to distinguish 

these segments. Also, small interface shapes elements frequently get filtered by Rewire’s 

segmentation algorithms, thus an area of exploration could be to improve these low-level 

techniques. Researchers could also explore an extension of Prefab’s models [64] to discover 

more properties of shapes like shadows and gradients. 

Finally, it is possible that tools like Rewire may unintentionally facilitate unsanctioned 

copying. My formative work suggests that the tasks Rewire supports (e.g., creating derived 

designs, recreating vector designs when original assets are lost) are common practice in the 

design community and not viewed as "stealing". However, researchers and practitioners should 

consider the ethical implications of tools like Rewire when adopting them into their practices. 

4.7 Contributions 

This work was published at CHI 2018 as Rewire: Interface Design Assistance from Examples 

[198] with co-authors from Adobe Research Mira Dontcheva, Wilmot Li, Morgan Dixon, and Joel 

Brandt. Amy Ko is also a co-author on this paper. I developed the initial ideas with Joel Brandt, 

Mira Dontcheva, and Morgan Dixon. All co-authors provided valuable feedback and ideas 

towards this project throughout the implementation, evaluation, and paper writing. I built the 

Rewire system and add-ins into the Adobe XD codebase through collaboration with the XD team 

at Adobe. I conducted the exploratory evaluation before beginning the implementation of Rewire 

and the full evaluations with 16 UX designers after completing the project. I completed the 

majority of the work during two internships at Adobe Research. You can watch the demo video 

of Rewire at http://doi.acm.org/10.1145/3173574.3174078 under "Source Materials". 



115 

Chapter 5 

Modeling Mobile Interface Tappability 

Designers conduct usability testing in the latter stages of the design process to discover 

problems in their interfaces. Designers can conduct these studies at various fidelity levels, from 

paper prototypes to full interface implementations. A recent trend in usability testing is to 

conduct large crowdsourced studies where designers deploy their designs to online services 

(e.g., Mechanical Turk, 5 Second Test1) and have crowd workers annotate them with interaction 

data or provide brief impressions. One such study is a tappability study or a visual affordance test, 

that can help designers understand whether their users will perceive the right set of tappable 

elements in a mobile app design. Designers can conduct such a study in a lab where they have 

users label tappable and not tappable elements on paper, or their users can label them digitally 

through a crowdsourcing website. Such a study can help designers understand and prevent 

tappability issues, which can lead to user frustration and error. 

Tapping is arguably the most important gesture on mobile interfaces. Yet, it can still be 

difficult for people to distinguish tappable and not-tappable elements in a mobile interface. In 

1https://fivesecondtest.com/ 



116 

traditional desktop GUIs, the style of clickable elements (e.g., buttons) are often conventionally 

defined. However, with the diverse styles of mobile interfaces, tappability has become a 

crucial usability issue. Poor tappability can lead to a lack of discoverability [162] and false 

affordances [75] that can lead to user frustration, uncertainty, and errors [3,7]. 

Designers can use properties like color or depth to signify "clickability" [3] or "tappability" 

in mobile interfaces. In Chapter 2, Section 2.1, I review common signifiers [162] which can 

indicate to a user if an interface element is tappable. To design for tappability, designers can 

apply existing design clickability guidelines [3]. These are important and can cover typical 

cases, however, it is not always clear when to apply them. Frequently, mobile app developers 

are not equipped with such knowledge. Additionally, designers frequently introduce new design 

patterns and interface elements in modern platforms for mobile apps. Designing these to include 

appropriate tappability signifiers is challenging. Furthermore, mobile interfaces cannot utilize 

some clickability signifiers available in desktop interfaces (e.g., hover states). 

When designers are introducing new design elements and patterns, conducting a tappability 

study can be highly useful to ensure their users have the correct perception of tappability. 

However, it is time-consuming and expensive to conduct such studies. In addition, the findings 

from these studies are often limited to a specific app, interface design, or design library. In this 

work, I seek to understand how we can help designers understand tappability signifiers at a 

large scale across a diverse array of interface designs. For example, I found that despite the 

existence of tappability guidelines, there is a significant amount of tappability misperception in 

real mobile interfaces. Another goal of this work is to build tools to help designers diagnose 

tappability issues in new apps automatically without needing to conduct a usability study. This 

can help designers avoid the time and expense for conducting such studies, and it can enable 

them to diagnose tappability issues early in the design process and understand the effects of 

small design changes on tappability perception. 

In this work, I present an approach for modeling interface tappability at scale. In addition 

to acquiring a deeper understanding about tappability, I develop tools that can automatically 

identify tappability issues in a mobile app interface (see Figure 5.1). I trained a deep learn-



117 

Crowd  
Workers

New Apps

Data Collection  
Interface

TapShoe

Mismatched 
Elements

ProbabilityMobile UI 
Corpus

———

———

———

Model

Labeled 
Screens

PredictionsTrain

Requests 82%

Figure 5.1: Our deep model learns from a large-scale dataset of mobile tappability collected via 
crowdsourcing. It predicts tappability of interface elements and identifies mismatches between 
designer intention and user perception, and is served in the TapShoe tool that can help designers 
and developers to uncover potential usability issues about their mobile interfaces. 

ing model based on a large dataset of labeled tappability of mobile interfaces collected via 

crowdsourcing. The dataset includes more than 20,000 examples from more than 3,000 mobile 

screens. The tappability model achieved reasonable accuracy with mean precision 90.2% and 

recall 87.0% on identifying tappable elements as perceived by humans. To showcase a potential 

use of the model, I built TapShoe, a web interface that diagnoses mismatches between the 

human perception of the tappability of an interface element and its actual state in the interface 

code. I conducted informal interviews with 7 professional interface designers who were positive 

about the TapShoe interface, and could envision intriguing uses of the tappability model in 

realistic design situations. The contributions of this chapter include the following: 

1. An approach for understanding interface tappability at scale using crowdsourcing and 

computational signifier analysis, and a set of findings about mobile tappability; 

2. A deep neural network model that learns human perceived tappability of interface elements 

from a range of interface features, including the spatial, semantic and visual aspects of an 

interface element and its screen, and an in-depth analysis about the model behavior; 

3. An interactive system that uses the model to examine a mobile interface by automatically 

scanning the tappability of each element on the interface, and identifies mismatches with 

their intended tappable behavior. 

5.1 Understanding Tappability at Scale 

A common type of usability testing is a tappability study or a visual affordance test [12]. In these 

studies, designers have crowd workers or lab participants label interfaces for which elements 

®·····► 
I 

' I ' .. 
j..·•·· 
I 
I 

' I ·--~-:::..~-



118 

Figure 5.2: The interface that workers used to label the tappability of UI elements via crowd-
sourcing. It displays a mobile interface screen with interactive hotspots that can be clicked to 
label an element as either tappable or not tappable. 

they think are tappable and not tappable digitally or on paper. Based on this data, designers can 

construct heatmaps to visualize where users would tap in the app being tested. These studies 

can help designers discover which elements have missing or false tappability signifiers. However, 

in general, there is a lack of a dataset and deep understanding about interface tappability 

across diverse mobile apps. Having such a dataset and knowledge is required for researchers to 

develop automated techniques to help designers diagnose tappability issues in their interfaces. 

5.1.1 Crowdsourcing Data Collection 

I designed a crowdsourcing task to simulate a tappability study across a large corpus of Android 

mobile apps [59], using the interface shown in Figure 5.2. The left side of the interface displayed 

a mobile app screenshot. The right side of the task interface displayed instructions for the task 

and an explanation about what was meant by tappable and not tappable. For tappable elements, 

an o "'- • flnl:il :.11 41 10 • ;:, , 11 

,_ tl,11 \'II I 11-, - I 

--
-

For the screen shot on the left, indicate whether each interface target is lappable or not tappable. 

Hover your mouse over the screens hot to see the targets. 

For each target, select whether you believe it is tappable or not tappable. 

Tappable means that when it is tapped on in a mobile app, an action will happen. 

Not tappable means that when you tap it, no action will happen. 

Click once to mark the element as tappable. 

Click twice to mark the element as not tappable. 

Click again to unselect the element. 

■ Not tappable 

■ Tappable 

To submit, you need to select each element. You have O targets left. -



119 

it was "When you tap this in a mobile interface, an action will happen", and for not tappable, the 

explanation was "When you tap on it, no action will happen". 

To collect the tappability dataset, I selected a set of 3,470 unique, randomly chosen screens 

from the Rico dataset [59], and I had crowd workers label elements randomly sampled from 

these screens as either tappable or not tappable. I built a web interface that selected the 

elements for the workers to label in the following manner. Each UI screen in the Rico dataset has 

an Android view hierarchy—JSON tree structure of all of the interface elements on the screen, 

similar to a DOM tree for a web interface. Each element in the hierarchy has a clickable 

property that marks whether an element will respond to a tapping event. For each screen, the 

labeling interface selected up to five unique clickable and non-clickable elements. When 

selecting clickable elements, starting from a leaf element, the web interface selects the top-

most clickable element in the hierarchy for labeling. When a clickable element contains a 

sub-tree of elements, these elements are typically presented as a single interface element to the 

user, which is more appropriate for the worker to label as a whole. When the web interface 

selects a clickable container (e.g., ViewGroup), it does not select any of its child elements thus 

preventing any duplicate counting or labeling. The web interface does not select elements in 

the status bar or navigation bar as they are standard across most screens in the dataset. 

To perform a labeling task, a crowd worker hovers their mouse over the interface screenshot, 

and the labeling interface displays grey hotspots over the interface elements pre-selected based 

on the above process. Workers click on each hotspot to toggle the label as either tappable or 

not tappable, which are colored in green and red, respectively. The labeling interface asked 

each worker to label around six elements for each screen. Depending on the screen complexity, 

the amount of elements could vary. The labeling interface randomized the elements as well as 

the order to be labeled across each worker. 

5.1.2 Results 

I collected 20,174 unique interface elements from 3,470 app screens using the tappability 

labeling interface (Figure 5.2). These elements were labeled by 743 unique workers in two 



120 

Positive Class #Elements Precision Recall 

clickable=True 
clickable=False 

6,101 
3,631 

79.81% 
78.56% 

89.07% 
61.75% 

clickable=True 
clickable=False 

6,560 
3,882 

79.55% 
78.30% 

90.02% 
60.90%R

2 
R

1
A

ll clickable=True 12,661 79.67% 89.99% 
clickable=False 7,513 78.43% 61.31% 

Table 5.1: The number of elements labeled by the crowd workers in two rounds, along the 
precision and recall of human workers in perceiving the actual clickable state of an element as 
specified in the view hierarchy metadata. 

rounds where each round involved different sets of workers (see Table 5.1). Each worker could 

complete up to 8 tasks. On average, each worker completed 4.67 tasks. Of these elements, 

12,661 of them are indeed tappable (i.e., the view hierarchy attribute clickable=true), and 

7,513 of them are not. 

How well can human users perceive the actual clickable state of an element as specified by developers 

or designers? 

To answer this question, I treat the clickable value of an element in the view hierarchy as 

the actual value and human labels as the predicted value for a precision and recall analysis. 

In this dataset of real mobile app screens, there were still many false signifiers for tappability 

potentially causing workers to misidentify tappable and not-tappable elements (see Table 5.1). 

The workers labeled non-clickable elements as tappable 39% of time. While the workers were 

significantly more precise in labeling clickable elements, workers still marked clickable elements 

as not tappable 10% of the time. The results were quite consistent across two rounds of data 

collection involving different workers and interface screens. These results further confirmed 

that tappability is an important usability issue worth investigation. 



121 

0 500 1000 1500 2000 2500 3000 3500 4000

Other 
ListView 

RadioButton 
EditText 

Button 
TextView 

CheckBox 
ImageView 

ImageButton 
ViewGroup

0 1000 2000 3000 4000 5000

Other 
TextView 

ImageView 
View 

ViewGroup

Correct 
Incorrect

Tappable

Not Tappable

Figure 5.3: The number of tappable and not-tappable elements in several type categories with 
the bars colored by the relative amounts of correct and incorrect labels. 

5.1.3 Signifier Analysis 

To understand how users perceive tappability, I analyzed the potential signifiers affecting 

tappability in real mobile apps. These findings can help us understand human perception of 

tappability and help develop features to build machine learning models to predict tappability. I 

investigated several visual and non-visual features based on previous understandings of common 

visual signifiers [2,3,11] and through exploration of the characteristics of the dataset. 

Element Type 

Several element types have conventions for visual appearance, thus users would consistently 

perceive them as tappable [160] (e.g., buttons). I examined how accurately workers label each 

interface element type from a subset of Android class types in the Rico dataset [59]. Figure 5.3 

shows the distribution of tappable and not-tappable elements by type labeled by human workers. 

Common tappable interface elements like Button and Checkbox appeared more frequently in 

the set of tappable elements. For each element type, I computed the accuracy by comparing 



122 

0   50  100 150 200 250 300 350
x

0

100

200

300

400

500

600

y

x

0

100

200

300

400

500

600

y
0   50  100 150 200 250 300 350

Tappable Not Tappable

Figure 5.4: Heatmaps displaying the accuracy of tappable and not tappable elements by location 
where warmer colors represent areas of higher accuracy. Workers labeled not-tappable elements 
more accurately towards the upper center of the interface and tappable elements towards the 
bottom center of the interface. 

the worker labels to the view hierarchy clickable values. For tappable elements, the workers 

achieved high accuracy for most types. For not-tappable elements, the two most common 

types, TextView and ImageView, had low accuracy of only 67% and 45%, respectively. These 

interface types allow more flexibility in design than standard element types (e.g., RadioButton). 

Unconventional styles may make an element more prone to ambiguity in tappability. 

Location 

I hypothesized that an element’s location on the screen may have influenced the accuracy 

of workers in labeling its tappability. Figure 5.4 displays a heatmap of the accuracy of the 

workers’ labels by location. I created the heatmap by computing the accuracy per pixel, using 

the clickable attribute, across the 20,174 labeled elements I collected using the bounding 

box of each element. Warm colors represent higher accuracy values. For tappable elements, 

workers were more accurate towards the bottom of the screen than the center top area. Placing 

a not-tappable element in these areas might confuse people. For tappable elements, there 



123 

Not Tappable

Tappable

Figure 5.5: The aggregated RGB pixel colors of tappable and not-tappable elements clustered 
into the 10 most prominent colors using K-Means clustering. 

are two spots at the top region of high accuracy. I speculate that this is because these spots 

are where apps tend to place their Back and Forward buttons. For not-tappable elements, the 

workers were less accurate towards the screen bottom and highly accurate in the app header 

bar area with a corresponding area of low accuracy for tappable elements. This area is not 

tappable in many apps, so people may not realize any element placed there is tappable. 

Size 

There was only a small difference in average size between labeled tappable and not-tappable 

elements. However, tappable elements labeled as not tappable were 1.9 times larger than 

tappable elements labeled as tappable indicating that elements with large sizes were more 

often seen as not tappable. Examining specific element types can reveal possible insights into 

why the workers may have labeled larger elements as not tappable. TextView elements tend 

to display labels but can also be tappable elements. From design recommendations, tappable 

elements should be labeled with short, actionable phrases [208]. The text labels of not-tappable 

TextView elements have an average and median size of 1.48 and 1.55 times larger respectively 

than those of tappable TextView elements. This gives us a hint that TextView elements may be 

following these recommendations. For ImageView elements, the average and median size for 

not-tappable elements were 2.39 and 3.58 times larger than for tappable elements. People may 

believe larger ImageView elements, typically displaying images, to be less likely tappable than 

smaller ImageView elements. 



124 

Color 

Based on design recommendations [3], color can also be used to signify tappability. Figure 

5.5 displays the top 10 dominant colors in each class of labeled tappable and not-tappable 

elements, which are computed using K-Means clustering. The dominant colors for each class 

do not necessarily denote the same set. The brighter colors such as blue and red have more 

presence (i.e., wider bars) in the pixel clusters for tappable elements than those for not-tappable 

ones. In contrast, not-tappable elements have more grey and white colors. I computed these 

clusters across the image pixels for 12 thousand tappable and 7 thousand not-tappable elements 

and scaled them by the proportion of elements in each set. These differences indicate that color 

is likely a useful distinguishing factor. 

Words 

As not-tappable textual elements are often used to convey information, the number of words 

in these elements tend to be large. The mean number of words per element, based on the 

log-transformed word count in each element, was 1.84 times greater for not-tappable elements 

(Mean: 2.62, Median: 2) than tappable ones (Mean: 1.42, Median: 1). Additionally, the 

semantic content of an element’s label may be a distinguishing factor based on design recom-

mendations [208]. I hypothesized that tappable elements would contain keywords indicating 

tappability (e.g., "Login"). To test this, I examined the top five keywords of tappable and 

not-tappable elements using TF-IDF analysis, with the set of words in all the tappable and 

not-tappable elements as two individual documents. The top 2 keywords extracted for tappable 

elements were "submit" and "close", which are common signifiers of actions. However, the 

remaining keywords for tappable elements (i.e., "brown", "grace" and "beauty"), and the top 

five keywords for not-tappable elements (i.e., "wall", "accordance", "recently", "computer" and 

"trying") do not appear to be actionable signifiers. 



125 

5.2 Model Architecture 

Because it is expensive and time consuming to conduct user studies, it is desirable to develop 

automated techniques to examine the tappability of mobile interfaces. Although we can use the 

signifiers previously discussed as heuristics for this purpose, it would be difficult to manually 

combine them appropriately. It is also challenging to capture factors that are not obvious or hard 

to articulate. As such, I employed a deep learning approach to address the problem. Overall, 

our model is a feedforward neural network with a deep architecture (multiple hidden layers). 

It takes a concatenation of a range of features about the element and its screen and outputs a 

probability of how likely a human user would perceive an interface element as tappable. 

5.2.1 Feature Encoding 

Our model takes as input several features collected from the view hierarchy metadata and the 

screenshot pixel data of an interface. For each element under examination, our features include 

1) semantics and functionality of the element, 2) the visual appearance of the element and the 

screen, and 3) the spatial context of the element on the screen. 

Semantic Features 

The length and the semantics of an element’s text content are both potential tappability signifiers. 

For each element, the model scans the text using OCR. To represent the semantics of the text, the 

model uses a word embedding that is a standard way of mapping word tokens into a continuous 

dense vector that can be fed into a deep learning model. The model encodes each word token 

in an element as a 50-dimensional vector representation that is pre-learned from a Wikipedia 

corpus [171]. When an element contains multiple words, the model treats them as a bag of 

words and apply max pooling to their embedding vectors to acquire a single 50-dimensional 

vector as the semantic representation of the element. The model also encodes the number of 

word tokens each element contains as a scalar value normalized by an exponential function. 



126 

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Convolutional

Element Pixels Screen Pixels

VisualSpatial

BOW 
Embedding & 
Word Count

Semantic

Bounding 
Box

Fully Connected

Fully Connected

Tap (1,0), Tap 
Probability

Type & 
Intended 

Clickability

Figure 5.6: A deep neural network model for predicting tappability, leveraging semantic, spatial 
and visual features. The model produces a prediction and continuous probability of an interface 
element being perceived as tappable. 

Type Features 

There are many standard element types that users have learned over time (e.g., buttons and 

checkboxes) [160]. However, new element types are frequently introduced (e.g., floating 

action button). Our model includes an element type feature as an indicator of the element’s 

semantics. This feature allows the model to potentially account for these learned conventions 

as a users’ background plays an important role in their decision. To encode the Type feature, 

the model includes a set of the 22 most common interface element types (e.g. TextView, Button) 

represented as a 22-dimensional categorical feature. For training, the model collapses the vector 

into a 6-dimensional embedding vector for training, which provides better performance over 

sparse input. Each type comes with a built-in or specified clickable attribute that is encoded as 

either 0 or 1. 

I I I I I I 
L ________ J L ________ J L ________ J 

I ,______________~ ~------.--------

□ .-------------J .-------------J 

□ l=============J 



127 

Visual Features 

As previously discussed, visual design signifiers such as color distribution can help distinguish 

an element’s tappability. It is difficult to articulate the visual perception that might come into 

play and realize it as an executable rule. As a result, the model feeds an element’s raw pixel 

values and the screen to which the element belongs to the network, through convolutional 

layers—a popular method for image processing. The model resizes the pixels of each element 

and formats them as a 3D matrix in the shape of 32x32x3 where the height and width are 32, 

and 3 is the number of RGB channels. Contextual factors on the screen may affect the human’s 

perception of tappability. To capture the context, the model resizes and formats the entire 

screen as another visual feature. This manifests as a 3D matrix in the shape of 300x168x3 and 

preserves the original aspect ratio. As I will discuss later, a screen contains useful information 

for predicting an element’s tappability even though such information is not easy to articulate. 

Spatial Features 

As location and size can be signifiers of tappability, we include them as features. The model 

captures the element’s bounding box as four scalar values: x, y, width, and height. The model 

scales each of these values to the range of 0 and 1 by normalizing them using the screen width 

and height. 

5.2.2 Model Architecture & Learning 

Figure 5.6 illustrates our model architecture. To process the element and screenshot pixels, 

our network has three convolutional layers with ReLU [151] activation. Each convolutional 

layer applies a series of 8 3x3 filters to the image to help the model progressively create a 

feature map. Each convolutional layer is followed by a 2x2 max pooling layer to reduce the 

dimensionality of the image data for processing. Finally, the output of the image layers is 

concatenated with the rest of the features into a series of two fully connected 100-dimensional 

dense layers using ReLU [151] as the activation function. The output layer produces a binary 



128 

classification of an element’s tappability using a sigmoid activation function to transform the 

output into probabilities from zero to one. The probability indicates how likely the user would 

perceive the element as tappable. I trained the model by minimizing the sigmoid cross-entropy 

loss between the predicted values and the binary human labels on tappability of each element 

in the training data. For loss minimization, the model uses the Ada adaptive gradient descent 

optimizer with a learning rate of 0.01 and a batch size of 64. To avoid model overfitting, the 

model applies a dropout ratio of 40% to each fully connected layer to regularize the learning. I 

built our model using Tensorflow [23] in Python and trained it on a Tesla V100 GPU. 

5.2.3 Model Performance Results 

I evaluated our model using 10-fold cross validation with the crowdsourced dataset. In each 

fold, I used 90% of the data for training and 10% for validation. I trained our model for 100,000 

iterations. Similar to an information retrieval task, I examine how well our model can correctly 

retrieve elements that users would perceive as tappable. I select an optimal threshold based 

on Precision-Recall AUC. Our model achieved a mean precision and recall, across the 10 folds 

of the experiment, of 90.2% (SD: 0.3%) and 87.0% (SD: 1.6%). To understand what these 

numbers imply, I analyzed how well the clickable attribute in the view hierarchy predicts 

user tappability perception: precision 89.9% (SD: 0.6%) and recall 79.6% (SD: 0.8%). While 

our model has a minor improvement on precision, it outperforms the clickable attribute on 

recall considerably by over 7%. 

Although identifying not-tappable elements is less important in real scenarios, to better 

understand the model, I report the performance with not-tappable elements as the target class. 

Our model achieved a mean precision 70% (SD: 2%) and recall 78% (SD: 3%), which improves 

precision by 9%, with a similar recall, over the clickable attribute (precision 61%, SD: 1% 

and recall 78%, SD: 2%). One potential reason that not-tappable elements have a relatively 

low accuracy is that they tend to be more diverse, leading to more variance in the data. 

In addition, the original dataset had an uneven number of tappable and not-tappable 

elements (14,301 versus 5,871), likely causing our model to achieve higher precision and 



129 

Predicted 
Tappable 

Predicted 
Not Tappable 

Actually Tappable 1195 260 
Actually Not Tappable 235 1170 

Table 5.2: A confusion matrix for the balanced dataset, averaged across the 10 cross-validation 
experiments. 

recall for tappable elements than not-tappable ones. Therefore I created a balanced dataset by 

upsampling the minority class (i.e., not-tappable). On the balanced dataset, our model achieved 

a mean precision and recall of 82% and 84% for identifying tappable elements, and a mean 

precision and recall of 81% and 86% for not-tappable elements. Table 5.2 shows the confusion 

matrix for the balanced dataset. Compared to using view hierarchy clickable attribute alone, 

which achieved mean precision 79% and recall 80% for predicting tappable elements, and 

79% and 78% for not-tappable ones, our model is consistently more accurate across all the 

metrics. These performance improvements show that our model can effectively help developers 

or designers identify tappability misperceptions in their mobile interfaces. 

5.3 Human Consistency & Model Behaviors 

We speculated that the model did not achieve even higher accuracy because human perception 

of tappability can be inherently inconsistent as people have their own experience in using and 

learning different sets of mobile apps. This can make it challenging for the model to achieve 

perfect accuracy. To examine this hypothesis, I collected another dataset via crowdsourcing 

using the same interface as shown in Figure 5.2. I selected 334 screens from the Rico dataset, 

which I did not select in previous rounds of data collection. I recruited 290 workers to perform 

the same task of marking each selected element as either tappable or not tappable. However, 

each element was labeled by 5 different workers to enable examining how much these workers 

agree on the tappability of an element. In total, there were 2,000 unique interface elements 

and each was labeled 5 times. In total, 1,163 elements (58%) were entirely consistent among 

all 5 workers which include both tappable and not-tappable elements. I report two metrics to 

analyze the consistency of the data statistically. The first is in terms of an agreement score [214] 



130 

that I compute using the following formula: 

P P � �2|Ri |
|Re|

e∈E r∈RA = × 100% (5.1)
|E| 

Here, e is an element in the set of all interface elements E that were rated by the workers, 

Re is the set of ratings for an interface element e, and Ri is the set of ratings in a single category 

(0: not tappable, 1: tappable). I also report the consistency of the data using Fleiss’ Kappa [72], 

a standard inter-rater reliability measure for the agreement between a fixed number of raters 

assigning categorical ratings to items. This measure is useful because it computes the degree 

of agreement over what would be expected by chance. As there are only two categories, 

the agreement by chance is high. The overall agreement score across all the elements using 

Equation 5.1 is 0.8343. The number of raters is 5 for each element on a screen, and across 334 

screens, resulting in an overall Fleiss’ Kappa value of 0.520 (SD=0.597, 95% CI [0.575,0.618], 

P=0). This corresponds to a "Moderate" level agreement according to [116]. What these results 

demonstrate is that while there is a significant amount of consistency in the data, there still exists 

a certain level of disagreement on what elements are tappable versus not tappable. Particularly, 

consistency varies across element Type categories. For example, View and ImageView elements 

were labeled far less consistently (0.52, 0.63) than commonplace tappable element types such 

as Button (94%), Toolbar (100%), and CheckBox (95%). View and ImageView elements have 

more flexibility in design, which may lead to more disagreement. 

To understand how the model predicts elements with ambiguous tappability, I test the 

trained model on this new dataset. The model matches the uncertainty in human perception 

of tappability surprisingly well (see Figure 5.7). When workers are consistent on an element’s 

tappability (two ends on the X axis), the model tends to give a more definite answer—a 

probability close to 1 for tappable and close to 0 for not tappable. When workers are less 

consistent on an element (towards the middle of the X axis), the model predicts a probability 

closer to 0.5. 



131 

All Agree  
Not Tappable

4/5 Agree  
Not Tappable

3/5 Agree  
Not Tappable

3/5 Agree 
Tappable

4/5 Agree 
Tappable

All Agree 
Tappable

Predicted 
Not Tappable

0.2

0.4

0.6

0.8

Predicted 
Tappable

Figure 5.7: The scatterplot of the tappability probability output by the model (Y axis) versus 
the consistency in the human worker labels (X axis) for each element in the consistency dataset. 

5.3.1 Usefulness of Individual Features 

One motivation to use deep learning is to alleviate the need for extensive feature engineering. 

Recall that we feed the entire screenshot of an interface to the model to capture contextual 

factors affecting the user’s decision that can not be easily articulated. Without the screenshot 

pixels as input, there is a noticeable drop in precision and recall for tappable of 3% and 1%, 

and for not-tappable, an 8% drop in precision but no change in recall. This indicates that there 

is useful contextual information in the screenshot affecting the users’ decisions on tappability. I 

also examined removing the Type feature from the model, and found a slight drop in precision 

about 1% but no change in recall for identifying tappable elements. The performance change 

is similar for the not-tappable case with 1.8% drop in precision and no drop in recall. We 

speculate that removing the Type feature only caused a minor impact likely because the model 

has captured some of element type information through its pixels. 



132 

Figure 5.8: The TapShoe interface. An app designer drag and drops a UI screen on the left. 
TapShoe highlights interface elements whose predicted tappability is different from its actual 
tappable state as specified in its view hierarchy. 

5.4 Interface 

I created a web interface for our tappability model called TapShoe (see Figure 5.8). The interface 

is a proof-of-concept tool to help app designers and developers examine their UI’s tappability. I 

describe the TapShoe interface from the perspective of an app designer, Zoey, who is designing 

an app for deal shopping, shown in the right hand side of Figure 5.8. Zoey has redesigned some 

icons to be more colorful on the home page links for "Coupons", "Store Locator", and "Shopping". 

Zoey wants to understand how the changes she has made would affect the users’ perception of 

which elements in her app are tappable. First, Zoey uploads a screenshot image along its view 

hierarchy for her app by dragging and dropping them into the left hand side of the TapShoe 

interface. Once Zoey drops her screenshot and view hierarchy, TapShoe analyzes her interface 

elements and returns a tappable or not-tappable prediction for each element. The TapShoe 

interface highlights the interface elements with a tappable state, as specified by Zoey in the 

view hierarchy, that does not match up with user perception as predicted by the model. 

Zoey sees that the TapShoe interface highlighted the three colorful icons she redesigned. 

These icons were not tappable in her app but TapShoe predicted that the users would perceive 

them as tappable. She examines the probability scores for each element by clicking on the green 

hotspots on the screenshot to see informational tooltips. She adjusts the sensitivity slider to 

TapShOe 

Display Options ~ sitirity 10 ■ T1npablc .,. Not T11pp11t lc ■ NotTappable·,.Topp11t~ 

Tappabillty Results 

TapShoe found 1 m ismatched elemP.nts 

Click an e lermml Lo lhe lell lo see furlhe r 
details 

This Element 

This target is Not Tappable in the ,,iew 
hierarchy bu1 there is a 63"' chance users 
wlll th ink It Is Tappable 

(Ii; User Tapptible: Tappable 
In Code: Not Tappable 

Probability: 63% 

COUPONS 

STORE LOCATOR 

User Tappable: Tappable 
In Code: Not Tappable 
Probability: 72% 

••:1 •:1•.~•;,P•."':" I •:"•:'G • ll 1iaQ 

+ Cart 

User Tappable: Not Tappable 
In Code: Tappable 
Probability: 64% 



133 

change the threshold for the model’s prediction. Now, she sees that the "Coupons" and "Store 

Locator" icon are not highlighted and that the arrow icon has the highest probability of being 

perceived as tappable. She decides to make all three colorful icon elements interactive and 

extend the tappable area next to "Coupons", "Store Locator", and "Website". These fixes prevent 

her users from the frustration of tapping on these elements with no response. 

I implemented the TapShoe interface as a web application (JavaScript) with a Python web 

server. The web client accepts an image and a JSON view hierarchy to locate interface elements. 

The web server queries a trained model, hosted via a Docker container with the Tensorflow 

model serving API, to retrieve the predictions for each element. 

5.5 Informal Designer Evaluation 

To understand how the TapShoe interface and tappability model would be useful in a real design 

context, I conducted informal design walkthroughs with 7 professional interface designers 

at a large technology company. The designers worked on design teams for three different 

products. I demonstrated TapShoe to them and collected informal feedback on the idea of 

getting predictions from the tappability model and on the TapShoe interface for helping app 

designers identify tappability mismatches. I also asked them to envision new ways they could 

use the tappability prediction model beyond the functionality of the TapShoe interface. The 

designers responded positively to the use of the tappability model and TapShoe interface, and 

gave several directions to improve the tool. Particularly, the following themes have emerged. 

5.5.1 Visualizing Probabilities 

The designers saw high potential in being able to get a tappability probability score for their 

interface elements. Currently, the TapShoe interface displays only probabilities for elements 

with a mismatch based on the threshold set by the sensitivity slider. However, several of the 

designers mentioned that they would want to see the scores for all the elements. This could give 

them a quick glance at the tappability of their designs as a whole. Presenting this information 

in a heatmap that adjusts the colors based on the tappability scores could help them compare the 



134 

relative level of tappability of each element. This would allow them to deeply examine and 

compare interface elements for which tappability signifiers are having an impact. 

The designers also mentioned that sometimes, they do not necessarily aim for tappability to 

be completely binary. Tappability could be aimed to be higher or lower along a continuous scale 

depending on an element’s importance. In an interface with a primary action and a secondary 

action, they would be more concerned that people perceive the primary action as tappable than 

the secondary action. 

5.5.2 Exploring Variations 

The designers also pointed out the potential of the tappability model for helping them sys-

tematically explore variations. TapShoe’s interface only allows a designer to upload a single 

screen. However, the designers envisioned an interface to allow them to upload and compare 

multiple versions of their designs to systematically change signifiers and observe how they 

impact the model’s prediction. This could help them discover new design principles to make 

interface elements look more or less tappable. It could also help them compare more granular 

changes at an element level, such as different versions of a button design. As context within a 

design can also affect an element’s tappability, they would want to move elements around and 

change contextual design attributes to have a more thorough understanding of how context 

affects tappability. Currently, the only way for them to have this information is to conduct a 

large tappability study, which limits them to trying out a small number of design changes at a 

time. Having the tappability model output could greatly expand their current capabilities for 

exploring design changes that may affect tappability. 

5.5.3 Model Extension and Accuracy 

Several designers wondered whether the model could extend to other platforms. For example, 

their design for desktop or web interfaces could benefit from this type of model. Additionally, 

they have collected data that the tappability model could already use for training. I believe 



135 

the model we created could help them in this case as it would be simple to extend to other 

platforms or to use existing tappability data for training. 

I also asked the designers about how they feel about the accuracy of our tappability model. 

The designers already thought that the model could be useful in its current state even for helping 

them understand the relative tappability of different elements. Providing a confidence interval 

for the prediction could aid in giving them more trust in the prediction. 

5.6 Discussion & Conclusion 

The tappability model achieves good accuracy at predicting tappable and not-tappable interface 

elements and designers gave positive feedback on the TapShoe model and tool. Here I discuss 

the limitations and directions for future work. 

One limitation is that the TapShoe interface, as a proof-of-concept, demonstrates only one 

of many potential uses for the tappability model. Future work could explore building a more 

complete design analytics tool based on designers’ suggestions and conduct further studies of 

the tool by following its use in a real design project. 

Particularly, the TapShoe interface could be updated to take early stage prototypes created 

in interface prototyping tools (e.g., Sketch, Adobe XD), rather than interface screens that have 

a view hierarchy. Additionally, rather than having the TapShoe interface outside of a designer’s 

main prototyping tool, it could be built as an extension or feature inside their tool. Prior 

work [180] suggests that this is an important feature in integrating computational models of 

usability or aesthetics into designers workflows. 

Currently, I trained our tappability model on Android interfaces and therefore the results 

may not generalize well to other platforms. However, the model relies on general features 

available in many interface platforms (e.g., element bounding boxes and types). If a similar 

design dataset could be collected for other platforms (e.g., iOS, Sketch design documents), it 

would be feasible to collect a tappability dataset for these platforms to train the model, and the 

cost for crowdsourcing labeling is relatively small. In fact, researchers could potentially apply a 

similar approach to new interface styles that involve drastically different design concepts (e.g., 



136 

emerging UI styles in AR/VR). 

From the consistency evaluation, I learned that people’s perception of tappability is not 

always consistent. Future work could explore ways to improve the model’s performance with 

inconsistent data. These methods could extend the tappability annotation task beyond a simple 

binary rating of tappable versus not-tappable to a rating that incorporates uncertainty (e.g., 

adding a "Not sure" option or a scale of confidence in labels). 

The tappability model that we developed is a first step towards modeling tappability. There 

may potentially be other features that could add predictive power to the model. As we begin 

to understand more of the features that people use to determine which elements are tappable 

and not tappable, we can incorporate these new features into a deep learning model as long as 

they are manifested in the data. For example, the tappability model presented in this chapter 

used the Type feature as a way to account for learned conventions (i.e., the behavior that users 

have learned over time). As users are not making a tappable decision solely based on the visual 

properties of the current screen, future work could explore more features that can capture user 

background. 

Lastly, identifying the reasons behind tappable or not-tappable perception could potentially 

enable interfaces to offer recommendations for a fix. This would also require communicating 

these reasons with the designer in a human-understandable fashion. There are two approaches 

to pursue this. One is to analyze how the model relies on each feature, although understanding 

the behavior of a deep learning model is challenging and it is an active area in the deep learning 

field. The other approach is to train the model to recognize the human reasoning behind their 

selection. Progress in this direction will allow a tool to provide a more complete and useful 

output to the designers. 

5.7 Contributions 

This work was published at CHI 2019 as Modeling Mobile Interface Tappability Using Crowd-

sourcing and Deep Learning [201] with co-author Yang Li at Google Research. I conducted ini-

tial interviews with interface designers at Google, and came up with the initial idea to model and 



137 

predict tappability. I developed the model architecture collaboratively with Yang Li, and I imple-

mented the crowdsourcing interfaces, deep learning model code, and the TapShoe interface. I de-

veloped and conducted the design walkthroughs and interviews with interface designers. You can 

watch the demo video for this project at http://doi.acm.org/10.1145/3290605.3300305 

under "Source Materials". 



138 

Chapter 6 

Prototyping Input Retargeting for Web Interfaces 

Throughout the design process, designers need to consider the needs of people with highly 

diverse abilities and expertise. Factors like age [90], gender [190], culture [175], and physical 

abilities [70] can all impact peoples’ interactions with interfaces. It is important for designers 

and developers to consider these needs when creating interfaces. For web interfaces, this is 

especially important as people rely on them for critical information. 

People often interact with web interfaces in ways that designers may not anticipate. For 

example, many blind and low vision people use a screen reader to interact with a web page [40]. 

However, a web page needs to be instrumented with ARIA attributes [21] in order for a screen 

reader to be able to interpret its content. Despite the existence of guidelines for applying these 

attributes [105], 60% of screen reader users stated that web content became less accessible or 

did not change in 2018. These guidelines are also far from comprehensive. One study [173] 

found that only 50% of the problems blind web users encountered were covered by the success 

criteria in these guidelines. On a study of government and high-traffic websites, most did not 

even implement the guidelines that are helpful [81]. 



139 

Alternatively, people with motor impairments may be able to see a web page, but their 

limited ability to use a mouse may leave interactive parts of the web almost impossible to 

use [70]. These people can benefit from customized interfaces created for their unique physical 

capabilities [74]. However, such techniques are rarely deployed in web interfaces. 

A persons culture, gender, and age can also impact their interactions with websites. What 

interfaces people perceive as usable often depends on their cultural background [175]. By 

making culturally adaptive interfaces, Reinecke et al. [175] saw that people’s task performance 

increased by 22%. A person’s gender can influence the appeal and trustworthiness of a web-

site [190], and it can also impact how usable an interface is to them [46]. A person’s age can also 

affect perception, hearing, cognitive, and motor abilities, requiring new interface designs [90]. 

Despite the existence of factors impacting interaction like gender, age, and culture, most web 

applications continue to be one-size-fits-all. 

Given the challenges of designing for people with diverse abilities, researchers and designers 

have explored a variety of application-agnostic tools for adapting existing interfaces [51,62, 

68,221,228,231]. Such tools can enable designers, researchers, and developers to prototype 

new interactions on top of existing interfaces. For example, Prefab [62] enables prototyping 

novel interaction techniques on desktop interfaces, such as a target-aware implementation of 

the Bubble Cursor [79]. For mobile phones, Interaction Proxies enable prototyping accessibility 

repairs for mobile interfaces [229]. Gesture Avatar enables prototyping new gesture-based 

interactions for arbitrary phone apps [118]. On the web, people can use scripting languages 

[41,131] to interact with and automate tasks and repair accessibility issues [39,95], and can 

implement web plugins to modify webpage behavior [15,18]. 

Although prior work demonstrates the power of systems that enable prototyping new 

interactions on top of existing interfaces, these techniques have fundamental limitations. First, 

they often rely on modifying an application through understanding and interacting with an 

interface’s visible features (i.e., interface elements). Interfaces can contain many behaviors that 

cannot be discovered from visible features alone, including keyboard events, touch gestures, and 

custom commands. On the web, this is particularly true, where websites can use a vast array 



140

Start
Pause

Command 
Objects

…

Command 
Metadata

onClick = 
function(e) {

login(); 
} Prototyping

Original Interface
1 2

4

Prototypes

3

Figure 6.1: Genie uses program analysis techniques to reverse engineer a web application’s
interactive commands (1-2). Designers can create interaction prototypes (3) to prototype new
interactions with input modalities for existing web applications. With Genie, I created several
application-agnostic prototypes that automatically retarget input to add speech, keyboard, and
command-line input capabilities to arbitrary web applications.

of different user interface toolkits and custom controls. Second, web interface customization

toolkits and scripting languages typically modify a specific website or subset of websites, by

modifying a specific aspect of behavior or adding a new functionality.

In this chapter, I present Genie, a system and approach to automatically derive an abstract

model of a web application’s interactive commands and enable designers to prototype with

these commands to transform interfaces to support new modalities (e.g., speech, keyboard,

command line input). Genie, shown in Figure 6.1, uses program analysis techniques from

software engineering to reverse engineer application commands and aspects of non-visible

behavior from source code. Genie then enables designers to create interaction prototypes to

retarget the inputs of arbitrary web applications to new modalities (e.g., voice interface for a

mouse-based website).

I explore Genie’s approach on the web, where reverse engineering is simplified due to the



141 

Figure 6.2: The Hextris web game (hextris.io) shown with a list of speech commands created 
by Genie. Speaking the bolded text label for each command triggers the corresponding actions. 

open access to interface structure in the DOM and the source code that handles inputs. Figure 6.2 

shows an example web game that originally supported only mouse and keyboard input. Genie 

recovers the application’s underlying commands and provides an application-agnostic speech 

interface to access the game’s commands. Speaking the command label "Left" (a command 

label derived by Genie’s analysis) rotates the hexagon left, performing the same functionality 

as clicking the left mouse button or typing the left arrow key. This input retargeting approach 

allows a web application designed to support one input modality to be mapped onto any other 

input modality, ensuring that users can access any website according to their diverse needs. The 

contributions of this chapter are: 

• An application-agnostic abstract model of interactive commands and their properties. 

• A method for reverse engineering these commands from an existing web interface into 

this abstract representation. 

• An API that exposes a website’s commands, which can be used to prototype interfaces 

that support other input modalities. 

Speak a command ... 

1 Find: Text, 470, Icon 

Handle click: Handle click before, Show Hextris help 

Pause: Pause 0 
Play! 

Start: Handler, Check visual 
lllllCa elements, 1, Resume game ... C!IIIIIIIII 

Toggle: Tools II 

Enter: 1, Resume game 

Left: Main hex, Rotate, 1 

Q: Toggle.tools 

Right Main hex, Rotate, 1 ,,. 

4 more commands ... V 



142 

Available: Dependent on the enabled and visible state. 
Enabled: Command is enabled if DOM element disabled attribute is not set, and current 
conditions in its event handler will produce at least one side effect. True if at least one data 
dependency with at least one side effect is currently satisfied. 
Visible: The command element is visible on the screen. 
Data Dependency: A condition in an event listener that can be evaluated to have the value of 
either true or false and is associated with at least one side effect. 
Side Effect: A statement in an event listener that has an effect on the system when executed. 
Device Dependencies: A list of commands that must be performed before (pre) or after (post) 
a command based on the implicit device requirements. 
Required Input: A list of required inputs to the command. Possibilities are mouse location, 
mouse button, key code, and value. Knowing each required input value allows Genie to generate 
them automatically, or request them from users, when required. 
Perform: A method to trigger the command, supply the required input values, and trigger 
commands corresponding to the pre and post device dependencies. 
Label: Genie provides command labels, extracted from event listener source code, and additional 
command metadata to describe commands in a new interface. 

Figure 6.3: Genie abstract data model properties, metadata, and behaviors. 

• Several application-agnostic interface prototypes that automatically retarget input to add 

speech, keyboard, and command-line input capabilities to arbitrary web applications. 

6.1 Architecture & Implementation 

Genie models web application user interfaces as a set of available commands. Each command has 

a set of properties (shown in Figure 6.3), which represent command availability, dependencies, 

and other metadata. Genie periodically refreshes commands and their properties as the state of 

the interface changes in response to user interaction or other application background activity. 

Genie also provides generic support for executing each command, allowing the implementation 

of alternative interfaces that support other input modalities. 

Genie is implemented as a Google Chrome extension that accesses the web page DOM, 

event registrations, and source code. Genie consists of five algorithms to (1) detect commands, 

(2) filter commands to those that are directly executable, (3) analyze properties of commands 

to update their status in an interface, (4) describe commands to obtain appropriate labels for 

an interface, and (5) invoke commands by recreating their inputs and event sequences. The 



143 

following sections describe each algorithm and how they discover and update the properties 

and behaviors of the Genie data model. 

6.1.1 Command Detection 

The Genie system interposes application event registration to detect commands. Genie assumes 

graphical user interfaces consist of graphical elements that make up the interface, events that 

are triggered by input devices performing various actions on elements (e.g., click, keydown), 

and event listeners that receive and respond to events. This event subscription model is the 

dominant way of receiving and responding to input in modern user interface frameworks. Web 

interfaces also consist of a set of default interactive elements such as links (i.e., <a>) or input 

fields. Genie maps each interactive element and registered event listener to a unique command. 

Genie detects commands by intercepting each event listener registration as it occurs. The 

default DOM APIs, as described by the W3C (www.w3.org), do not provide a method of accessing 

all currently subscribed event listeners in the DOM. Genie therefore monitors each registered 

event listener by overriding the default DOM API for addEventListener. This override notifies 

Genie that a new listener has been registered, and Genie calls the original addEventListener 

method to register the listener with the browser. Event listeners can also be registered using a 

secondary library (e.g., jQuery, D3). These libraries wrap the addEventListener method, so 

intercepting addEventListener calls is sufficient to capture event listeners registered using 

these libraries. The override is achieved by injecting a script into the original page before DOM 

initialization so that all registered event listeners are intercepted. The script then intercepts all 

event listeners registered after DOM initialization to keep a currently updated list of events, 

each of which corresponds to a new command. 

The default DOM APIs provide a second method of registering event listeners through global 

attributes. These listeners are registered in two ways. One is through an inline attribute on 

the DOM element in the format onclick="listenerName()" where the attribute name can 



144 

be onclick or any of the supported event types 1. Applications can also register global event 

listeners using the format element.onclick=listenerName. Genie locates and detects all 

registered global event listeners at document initialization and monitors any updates to them 

using the MutationObserver API 2, which notifies Genie of any updates to element attributes in 

the DOM. Genie also collects and monitors interactive elements (e.g., <input>, <a>) using the 

MutationObserver API. 

6.1.2 Command Filtering 

There are hundreds of events that can be triggered in a browser. A small subset of these events 

correspond to interactive actions that a user can trigger by clicking, touching, or typing a key. 

Genie distinguishes between events that can be triggered by a user action and those that happen 

as side effects of user actions or are triggered by the system. 

Genie categorizes events into three groups: direct, indirect, and system. Direct events are 

those that can be triggered by human actions (e.g., a mouse click - mousedown, a key stroke -

keydown). Indirect events happen as a side-effect of triggering direct events (e.g., an element 

gains focus - focusin, a field loses focus - blur). System events are events that are triggered 

without direct user intervention, but occur during interactive use of the system (e.g., a resource 

failed to load - error, a resource has finished loading - load). Genie collects each event listener 

registered to each direct event as a command and filters out all event listeners registered to 

system events. Genie monitors indirect event listener registrations but does not expose them as 

commands, instead using them in the invoke module which I will describe later. The output of 

the command filtering process is: (1) a set of registered direct and indirect event listener and 

element combinations, and (2) a set of default interactive elements. 

1https://html.spec.whatwg.org/multipage/dom.html#global-attributes 
2https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver 



145 

6.1.3 Command Property Analysis 

User interfaces can change at any time in response to user interactions, events, and system 

status. To give an accurate picture of what a person can do at any given point in time, and 

to prevent needless interactions with disabled commands, Genie analyzes and monitors the 

visibility and enabled state of each command, keeping the visible and enabled states, defined in 

Table 6.3, current with the original user interface. 

To discover the value of these properties, for each intercepted event listener registration, 

Genie captures the event type, event listener source code, and the DOM element the listener 

is associated with. For the visible property, Genie queries the DOM element for its visibility 

through a set of properties that can hide any element, such as setting the display attribute to 

none or other standard methods of hiding elements. Elements can also be off-screen or opaque, 

and Genie uses existing DOM APIs to inspect these forms of visibility. 

A command can be disabled (enabled=false) in two ways. First, a DOM element can set 

the disabled attribute. However, this attribute is not required, so it is possible that an element 

will appear interactive even if current conditions in its event listener prevent it from having 

effect. The second way a command can be disabled is if the conditions in its event listener that 

result in side effects are not currently satisfied. I define each condition as a data dependency 

and each method call, state update, event, or other response in an event listener as a side effect. 

Each event listener has one or more data dependencies, and each data dependency can have 

one or more side effects. If none of the data dependencies of a listener are currently satisfied, a 

command will have no effect, and Genie will mark the command’s enabled state as false. 

Genie discovers data dependencies by analyzing the event listener source code, shown in 

Figure 6.4. First, Genie parses the event listener to build an abstract syntax tree (AST). Genie 

traverses it to build an expression for each data dependency. Genie computes data dependency 

expressions by tagging each variable node in the AST with the node where it was either 

previously defined or declared. Then, Genie locates each conditional (e.g., if, while). Within 

each conditional expression (i.e., the expression that must be true to reach the inside of the 



146 

Input: AST for handleStartGame() Output: data dependencies (DD) 
& side effects (SE) 

DD: !$(’startBtn’.attr(’disabled’)function handleStartGame (e) { 
&& livesRemaining > 0var startBtn = $("# startBtn "); 

SE: startBtn.attr(’disabled’, false),if (e. button == 0 
&& ! startBtn .attr(" disabled ")) { startGame() 
startBtn .attr(" disabled ", false ); DD: !$(’startBtn’).attr(’disabled’) 
// Start the game && !(livesRemaining > 0) 
// If there are lives remaining SE: startBtn.attr(’disabled’, false) 
if ( livesRemaining > 0) { DD: !$(’startBtn’).attr(’disabled’)

startGame (); SE: None 
} 

} 
} 

Figure 6.4: Genie parses the event listener source code to extract data dependency (DD) and side 
effect (SE) expressions, used to evaluate a command’s availability (enabled). Genie extracts 
imperative statements and command metadata to describe and label commands. 

conditional block), Genie finds each variable identifier and replaces it first with where it was 

last assigned, and secondly, where it was last declared if it does not find other assignments 

besides the variable’s declaration. This process continues recursively until Genie replaces all 

identifiers in a conditional expression with their corresponding assignments or declarations. 

Figure 6.4 shows an event listener that handles clicking on a game’s start button. There 

are three possible data dependencies corresponding to the three potential paths through the 

code, labeled by "DD" under output. These expressions depend on the current state of the Start 

button and the number of lives remaining. The first expression is constructed by combining the 

first if conditional with the second nested if conditional. The startBtn reference in the first 

conditional is resolved to the value $("#startBtn") based on where it was last assigned in 

the listener, which occurs on the previous line. 

Each data dependency is associated with one or more side effects. Identifying side effects 

is important for interpreting and displaying to a person what effects the command will have 

when it is executed. In Figure 6.4, startGame() is a side effect. Each line of code that would 

be executed if a data dependency expression is satisfied is a potential side effect. This method 

of side effect detection is potentially accurate if each method call, state update, or response 



147 

Input: AST for rotateHexagonLeft 

// Rotate the hexagon left 
function rotateHexagonLeft () { 

if ( MainHex && gameState !== 0) { 
// Rotate hexagon left 
MainHex . rotate (1); 
// Update the position counter 
MainHex . hexagonPosition --; 

} 
} 

Output: Rotate the hexagon left, 
rotate hexagon left, rotate, 
update the position counter, hexagon position 

Figure 6.5: Inputs and outputs of Genie’s command description algorithm for the rotate-
HexagonLeft event listener. 

is causing an update to the state of the system, affecting future interactions. However, this 

may not always be the case. To improve this method, Genie could potentially identify output 

affecting statements (e.g., as in [108]). It could then link each method call or state update to 

its last assigned location outside of the event listener, linking it to its origin in the website’s 

source code. These could be searched for output affecting statements, or Ajax calls that cause 

data changes. However, this method would mostly be an approximation. 

A command is disabled (enabled=false) if none of its data dependencies are currently 

satisfied, if none of its data dependencies have side effects, and if it has no side effects outside 

of conditional expressions. For example, Figure 6.2 shows a set of four disabled commands: 

Enter, Left, Q, and Right. This event listener for the Left command, shown in Figure 6.5, 

consists of only a single data dependency (MainHex && gameState !== 0), and two side 

effects (MainHex.rotate(1), MainHex.hexagonPosition−−). Before the game starts, the 

value of gameState is 0. After a person starts the game, its value is 1, resulting in this expression 

evaluating to true, and allowing the side effects to occur when the event listener is called. 



148 

6.1.4 Command Monitoring 

After reverse engineering each command’s data dependencies and side effects, Genie evaluates 

them to determine each command’s availability. This process runs in an update service which 

calls the JavaScript method eval to evaluate each data dependency in a global scope. The 

results of eval are sent to each Genie interface through the update service. For example, the 

speech interface shown in Figure 6.2 updates the status in the interface by giving the disabled 

commands a grey color. Genie’s analysis currently only resolves data dependencies in the local 

event listener scope (excluding expressions defined outside this scope such as MainHex). This 

is because it is not possible to access the closure of registered event listeners to recreate the 

scoping of these variables. Future work could explore how to evaluate these expressions more 

accurately within the constraints of JavaScript scoping. 

Genie’s update service runs every second, evaluating the enabled and visible states of each 

command as a person interacts with the system, providing them with timely feedback about 

command availability. 

6.1.5 Describing Commands 

Alternative interfaces that display available commands need some way to describe the commands 

so that people know what effect each command will have before they invoke it. For example, 

Genie derives and displays command labels in the speech interface shown in Figure 6.2, giving 

each command a name and basic description of its effects. 

To derive these labels, Genie identifies labels from command metadata by searching for 

natural language phrases starting with an imperative verb followed by a noun. For example, 

the phrases in Figure 6.2 include "Resume game" or "Show help". If a command label cannot be 

found in the "verb noun" format, Genie searches each metadata string for verbs and nouns to 

use as labels, if they can be found. 

Genie collects command metadata from two sources: element and listener metadata. Element 

metadata comes directly from the attributes of a command’s DOM element. Global attributes 



149 

are those common to all types of DOM elements, which include title, id, and class. These 

three attributes frequently and conventionally contain semantic metadata to describe the 

object or concept that a DOM element represents. <input> elements have an additional set 

of commonly useful attributes: placeholder, alt, and value. Another subset of elements, 

<input>, <button>, <fieldset>, <textarea>, and <select> have a name attribute. <a> 

elements have an href attribute that also frequently contains descriptive metadata. 

Listener metadata comes from command event listener source code. Genie analyzes four 

sources of listener metadata: (1) comments on the event listener, (2) the event listener name, 

(3) comments on expression calls and assignments (i.e., side effects), and (4) the expression 

calls and assignments. To parse these sources, the algorithm splits each assignment, function 

call, and function name into separate identifiers (e.g., each token in Figure 6.5, such as MainHex 

and hexagonPosition), parsing each identifier and attribute value separately and identifying 

them as either a phrase or an individual word. 

Genie identifies phrases from both element and listener metadata by splitting on common 

identifier conventions (e.g., camel casing, underscores, dashes). A part-of-speech tagger tags 

each sentence, phrase, or individual word, while the system discards non-English strings using 

an open source spell checker library 3. The algorithm then searches each string for the first verb, 

followed by the first noun. If both can be found, the system generates a command label. 

Genie uses command labels to uniquely identify and trigger commands. The system pri-

oritizes imperative phrases and verbs to use as these labels, but if none can be found will fall 

back to remaining metadata. Developers can use the remaining metadata to provide a more 

detailed description of the command to be shown in an interface, such as the one shown in 

Figure 6.6. This remaining metadata is labeled as description metadata. Thus, the two outputs 

of this process are a command label and description metadata. In Figure 6.6, the multiplication 

command has a command label Multiply and description metadata of Operator button and Ops. 

3https://github.com/cfinke/Typo.js 



150 

Figure 6.6: A calculator interface with incomplete keyboard support (a-calculator.com), en-
hanced to provide a keyboard shortcut for each command, as enabled by Genie’s analyses. 

6.1.6 Invoking Commands 

Performing commands through an alternate interface requires some way of triggering the original 

functionality through the new interface. The JavaScript DOM API provides a dispatchEvent 

method for creating and triggering custom events. Genie uses this API to allow Genie interfaces 

to dispatch events to the original interface, creating a new Event object with the necessary 

inputs, and triggering them through the dispatchEvent method defined in the EventTarget 

DOM API. 

However, Genie cannot simply trigger only the event corresponding to the command. Web 

interfaces expect one or more sequences of events to be triggered by a motor action (e.g., clicking 

the left mouse button, typing a key). For example, a mouseup event and a mousedown event 

must be triggered before the click event is triggered, as an application’s semantics may depend 

on these events occurring. I define these event ordering requirements as device dependency 

events (see definition in Figure 6.3). Each command has a list of pre device dependencies and 

post device dependencies describing events that need to be triggered before and after the event, 

Keyboard shortcuts 

: trl + 1 -- 1: NLmber bJtton 
: b·I i' 2 -- 2: Ni..mber b .1tton 
: trl • 3 -- 3: Ncmber b.,tton 
: trl + .1 -- 4: NLmber bJtton 
: trl.., 5 -- 5: Ni..mber b .1tton 
: trl • G -- 6: Ncmber b.,tton 
: trl + 7 7: NLmbcrbJtton 
: trl.., 8 -- 8: Ni..mber b .1tton 

A CALCULATOR 

: trl • 9 -- 9: Ncmber b.,tton ,_ _________ _ 
:t rl + a Add: Opcn:tor button, Op:. ta I bJtton 
: trl + b -- Button: \lu11oer Outton, Vllide1 O 
::trl + rl -- Oivid~: Op •1rr1tnr huttnn. Or ~ 
:t rl + c E.quals: Operator tutton, Op~ 
: trl + m --Memory 1>utton 
::1tl + 11 -- Memory button 
:t rl I r -- Mm: Memo-y button 
: trl + p -- Mp: Memo,y 01,,-Uon 
::h i+ s --- M5.:M~111rny l11lllo 11 
:t rl I u -- Multiply: Opera:or bu:ton. O;.s 
: trl + n -- Negate: Operator button. Ops 
: o-1 + : -- Number button 
:t rl I c --- Percent: Oper2.tor buttcn, Ops 
: trl + i --- P1: Number button, Ops pi 
: o-1 + I --- Reset : Tall ::>utton, Clear 
: b·I .., q -- Sqrt: Operator : utton. Ops 
: trl + • -- Sut>tract: Uperatcr buttor . Ops 



151 

Input: mouseMoveHandler AST 

function mouseMoveHandler (e) { 
var relativeX = e. clientX ; 
relativeX = relativeX - canvas . offsetLeft ; 
if ( relativeX > 0 

&& relativeX < canvas .width){ 
paddleX = relativeX - paddleWidth /2; 

} 
} 

Output: True - Command dependent on mouse position 

Figure 6.7: This event listener references the clientX property of the event object. This is 
stored in the variable relativeX which is referenced in the conditional statement, which guards 
a side effect. Genie detects these dependencies and determines that the command is dependent 
upon mouse location 

in the correct order. Device dependencies consist of both direct events, such as mouseup and 

mousedown, and indirect events, such as blur and focus. When a Genie interface requests 

to perform a command, Genie executes pre and post device dependencies before and after a 

command in the correct order if there are commands corresponding to those events. 

Many events also require additional input that comes from device specific input, like mouse 

location or key code. Genie discovers these dependencies through a command’s event listener. 

To do this, Genie traverses the AST of the event listener to locate mouse location and keyboard 

dependencies. Event listeners typically reference device location through properties on the event 

object (e.g., evt.clientX, evt.clientY, evt.x, and evt.y). Genie’s algorithm searches the 

AST for references to these properties, typically in assignment or conditional expressions. For 

example, Figure 6.7 shows that mouseMoveHandler() references the clientX property of the 

event object and stores it in the relativeX variable. The conditional test expression then 

references the variable relativeX. Genie transitively detects any dependencies that it can 

statically determine will effect the control flow through the event listener. 

Genie detects keyboard dependencies similarly (Figure 6.8), looking for references in the 

AST to code, key, or keyCode properties on the event object. If the key code of the event 



152 

Input: keyDownHandler AST 

function keyDownHandler (e) { 
if (e. keyCode == 13) { 

submitOnEnter (); 
} 

} 

Output: KeyCode = 13, submitOnEnter() 

Figure 6.8: This event listener references the keyCode property of the event object and compares 
it to the value. Genie returns the value 13 and the corresponding side effect. 

is assigned to a variable that is referenced on a conditional expression, or if the key code is 

referenced directly, Genie collects the corresponding value that the keyCode is compared to 

(e.g., if(evt.keyCode == 13)). If the keyCode value is not hard-coded, Genie transitively 

determines the value, if possible. 

As Table 6.3 shows, each command has a required input property. Genie adds each key 

code value (e.g., 13) it discovers to the required input list. If Genie cannot find a possible value 

for a key code reference, in cases where the key code value is assigned to a global variable or 

variable declared outside the function, and not referenced later in a conditional, it does not 

add a value to required input because it cannot determine that value statically. Genie detects 

mouse button dependencies by traversing references to the button and buttons properties of 

the event object, and collects the corresponding values in a similar manner to keyCode. 

Each key code or mouse button value in the required input property is mapped to one 

or more side effects. When a command has multiple required input values, Genie splits the 

command into multiple pseudo-commands, where each required input value is a command, has 

a command label corresponding to its input value or side effect metadata, and has a set of side 

effects that will occur if the command is given that specific input. Figure 6.2 is an example 

where the commands "Left" and "Right" originate from the same event listener. In the Genie 

system, a pseudo-command is represented in the same way as a regular command. 

Each Genie command also has a perform method that triggers the command, supplying the 

required input and pre and post device dependencies. For a pseudo-command, Genie supplies the 



153 

associated required input value. 

6.1.7 Genie API 

To support designers and developers in prototyping applications with Genie models, I built an API 

that exposes any web page’s current set of commands, properties, and behaviors. An application 

prototyper can build a Genie interface which subscribes to an abstract list of commands that 

Genie keeps up to date. Genie notifies each interface when the state of a property (e.g., visible, 

enabled) has changed, or when a command is added or removed. 

To prototype a Genie interface, the prototyper needs to create a visual representation to 

display for each command (i.e., HTML structure and CSS), and a small amount of JavaScript 

code that defines how to update an interface when a command’s enabled or visible status 

changes. The developer would also need to implement generic command triggers for each 

command, which may require the use of an API to receive input (e.g., WebSpeech API 4). 

Genie will then invoke these commands automatically when a user interacts with the Genie 

prototype. Genie also provides each interface a set of automatically inferred labels for a 

command, including a command trigger label unique to each command (e.g., the bolded labels 

shown in Figure 6.2) and an additional set of labeling metadata. The framework is meant to be 

simple, only requiring the developer of the Genie interface to implement the behaviors required 

for receiving command inputs and visualizing a command in alternate ways if desired. 

6.2 Interface Prototypes & Use Cases 

The benefit of having an abstract model of application commands is that designers and developers 

can easily use Genie to enable web interface prototypes to support a range of input types, without 

having to design built-in support. I validated Genie by building several diverse applications 

showcasing these prototypes of new interactions for existing web pages. I motivate them 

through their potential for making the web more powerful and accessible. I demonstrate each 

4https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/ 



154

1

2

Figure 6.9: (1) A Genie-enabled command line terminal that allows command automation and
macro creation, and (2) a graph builder augmented with Genie’s input grid for capturing mouse
coordinates via keyboard



155 

of these applications on a single website, but the applications themselves are generic and are 

meant to be able to be applied on any website. 

6.2.1 Automatic Speech Input 

Many people have severe motor impairments that make using a mouse or physical keyboard 

almost impossible [70]. However, many people with motor impairments can use speech in-

terfaces. Using the Genie API, I built the speech interface shown in Figure 6.2. The Genie 

interface displays a list of currently available commands on the page. People can trigger any 

of the commands by simply speaking the label shown in bold. Commands shown in dark grey 

are currently disabled and cannot be triggered. Genie monitors and updates the states of these 

commands as the user interacts with the web page. I implemented this interface using the 

Genie API to define the interface structure and styles and to integrate the Web Speech API to 

process speech input. I map each speech input keyword to its corresponding Genie command, 

if there is one. I discard spoken keywords that do not correspond to a Genie command. This 

only required about 150 lines of JavaScript code. 

The web site shown in Figure 6.2 demonstrates the speech interface active on a game called 

Hextris, which consists of a rotating hexagon. The objective of the game is to prevent blocks 

from leaving the outside of the gray hexagon. The two main commands to play the game are 

speaking "Left" and "Right" to rotate the hexagon in either direction. Genie allows anyone to 

play this game via speech, in addition to using the built-in mouse and keyboard commands. 

6.2.2 Automatically Generated Keyboard Shortcuts 

Most websites only support mouse input, or selectively implement support for a small set of 

keyboard accelerators. For example, the calculator shown in Figure 6.6 is a basic calculator with 

simple number, operator (e.g., +, *), and memory functions (e.g., MR, MC). It has keyboard 

shortcuts for numbers, but not for operators or memory functions, rendering the calculator 

useless without a mouse. Such applications are less accessible to people who do not use a 



156 

mouse, such as people with severe motor impairments or people who use screen readers. 

I used Genie to build the interface prototype shown in Figure 6.6. This interface displays 

a list of commands and a corresponding automatically generated keyboard shortcut for each 

command. Implementing this interface required defining shortcut triggers using the Keypress 

API5 and defining a function to generate a shortcut for each command. I defined a simple 

method to define shortcuts using the first letter of the command label and the modifier ctrl. 

If a shortcut is already used, the interface assigns the second letter as the shortcut, and so on. 

Each keyboard shortcut has a unique command label and a corresponding metadata description. 

This required about 130 lines of code. 

Figure 6.6 shows the calculator interface with the Genie interface active. This interface can 

be used on any website to activate automatically generated shortcuts, so the calculator interface 

is used here as just an example. The interface displays a shortcut that can be used to trigger each 

number, operator, and memory command. Number commands contain the metadata "number 

button", operators have the metadata "operator button", and memory buttons have the metadata 

"memory button", along with other collected metadata, shown by each command description. For 

this interface, the labels happen to originate from the referenced listener name in the onclick 

attribute which for each of the buttons has the value onclick="operatorButton(’+’)". 

6.2.3 A Command Line Interface for Web Automation 

Most web applications are not scriptable. Many web forms require painstaking input need-

ing a skilled programmer to automate. Web automation tools such as CoScripter [131] and 

Chickenfoot [41] provided powerful solutions to this problem. Genie can easily recreate such 

functionality, providing a command line scripting console for arbitrary web applications. 

Figure 6.9.1 shows the example command-line prototype active for a simple to-do list 

application (flask.io). This application allows people to create to-do lists, save to-do lists to a 

profile, and share tasks with other people. Typing "commands" into the terminal presents the 

5http://dmauro.github.io/Keypress/ 



157 

user with a list of the available commands discovered by Genie. Commands for the application 

shown include "write task" which corresponds to typing a value into the field labeled "Write 

your next task here", and "save task" which saves the task to the interface. Typing "help" into the 

terminal displays the list of command triggers along with more detailed descriptions from the 

collected command metadata. The command-line interface prototype supports macro creation 

allowing for automation of multiple commands and inputs. The user creates a macro using the 

following format. 

<macroName >= "<commandName1 >":"<commandInput1 ( optional )>" , 
"<commandName2 >" ... 

The paperReview macro in Figure 6.9.1 creates and saves three tasks to the list: read paper, 

write review, and submit review. These are three hypothetical tasks that a reviewer might create 

to remember to complete all steps of submitting a paper review. The macro could potentially be 

persisted across sessions so that adding subsequent paper reviews would require simply typing 

the command paperReview. 

6.2.4 Keyboard-Based Mouse Input 

Many people cannot use a mouse to interact with the web, preventing them from using applica-

tions that rely on fine grained pointer input such as drawing or diagramming tools [70,97]. With 

Genie, designers and developers can easily prototype new interactions for supplying pointer 

input using the keyboard. 

Figure 6.9.2 shows an automatic keyboard-based mouse input application I built currently 

active on a graph drawing application. Typing ctrl-i triggers the command "Insert node" 

as labeled in the figure. Triggering the "Insert node" command displays a grid covering the 

surface of the canvas. Typing in the numbers corresponding to the desired cell generates a 

mouse location used as input to Genie when the command is triggered. Implementing this 

Genie prototype using the framework simply required implementing the method of inputting 



158 

coordinates, integrating the Canvas API to draw the grid, and registering keydown listeners to 

process location input. In all, this interface required only about 75 lines of JavaScript. 

This method of input, while not having the precision of clicking a mouse on the canvas, does 

provide a method of entering this input. This prototype could easily be extended with more 

accurate methods of input, such as an onscreen cursor that could be moved with keyboard or 

voice commands, it could also work with other input devices. For example, people could speak 

the cell numbers to input the location or use the command line interface that I describe in the 

next section. The prototyper of each Genie interface would need to create this mapping, but as 

I have shown, such mappings require very little implementation work. 

6.3 Limitations 

Many of Genie’s limitations are due to limited availability of metadata in an application’s source 

code. For instance, a key limitation of Genie’s command labels and the descriptions Genie 

discovers is that many websites use "minification" to improve performance and obfuscate code, 

limiting the information Genie can extract and present in alternate interfaces. Even if a site is 

not minified, many websites do not include descriptors in the comments or source code of their 

event listeners or on their command elements. Even if the information exposed by Genie is not 

detailed or high quality, the ability of Genie to at least expose what actions are possible may still 

be useful. Better metadata might also be attached through social annotation techniques [103], 

applied to the original interface or to Genie’s representation. 

Other limitations are due to imprecision in the program analyses that I used in the Genie 

prototype. For example, Genie only analyzes the functions registered as event listeners, and not 

the functions they transitively call. Genie could have done a full program analysis, tracking 

the full extent of downstream side effects following a function call, potentially discovering a 

more precise set of command states (e.g., enabled, disabled), side effects, and descriptions. 

Not having these precise states might mean that a command label is not descriptive enough, 

or that a command that is currently disabled is shown as enabled. However, triggering the 

command through Genie will have the same behavior as triggering the command through 



159 

the regular interface, and relevant feedback of the disabled command will still be presented. 

Discovering more precise command states is a matter of applying more advanced program 

analysis techniques from prior work in software engineering, but it was outside the scope of the 

Genie prototype. 

Another limitation I discovered with larger websites was that Genie discovered large numbers 

of commands that made it difficult to discern which command triggered which functionality. 

Future work should explore reverse engineering more metadata to help organize and group 

relevant commands together so that they are more discoverable. 

6.4 Discussion 

This chapter has presented Genie, a framework to reverse engineer the interactive commands 

from a website, retargeting their inputs to alternate input modalities. Genie enables alternate 

access to a broad range of websites that were not designed for diverse abilities. By implementing 

a set of alternate interfaces using the Genie framework, I have shown that this approach has 

the potential to enable prototyping more efficient and customizable interfaces that can enhance 

the ability to interact with existing websites. 

During the process of creating our Genie interface prototypes, I generated several additional 

ideas for Genie interfaces. Many of these involved ways that input retargeting could add support 

for other modalities, including touch input, brain-computer input, or any other types of future 

input devices. However, I also generated ideas for several other interface enhancements that 

go beyond input. For example, Genie might be used to automatically create a help interface 

that display tooltips that describe each command and its side effects. In investigating this, I 

found that the metadata I could collect from the real applications used in this chapter was not 

detailed enough to support this type of description, but would still give some indication as to 

the behavior of the command and could be useful in many cases. More advanced analysis of 

command side effects might allow systems to generate tutorials that suggest a specific sequence 

of commands to complete a particular task, thus providing more advanced and automated help. 

Another promising use for Genie might be in adding enhanced ARIA metadata to existing 



160 

websites, which is a standard for making interactive websites screen readable. For example, the 

attribute aria-disabled indicates that an element is perceivable but not interactive. Hidden 

elements in a page should be marked with the attribute aria-hidden which indicates that the 

interactive element is not visible or perceivable. As the Genie data model already exposes and 

notifies a Genie interface when these two properties are updated for any command, it would be 

simple to implement a Genie interface that keeps these two properties up to date for any web 

interface. In fact, utilizing a combination of static and dynamic analysis has the potential of 

being able to monitor the state of many attributes, such as aria-invalid, aria-expanded, 

and others. Future work could explore extending Genie to monitor additional properties. 

There are a diverse set of usability issues with existing web interfaces that could also 

be enhanced or repaired with the metadata Genie collects. It could be possible to build a 

Genie interface that would automatically detect and repair usability issues in an interface. For 

example, previous work [108] analyzed a set of 115 web applications, and found 37% did not 

provide feedback to users after completing an action. Augmenting Genie to detect when a 

command does not provide feedback and generating customized feedback messages could be a 

promising application. Genie additionally analyzes the disabled state of commands, so using 

this information to provide reasoning to users about why a command is currently disabled, or 

what commands can be performed to enable it, could also be useful applications of Genie’s 

analysis. 

Future work could scale up Genie’s evaluation to demonstrate the effectiveness of these 

techniques on a larger set of websites selected from the Alexa.com rankings. This could allow 

researchers to fully evaluate the benefits and limitations of Genie across a more representative 

set of websites, and it could also help them discover areas of improvement for future work. 

6.5 Contributions 

This work was published at CHI 2017 as Genie: Input Retargeting for the Web through 

Command Reverse Engineering [199] with co-authors James Fogarty and Amy Ko. I developed 

the initial idea with Amy and received feedback from both James and Amy throughout the 



161 

project to refine the ideas about the Genie framework and implementation. I implemented the 

code for the Genie prototype, API, and example interfaces. You can watch a demo video of 

Genie at http://doi.acm.org/10.1145/3025453.3025506 under "Source Materials". 



162 

Chapter 7 

Future Work 

This dissertation surfaces numerous opportunities for future work. Furthering the work in 

theses areas can enhance designers’ capabilities to prototype with existing webpage interfaces, 

support better mixed-initiative interaction to explore alternatives, build models to predict 

attributes of interface usability, and extend integrated design prototyping tools. 

7.0.1 Inference and Prototyping with Existing Webpage Commands 

With Genie (Chapter 6), I built a few different prototypes to demonstrate how Genie could 

add support for new modalities (e.g., keyboard, voice). However, future work could examine 

the creation of prototypes for other modalities (e.g., touch input, brain-computer interface). 

Genie’s prototypes also currently require writing JavaScript code and HTML to specify support 

for new input modalities, which is likely to be difficult for a less technical or novice designers. 

Future work should explore how to enable these prototypes to be more easily specified by a 

larger group of designers. 

One of the most promising areas that Genie could be used is for the repair of ARIA attributes 



163 

required to make a webpage accessible (e.g., aria-disabled). Howver, such repair would likely 

require more accurate inference than Genie currently supports due to webpage minification and 

lack of detailed metadata that Genie can mine from source code. We could explore more accurate 

inference through social annotation techniques like [95] or machine learning techniques that 

can automatically infer labels for interface commands based on their visual presentation, source 

code, or the resulting change to the interface by performing the command. Due to the open 

access to webpage DOM and source code, collecting large amounts of structured data for labeling 

may be more possible than other platforms (i.e., mobile apps). Additionally, collecting such 

data to support design tasks has been fruitful for prior work [113,114]. 

7.0.2 Mixed-Initiative Exploration of Alternatives 

My work on Scout (Chapter 3) reveals a rich set of future directions in mixed-initiative tools 

for exploring alternatives. I see four main opportunities for future work revealed through 

my user studies with Scout: inference of high-level constraints from design documents, giving 

designers more control, providing faceted exploration of alternatives, and expanding the language 

of high-level constraints. I describe the motivations for each of these and potential directions for 

research in each area in the following sections. 

Inference of High-Level Constraints from Design Documents 

Scout is currently limited to helping designers explore alternatives in mobile interface dimen-

sions. The nature of mobile interfaces means that the number of elements and potential 

high-level constraints that a designer needs to define would be manageable. However, for 

more complex interfaces (e.g., webpages, GUIs) defining high-level constraints across the entire 

interface could become unmanageable. Additionally, designers may have already created a 

prototype for their interface and want to redesign it by exploring alternative layouts. Cur-

rently, to use Scout, they would have to import each interface element individually and create 

high-level constraints on these elements in Scout. A helpful focus for future work could be 



164 

to automatically infer high-level constraints from existing wireframes and design documents 

created in prototyping tools. A designer could drag their entire design into Scout’s outline, and 

Scout could automatically extract their components and infer high-level constraints from them. 

Such an inference would be drastically easier if the design document already contained 

groups and structure. This is the case for many design prototypes, as designers are used to 

using groups to structure their designs. Scout could infer this grouping structure by directly 

matching groups in the prototype to groups in the design hierarchy. Scout could infer ordering 

constraints by analyzing grouped content for implicit ordering relationships through a machine 

learning classifier or heuristics. A designer would likely need to define which elements should 

be emphasized, however, this would be a much more manageable task than creating all of 

Scout’s high-level constraints from scratch. 

Giving Designers More Control 

Through my Scout user studies (Chapter 3, Section 3.3), I found that designers wanted more 

control over the inputs to Scout (e.g., font and element sizes, alternate group elements). Scout 

could support this in two ways. First, design firms and companies typically have internal 

design language systems that provide rules, guidelines, interface elements, and styles to create 

consistency across design organizations in a company. Scout could support importing the range 

of variations for a property (e.g., font sizes) from a company’s style guide. Supporting this may 

require designing an interaction to specify the style guide or structured format for importing it 

to Scout, as these style guides are unlikely to have a consistent format across companies. Scout 

could also support this by providing an interface to set the range of input parameters (e.g., font 

sizes, element sizes). However, not all parameters are numerical (e.g., a set of alternate group 

elements) thus a variety of interaction techniques for specifying parameters may be needed. 

Another insight revealed from interviews with designers in Scout was that Scout’s high-level 

constraints could provide a structured format for designers to share high-level interface rules 

across designers and teams. In Scout, designers need to specify interface structure and semantics 

(e.g., grouping, order, emphasis) to explore alternatives. Future work could explore the use 



165 

of this structure as an output format for sharing across designers. This could enable them 

to explore a larger range of alternatives, as multiple designers could use the same high-level 

constraints to explore separate threads of alternatives. It could also act as a specification for 

an interface design, which could help future designers who are completing a redesign task to 

understand the original designers intent. 

During my user studies on Scout, I found that Scout was helpful to the designers for 

visualizing many combinations of interface elements. Frequently, designers would see a layout 

idea where they didn’t necessarily like the entire arrangement, but liked a smaller part of the 

layout or the combination of two or more elements. Designers requested the ability to mix and 

match various parts of Scout layouts to create their design. Future work could explore giving 

designers the ability to explore alternatives to low-level layout patterns within a design and 

more easily extract and combine element subgroups of elements to create an entire layout. 

Another type of control that Scout could support is direct manipulation of interface elements 

in Scout’s layout ideas. Currently, designers cannot directly modify layouts within Scout. We 

could use this interaction paradigm to specify high-level relational constraints. However, Scout 

was initially designed such that a designer might not know how they want the elements to 

be laid out. This enabled us to evaluate the value of high-level constraints independently of 

the features in a direct manipulation canvas. However, if Scout were a feature in a design 

prototyping tool, Scout could enable designers to explore alternatives to an existing layout. 

Faceted Exploration of Alternatives 

Currently, Scout supports exploring alternatives to interface layouts, varying size and position 

of interface elements. However, during early interviews regarding Scout, designers requested 

that Scout explore variations on other aspects of design (e.g., color schemes, font types). An 

initial version of Scout supported some variation of non-layout properties (e.g., background 

color); however, some designers mentioned they would want to consider the layout and visual 

properties during separate stages of the design process. Future work could explore providing 

faceted exploration of alternatives. Designers could first explore a variety of wireframe layouts. 



166 

They could then explore those layouts under alternate color schemes, followed by exploration 

of alternate font types. Such an interaction would likely require an interface where design 

properties that can be varied (e.g., layout, color, fonts) would be broken down into facets so 

that a designer can explore one dimension at a time, or switch back and forth between design 

dimensions. Designing this interaction could take insights from similar efforts on faceted design 

search of examples [52,113]. 

Expanding the Language of High-Level Constraints 

Scout provides an initial set of high-level constraints. However, more complex interfaces may 

require a more sophisticated set of high-level constraints. Designers may want to use relational 

constraints (e.g., element A should be to the left of element B), or constraints that define allowed 

behavior (e.g., rotation). Design principles like whitespace and balance could be adapted to 

constraints where a designer could specify a constraint that "asymmetrical balance" is satisfied. 

Future work could explore taking inspiration from design principles to expand this language. 

7.0.3 Modeling Human Perception of Usability 

My work on TapShoe (Chapter 5) revealed that we can build machine learning models that 

predict human perception of tappability for interface designs. Designers can use these models to 

help understand a key aspect of the usability of their interfaces without the need to collect any 

data. Beyond tappability, researchers have explored modeling importance (i.e., emphasis) [48] 

of graphic design elements, and similar models could likely be built for interface designs. Re-

searchers have also explored modeling human perception of brand personality (e.g., excitement, 

sophistication) [217] of mobile applications. One area of work could be to study whether we 

can model tappability for other platforms (i.e., webpages). Another area of future work could be 

to explore other attributes of usability that can be modeled and predicted in a similar way. For 

example, research could study how to systematize and model usability questions such as "Can a 

person predict what will happen a when interacting with an interface?" (i.e., predictability), 



167 

or "Is a person going to be able to understand this error message and know what to do next?" 

(e.g., "Help users recognize, diagnose, and recover from errors" [159]). 

7.0.4 Building a Dataset of Design Documents 

One limitation of Rewire (Chapter 4) is that while its accuracy at inferring element properties 

was reasonable, it was not able to infer element hierarchies as accurately. Interface design 

documents can be challenging to infer because they frequently contain complex hierarchies and 

shapes with ambiguous representations. For example, a button can be represented by a vector 

path or a rectangle. Rewire’s accuracy to infer this hierarchy and to infer ambiguous elements 

might be improved by applying machine learning methods trained on a large dataset of designs. 

Data-driven design [59,61,113,132] is a recent focus of work in interface design research. 

Some recent work has explored techniques to enable novel design search [52,94] and building 

models to predict human design perception [217]. Such techniques could potentially be used to 

improve Rewire’s accuracy. However, throughout my work, I have noticed that design documents 

created in tools like Sketch and Adobe XD do not reflect the same structure as the datasets that 

data-driven design systems have recently relied on. Android app designs have far more complex 

hierarchies and different types of low-level interface elements than design prototypes. 

Additionally, design prototypes for other platforms use other design languages (e.g., iOS) 

and element types that do not exist in Android apps. Therefore, a separate dataset of design 

prototype documents may be needed to create better data-driven design interactions, like those 

of Rewire, in interface prototyping tools. Creating such a dataset is a huge challenge for future 

work, given the diversity in interface prototyping tools, their output formats, and the diversity 

of design formats shared in online design galleries. However, creating such a dataset could be 

immensely helpful in example adaptation tasks, design search, and modeling human perception 

of interface designs. 



168 

7.0.5 Advancing Design Prototyping Tools 

The work I reviewed in data-driven design mainly focuses on high-level insights while little has 

been integrated into design prototyping tools (e.g., Sketch, Adobe XD). Although high level 

insights can be useful to designers, they do not have much impact on the daily work of designers 

when they are using their prototyping tools. Throughout my work, I have found that there 

is a huge opportunity to adapt research insights from data-driven design, machine learning, 

and semantic analysis into interactive prototyping tools to solve real-world interface design 

challenges. I explored this in Rewire by building tools for example adaptation directly into 

Adobe XD [198]. 

With TapShoe [201], I built an interface for designers to explore tappability, however, this 

interface was outside of a prototyping environment. Design walkthroughs of this tool with 

designers revealed that an integrated prototyping tool would be far more useful. This would 

enable designers to interactively explore properties of usability on a fine grained level, where 

they can make a single design change (e.g., change a color, move an element around) to explore 

the model’s output. Having the capability to explore these changes on a fine-grained level could 

potentially help designers gain new insights on tappability and create tappability guidelines. 

For exploring alternatives, tools like Scout could be integrated into interface prototyping 

tools. The creation of high-level constraints could map well to this interaction paradigm as 

designers are already used to specifying interface prototypes in a hierarchical design outline. 

Techniques for exploring alternatives to data visualizations [93] could be applied to enable 

designers to explore low-level variations to sub-components of their designs for more fine-

grained exploration. 



169 

Chapter 8 

Conclusion 

Interface design is crucial to the success of software. Therefore, it is important that we give 

interface designers the tools to make them more efficient and creative, and to better understand 

their users. Currently, designers still face many challenges in using their design prototyping tools 

for ideation, prototyping, and testing. Alternatives can be difficult to ideate and require manual 

work to transform, limiting the number of alternatives a designer can explore. Example designs 

are frequently too rigid to easily adapt and modify during prototyping. Example designs can also 

exist as software prototypes, which can be difficult to customize or prototype new interactions 

for. Many forms of large-scale usability testing are too expensive and time consuming to conduct 

throughout the design process. Such forms of usability testing rely on collecting data for each 

design change, and the results of these tests are separated from a designer’s main tools. 

A common thread across these challenges is that interface designers frequently need to 

transform interface designs to create prototypes, analyze usability, or ideate. Current design 

prototyping tools do not let a designer easily make this transformation. To aid this transition, we 

can augment interface design tools with semantic analysis capabilities to understand, analyze, 



170 

transform, and augment an interface design. Enhancing design tools with such capabilities can 

aid the design process by making it more efficient, more creative, and less rigid. Automatically 

inferring high-level interface semantics from incomplete inputs (e.g., pixels, code), and allowing 

designers to specify high-level semantics to enable a system to rapidly generate alternatives 

can ease this transition. We can enable this by applying technological advances from program 

synthesis, machine learning, and data-driven design. In this dissertation, I demonstrated the 

following thesis statement: 

Augmenting interface design tools with high-level semantic knowledge gained through 

semantic and data-driven analyses can help designers more easily analyze, transform, 

and augment a design. This can enable them to ideate and prototype more efficiently, 

and more thoroughly analyze the usability of their interface designs. 

In support of this statement, I developed Scout (Chapter 3), a system that helps designers 

rapidly visualize layout alternatives. In Scout, designers specify high-level constraints, and 

Scout translates them into low-level spatial constraints to enable them to rapidly ideate alternate 

layouts. Designers can iteratively refine and explore alternatives through mixed-initiative 

interaction with high-level constraints and design feedback. To enable designers to more easily 

adapt example designs, I developed Rewire (Chapter 4) which automatically infers a vector 

representation from an example interface screenshot where each interface component is a 

separate object with editable shape and style properties. Rewire can help designers prototype 

more efficiently by avoiding the manual recreation of design shapes and properties from example 

screenshots. To help designers in analyzing the usability of their interfaces, I created TapShoe 

(Chapter 5), an approach to gather usability data on mobile interface tappability at scale, and a 

deep learning model that designers can use to explore the tappability of their interfaces without 

the need to collect any data. This can help designers avoid the time and cost of conducting 

this type of usability study. If we can integrate such models into tools that designers can use 

iteratively throughout the design process, it can also help designers more thoroughly analyze the 

usability of their interface designs. Finally, I presented Genie (Chapter 6), a system that reverse 

engineers an abstract model of web interface commands to enable prototyping interactions 



171 

with the webpage under new input modalities. Genie provides a prototyping framework to let 

designers more easily transform and augment a design by quickly prototyping existing interfaces 

under new input modalities (e.g., speech, keyboard, command line input) and presentations. 

Through these systems, I demonstrated that we can use semantic analysis and data-driven 

design to accelerate an interface designers ideation, prototyping, and testing process. Future 

work can build upon the work in this dissertation to advance designers’ capabilities within 

their prototyping tools. This dissertation focuses mainly on ideating and prototyping within 

the design of a single interface screen. Future work can explore how to enable a designer to 

explicate interface semantics that can enable a system generate interface workflows based on 

the semantics of individual screens and the semantics of a task the designer wants to support. 

If future systems present many design alternatives based on these semantics to a designer, 

they will also need to give designers the capabilities to prototype with and compare between 

multiple design alternatives. A system could generate these alternatives based on a designers’ 

semantics or on the needs of users with diverse mental and physical capabilities. A designer 

could also quickly adapt them from example designs to include their own interface components. 

Once a designer has been shown or has created multiple design alternatives, they will need 

to evaluate them and select the best alternative to support a given task. The work I present 

in Chapter 5 can help designers evaluate one aspect of these alternatives; however, there are 

numerous more aspects of usability, visual design, and human performance that can likely be 

modeled. It will be important to enable designers to inspect the output of these models to help 

them understand the trade-offs between multiple alternatives to make better decisions. The 

work in this dissertation can provide a foundation for the development of a mixed-initiative 

design workflow throughout ideation, prototyping, and testing, where a designer can offload 

tedious design work to a system, and a designer and a system can collaborate to produce better 

design solutions. 



172 

Bibliography 

[1] Andy Rutledge :: Gestalt Principles - 3: Proximity, Uniform Connectedness, and Good 
Continuation. https://andyrutledge.com/gestalt-principles-3.html, 2009. 

[2] Affordances and Design. https://www.interaction-design.org/literature/ 
article/affordances-and-design, 2015. 

[3] Beyond Blue Links: Making Clickable Elements Recognizable. 
https://www.nngroup.com/articles/clickable-elements/, 2015. 

[4] 7 Elements of Design and How to Use Them Properly. 
https://blog.thepapermillstore.com/ 
7-elements-of-design-and-how-to-use-them-properly/, 2016. 

[5] Emphasis: Setting up the focal point of your design. 
https://www.interaction-design.org/literature/article/ 
emphasis-setting-up-the-focal-point-of-your-design, 2016. 

[6] Data Spotlight: Fierce Demand for UI/UX Designers. 
https://www.economicmodeling.com/2017/01/12/ 
data-spotlight-fierce-demand-uiux-designers/, 2017. 

[7] Flat UI Elements Attract Less Attention and Cause Uncertainty. https://www.nngroup. 
com/articles/flat-ui-less-attention-cause-uncertainty/, 2017. 

[8] Build a Responsive UI with ConstraintLayout. 
https://developer.android.com/training/constraint-layout/, 2018. 



173 

[9] Building Adaptive User Interfaces. 
https://developer.apple.com/design/adaptivity/, 2018. 

[10] Design for Kids Based on Their Stage of Physical Development. 
https://www.nngroup.com/articles/children-ux-physical-development/, 
2018. 

[11] Material Design Guidelines. https://material.io/design/, 2018. 

[12] Visual Affordance Testing. 
http://practicaluxmethods.com/product/visual-affordance-testing/, 2018. 

[13] Accessibility. https://material.io/design/usability/accessibility.html# 
assistive-technology, 2019. 

[14] Adaptivity and Layout. https://developer.apple.com/design/ 
human-interface-guidelines/ios/visual-design/adaptivity-and-layout/, 
2019. 

[15] Add-ons for Firefox (en-US). https://addons.mozilla.org/en-US/firefox/, 2019. 

[16] Appsee Mobile App Analytics. https://www.appsee.com, 2019. 

[17] Five Second Test. https://fivesecondtest.com/, 2019. 

[18] Getting Started Tutorial. https://developer.chrome.com/extensions/getstarted, 
2019. 

[19] Sketch: The digital design toolkit. https://www.sketch.com/, 2019. 

[20] Typography. https://developer.apple.com/design/ 
human-interface-guidelines/ios/visual-design/typography/, 2019. 

[21] WAI-ARIA Overview. https://www.w3.org/WAI/standards-guidelines/aria/, 
2019. 

[22] WebAIM: Screen Reader User Survey #8 Results. 
https://webaim.org/projects/screenreadersurvey8/, 2019. 

[23] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, 
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and others. 
Tensorflow: A System for Large-Scale Machine Learning. In OSDI, volume 16, pages 
265–283, 2016. 



174 

[24] Julio Abascal, Amaia Aizpurua, Idoia Cearreta, Borja Gamecho, Nestor Garay-Vitoria, 
and Raúl Miñón. Automatically Generating Tailored Accessible User Interfaces for 
Ubiquitous Services. In The Proceedings of the 13th International ACM SIGACCESS 
Conference on Computers and Accessibility, ASSETS ’11, pages 187–194, New York, NY, 
USA, 2011. ACM. doi: 10.1145/2049536.2049570 

[25] Khalid Alharbi and Tom Yeh. Collect, Decompile, Extract, Stats, and Diff. In Proceedings 
of the 17th International Conference on Human-Computer Interaction with Mobile Devices 
and Services, MobileHCI ’15, pages 515–524, New York, New York, USA, 2015. ACM. 
doi: 10.1145/2785830.2785892 

[26] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny 
Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen, Jaime Teevan, Ruth 
Kikin-Gil, and Eric Horvitz. Guidelines for Human-AI Interaction. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems, CHI ’19, pages 3:1–3:13, 
New York, NY, USA, 2019. ACM. doi: 10.1145/3290605.3300233 

[27] Pablo Arbelaez. Boundary Extraction in Natural Images Using Ultrametric Contour Maps. 
In Conference on Computer Vision and Pattern Recognition Workshop, CVPRW ’06, pages 
182–182. IEEE, June 2006. doi: 10.1109/CVPRW.2006.48 

[28] Nick Babich. Building Better UI Designs With Layout Grids. https://www. 
smashingmagazine.com/2017/12/building-better-ui-designs-layout-grids/, 
2017. 

[29] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep Convolutional 
Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 39(12):2481–2495, December 2017. 
doi: 10.1109/TPAMI.2016.2644615 

[30] Greg J. Badros, Alan Borning, Kim Marriott, and Peter Stuckey. Constraint Cascading 
Style Sheets for the Web. In Proceedings of the 12th Annual ACM Symposium on User 
Interface Software and Technology, UIST ’99, pages 73–82, New York, NY, USA, 1999. 
ACM. doi: 10.1145/320719.322588 

[31] Greg J. Badros, Alan Borning, and Peter J. Stuckey. The Cassowary Linear Arithmetic 
Constraint Solving Algorithm. ACM Transactions on Computer-Human Interaction, 
8(4):267–306, December 2001. doi: 10.1145/504704.504705 

[32] Helen Y. Balinsky, Anthony J. Wiley, and Matthew C. Roberts. Aesthetic Measure of 
Alignment and Regularity. In Proceedings of the 9th ACM Symposium on Document 
Engineering, DocEng ’09, pages 56–65, New York, NY, USA, 2009. ACM. 
doi: 10.1145/1600193.1600207 



175 

[33] Dana H Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern 
Recognition, 13(2):111–122, 1981. 

[34] Nikola Banovic, Tovi Grossman, Justin Matejka, and George Fitzmaurice. Waken: 
Reverse Engineering Usage Information and Interface Structure from Software Videos. 
In Proceedings of the 25th Annual ACM Symposium on User Interface Software and 
Technology, UIST ’12, pages 83–92, New York, NY, USA, 2012. ACM. 
doi: 10.1145/2380116.2380129 

[35] Tony Beltramelli. Pix2code: Generating code from a graphical user interface screenshot. 
In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing 
Systems, EICS ’18, pages 3:1–3:6, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3220134.3220135 

[36] Joey Benedek and Trish Miner. Measuring Desirability: New Methods for Evaluating 
Desirability in a Usability Lab Setting. Proceedings of Usability Professionals Association, 
2003(8-12):57, 2002. 

[37] Michael Bernard, Chia Hui Liao, and Melissa Mills. The Effects of Font Type and Size on 
the Legibility and Reading Time of Online Text by Older Adults. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems Extended Abstracts, CHI EA 
’01, pages 175–176, New York, NY, USA, 2001. ACM. doi: 10.1145/634067.634173 

[38] Pavol Bielik, Marc Fischer, and Martin Vechev. Robust Relational Layout Synthesis from 
Examples for Android. Proceedings of the ACM on Programming Languages, 
2(OOPSLA):156:1–156:29, October 2018. doi: 10.1145/3276526 

[39] Jeffrey P. Bigham and Richard E. Ladner. Accessmonkey: A Collaborative Scripting 
Framework for Web Users and Developers. In Proceedings of the 2007 International 
Cross-disciplinary Conference on Web Accessibility, W4A ’07, page 25, New York, New 
York, USA, 2007. ACM. doi: 10.1145/1243441.1243452 

[40] Jeffrey P. Bigham, Tessa Lau, and Jeffrey Nichols. Trailblazer: Enabling Blind Users to 
Blaze Trails through the Web. In Proceedings of the 13th International Conference on 
Intelligent User Interfaces, IUI ’09, page 177, New York, New York, USA, 2008. ACM. 
doi: 10.1145/1502650.1502677 

[41] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller. 
Automation and Customization of Rendered Web Pages. In Proceedings of the 18th 
Annual ACM Symposium on User Interface Software and Technology, UIST ’05, pages 
163–172, New York, New York, USA, 2005. ACM. doi: 10.1145/1095034.1095062 

[42] Alan Borning, Richard Kuang-Hsu Lin, and Kim Marriott. Constraint-based Document 
Layout for the Web. Multimedia Systems, 8(3):177–189, October 2000. 
doi: 10.1007/s005300000043 



176 

[43] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving Linear Arithmetic 
Constraints for User Interface Applications. In Proceedings of the 10th Annual ACM 
Symposium on User Interface Software and Technology, UIST ’97, pages 87–96, Banff, 
Alberta, Canada, 1997. ACM. doi: 10.1145/263407.263518 

[44] Yevgen Borodin, Jeffrey P. Bigham, Rohit Raman, and I. V. Ramakrishnan. What’s New?: 
Making Web Page Updates Accessible. In Proceedings of the 10th International ACM 
SIGACCESS Conference on Computers and Accessibility, ASSETS ’08, pages 145–152, New 
York, NY, USA, 2008. ACM. doi: 10.1145/1414471.1414499 

[45] Andy Brown and Simon Harper. Dynamic Injection of WAI-ARIA into Web Content. In 
Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility, 
W4A ’13, pages 14:1–14:4, New York, NY, USA, 2013. ACM. 
doi: 10.1145/2461121.2461141 

[46] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. Finding 
Gender-Inclusiveness Software Issues with GenderMag: A Field Investigation. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’16, 
pages 2586–2598, New York, NY, USA, 2016. ACM. doi: 10.1145/2858036.2858274 

[47] William Buxton. Sketching User Experiences: Getting the Design Right and the Right 
Design. Elsevier/Morgan Kaufmann, 2007. 

[48] Zoya Bylinskii, Nam Wook Kim, Peter O’Donovan, Sami Alsheikh, Spandan Madan, 
Hanspeter Pfister, Fredo Durand, Bryan Russell, and Aaron Hertzmann. Learning Visual 
Importance for Graphic Designs and Data Visualizations. In Proceedings of the 30th 
Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 
57–69, New York, NY, USA, 2017. ACM. doi: 10.1145/3126594.3126653 

[49] Luca Cardelli. Building User Interfaces by Direct Manipulation. In Proceedings of the 1st 
Annual ACM SIGGRAPH Symposium on User Interface Software, UIST ’88, pages 152–166, 
New York, NY, USA, 1988. ACM. doi: 10.1145/62402.62428 

[50] Kerry Shih-Ping Chang and Brad A. Myers. WebCrystal: Understanding and Reusing 
Examples in Web Authoring. In Proceedings of the SIGCHI Conference on Human Factors 
in Computing Systems, CHI ’12, pages 3205–3214, New York, NY, USA, 2012. ACM. 
doi: 10.1145/2207676.2208740 

[51] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. Associating the Visual Representation of 
User Interfaces With Their Internal Structures and Metadata. In Proceedings of the 24th 
Annual ACM Symposium on User Interface Software and Technology, UIST ’11, page 245, 
New York, New York, USA, 2011. ACM. doi: 10.1145/2047196.2047228 



177 

[52] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao, and Jinshui 
Wang. Gallery D.C.: Design Search and Knowledge Discovery Through Auto-created GUI 
Component Gallery. Proceedings of the ACM on Human-Computer Interaction, 
3(CSCW):180:1–180:22, November 2019. doi: 10.1145/3359282 

[53] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. From UI 
Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap Mobile GUI 
Implementation. In Proceedings of the 40th International Conference on Software 
Engineering, ICSE ’18, pages 665–676, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3180155.3180240 

[54] Sen Chen, Lingling Fan, Ting Su, Lei Ma, Yang Liu, and Lihua Xu. Automated 
Cross-Platform GUI Code Generation for Mobile Apps. In 2019 IEEE 1st International 
Workshop on Artificial Intelligence for Mobile (AI4Mobile), pages 13–16, February 2019. 
doi: 10.1109/AI4Mobile.2019.8672718 

[55] Larry L. Constantine and Lucy AD Lockwood. Software for Use: A Practical Guide to the 
Models and Methods of Usage-Centered Design. Pearson Education, 1999. 

[56] Alan Cooper, Robert Reimann, David Cronin, and Christopher Noessel. About Face: The 
Essentials of Interaction Design. John Wiley & Sons, August 2014. 

[57] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. Tools and 
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008. 

[58] Marco de Sá, Luís Carriço, Luís Duarte, and Tiago Reis. A Mixed-fidelity Prototyping 
Tool for Mobile Devices. In Proceedings of the Working Conference on Advanced Visual 
Interfaces, AVI ’08, pages 225–232, New York, NY, USA, 2008. ACM. 
doi: 10.1145/1385569.1385606 

[59] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, 
Jeffrey Nichols, and Ranjitha Kumar. Rico: A Mobile App Dataset for Building 
Data-Driven Design Applications. In Proceedings of the 30th Annual ACM Symposium on 
User Interface Software and Technology, UIST ’17, pages 845–854, New York, NY, USA, 
2017. ACM. doi: 10.1145/3126594.3126651 

[60] Biplab Deka, Zifeng Huang, Chad Franzen, Jeffrey Nichols, Yang Li, and Ranjitha Kumar. 
ZIPT: Zero-Integration Performance Testing of Mobile App Designs. In Proceedings of the 
30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 
727–736, New York, NY, USA, 2017. ACM. doi: 10.1145/3126594.3126647 

[61] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. ERICA: Interaction Mining Mobile 
Apps. In Proceedings of the 29th Annual Symposium on User Interface Software and 
Technology, UIST ’16, pages 767–776, New York, NY, USA, 2016. ACM. 
doi: 10.1145/2984511.2984581 



178 

[62] Morgan Dixon and James Fogarty. Prefab: Implementing Advanced Behaviors Using 
Pixel-Based Reverse Engineering of Interface Structure. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, CHI ’10, pages 1525–1534, New 
York, NY, USA, 2010. ACM. doi: 10.1145/1753326.1753554 

[63] Morgan Dixon, James Fogarty, and Jacob Wobbrock. A General-purpose Target-aware 
Pointing Enhancement Using Pixel-level Analysis of Graphical Interfaces. In Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pages 
3167–3176, New York, NY, USA, 2012. ACM. doi: 10.1145/2207676.2208734 

[64] Morgan Dixon, Daniel Leventhal, and James Fogarty. Content and Hierarchy in 
Pixel-Based Methods for Reverse Engineering Interface Structure. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 969–978, 
New York, NY, USA, 2011. ACM. doi: 10.1145/1978942.1979086 

[65] Steven P. Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel L. Schwartz, and 
Scott R. Klemmer. Prototyping Dynamics: Sharing Multiple Designs Improves 
Exploration, Group Rapport, and Results. In Design Thinking Research, pages 47–70, 
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. 
doi: 10.1007/978-3-642-31991-4_4 

[66] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L. Schwartz, and 
Scott R. Klemmer. Parallel Prototyping Leads to Better Design Results, More Divergence, 
and Increased Self-efficacy. ACM Transactions on Computer-Human Interaction (TOCHI), 
17(4):18:1–18:24, December 2010. doi: 10.1145/1879831.1879836 

[67] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L. Schwartz, and 
Scott R. Klemmer. Parallel Prototyping Leads to Better Design Results, More Divergence, 
and Increased Self-efficacy. In Design Thinking Research, pages 127–153. Springer Berlin 
Heidelberg, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-21643-5_8 

[68] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. Cracking the Cocoa 
Nut: User Interface Programming at Runtime. In Proceedings of the 24th Annual ACM 
Symposium on User Interface Software and Technology, UIST ’11, pages 225–234, New 
York, NY, USA, 2011. ACM. doi: 10.1145/2047196.2047226 

[69] W. Keith Edwards, Scott E. Hudson, Joshua Marinacci, Roy Rodenstein, Thomas 
Rodriguez, and Ian Smith. Systematic Output Modification in a 2d User Interface Toolkit. 
In Proceedings of the 10th Annual ACM Symposium on User Interface Software and 
Technology, UIST ’97, pages 151–158, New York, New York, USA, 1997. ACM. 
doi: 10.1145/263407.263537 

[70] Leah Findlater, Alex Jansen, Kristen Shinohara, Morgan Dixon, Peter Kamb, Joshua 
Rakita, and Jacob O. Wobbrock. Enhanced Area Cursors: Reducing Fine Pointing 



179 

Demands for People with Motor Impairments. In Proceedings of the 23nd Annual ACM 
Symposium on User Interface Software and Technology, UIST ’10, pages 153–162, New 
York, New York, USA, 2010. ACM. doi: 10.1145/1866029.1866055 

[71] Paul M. Fitts. The Information Capacity of the Human Motor System in Controlling the 
Amplitude of Movement. Journal of Experimental Psychology, 47(6):381–391, 1954. 
doi: 10.1037/h0055392 

[72] Joseph L Fleiss. Measuring Nominal Scale Agreement Among Many Raters. Psychological 
Bulletin, 76(5):378, 1971. 

[73] Krzysztof Gajos, Anthony Wu, and Daniel S Weld. Cross-Device Consistency in 
Automatically Generated User Interfaces. In Proceedings of the 2nd Workshop on 
Multi-User and Ubiquitous User Interfaces, pages 7–8, 2005. 

[74] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. Automatically Generating 
User Interfaces Adapted to Users’ Motor and Vision Capabilities. In Proceedings of the 
20th Annual ACM Symposium on User Interface Software and Technology, UIST ’07, page 
231, New York, New York, USA, 2007. ACM. doi: 10.1145/1294211.1294253 

[75] William W. Gaver. Technology Affordances. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, CHI ’91, pages 79–84, New York, NY, USA, 1991. 
ACM. doi: 10.1145/108844.108856 

[76] James J Gibson. The Ecological Approach to Visual Perception: Classic Edition. Psychology 
Press, 2014. 

[77] Álvaro González, Luis M. Bergasa, J. Javier Yebes, and Sebastián Bronte. Text Location 
in Complex Images. In Proceedings of the International Conference on Pattern Recognition, 
ICPR ’12, pages 617–620. IEEE, November 2012. 

[78] Michael D. Greenberg, Matthew W. Easterday, and Elizabeth M. Gerber. Critiki: A 
Scaffolded Approach to Gathering Design Feedback from Paid Crowdworkers. In 
Proceedings of the 2015 ACM SIGCHI Conference on Creativity and Cognition, C&C ’15, 
pages 235–244, New York, NY, USA, 2015. ACM. doi: 10.1145/2757226.2757249 

[79] Tovi Grossman and Ravin Balakrishnan. The Bubble Cursor: Enhancing Target 
Acquisition by Dynamic Resizing of the Cursor’s Activation Area. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems, CHI ’05, pages 281–290, 
New York, NY, USA, 2005. ACM. doi: 10.1145/1054972.1055012 

[80] Ulrike Hahn, Nick Chater, and Lucy B Richardson. Similarity as Transformation. 
Cognition, 87(1):1–32, 2003. 

[81] Vicki L. Hanson and John T. Richards. Progress on Website Accessibility? ACM 
Transactions on the Web, 7(1):2:1–2:30, March 2013. doi: 10.1145/2435215.2435217 



180 

[82] Steven J. Harrington and Paul Roetling. Aesthetic Measures for Automated Document 
Layout. In ACM Symposium on Document Engineering, DocEng ’04, pages 109–111, 2004. 

[83] Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R. 
Klemmer. D.Note: Revising User Interfaces Through Change Tracking, Annotations, and 
Alternatives. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’10, pages 493–502, New York, NY, USA, 2010. ACM. 
doi: 10.1145/1753326.1753400 

[84] Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R. Klemmer. Programming by a 
Sample: Rapidly Creating Web Applications with D.Mix. In Proceedings of the 20th 
Annual ACM Symposium on User Interface Software and Technology, UIST ’07, pages 
241–250, New York, NY, USA, 2007. ACM. doi: 10.1145/1294211.1294254 

[85] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer. Design as 
Exploration: Creating Interface Alternatives through Parallel Authoring and Runtime 
Tuning. In Proceedings of the 21st Annual ACM Symposium on User Interface Software and 
Technology, UIST ’08, page 91, New York, New York, USA, 2008. ACM. 
doi: 10.1145/1449715.1449732 

[86] Osamu Hashimoto and Brad A. Myers. Graphical Styles for Building Interfaces by 
Demonstration. In Proceedings of the 5th Annual ACM Symposium on User Interface 
Software and Technology, UIST ’92, pages 117–124, New York, NY, USA, 1992. ACM. 
doi: 10.1145/142621.142635 

[87] Scarlett R. Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P. Bailey. Getting 
Inspired!: Understanding How and Why Examples Are Used in Creative Design Practice. 
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, 
pages 87–96, New York, NY, USA, 2009. ACM. doi: 10.1145/1518701.1518717 

[88] Jane Hoffswell, Alan Borning, and Jeffrey Heer. SetCoLa: High-Level Constraints for 
Graph Layout. Computer Graphics Forum, 37(3):537–548, June 2018. 
doi: 10.1111/cgf.13440 

[89] Sture Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian 
Journal of Statistics, 6(2):65–70, 1979. 

[90] Andreas Holzinger, Gig Searle, and Alexander Nischelwitzer. On Some Aspects of 
Improving Mobile Applications for the Elderly. In Universal Access in Human Computer 
Interaction. Coping with Diversity, pages 923–932, Berlin, Heidelberg, 2007. Springer 
Berlin Heidelberg. 

[91] Eric Horvitz. Principles of Mixed-initiative User Interfaces. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, CHI ’99, pages 159–166, New York, 
NY, USA, 1999. ACM. doi: 10.1145/302979.303030 



181 

[92] Hiroshi Hosobe. A Scalable Linear Constraint Solver for User Interface Construction. In 
Principles and Practice of Constraint Programming, CP ’00, pages 218–233, Berlin, 
Heidelberg, 2000. Springer. doi: 10.1007/3-540-45349-0_17 

[93] Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. Programming by Manipulation for 
Layout. In Proceedings of the 27th Annual ACM Symposium on User Interface Software 
and Technology, UIST ’14, pages 231–241, New York, NY, USA, 2014. ACM. 
doi: 10.1145/2642918.2647378 

[94] Forrest Huang, John F. Canny, and Jeffrey Nichols. Swire: Sketch-based User Interface 
Retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in Computing 
Systems, CHI ’19, pages 104:1–104:10, New York, NY, USA, 2019. ACM. 
doi: 10.1145/3290605.3300334 

[95] Yun Huang, Brian Dobreski, Bijay Bhaskar Deo, Jiahang Xin, Natã Miccael Barbosa, Yang 
Wang, and Jeffrey P. Bigham. CAN: Composable Accessibility Infrastructure via 
Data-driven Crowdsourcing. In Proceedings of the 12th Web for All Conference, W4A ’15, 
pages 2:1–2:10, New York, NY, USA, 2015. ACM. doi: 10.1145/2745555.2746651 

[96] Scott E. Hudson and Shamim P. Mohamed. Interactive Specification of Flexible User 
Interface Displays. ACM Transactions on Information Systems, 8(3):269–288, July 1990. 
doi: 10.1145/98188.98201 

[97] Faustina Hwang, Simeon Keates, Patrick Langdon, and John Clarkson. Mouse 
Movements of Motion-impaired Users: A Submovement Analysis. In Proceedings of the 
6th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 
’04, pages 102–109, New York, NY, USA, 2004. ACM. doi: 10.1145/1028630.1028649 

[98] Adobe Inc. Download free Adobe XD | UX/UI design and collaboration tool. 
https://www.adobe.com/products/xd.html, October 2019. 

[99] David G. Jansson and Steven M. Smith. Design Fixation. Design Studies, 12(1):3–11, 
January 1991. doi: 10.1016/0142-694X(91)90003-F 

[100] Yue Jiang, Ruofei Du, Christof Lutteroth, and Wolfgang Stuerzlinger. ORC Layout: 
Adaptive GUI Layout with OR-Constraints. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, CHI ’19, pages 413:1–413:12, New York, NY, USA, 
2019. ACM. doi: 10.1145/3290605.3300643 

[101] Eunice Jun, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, Rene Just, and 
Katharina Reinecke. Tea: A High-level Language and Runtime System for Automating 
Statistical Analysis. In Proceedings of the 32nd Annual ACM Symposium on User Interface 
Software and Technology, UIST ’19, pages 591–603, New Orleans, LA, USA, 2019. ACM. 
doi: 10.1145/3332165.3347940 



182 

[102] Solange Karsenty, Chris Weikart, and James A. Landay. Inferring Graphical Constraints 
with Rockit. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’93, page 531, New York, New York, USA, 1993. ACM. 
doi: 10.1145/169059.169528 

[103] Shinya Kawanaka, Yevgen Borodin, Jeffrey P. Bigham, Darren Lunn, Hironobu Takagi, 
and Chieko Asakawa. Accessibility Commons: A Metadata Infrastructure for Web 
Accessibility. In Proceedings of the 10th International ACM SIGACCESS Conference on 
Computers and Accessibility, ASSETS ’08, pages 153–160, New York, NY, USA, 2008. 
ACM. doi: 10.1145/1414471.1414500 

[104] Rubaiat Habib Kazi, Tovi Grossman, Hyunmin Cheong, Ali Hashemi, and George 
Fitzmaurice. DreamSketch: Early Stage 3d Design Explorations with Sketching and 
Generative Design. In Proceedings of the 30th Annual ACM Symposium on User Interface 
Software and Technology, UIST ’17, pages 401–414, New York, NY, USA, 2017. ACM. 
doi: 10.1145/3126594.3126662 

[105] Andrew Kirpatrick, Campbell Alastair O Connor, Joshue, and Michael Cooper. Web 
Content Accessibility Guidelines. https://www.w3.org/TR/WCAG20/, 2018. 

[106] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing User Studies with 
Mechanical Turk. In Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems, CHI ’08, pages 453–456, New York, NY, USA, 2008. ACM. 
doi: 10.1145/1357054.1357127 

[107] Scott R. Klemmer, Mark W. Newman, Ryan Farrell, Mark Bilezikjian, and James A. 
Landay. The Designers’ Outpost: A Tangible Interface for Collaborative Web Site Design. 
In Proceedings of the 14th Annual ACM Symposium on User Interface Software and 
Technology, UIST ’01, pages 1–10, New York, NY, USA, 2001. ACM. 
doi: 10.1145/502348.502350 

[108] Amy J. Ko and Xing Zhang. Feedlack Detects Missing Feedback in Web Applications. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, 
pages 2177–2186, New York, NY, USA, 2011. ACM. doi: 10.1145/1978942.1979260 

[109] Wolfgang Kohler. Gestalt Psychology. Psychological Research, 31(1):XVIII–XXX, 1967. 
doi: 10.1007/BF00422382 

[110] Steven Komarov, Katharina Reinecke, and Krzysztof Z. Gajos. Crowdsourcing 
Performance Evaluations of User Interfaces. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, CHI ’13, pages 207–216, New York, NY, USA, 
2013. ACM. doi: 10.1145/2470654.2470684 



183 

[111] Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. Crowd-powered Parameter 
Analysis for Visual Design Exploration. In Proceedings of the 27th Annual ACM 
Symposium on User Interface Software and Technology, UIST ’14, pages 65–74, New York, 
NY, USA, 2014. ACM. doi: 10.1145/2642918.2647386 

[112] Chinmay Kulkarni, Steven P. Dow, and Scott R Klemmer. Early and Repeated Exposure to 
Examples Improves Creative Work. In Design Thinking Research, pages 49–62. Springer 
International Publishing, 2014. doi: 10.1007/978-3-319-01303-9_4 

[113] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad, 
Scott R. Klemmer, and Jerry O. Talton. Webzeitgeist: Design Mining the Web. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, 
pages 3083–3092, New York, NY, USA, 2013. ACM. doi: 10.1145/2470654.2466420 

[114] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and Scott R. Klemmer. Bricolage: 
Example-based Retargeting for Web Design. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, CHI ’11, pages 2197–2206, New York, NY, USA, 
2011. ACM. doi: 10.1145/1978942.1979262 

[115] James A. Landay. SILK: Sketching Interfaces like Krazy. In Conference Companion on 
Human Factors in Computing Systems, CHI ’96, pages 398–399, Vancouver, British 
Columbia, Canada, 1996. ACM. doi: 10.1145/257089.257396 

[116] J Richard Landis and Gary G Koch. An Application of Hierarchical Kappa-type Statistics 
in the Assessment of Majority Agreement Among Multiple Observers. Biometrics, pages 
363–374, 1977. 

[117] Walter S. Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffrey P. Bigham, and Michael S. 
Bernstein. Apparition: Crowdsourced User Interfaces That Come to Life As You Sketch 
Them. In Proceedings of the 33rd Annual ACM Conference on Human Factors in 
Computing Systems, CHI ’15, pages 1925–1934, New York, NY, USA, 2015. ACM. 
doi: 10.1145/2702123.2702565 

[118] Hao L and Yang Li. Gesture Avatar: A Technique for Operating Mobile User Interfaces 
Using Gestures. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’11, pages 207–216, New York, New York, USA, 2011. ACM. 
doi: 10.1145/1978942.1978972 

[119] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 
521(7553):436, 2015. 

[120] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R. Klemmer. 
Designing with Interactive Example Galleries. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Syfstems, CHI ’10, pages 2257–2266, New York, NY, USA, 
2010. ACM. doi: 10.1145/1753326.1753667 



184 

[121] Sang Won Lee, Yujin Zhang, Isabelle Wong, Yiwei Yang, Stephanie D. O’Keefe, and 
Walter S. Lasecki. SketchExpress: Remixing Animations for More Effective 
Crowd-Powered Prototyping of Interactive Interfaces. In Proceedings of the 30th Annual 
ACM Symposium on User Interface Software and Technology, UIST ’17, pages 817–828. 
ACM, 2017. doi: 10.1145/3126594.3126595 

[122] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. LayoutGAN: 
Generating Graphic Layouts with Wireframe Discriminators. arXiv:1901.06767 [cs], 
January 2019. arXiv: 1901.06767. 

[123] Yang Li, Samy Bengio, and Gilles Bailly. Predicting Human Performance in Vertical Menu 
Selection Using Deep Learning. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, CHI ’18, pages 29:1–29:7. ACM, 2018. 
doi: 10.1145/3173574.3173603 

[124] Yao Li and Huchuan Lu. Scene Text Detection via Stroke Width. In Proceedings of the 
International Conference on Pattern Recognition, ICPR ’12, pages 681–684. IEEE, 
November 2012. 

[125] Horst Lichter, Matthias Schneider-Hufschmidt, and Heinz Zullighoven. Prototyping in 
Industrial Software Projects - Bridging the Gap Between Theory and Practice. IEEE 
Transactions on Software Engineering, 20(11):825–832, 1994. 

[126] William Lidwell, Kritina Holden, and Jill Butler. Universal Principles of Design, Revised 
and Updated: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make 
Better Design Decisions, and Teach Through Design. Rockport Publishers, 2010. 

[127] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. The Anatomy of Prototypes: 
Prototypes As Filters, Prototypes As Manifestations of Design Ideas. ACM Transactions on 
Computer-Human Interaction, 15(2):7:1–7:27, July 2008. 
doi: 10.1145/1375761.1375762 

[128] James Lin and James A. Landay. Damask: A Tool for Early-Stage Design and Prototyping 
of Cross-Device User Interfaces. In CHI 2003 Workshop on HCI Patterns: Concepts and 
Tools, 2003. 

[129] James Lin and James A. Landay. Employing Patterns and Layers for Early-Stage Design 
and Prototyping of Cross-Device User Interfaces. In Proceeding of the SIGCHI Conference 
on Human Factors in Computing Systems, CHI ’08, page 1313, New York, New York, USA, 
2008. ACM. doi: 10.1145/1357054.1357260 

[130] James Lin, Mark W. Newman, Jason I. Hong, and James A. Landay. DENIM: Finding a 
Tighter Fit Between Tools and Practice for Web Site Design. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, CHI ’00, pages 510–517, New York, 
NY, USA, 2000. ACM. doi: 10.1145/332040.332486 



185 

[131] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, Eser Kandogan, and 
Eser Kandogan. Koala: Capture, Share, Automate, Personalize Business Processes on the 
Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 
CHI ’07, pages 943–946, New York, NY, USA, 2007. ACM. 
doi: 10.1145/1240624.1240767 

[132] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha Kumar. 
Learning Design Semantics for Mobile Apps. In Proceedings of the 31st Annual ACM 
Symposium on User Interface Software and Technology, UIST ’18, pages 569–579, New 
York, NY, USA, 2018. ACM. doi: 10.1145/3242587.3242650 

[133] Aran Lunzer and Kasper Hornbæk. Subjunctive Interfaces: Extending Applications to 
Support Parallel Setup, Viewing and Control of Alternative Scenarios. ACM Transactions 
on Computer-Human Interaction, 14(4):1–44, January 2008. 
doi: 10.1145/1314683.1314685 

[134] Kurt Luther, Jari-Lee Tolentino, Wei Wu, Amy Pavel, Brian P. Bailey, Maneesh Agrawala, 
Bjrn Hartmann, and Steven P. Dow. Structuring, Aggregating, and Evaluating 
Crowdsourced Design Critique. In Proceedings of the 18th ACM Conference on Computer 
Supported Cooperative Work & Social Computing, CSCW ’15, pages 473–485, New York, 
NY, USA, 2015. ACM. doi: 10.1145/2675133.2675283 

[135] Christof Lutteroth, Robert Strandh, and Gerald Weber. Domain Specific High-Level 
Constraints for User Interface Layout. Constraints, 13(3):307–342, September 2008. 
doi: 10.1007/s10601-008-9043-2 

[136] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. ReAjax: A Reverse Engineering 
tool for Ajax Web Applications. IET Software, 6(1):33, 2012. 
doi: 10.1049/iet-sen.2010.0152 

[137] Joe Marks, Paul Beardsley, Brad Andalman, William Freeman, Sarah Gibson, Jessica 
Hodgins, Thomas Kang, Brian Mirtich, Hanspeter Pfister, Wheeler Ruml, et al. Design 
Galleries: A General Approach to Setting Parameters for Computer Graphics and 
Animation. In Proceedings of the 24th Annual Conference on Computer Graphics and 
Interactive Techniques, SIGGRAPH ’97, pages 389–400, New York, New York, USA, 1997. 
ACM. doi: 10.1145/258734.258887 

[138] Dimitri Masson, Alexandre Demeure, and Gaelle Calvary. Magellan, an Evolutionary 
System to Foster User Interface Design Creativity. In Proceedings of the 2nd ACM SIGCHI 
Symposium on Engineering Interactive Computing Systems, EICS ’10, pages 87–92, New 
York, NY, USA, 2010. ACM. doi: 10.1145/1822018.1822032 

[139] Justin Matejka, Michael Glueck, Erin Bradner, Ali Hashemi, Tovi Grossman, and George 
Fitzmaurice. Dream Lens: Exploration and Visualization of Large-Scale Generative 



186 

Design Datasets. In Proceedings of the 2018 CHI Conference on Human Factors in 
Computing Systems, CHI ’18, pages 369:1–369:12, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3173574.3173943 

[140] Nolwenn Maudet, Germ ̨an Leiva, Michel Beaudouin-Lafon, and Wendy Mackay. Design 
Breakdowns: Designer-Developer Gaps in Representing and Interpreting Interactive 
Systems. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative 
Work and Social Computing, CSCW ’17, pages 630–641, New York, NY, USA, 2017. ACM. 
doi: 10.1145/2998181.2998190 

[141] Nicholas Micallef, Erwin Adi, and Gaurav Misra. Investigating Login Features in 
Smartphone Apps. In Proceedings of the 2018 ACM International Joint Conference and 
2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable 
Computers, UbiComp ’18, pages 842–851, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3267305.3274172 

[142] Aliaksei Miniukovich and Antonella De Angeli. Computation of Interface Aesthetics. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’15, 
pages 1163–1172, Seoul, Republic of Korea, 2015. ACM. 
doi: 10.1145/2702123.2702575 

[143] Aliaksei Miniukovich and Antonella De Angeli. Visual Diversity and User Interface 
Quality. In Proceedings of the 2015 British HCI Conference, pages 101–109. ACM, 2015. 

[144] Bill Moggridge. Designing Interactions. The MIT Press, 2006. 

[145] Rolf Molich and Jakob Nielsen. Improving a Human - Computer Dialogue. 
Communications of the ACM, 33(3):11, 1990. 

[146] Kevin Patrick Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and 
Denys Poshyvanyk. Machine Learning-Based Prototyping of Graphical User Interfaces 
for Mobile Apps. IEEE Transactions on Software Engineering, 2018. 

[147] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith, Bill 
Howe, and Jeffrey Heer. Formalizing Visualization Design Knowledge as Constraints: 
Actionable and Extensible Models in Draco. IEEE Transactions on Visualization and 
Computer Graphics, 25(1):438–448, 2019. 

[148] Brad Myers. Challenges of HCI Design and Implementation. Interactions, 1(1):73–83, 
January 1994. doi: 10.1145/174800.174808 

[149] Brad Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Amy Ko. How Designers 
Design and Program Interactive Behaviors. In 2008 IEEE Symposium on Visual Languages 
and Human-Centric Computing, pages 177–184, September 2008. 
doi: 10.1109/VLHCC.2008.4639081 



187 

[150] Brad A. Myers and William Buxton. Creating Highly-interactive and Graphical User 
Interfaces by Demonstration. In Proceedings of the 13th Annual Conference on Computer 
Graphics and Interactive Techniques, SIGGRAPH ’86, pages 249–258, New York, NY, USA, 
1986. ACM. doi: 10.1145/15922.15914 

[151] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltzmann 
Machines. In Proceedings of the 27th International Conference on Machine Learning, ICML 
’10, pages 807–814, 2010. 

[152] Michael Nebeling, Maximilian Speicher, and Moira C Norrie. CrowdStudy: General 
Toolkit for Crowdsourced Evaluation of Web Interfaces. In Proceedings of the SIGCHI 
Symposium on Engineering Interactive Computing Systems, EICS ’13, pages 255–264. 
ACM, 2013. doi: 10.1145/2494603.2480303 

[153] David Chek Ling Ngo, Lian Seng Teo, and John G. Byrne. Modelling Interface Aesthetics. 
Information Sciences, 152:25–46, June 2003. doi: 10.1016/S0020-0255(02)00404-8 

[154] Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUITAR: An 
Innovative Tool for Automated Testing of GUI-driven Software. Automated Software 
Engineering, 21(1):65–105, March 2014. doi: 10.1007/s10515-013-0128-9 

[155] Tuan Anh Nguyen and Christoph Csallner. Reverse Engineering Mobile Application User 
Interfaces with REMAUI (T). In IEEE/ACM International Conference on Automated 
Software Engineering, ASE ’15, pages 248–259. IEEE, November 2015. 
doi: 10.1109/ASE.2015.32 

[156] Jeffrey Nichols, Brad A. Myers, and Kevin Litwack. Improving Automatic Interface 
Generation with Smart Templates. In Proceedings of the 9th International Conference on 
Intelligent User Interfaces, IUI ’04, page 286, New York, New York, USA, 2004. ACM. 
doi: 10.1145/964442.964507 

[157] Jakob Nielsen. Usability Engineering. Elsevier, 1994. 

[158] Jakob Nielsen and Robert L Mack. Usability Inspection Methods, volume 1. Wiley New 
York, 1994. 

[159] Jakob Nielsen and Rolf Molich. Heuristic Evaluation of User Interfaces. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’90, pages 249–256, 
New York, New York, USA, 1990. ACM. doi: 10.1145/97243.97281 

[160] Don Norman. The Design of Everyday Things: Revised and Expanded Edition. 
Constellation, 2013. 

[161] Donald A. Norman. Affordance, Conventions, and Design. Interactions, 6(3):38–43, May 
1999. doi: 10.1145/301153.301168 



188 

[162] Donald A. Norman. The Way I See It: Signifiers, Not Affordances. Interactions, 
15(6):18–19, November 2008. doi: 10.1145/1409040.1409044 

[163] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. Learning Layouts for 
Single-Page Graphic Designs. IEEE Transactions on Visualization and Computer Graphics, 
20(8):1200–1213, August 2014. doi: 10.1109/TVCG.2014.48 

[164] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. DesignScape: Design with 
Interactive Layout Suggestions. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, CHI ’15, pages 1221–1224, New York, New York, USA, 
2015. ACM. doi: 10.1145/2702123.2702149 

[165] Dan R. Olsen, Scott E. Hudson, Thom Verratti, Jeremy M. Heiner, and Matt Phelps. 
Implementing Interface Attachments based on Surface Representations. In Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’99, pages 
191–198, New York, New York, USA, 1999. ACM. doi: 10.1145/302979.303038 

[166] Dan R. Olsen, Trent Taufer, and Jerry Alan Fails. ScreenCrayons: Annotating Anything. 
In Proceedings of the 17th Annual ACM Symposium on User Interface Software and 
Technology, UIST ’04, page 165, New York, New York, USA, 2004. ACM. 
doi: 10.1145/1029632.1029663 

[167] Antti Oulasvirta, Aliaksei Miniukovich, Gregorio Palmas, Tino Weinkauf, Samuli 
De Pascale, Janin Koch, Thomas Langerak, Jussi Jokinen, Kashyap Todi, Markku Laine, 
Manoj Kristhombuge, and Yuxi Zhu. Aalto Interface Metrics (AIM): A Service and 
Codebase for Computational GUI Evaluation. In The 31st Annual ACM Symposium on 
User Interface Software and Technology Adjunct Proceedings, UIST ’18 Adjunct, pages 
16–19, Berlin, Germany, 2018. ACM. doi: 10.1145/3266037.3266087 

[168] Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil. 
Verifying That Web Pages Have Accessible Layout. In Proceedings of the 39th ACM 
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’18, 
pages 1–14, New York, NY, USA, 2018. ACM. doi: 10.1145/3192366.3192407 

[169] Pekka Parhi, Amy K. Karlson, and Benjamin B. Bederson. Target Size Study for 
One-handed Thumb Use on Small Touchscreen Devices. In Proceedings of the 8th 
Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI 
’06, pages 203–210, New York, NY, USA, 2006. ACM. doi: 10.1145/1152215.1152260 

[170] Michael Quinn Patton. Qualitative Research & Evaluation Methods: Integrating Theory 
and Practice. SAGE Publications, October 2014. 

[171] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors for 
Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in 
Natural Language Processing, EMLNP ’14, pages 1532–1543, 2014. 



189 

[172] Ken Pfeuffer and Yang Li. Analysis and Modeling of Grid Performance on Touchscreen 
Mobile Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’18, pages 288:1–288:12, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3173574.3173862 

[173] Christopher Power, André Freire, Helen Petrie, and David Swallow. Guidelines Are Only 
Half of the Story: Accessibility Problems Encountered by Blind Users on the Web. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, 
pages 433–442, New York, NY, USA, 2012. ACM. doi: 10.1145/2207676.2207736 

[174] Raffaela Rein. The Trillion Dollar UX Problem: A Comprehensive Guide to the ROI of 
UX, March 2017. 

[175] Katharina Reinecke and Abraham Bernstein. Improving Performance, Perceived 
Usability, and Aesthetics with Culturally Adaptive User Interfaces. ACM Transactions on 
Computer-Human Interaction, 18(2):1–29, June 2011. doi: 10.1145/1970378.1970382 

[176] Katharina Reinecke, Tom Yeh, Luke Miratrix, Rahmatri Mardiko, Yuechen Zhao, Jenny 
Liu, and Krzysztof Z. Gajos. Predicting Users’ First Impressions of Website Aesthetics 
with a Quantification of Perceived Visual Complexity and Colorfulness. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages 
2049–2058, New York, NY, USA, 2013. ACM. doi: 10.1145/2470654.2481281 

[177] Garr Reynolds. Presentation Zen: Simple Ideas on Presentation Design and Delivery. New 
Riders, 2011. 

[178] Andreas Riegler and Clemens Holzmann. Measuring Visual User Interface Complexity of 
Mobile Applications With Metrics. Interacting with Computers, 30(3):207–223, 2018. 
doi: 10.1093/iwc/iwy008 

[179] Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R. Klemmer. d.tour: Style-Based 
Exploration of Design Example Galleries. In Proceedings of the 24th Annual ACM 
Symposium on User Interface Software and Technology, UIST ’11, page 165, New York, 
New York, USA, 2011. ACM. doi: 10.1145/2047196.2047216 

[180] Ruth Rosenholtz, Amal Dorai, and Rosalind Freeman. Do Predictions of Visual 
Perception Aid Design? ACM Transactions on Applied Perception, 8(2):12:1–12:20, 
February 2011. doi: 10.1145/1870076.1870080 

[181] Ruth Rosenholtz and Zhenlan Jin. A Computational Form of the Statistical Saliency 
Model for Visual Search. Journal of Vision, 5(8):777–777, September 2005. 
doi: 10.1167/5.8.777 

[182] Ruth Rosenholtz, Yuanzhen Li, and Lisa Nakano. Measuring Visual Clutter. Journal of 
Vision, 7(2):17–17, January 2007. doi: 10.1167/7.2.17 



190 

[183] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock. Examining 
Image-Based Button Labeling for Accessibility in Android Apps Through Large-Scale 
Analysis. In Proceedings of the 20th International ACM SIGACCESS Conference on 
Computers and Accessibility, ASSETS ’18, pages 119–130, New York, NY, USA, 2018. 
ACM. doi: 10.1145/3234695.3236364 

[184] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice 
Hall, 2002. 

[185] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin 
Schmidt, and Hansjörg Schmauder. Insights into Layout Patterns of Mobile User 
Interfaces by an Automatic Analysis of Android Apps. In Proceedings of the 5th ACM 
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’13, page 275, 
New York, New York, USA, 2013. ACM. doi: 10.1145/2494603.2480308 

[186] Hanna Schneider, Katharina Frison, Julie Wagner, and Andras Butz. CrowdUX: A Case 
for Using Widespread and Lightweight Tools in the Quest for UX. In Proceedings of the 
2016 ACM Conference on Designing Interactive Systems, DIS ’16, pages 415–426, New 
York, NY, USA, 2016. ACM. doi: 10.1145/2901790.2901814 

[187] Gaurav Sharma, Wencheng Wu, and Edul N. Dalal. The CIEDE2000 Color-Difference 
Formula: Implementation Notes, Supplementary Test Data, and Mathematical 
Observations. Color Research and Application, 30(1):21–30, 2005. 
doi: 10.1002/col.20070 

[188] Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvist, 
and Nicholas Diakopoulos. Designing the User Interface: Strategies for Effective 
Human-Computer Interaction. Pearson, 6th edition, 2016. 

[189] Carlos E. Silva and José C. Campos. Combining Static and Dynamic Analysis for the 
Reverse Engineering of Web Applications. In Proceedings of the 5th ACM SIGCHI 
Symposium on Engineering Interactive Computing Systems, EICS ’13, pages 107–112, New 
York, New York, USA, June 2013. ACM. doi: 10.1145/2494603.2480324 

[190] Steven John Simon and Steven John. The Impact of Culture and Gender on Web Sites. 
ACM SIGMIS Database: The Database for Advances in Information Systems, 32(1):18–37, 
December 2001. doi: 10.1145/506740.506744 

[191] Gurminder Singh, Chun Hong Kok, and Teng Ye Ngan. Druid: A System for 
Demonstrational Rapid User Interface Development. In Proceedings of the 3rd Annual 
ACM SIGGRAPH Symposium on User Interface Software and Technology, UIST ’90, pages 
167–177, New York, NY, USA, 1990. ACM. doi: 10.1145/97924.97943 



191 

[192] Nishant Sinha and Rezwana Karim. Responsive Designs in a Snap. In Proceedings of the 
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE ’15, pages 
544–554, New York, NY, USA, 2015. ACM. doi: 10.1145/2786805.2786808 

[193] Ray Smith. An Overview of the Tesseract OCR Engine. In International Conference on 
Document Analysis and Recognition, volume 2 of ICDAR ’07, pages 629–633. IEEE, 
September 2007. doi: 10.1109/ICDAR.2007.4376991 

[194] Debbie Stone, Caroline Jarrett, Mark Woodroffe, and Shailey Minocha. User Interface 
Design and Evaluation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005. 

[195] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. User 
Interface Façades: Towards Fully Adaptable User Interfaces. In Proceedings of the 19th 
Annual ACM Symposium on User Interface Software and Technology, UIST ’06, pages 
309–318, New York, NY, USA, 2006. ACM. doi: 10.1145/1166253.1166301 

[196] Piyawadee Sukaviriya, James D. Foley, and Todd Griffith. A Second Generation User 
Interface Design Environment: The Model and the Runtime Architecture. In Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’93, pages 
375–382, New York, New York, USA, 1993. ACM. doi: 10.1145/169059.169299 

[197] Ivan E. Sutherland. SketchPad: A Man-machine Graphical Communication System. In 
Proceedings of the SHARE Design Automation Workshop, DAC ’64, pages 6.329–6.346, 
New York, NY, USA, 1964. ACM. doi: 10.1145/800265.810742 

[198] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon, and Amy J. 
Ko. Rewire: Interface Design Assistance from Examples. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, CHI ’18, pages 504:1–504:12, New 
York, NY, USA, 2018. ACM. doi: 10.1145/3173574.3174078 

[199] Amanda Swearngin, Amy J. Ko, and James Fogarty. Genie: Input Retargeting on the 
Web Through Command Reverse Engineering. In Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems, CHI ’17, pages 4703–4714, New York, NY, USA, 
2017. ACM. doi: 10.1145/3025453.3025506 

[200] Amanda Swearngin, Amy J. Ko, and James Fogarty. Scout: Mixed-Initiative Exploration 
of Design Variations Through High-Level Design Constraints. In The 31st Annual ACM 
Symposium on User Interface Software and Technology Adjunct Proceedings, UIST ’18 
Adjunct, pages 134–136, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3266037.3271626 

[201] Amanda Swearngin and Yang Li. Modeling Mobile Interface Tappability Using 
Crowdsourcing and Deep Learning. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, CHI ’19, pages 75:1–75:11, New York, NY, USA, 2019. 
ACM. doi: 10.1145/3290605.3300305 



192 

[202] Amanda Swearngin, Chenglong Wang, Alannah Oleson, Amy J. Ko, and James Fogarty. 
Scout: Rapid Exploration of Interface Layout Alternatives through High-Level Design 
Constraints. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’20. ACM, 2020. To Appear. 

[203] Pedro Szekely, Ping Luo, and Robert Neches. Beyond Interface Builders: Model-Based 
Interface Tools. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’93, pages 383–390, New York, New York, USA, 1993. ACM. 
doi: 10.1145/169059.169305 

[204] Desney S. Tan, Brian Meyers, and Mary Czerwinski. WinCuts: Manipulating Arbitrary 
Window Regions for More Effective Use of Screen Space. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems, Extended Abstacts, CHI ’04, page 
1525, New York, New York, USA, 2004. ACM. doi: 10.1145/985921.986106 

[205] Michael Terry and Elizabeth D. Mynatt. Side views: Persistent, On-Demand Previews for 
Open-Ended Tasks. In Proceedings of the 15th Annual ACM Symposium on User Interface 
Software and Technology, UIST ’02, page 71, New York, New York, USA, 2002. ACM. 
doi: 10.1145/571985.571996 

[206] Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto. Variation 
in Element and Action: Supporting Simultaneous Development of Alternative Solutions. 
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, 
pages 711–718, New York, NY, USA, 2004. ACM. doi: 10.1145/985692.985782 

[207] Yuan Tian, Meiyappan Nagappan, David Lo, and Ahmed E. Hassan. What are the 
Characteristics of High-Rated Apps? A Case Study on Free Android Applications. In 
2015 IEEE International Conference on Software Maintenance and Evolution, ICSME ’15, 
pages 301–310. IEEE, September 2015. doi: 10.1109/ICSM.2015.7332476 

[208] Jenifer Tidwell. Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly 
Media, Inc., 2010. 

[209] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. Sketchplore: Sketch and Explore with a 
Layout Optimiser. In Proceedings of the 2016 ACM Conference on Designing Interactive 
Systems, DIS ’16, pages 543–555, New York, New York, USA, 2016. ACM. 
doi: 10.1145/2901790.2901817 

[210] Maryam Tohidi, William Buxton, Ronald Baecker, and Abigail Sellen. Getting the Right 
Design and the Design Right. In Proceedings of the SIGCHI Conference on Human Factors 
in Computing Systems - CHI ’06, page 1243, New York, New York, USA, 2006. ACM. 
doi: 10.1145/1124772.1124960 



193 

[211] Priyan Vaithilingam and Philip J Guo. Bespoke: Interactively Synthesizing Custom GUIs 
from Command-Line Applications By Demonstration. In Proceedings of the 32nd Annual 
ACM Symposium on User Interface Software and Technology, UIST ’19, pages 563–576. 
ACM, 2019. 

[212] Khoi Vinh. Ordering Disorder: Grid Principles for Web Design. Pearson Education, 2010. 

[213] Alex W White. The Elements of Graphic Design: Space, Unity, Page Architecture, and Type. 
Skyhorse Publishing, Inc., 2011. 

[214] Jacob O Wobbrock, Htet Htet Aung, Brandon Rothrock, and Brad A Myers. Maximizing 
the Guessability of Symbolic Input. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems Extended Abstracts, pages 1869–1872. ACM, 2005. 
doi: 10.1145/1056808.1057043 

[215] Jacob O Wobbrock, Leah Findlater, Darren Gergle, and James J Higgins. The 
Aligned-Rank Transform for Non-Parametric Factorial Analyses Using Only ANOVA 
Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, pages 143–146. ACM, 2011. 

[216] Ou Wu, Weiming Hu, and Lei Shi. Measuring the Visual Complexities of Web Pages. ACM 
Transactions on the Web, 7(1):1:1–1:34, March 2013. doi: 10.1145/2435215.2435216 

[217] Ziming Wu, Taewook Kim, Quan Li, and Xiaojuan Ma. Understanding and Modeling 
User-Perceived Brand Personality from Mobile Application UIs. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems, CHI ’19, pages 
213:1–213:12, New York, NY, USA, 2019. ACM. doi: 10.1145/3290605.3300443 

[218] Anbang Xu, Shih-Wen Huang, and Brian Bailey. Voyant: Generating Structured Feedback 
on Visual Designs Using a Crowd of Non-Experts. In Proceedings of the 17th ACM 
Conference on Computer Supported Cooperative Work & Social Computing, pages 
1433–1444. ACM, 2014. doi: 10.1145/2531602.2531604 

[219] Pengfei Xu, Hongbo Fu, Takeo Igarashi, and Chiew-Lan Tai. Global Beautification of 
Layouts With Interactive Ambiguity Resolution. In Proceedings of the 27th Annual ACM 
Symposium on User Interface Software and Technology, UIST ’14, pages 243–252, New 
York, New York, USA, 2014. ACM. doi: 10.1145/2642918.2647398 

[220] Yeonsoo Yang and Scott R Klemmer. Aesthetics Matter: Leveraging Design Heuristics to 
Synthesize Visually Satisfying Handheld Interfaces. In Proceedings of the SIGCHI 
Conference Human Factors in Computing Systems Extended Abstracts, CHI EA ’09, pages 
4183–4188. ACM, 2009. 

[221] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. Sikuli: Using GUI Screenshots for 
Search and Automation. In Proceedings of the 22nd Annual ACM Symposium on User 



194 

Interface Software and Technology, UIST ’09, pages 183–192, New York, NY, USA, 2009. 
ACM. doi: 10.1145/1622176.1622213 

[222] Loutfouz Zaman, Wolfgang Stuerzlinger, Christian Neugebauer, Rob Woodbury, Maher 
Elkhaldi, Naghmi Shireen, and Michael Terry. GEM-NI: A System for Creating and 
Managing Alternatives In Generative Design. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, CHI ’15, pages 1201–1210, New York, New York, 
USA, 2015. ACM. doi: 10.1145/2702123.2702398 

[223] Brad Vander Zanden and Brad A. Myers. Automatic, Look-and-Feel Independent Dialog 
Creation for Graphical User Interfaces. In Proceedings of the SIGCHI Conference on 
Human Factors in Computing Systems, CHI ’90, pages 27–34, New York, New York, USA, 
1990. ACM. doi: 10.1145/97243.97248 

[224] Brad Vander Zanden and Brad A. Myers. The Lapidary Graphical Interface Design Tool. 
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’91, 
pages 465–466, New York, New York, USA, 1991. ACM. doi: 10.1145/108844.109005 

[225] Clemens Zeidler, Christof Lutteroth, Wolfgang Sturzlinger, and Gerald Weber. The 
Auckland Layout Editor: An Improved GUI Layout Specification Process. In Proceedings 
of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, 
pages 343–352, New York, New York, USA, 2013. ACM. 
doi: 10.1145/2501988.2502007 

[226] Clemens Zeidler, Gerald Weber, Wolfgang Stuerzlinger, and Christof Lutteroth. 
Automatic Generation of User Interface Layouts for Alternative Screen Orientations. In 
IFIP Conference on Human-Computer Interaction, pages 13–35. Springer, 2017. 

[227] Mathieu Zen and Jean Vanderdonckt. Towards an Evaluation of Graphical User 
Interfaces Based on Metrics. In 2014 IEEE Eighth International Conference on Research 
Challenges in Information Science, RCIS ’14, pages 1–12. IEEE, 2014. 

[228] Luke S. Zettlemoyer and Robert St. Amant. A Visual Medium for Programmatic Control 
of Interactive Applications. In Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems, CHI ’99, pages 199–206, New York, New York, USA, 1999. ACM. 
doi: 10.1145/302979.303039 

[229] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O. Wobbrock. 
Interaction Proxies for Runtime Repair and Enhancement of Mobile Application 
Accessibility. In Proceedings of the 2017 CHI Conference on Human Factors in Computing 
Systems, CHI ’17, pages 6024–6037, New York, New York, USA, 2017. ACM. 
doi: 10.1145/3025453.3025846 



195 

[230] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. Robust Annotation of Mobile 
Application Interfaces in Methods for Accessibility Repair and Enhancement. In 
Proceedings of the 31st Annual ACM Symposium on User Interface Software and 
Technology, UIST ’18, pages 609–621, New York, NY, USA, 2018. ACM. 
doi: 10.1145/3242587.3242616 

[231] Xiaoyi Zhang, Tracy Tran, Yuqian Sun, Ian Culhane, Shobhit Jain, James Fogarty, and 
Jennifer Mankoff. Interactiles: 3d Printed Tactile Interfaces to Enhance Mobile 
Touchscreen Accessibility. In Proceedings of the 20th International ACM SIGACCESS 
Conference on Computers and Accessibility, ASSETS ’18, pages 131–142, New York, New 
York, USA, 2018. ACM. doi: 10.1145/3234695.3236349 

[232] Xianjun Sam Zheng, Ishani Chakraborty, James Jeng-Weei Lin, and Robert 
Rauschenberger. Correlating Low-level Image Statistics with Users - Rapid Aesthetic and 
Affective Judgments of Web Pages. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, CHI ’09, pages 1–10, New York, NY, USA, 2009. ACM. 
doi: 10.1145/1518701.1518703 



196 

APPENDIX A 

Mixed Initiative Exploration of Design Alternatives 

This appendix extends Chapter 3, and includes the full set of formalized constraint specifica-

tions that Scout encodes into Z3 to generate layouts (Section A.1). It also includes the Scout 

evaluation materials including the user study interview script (Section A.4), task instructions 

(Section A.2), and quality evaluation rubric (Section A.3). 

A.1 Formalized Constraint Specifications 

Scout creates layouts by generating an assignment of concrete values to a set of variables, 

which lets it explore many combinations of element arrangement, alignment, position, and size. 

Scout defines canvas variables (e.g., layout grid, margin, baseline grid), group variables (e.g., 

arrangement, alignment, padding), and element variables for position (e.g., x, y), and size (e.g., 

width, height). 

Once Scout produces a valid variable assignment, it outputs a position (e.g., x, y) and size 

(e.g., width, height) for each interface element which Scout then translates into the layout 

canvas that the designer sees (Chapter 3, Section 3.1). Each of Scout’s variables has a domain 



197 

of values curated from design guidelines [11,28] along with constraints defining its behavior. 

Scout uses these constraints, together with a designers high-level constraints, to check the 

validity of a layout (See Chapter 3, Section 3.2 for an overview of this process). 

The following sections detail the layout variables that Scout defines, and the formalized 

constraint specifications for each of these variables that define their behavior along with a set 

of basic design quality constraints that Scout enforces for every layout it generates. Within 

each constraint definition, I will refer to variables for an interface element or the layout canvas 

using object-oriented notation (i.e., canvas.margin, element.width). The variable names will be 

displayed in italics within the text descriptions of each constraint. 

A.1.1 Position & Size 

To explore different element sizes, Scout defines a size variable for each element on the canvas 

e with a domain of the form (width, height, sizing_factor), where sizing_factor is used to enforce 

consistent resizing within groups and repeat groups. Scout pre-computes width and height 

domains for each element using two strategies: maintain aspect ratio and increase width. 

For both strategies, Scout computes a set of (width, height, sizing_factor) triples along 

baseline grid increments (i.e., 4), where width values range from a minimum determined by 

element type to the width of the canvas (i.e., c.width). For maintain aspect ratio elements (e.g., 

images, icons), height values vary from a minimum for each element to the canvas height (i.e., 

c.height). For increase width only elements (e.g., buttons, fields), height values do not vary. 

Scout encodes each pre-computed set of triples as the domain to a size variable for each element. 

An example of what the final domain might look like for an interface element using maintain 

aspect ratio (e.g., icon) is [(20,20,1), (24,24,2), ...]. For an element using increase 

width only (e.g., button), the domain could be [(120,40,1), (124,40,2), ...]. 

Scout does not encode any sizing specific constraints, however, a majority of the remaining 

constraints (e.g., Grouping and Arrangement, Emphasis, Ordering) operate on the element 

height and width variables. While each element has only one size variable, with resulting values, 

many of the following constraints operate on only part of the (width, height, sizing_factor) triple. 



198 

In the constraints in this appendix, I will refer to each part of the triple as an individual variable 

for an element e (e.g., e.width, e.height, e.sizing_factor). 

Scout also defines x and y position variables for each element. Scout does not initialize a 

domain for the x and y variables, and instead produces an output value for the variables x and y 

for each element based on the values of other variables and constraints defining their behavior. 

A.1.2 Basic Design Quality 

Scout encodes 3 basic design quality constraints for each layout to keep inside the bounds 

of layout canvas and their parent group (Constraint A.9), prevent them from overlapping 

(Constraint A.2), and enforce minimum sizing constraints (Constraint A.3) based on usability 

guidelines that recommend minimum sizes for touch targets and text labels. 

Scout’s stay-in-bounds constraint (Constraint A.9) enforces that for the set of all elements 

on the layout canvas E, the bounding box of each element e (i.e., [e.x ,e.y,e.x + e.wid th, 

e.y + e.height]) remains inside the layout canvas c. 

^ def 
φsta y_in_bounds(E, c) = (e.x ≥ 0) ∧ (e.x + e.width ≤ c.width) (A.1) 

e∈E 

∧(e.y ≥ 0) ∧ (e.y + e.height ≤ c.height) 

Scout’s non-overlapping constraint (Constraint A.2) prevents overlap for all elements on 

the layout canvas by enforcing φprevent−overlap constraints on the set of groups on the layout 

canvas G. Scout considers the top-level layout canvas as an additional group in this set. Here, 

g.E denotes the set of all elements E inside of a group on the layout canvas, and g.padding 

denotes the within-group padding (i.e., the variable defining the spacing between elements in 

the group). 

^ def 
φnon_overlapping (G) = φprevent_overlap(g.E, g.padding) (A.2) 

g∈G 



199 

The constraint φprevent_overlap (Constraint A.1.2) adds constraints for each pair of elements 

ei, ej in a given set of elements E. This constraint requires that the edges of element ei falls to 

the top, bottom, left, or right of ej. The distance between the pair of elements must be equal to 

the given padding value p. Below, the value of i cannot be equal to j. 

^ def 
φprevent_overlap(E, p) = (ei.x + ei.width + p ≤ ej.x) ∨ (ej.x + ej.width + p ≤ ei.x) 

1≤i< j≤|E| 

∨(ei.y + ei.height + p ≤ ej.y) ∨ (ej.y + ej.height + p ≤ ei.y) 

Finally, Scout encodes minimum-sizing constraints (Constraint A.3) that enforce a 

minimum height and width for each element e in the set of all elements on the canvas E. This 

constraint encodes different minimum sizes for text and touch element types. Each element has 

a predefined type property that I statically define within the interface element SVG. Ideally, this 

would be specified by the designer in their design tool or automatically inferred in future versions. 

⎧ 
⎨ 

def ^ e.width ≥ 44 ∧ e.height ≥ 44, if e.type == "touch" 
φminimum_size(E) = (A.3)

⎩e∈E e.height ≥ 16, if e.type == "text" 

A.1.3 Layout Grid 

Scout enforces a set of layout grid constraints on elements to place them on the layout canvas 

using a layout grid. Chapter 2 (Section 2.1) describes the behavior of a layout grid in detail. 

For a brief overview, a layout grid consists of margins (i.e., spacing on the outside of the canvas 

that all elements must be placed inside), columns (i.e., vertical containers for placing elements 

on the canvas), and gutters (i.e., spacing between columns where elements must not be placed). 



200 

Layout Grid Variables & Domains 

In the following constraints the layout canvas c has four variables: margin, columns, gutter_width, 

and column_width. Scout assigns margin the domain of [4-60] along 4px increments (i.e., 

4,8 ...). For columns, Scout initializes the domain to [2,3,4,6,12] based on design guide-

lines [11, 28, 212]. While these guidelines can vary in how many columns they recommend 

using, Material Design guidelines recommend using a 4 column layout grid for mobile app 

screens [11]. For gutter_width, Scout assigns the domain to [4,8,16] based on the same design 

recommendations [11]. Finally, Scout computes the possible column_width domain values 

from the domain values of margin, M , columns, C , and gutter_width, GW , using the following 

formula: 

c.column_width.domain = ∀m∈M ∀c∈C ∀g∈GW c.width − (2 ∗ m) − ((c − 1) ∗ g))/c. (A.4) 

For each element e and group g directly located on the layout canvas, and not contained 

inside of a group, Scout assigns a left_column and right_column variable that define the left and 

right column on the layout canvas that an element will begin and end in. The domain of these 

variables ranges from 1 to the maximum number of columns on the canvas (i.e., [1-6]). 

Layout Grid Constraints 

Scout encodes a φcolumn_soundness (Constraint A.5) constraint for each element ec in the set of 

elements and groups that are direct children of the canvas Ec, that the left_column is less than or 

equal to the right_column variable, and that both variables are less than or equal to the canvas 

columns variable. 

^ def 
φcolumn_soundness(c, Ec) = ec.left_column ≤ c.columns (A.5) 

ec ∈Ec 

∧ec.right_column ≤ c.columns ∧ ec.left_column ≤ ec.right_column 



201 

Scout also encodes a φbegins_in_column (Constraint A.6) constraint for each element ec in the 

set of direct children of the canvas Ec that the x position of the element ec.x is located on the 

edge of a column. The constraint computes the edge of a column from the values of the margin, 

gutter_width. and column_width variables of the canvas and the left_column variable of the 

element. 

^ def 
φbegins_in_column(c, Ec) = ec.x = (c.margin + (c.column_width · (ec.left_column − 1)) (A.6) 

ec∈Ec 

+(c.gutter_width · (ec.left_column − 1))) 

Scout encodes an φends_in_column constraint (Constraint A.7) for each element ec in the set 

of child elements of the canvas Ec. This constraint requires that the right side of the element 

ec.x + ec.width ends on the right edge of a column. Each element ec has a right_column variable. 

This constraint states that the elements right edge (i.e., ec.x + ec.width) should be equal to the 

total sum of the canvas margin, and width of all columns and gutters to the left of the element’s 

right edge. 

^ def 
φends_in_column(c, Ec) = (ec.x + ec.width) = (c.margin (A.7) 

ec ∈Ec 

+(c.col_width · ec.right_column) + (c.gutter_width · (ec.right_column − 1))) 

A.1.4 Baseline Grid 

Baseline grids define the vertical spacing of a design, aid horizontal alignment, and create 

hierarchy [28]. They consist of horizontal lines at even intervals to which all components 

should align (further described in Chapter 2, Section 2.1). Scout defines a set of baseline 

grid constraints to ensure it places all elements on baseline grid lines. For the layout canvas c, 

Scout defines a baseline_grid variable that allows designers to examine different baseline grid 

options. Scout initializes the domain of this variable to [4,8,16], based on design guidelines 

for baseline grid selection [11]. 



202 

Baseline Grid Constraints 

The φbasel ine_grid constraint (Constraint A.8) assures that the y position of each element ec of 

the set of all direct children of the canvas Ec is placed on a baseline grid line. That is, the y 

position of the element ec should be a multiple of the current value of the canvas baseline_grid 

variable. For each text element ec, the constraint specifies that the baseline variable, rather than 

the y position variable, should be a multiple of the canvas baseline_grid value. This is because 

text should always be vertically aligned by its baseline, and not the top or bottom of the text 

element which can change depending on the text element’s font type. 

⎧ 

def ^
⎨((ec.baseline mod c.baseline_grid) = 0) if ec.type == "text" 

=φbasel ine_grid (Ec, c) 
⎩ec∈Ec ((ec.y mod c.baseline_grid) = 0) otherwise 

(A.8) 

A.1.5 Grouping & Arrangement Constraints 

Scout uses arrangement constraints to place elements within a group. Arrangement con-

straints work in combination with alignment, order, and visual hierarchy constraints, 

and Scout conditionally applies them based on the current value of the arrangement vari-

able. Each group g on the layout canvas c has an arrangement variable with a domain of 

[horizontal, vertical, rows, columns], and an alignment variable with a domain of 

[left, top, x-center, y-center, right, bottom]. Each group g has a padding vari-

able with a domain of [4, ..., 100] which Scout computes along baseline grid increments. 

Arrangement 

The first constraint that Scout applies for arrangement constraints is φsta y (Con-_in_bounds 

straint A.9). For every group on the canvas g and for the set of all elements in a group 

E, this constraint requires that all edges of an element (i.e., top, bottom, left, right) fall within 



203 

the parent group. 

^ def 
φsta y_in_bounds(E, g) = (e.x ≥ g.x) ∧ (e.x + e.width ≤ g.x + g.width) (A.9) 

e∈E 

∧(e.y ≥ g.y) ∧ (e.y + e.height ≤ g.y + g.height) 

Scout encodes arrangement behavior by setting a maximum height and width on the size 

of a group that ensures all elements fit within the group bounding box. Scout supports four 

types of arrangements including horizontal, vertical, rows, and columns. Scout applies 

conditional arrangement constraints based on the current value of the arrangement variable. 

To encode the behavior of each arrangement value, Scout uses φset_size_main_axis (Con-

straint A.10) and φset_size_cross_axis (Constraint A.15) which require a group to fit within a 

bounding box based on the size of the elements the group contains. When the order of a group is 

important, Scout encodes φarrange_container constraints that enforce a specific order of elements in 

a group (Constraint A.16). Otherwise, the arrangement of a group is enforced by the bounding 

box, and φnon_overlapping constraints (Constraint A.2) that enforce a specific amount of padding 

between elements based on the value of the padding variable. Scout also aligns elements within 

a group using φali gn_container constraints (Constraint A.28). 

Scout applies φset_size_main_axis (Constraint A.10) to the set of all groups on the canvas G. 

When arrangement is horizontal, the constraint requires that the width of the group be equal to 

the value returned by sum_widths(g.E, g.padding) (Method A.11) which returns the widths 

of all elements and inner padding between elements. When arrangement is vertical, the con-

straint requires that the height of the group be equal to the value returned by sum_heights(g.E, 

g.padding) (Method A.12) which returns the height of all elements and inner padding between 

elements. In both conditions, g.E refers to the set of all elements in a group and g.padding 

refers to the group padding variable. 

When arrangement is rows or columns, the constraint relies on an algorithm that first splits 

the elements in the group into rows and column groups (Algorithm 1) based on the number of 
p

elements in the group to ensure a balanced number of elements across rows and columns ( |E|). 
--



204 

Algorithm 1 Algorithm for splitting a group of elements into row and column groups. 

function BALANCED_ROW_SPLIT(E, g) 
g.RC ← [] p . Collection that will hold the set of all row and column groups 
n_groups ← E.len 
per_group ← E.len/n_groups . Splits the elements into equal length groups 

. with the remainder in the last row or column group 
cur r_group ← [] 
if g.order 6= "important" then . Before dividing, randomize the order of elements 

if E[0].order = "first" and E[E.len − 1].order = "last" then 
inner ← randomize(E[1 : E.len − 1]) 
inner ← inner.insertFront(E[0]) 
E ← inner.insert(E[E.len − 1]) 

else if E[0].order = "first" then 
last ← randomize(E[1 : E.len]) 
E ← last.insertFront(E[0]) 

else if E[E.len − 1].order = "last" then 
f irst ← randomize(E[0 : E.len − 1]) 
E ← f irst.insert(E[E.len − 1]) 

end if 
end if 

for i ← 1 to E.len do 
if cur r_group.len < per_group then 

cur r_group.insert(E[i]) 
else if cur r_group.len = per_group then 

g.RC .insert(cur r_group) 
cur r_group ← [] 
cur r_group.insert(E[i]) 

end if 
end for 

if cur rent_group.len > 0 then 
g.RC .insert(cur r_group) 

end if 
end function 

. Shuffle the middle elements in the list 

. Shuffle non-first elements in the list 

. Shuffle non-last elements in the list 

. Divide the elements into subgroups 

. Begin inserting into the next group 

. Add the last group to the collection RC 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

205 

Then, Scout arranges elements within each row or column using the same set of constraints 

it applies for horizontal and vertical arrangements, respectively. Algorithm 1 considers the 

current order value that the designer has set for the group and for elements in the group, and if 

order is not important, Scout will randomize the order of elements before placing them into 

row and column groups. The output of this procedure is g.RC which represents the set of row 

and column groups that Scout has split the elements of the group into. Scout then applies the 

following arrangement constraints as specified to the set of row and column groups. 

Scout currently supports a static number of columns or rows for a group, using Algorithm 1, 

determined by the number of elements in the group. However, it could be possible to support 

dynamic numbers of columns, and future work could explore creating more flexible encodings 

to support a more diverse set of row and column arrangements. 

In the following constraints, g.RC refers to the set of all column or row groups that the 

elements in the group have been divided into. φset_size_main_axis applies the helper methods 

sum_row_heights(g.RC, g.padding) and sum_row_widths(g.RC, g.padding) which restrict 

the height and width of the group to the total height and width of all rows and columns, when 

arrangement is rows or columns, respectively. 

⎧ 

⎪

⎨ 

if g.arrangement = 
g.width = sum_widths(g.E, g.padding) 

"horizontal" 

if g.arrangement = 
g.height = sum_heights(g.E, g.padding)

|̂G|
def 
=φset_size_main_axis(G) 

i=1 g.height = sum_row_heights(g.RC, 

"vertical" 

if g.arrangement = 

⎪

⎩ 

g.padding) 

g.width = 

g.padding) 

sum_column_widths(g.RC, 

"rows" 

if g.arrangement = 

"columns" 

(A.10) 

Scout uses the following helper methods conditionally when group arrangement is 



206 

horizontal and vertical to return an expression of the sum of widths (Method A.11) and 

heights (Method A.12) of all elements in a given set of elements E. The expression for each will 

also add an amount of padding p to the sum for every element except for the last element in 

the set (i.e., i = |E|). This ensures that there is some padding between elements in the group. 

|E|
X 
⎧

⎨ei.width if i = |E|
sum_widths(E, p) 

def 
(A.11)= 

⎩ 

⎧

⎨ 

ei.width + p otherwisei=1 

|E|
X 

i=1 

ei.height if i = |E|
sum_heights(E, p) 

def 
(A.12)= 

⎩ei.height + p otherwise 

Scout uses the following helper methods conditionally when group arrangement is rows or 

columns to set the height and width of a group. Method A.13 computes an expression summing 

for each row rc in the set of all row groups RC the maximum height element in the row group 

plus an amount of padding for each row excluding the last row. Method A.14 works similarly. 

For each column rc in the set of all column groups RC , it computes an expression that sums the 

maximum height element in each column group plus an amount of padding for each column 

excluding the last column. 

⎧

⎨ 

⎩ 

X

|RC | max_height(rc) if i = |RC |
sum_row_heights(RC , p) 

def 
(A.13)= 

max_height(rc) + p otherwisei=1 

⎧

⎨ 

⎩ 

X

|RC | max_width(rc) if i = |RC |
sum_column_widths(RC , p) 

def 
(A.14)= 

max_width(rc) + p otherwisei=1 

The following constraint, φset _size_cross_axis (Constraint A.15), works in combination with 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

207 

φset_size_main_axis (Constraint A.10) to enforce an arrangement of elements within a group 

of elements where elements do not necessarily have a specified order. Scout applies the 

φset_size_cross_axis to the set of all groups on the canvas G. If the group arrangement is horizontal, 

the constraint requires that the height of the group be equal to the height of the maximum 

height element in the group (i.e., max_height(g.E)). If the group arrangement is vertical, 

the constraint requires that the width of the group be equal to the width of the maximum width 

element in the group (i.e., max_width(g.E)). In the following constraints, g.E refers to the set 

of all elements in a group g. When arrangement is rows, the constraint requires that the group 

width be equal to the width of the maximum width row. When arrangement is columns, the 

constraint requires that the group height be equal to the height of the maximum height column. 

⎧ 

⎪

⎨ 

g.height = max_height(g.E) if g.arrangement = "horizontal" 

|G| 

i=1 g.width = max_width(g.RC) if g.arrangement = "rows" 

^ g.width = max_width(g.E) if g.arrangement = "vertical"def 
=φset_size_cross_axis(G) 

⎪

⎩g.height = max_height(g.RC) if g.arrangement = "columns" 

(A.15) 

Order 

Scout applies the arrangement sizing constraints (A.10, A.15) for every group on the canvas. 

With only the above constraints specified, their relative position in the order within the group 

can change across alternatives. However, it is also possible for designers to set the order of a 

group to be important. In this case, Scout applies an additional set of pairwise arrangement 

constraints on consecutive element pairs within a group to ensure they appear in the order that 

the designer has specified. For each group g in the set of all groups on the canvas G, Scout 

applies φarrange_container (Constraint A.16) which states if the value of the group arrangement 

variable is horizontal or vertical, Scout should apply the φarrange_horizontal (Constraint A.19) 

or φarrange_ver t ical (Constraint A.20) constraint, respectively. 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

208 

If the group arrangement is rows, Scout applies φarrange_ which applies for each rowrows 

group rc in the set of row groups RC that Scout has divided the group into, φarrange_horizontal , 

which arranges the elements within a row group horizontally. Similarly, if the group arrangement 

is columns, Scout applies φarrange_columns which applies for each column group rc in the set of 

column groups RC that Scout has divided the group into, φarrange_ver t ical , which arranges the 

elements within a column group vertically. 

⎧ 

⎪

⎨ 

⎪

⎩ 

if g.arrangement = 
φarrange_horizontal (g.E, g.padding) 

"horizontal" 

if g.arrangement = 
φarrange_ver t ical (g.E, g.padding) 

"vertical"
^ def 

φarrange_container (G) = (A.16) 
g∈G if g.arrangement = 

φarrange_rows(g.RC, g.padding) 
"rows" 

if g.arrangement = 
φarrange_columns(g.RC, g.padding) 

"columns" 

^ def 
φarrange_rows(RC , p) = φarrange_horizontal(rc.E, p) (A.17) 

rc∈RC 

^ def 
φarrange_columns(RC , p) = φarrange_ver t ical (rc.E, p) (A.18) 

rc∈RC 

The constraint φarrange_horizontal (Constraint A.19) encodes a conjunction of pairwise con-

straints for every consecutive pair of elements ei, ei+1 in a set of elements E that state that ei+1 

should fall to the right of ei with an additional amount of horizontal padding p between the 



209 

elements. The padding comes from the padding variable of the parent group or canvas. 

|E|−1̂ def 
(ei+1.x = ei.x) + (ei.width + p) (A.19)φarrange_horizontal (E, p) = 

i=1 

The constraint φarrange_ (Constraint A.20) encodes a conjunction of pairwise con-ver t ical 

straints for every pair of consecutive elements ei, ei+1 in a set of elements E stating that ei+1 

should fall below ei with an additional amount of vertical padding p between the elements. 

The padding comes from the padding variable of the parent group or canvas. 

|E|−1̂ def 
φarrange_ver t ical (E, p) = (ei+1.y = ei.y) + (ei.height + p) (A.20) 

i=1 

Order First or Last 

In Scout, a designer can set an element to be first or last in a group or on the canvas. Scout 

will only allow a designer to set the element as first or last if it appears in that position in the 

Outline panel hierarchy. The following constraints encode this behavior. For every group on 

the canvas g and for all elements within a group Eg , φorder _last applies the constraint _ f irst _or 

φorder_ f irst if the first element Eg0 
has order set to first, and applies the constraint φorder_last if 

the last element Eg|E|−1 
has the order set to last. 

⎧ 

def 
⎨φorder_ f irst (Eg0

, g) if Eg0
.order = "first" 

φorder_ f irst_or_last (Eg , g) = 
⎩ 

(A.21) 
φorder_last (Eg|E|−1

, g) if Eg|E|−1
.order = "last" 

Scout applies the φorder_ f irst constraint (Constraint A.22) based on the value of the arrange-

ment variable. If the group arrangement is horizontal or rows, the element should be placed 

at the beginning of the group (i.e., g.x) and if the group arrangement is vertical or columns, 

the element should be placed at the top of the group (i.e., g.y). Scout ensures that if group 

arrangement is rows or columns, it places an element with order of first into the first row or 

column group in g.RC and places an element with order of last into the last row or column 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

210 

group in g.RC , using Algorithm 1. 

⎧ 

⎪

⎨ 

⎪

⎩ 

if g.arrangement = "horizontal" 
e.x = g.x 

∨g.arrangement = "rows" 
def 

φorder_ f irst (e, g) = (A.22) 

if g.arrangement = "vertical" 
e.y = g.y 

∨g.arrangement = "columns" 

Similarly, Scout applies the φorder_last constraint based on the value of the arrangement 

variable. If the group arrangement is horizontal, the element should be placed at the right 

end of the group (i.e., g.x + g.width) and if the group arrangement is vertical, the element 

should be placed at the bottom of the group (i.e., g.y + g.height). 

def 
=φorder_last (e, g) 

⎧

⎨ 

⎩ 

(e.x + e.width) = (g.x + g.width) if g.arrangement = "horizontal" 

(e.y + e.height) = (g.y + g.height) if g.arrangement = "vertical" 

(A.23) 

Scout enforces the ordering constraints for elements inside of a group g in combination 

with the arrangement constraints specified above. However, the top level canvas c does not 

have an arrangement variable and uses the layout_grid constraints to place elements. The 

following constraint φorder (Constraint A.24) enforces the order of elements as specified_canvas 

by the designer in Scout’s Outline panel when the designer has set the canvas order property to 

important. For each element in the set of direct child elements of the canvas Ec, the bottom 

edge, eci 
.y + eci 

.height, should be above the bottom edge of the element that comes after it in 

the hierarchy, eci+1 
+ eci+1

.height (Constraint A.25), or the bottom edge should be equal to the 

element that comes after it in the hierarchy and also be placed to the left of the element that 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

211 

comes after it in the hierarchy (Constraint A.26). 

|Ec |−1 §
^ def 

φorder_canvas(Ec, c) = φabove(eci 
, eci+1 

) ∨ φle f t (eci 
, eci+1 

) if c.order = "important" (A.24) 
i=1 

def 
φabove(e1, e2) = (e1.y + e1.height) < (e2.y + e2.height) (A.25) 

def 
φle f t (e1, e2) = ((e1.y + e1.height) = (e2.y + e2.height)) ∧ ((e1.x + e1.width) ≤ (e2.x + e2.width)) 

(A.26) 

To support the designer in setting order first and last for elements directly on the canvas 

and not in a group, Scout applies φorder_ f irst_canvas (Constraint A.21) which creates pairwise 

constraints for each pair of elements ei, ej in the set of all elements directly on the canvas Ec and 

not contained within a group. These constraints specify that if an element ei has order first, 

and ej does not, ei should be placed above (Constraint A.25) or to the left (Constraint A.26) of 

ej. Similarly, if an element ei has order last, and ej does not, ej should be placed above or to 

the left of ei. 

⎧ 

if ei.order = "first" ∧ 
φabove(ei, ej) ∨ φle f t (ei, ej) 

|Ec | |Ec | ⎨
⎪ ej.order =6 "first"
^^ def 

φorder_ f irst_canvas(Ec, c) = (A.27) 
i=1 j=1 
i 6= j if ei.order = "last"∧ 

φabove(ej, ei) ∨ φle f t (ej, ei)
⎪ e j.order =6 "last"
⎩ 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

212 

Alignment 

Scout encodes φali gn_container constraints (Constraint A.28) based on the current value of a 

group’s arrangement variable. For the set of all groups on the canvas G, φali gn_container specifies 

that if the arrangement of the group is vertical, the φali gn_ver t ical constraint should be applied, 

and if the arrangement of the group is horizontal, the φali gn_horizontal constraint should be 

applied. When arrangement is rows, φali gn_ should be applied to the set of all row groupsrows 

g.RC in the group g. When arrangement is columns, φali gn_columns should be applied to the set 

of all column groups g.RC in the group g. 

^ 

⎧ 

⎪

⎨ 

φali gn_ver t ical (g.E, g) if g.arrangement = "vertical" 

φali gn_horizontal (g.E, g) if g.arrangement = "horizontal"def 
φali gn_container (G) (A.28)= 

g∈G φali gn_rows(g.RC, g) if g.arrangement = "rows" 
⎪

⎩ .RC,φ ( )g galign columns_ if g.arrangement = "columns" 

The constraint φali gn_horizontal (Constraint A.29) specifies the horizontal alignment behavior 

of a group. For the set of all elements E in a group g, Scout encodes constraints based on the 

value of the group alignment variable. The alignment variable has three horizontal values: top, 

y-center, and bottom. Based on these values, the constraint aligns elements relative to the 

top, y-center, and bottom of the group. For text elements, φali gn_horizontal aligns the baseline of 

the text to the bottom of the group, rather than aligning the bottom of the text line which could 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

213 

include descenders. 

⎧ 

⎪

⎨ 

⎪

⎩ 

e.y = g.y if g.alignment = "top" 

(e.y + e.height/2) = (g.y + g.height/2) if g.alignment = "y-center" 

if g.alignment = "bottom"
^ def 

=φali gn_horizontal (E, g) e.baseline = (g.y + g.height) 
∧e.type = "text" e∈E 

if g.alignment = "bottom" 
(e.y + e.height) = (g.y + g.height) 

∧e.type 6= "text" 

(A.29) 

The constraint φali gn_ver t ical (Constraint A.30) specifies the vertical alignment behavior of 

a group. For the set of all elements E in a group g, Scout encodes constraints based on the 

value of the group alignment variable. The alignment variable has three vertical values: left, 

x-center, and right. Based on these values, the constraint aligns elements relative to the left, 

x-center, and right of the group. 

^ def 
φali gn_ver t ical (E, g) = 

e∈E 

⎧ 

⎪

⎨ 

⎪

⎩ 

e.x = g.x if g.alignment = "left" 

(e.x + e.width/2) = (g.x + g.width/2) if g.alignment = "x-center" 

(e.x + e.width) = (g.x + g.width) if g.alignment = "right" 

(A.30) 

Scout applies the constraint φali gn_ (Constraint A.31) when the group arrangement isrows 

rows. φali gn_rows applies for every consecutive pair of row groups rci, constraints that left align 

the pair of first elements of each row group rci.e1, rci+1.e1 and place the second element in 

the pair rci+1.e1 below the first element of the pair rci.e1 to begin the second and following 

rows in the group. Scout also applies the constraint φali gn_horizontal to align elements within a 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

214 

horizontally arranged row group according to the group alignment value. 

⎧ 

⎪

⎨ 
φali gn_le f t_and_below(rci.e1, rci+1.e1, g.padding)

if i < |RC ||RC |−1 
def 

(RC , g) = ∧φali gn_horizontal (rci.E, g) 
^ 

φali gn_rows (A.31) 
i=1
⎪

⎩φali gn_horizontal (rci.E, g) otherwise 

Scout applies the constraint φali gn_columns (Constraint A.32) when the group arrangement is 

columns. φali gn_columns applies for every consecutive pair of column groups rci, constraints that 

top align the pair of first elements of each column group rci.e1, rci+1.e1 and place the second 

element in the pair rci+1.e1 to the right of the first element of the pair rci.e1 to begin the second 

and following columns in the group. Scout also applies the constraint φali gn_ver t ical to align 

elements within a vertically arranged column group according to the group alignment value. 

φali gn_columns(RC , g) 
RC ||̂  def 

= 
i=1 

⎧ 

⎪

⎨ 

⎪

⎩ 

φali gn_ri ght_and_top(rci.e1, rci+1.e1, g.padding)
if i < |RC |

∧ φali gn_ver t ical (rci.E, g) (A.32) 

φali gn_ver t ical (rci.E, g) otherwise 

Scout uses the following constraint φali gn_le f t below (Constraint A.33) for a pair of elements _and_ 

e1, e2 to align the second element to the left and below the first element, along with a variable 

amount of padding p between the elements provided by the parent group or canvas. 

def 
φali gn_le f t_and_below(e1, e2, p) = (e1.x = e2.x) ∧ ((e1.y + e1.height + p) = e2.y) (A.33) 

Scout uses the following constraint φali gn_ri ght_and_top (Constraint A.34) for a pair of elements 

e1, e2 to align the second element to the right and top of the first element, along with a variable 

amount of padding p between the elements provided by the parent group or canvas. 

def 
φali gn_ri ght_and_top(e1, e2, p) = (e1.y = e2.y) ∧ ((e1.x + e1.width + p) = e2.x) (A.34) 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

215 

Visual Hierarchy 

To help maintain visual hierarchy within a group, Scout encodes φgroup_hierarchy constraints 

(Constraint A.35) that require the padding variable of the group to be less than the height or 

width of the minimum height or width element. For vertical arrangements (i.e., vertical, 

columns), Scout requires that the padding variable be less than or equal to the element in the 

group with the smallest height. For horizontal arrangements (i.e., horizontal, rows), Scout 

requires that the padding variable be less than or equal to the element in the group with the 

smallest width. 

^ def 
=φgroup_hierarchy (G) 

g∈G 

⎧ 

⎪

⎨ 

⎪

⎩ 

if g.arrangement = "vertical" 
g.padding ≤ min_height(g.E) 

∨g.arrangement = "columns" 

if g.arrangement = "horizontal" 
g.padding ≤ min_width(g.E) 

∨g.arrangement = "rows" 

(A.35) 

Scout also encodes pairwise φcanvas_hierarchy constraints (Constraint A.36) that require a 

minimum amount of spacing between elements on the canvas. These constraints are only 

applied if one or more of the elements in a pair is a group, and are meant to ensure that 

elements outside a group do not appear to be a part of neighboring groups. This constraint 

encodes pairwise constraints for the set of all elements on the canvas Ec, and not within a group. 

For each pair eci 
, ecj 

, if they are both groups, the minimum padding between them should be 2 

times the maximum padding in either of the groups. If eci 
is a group and ecj 

is not, the minimum 

padding between the paired elements should be 2 times the padding of eci 
. Conversely, if ecj 

is 

a group, and eci 
is not, the minimum padding between the paired elements should be 2 times 

the padding of ecj 
. I selected the value of 2 experimentally with different mobile hierarchies of 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

216 

elements. In the following constraint, the value of i cannot be equal to the value of j. 

⎧ 

⎪

⎨

^ 

, ecj 
,φmin_padding (eci 

if (eci 
.is_group ∧ 

max_padding(eci 
, ecj 
) · 2) .is_group)ecj 

, ecj 
, eci 

.padding · 2)φmin_padding (eci 
if eci 

.is_group 

, ecj 
, ecj 

.padding · 2)φmin_padding (eci 
if ecj 

.is_group 

(A.36) 

def 
=φcanvas_hierarchy (Ec, c) 

1≤i< j≤|Ec |

⎪

⎩ 

The φcanvas_hierarchy constraint applies the φmin_padding constraint to a given pair of elements 

e1, e2 and with a padding argument p, which corresponds to the minimum distance that must 

be maintained between the two elements in any direction. 

def 
(A.37)φmin_padding (e1, e2, p) = ((e1.x + e1.width + p) ≤ e2.x)∨ 

((e2.x + e2.width + p) ≤ e1.x) ∨ ((e1.y + e1.height + p) ≤ e2.y) ∨ ((e2.y + e2.height + p) ≤ e1.y) 

A.1.6 Emphasis Constraints 

Scout encodes emphasis constraints when a designer has specified through the Outline panel 

that an element should have high or low emphasis. The first constraint that Scout encodes for 

these elements is φsize_increase_or_decrease_onl y (Constraint A.38) which specifies for each element 

on the canvas e, if emphasis e.emph is high that its area should only increase from its original 

area (i.e., the size of the element the designer imports into the Outline panel). If emphasis 

e.emph is low for the element, its area should only decrease from its original area. 

^ 
⎧

⎨(e.area > e.orig_area) if e.emph = "high"def 
_decrease_onl y (E) (A.38)φsize_increase_or = 

e∈E ⎩(e.area < e.orig_area) if e.emph = "low" 

Scout also encodes constraints to adjust the relative size of emphasized and non-emphasized 

elements in relation to each other to give them more or less emphasis. Scout encodes a 



⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

217 

φsize_lar ger_or_smaller constraint (Constraint A.39) that specifies for each pair of elements on the 

canvas ei, ej that if the emphasis level of ei is high and the emphasis level of ej is not, that 

ei should have a larger width or height. Conversely, if the emphasis level of ei is low and the 

emphasis level of ej is not, ei should have a smaller width or height. 

⎧ 

(ei.width > ej.width ∨ if (ei.emph = "high"∧ 

⎪

⎨

^

ei.height > ej.height) e j.emph 6= "high") 
def 
=φsize_lar ger_or_smaller (E) 

1≤i, j≤|E| (ei.width < ej.width ∨ if (ei.emph = "low"∧i 6= j 

⎪

⎩

ei.height < ej.height) e j.emph =6 "low") 

(A.39) 

Finally, Scout encodes φorder_be f ore_or_a f ter constraints (Constraint A.40) to adjust the relative 

position of emphasized elements to place earlier or later in the order than non-emphasized 

elements. The constraint specifies for each pair of elements on the canvas ei, ej that if the 

emphasis level of ei is high and the emphasis level of ej is not, and if the area of ei is less than 

the area of ej, the element should be placed earlier in the order to give it more emphasis than 

the other element. 

⎧ 

if (ei.emph = "high" ∧ ej.emph 6= "high" 

^

⎪

⎨ 
ei.y < ej.y 

∧ ei.area ≤ ej.area) 
def 
=φorder_be f ore_or_a f ter (E) 

1≤i, j≤|E| if (ei.emph = "low" ∧ ej.emph =6 "low"i 6= j 

⎪

⎩ 
ei.y > ej.y 

∧ ei.area ≥ ej.area) 

(A.40) 



218 

A.1.7 Alternate Group Constraints 

For alternate groups, Scout encodes φal ternate_ constraints (Constraint A.41) which apply agroup 

set of disjunctions requiring that the representation variable, g.rep, have a value corresponding 

to the ID of an element that the designer has grouped inside of the alternate group. The 

representation variable determines which SVG element Scout displays within a layout canvas. 

The domain of g.rep is thus a set of unique IDs corresponding to the child elements of the 

alternate group. 

def ^ _ 
φal ternate_group(G) = ( (g.rep = a)) (A.41) 

g∈G a∈g.A 

A.1.8 Repeat Group Constraints 

For repeat groups, Scout encodes three kinds of constraints. First, Scout encodes a 

φrepeat_group_vars_same constraint (Constraint A.43) for each repeat group in the set of all re-

peat groups, Gr . This constraint applies a φmatch_subgroup_ constraint (Constraint A.43) onvars 

each consecutive pair of subgroups, gi and gi+1. The constraint φmatch_subgroup_ encodes a setvars 

of conjunctions on a pair of groups g1, g2 requiring the arrangement, alignment, and padding 

variables of g1 and g2 to be the same. 

|G|−1̂ def 
φrepeat_group_vars_same(Gr ) = φmatch_subgroup_vars(gi, gi+1) (A.42) 

i=1 

def 
φmatch_subgroup_vars(g1, g2) = (g1.arrangement = g2.arrangement) (A.43) 

∧(g1.alignment = g2.alignment) ∧ (g1.padding = g2.padding) 

The second type of constraint that Scout encodes for repeat groups is φsize_change_same (Con-

straint A.44), which requires that the size increase or decrease of corresponding pairs of elements 

(i.e., two elements that have the same position in the group order within different subgroups) be 



219 

the same. For each repeat group in the set of all repeat groups Gr , Scout encodes a φsize_change_same 

constraint which then applies φmatch_element_sizes for each consecutive pair of subgroups in the 

repeat group. 

|G|−1̂ def 
φsize_change_same(Gr ) = φmatch_element_sizes(gi, gi+1) (A.44) 

i=1 

The constraint φmatch_element_sizes (Constraint A.45) encodes a conjunction of equality con-

straints for each corresponding pair of elements e1i 
, e2i 

in each group of elements E1, E2 requiring 

the size_factor variable to be equal. The size_factor variable determines the relative amount 

of size increase or decrease an element will have from its original size. Each element in a 

corresponding pair of elements has the same position in a subgroup within the repeat group. 

|E1 |̂ def 
φmatch_element_sizes(E1, E2) = (e1i 

.size_factor = e2i 
.size_factor) (A.45) 

i=1 

Finally, Scout encodes a φorder constraint (Constraint A.46) that requires the order of _same 

elements within subgroups of repeat groups to be the same. The constraint φorder encodes _same 

for each repeat group G a constraint, φmatch_element_order , for each consecutive pair of subgroups 

gi, gi+1. 

|G|−1̂ def 
φorder_same(G) = φmatch_element_order (gi, gi+1) (A.46) 

i=1 

The constraint φmatch_element_order (Constraint A.47) encodes for each corresponding pair 

of elements e1i 
, e2i 

within two groups of elements E1, E2 that if e1i 
is left or above the next 

element in the order e1i+1 
then e2i 

should also be left or above the next element in the order 

e2i+1
. Conversely, if e1i 

is right or below e1i+1 
then e2i 

should be right or below e2i+1
. 

⎧ 
1|−1 ⎨ 

def 
|Ê  φle f t_or_above(e2i 

, e2i+1 
) if φle f t_or_above(e1i 

, e1i+1 
)

φmatch_element_order (E1, E2) = 
⎩ 

(A.47) 
i=1 φri ght_or_below(e2i 

, e2i+1 
) otherwise 



220 

The constraint φle f t_or_above (Constraint A.48) encodes a disjunction stating for a pair of 

elements e1, e2 that e1 should fall to the left of or below e2. 

def 
φle f t_or_above(e1, e2) = ((e1.x + e1.width) < e2.x) ∨ ((e1.y + e1.height) < e2.y) (A.48) 

The constraint φri ght_or_below (Constraint A.49) similarly encodes a disjunction that states 

that for a pair of elements e1, e2 that e1 should fall to the right of or below e2. 

def 
φri ght_or_below(e1, e2) = (e1.x > (e2.x + e2.width)) ∨ (e1.y > (e2.y + e2.height)) (A.49) 



221 

A.2 Sample Task Instructions 

For the Scout user study, presented in Chapter 3, I conducted a within-subjects evaluation where 

I had designers complete two alternative exploration & creation tasks. Each designer completed 

a Baseline and Scout task, across two Scenarios including a Social Media app screen and a 

Weather app screen. I gave the designers the following instructions for the tasks, along with a 

set of pre-designed components and a Adobe XD design document. I include the instructions 

for the Baseline - Social Media task and the Scout - Weather task on the following page. The 

instructions for the Baseline - Weather task and the Scout - Social Media task were identical 

other than using an alternate set of components, thus I did not include them here. 



222 

A.2.1 Baseline Task Instructions 

Redesigning a Social Media App screen (30 minutes) 

You are working for a design agency and you are in charge of the redesign of a social media 

app, shown below. The UX research team has just conducted a desireability study. In this kind 

of study, users assign emotional adjectives to a design to measure its desireability like fun, fresh, 

and dull. The top two keywords found for this wireframe were: 

dull - plain, boring. 

familiar - looks like other profile screens. 

Create 3 alternative wireframe ideas for this design to change these reactions to the original 

design. You would like the users reactions to be these keywords, which we have defined as: 

1 
Felipe M. 
I, ,, . . ... ,,.1~- r,..,;; ., .. , 

@® 

( Fcl , ,, ) 

427 



223 

clean - well aligned, and good use of white space to clearly separate unrelated elements. 

compelling - has a clear point of entry (visual salient feature, or an emphasized component.) 

For this task, you will create 3 clean and compelling alternative prototypes for the social media 

profile screen. You should make them distinct and diverse. 

You will complete this task with a sheet of paper, and use Adobe XD to make prototypes, with 

the original components for the social media profile. You will also have a few alternate options 

to use for the profile picture icon, where the arrows are pointing below. 

There are also a few modification rules to follow for this task, so please read the modification 

rules carefully. Open the Adobe XD document from the dock to begin. 

Profile Picture 
Alternate 1 

Profile Picture 
Alternat e 2 

Optional Horizontal 
Separator (keep horizontal) 

11 2 
Following 

1 
Felipe M. 
lnrlP.rP.r :iP.-nt D~;,i~nP--r 

@® 

( Follow ) 

265 427 
Followers M entions 



224 

A.2.2 Scout Task Instructions 

Redesigning a Weather App screen (30 minutes) 

You are working for a design agency and you are in charge of the redesign of a weather app 

screen, shown below. The UX research team has just conducted a desireability study. In this 

kind of study, users assign emotional adjectives to a design to measure its desireability like fun, 

fresh, and dull. The top two keywords found for this wireframe were: 

dull - plain, boring. 

familiar - looks like other weather app screens. 

Create 3 alternative wireframe ideas for this design to change these reactions to the original 

design. You would like the users reactions to be these keywords, which we have defined as: 

J" • :: ) 
\\'•'.' 

Tues 

Seattle 
r .. ':.w<l:.1y. ti,nd, 11.·1 

44° 
Sunny 

r ·'L< 
•._: •., ... 

1Ned 

~-y 
Thur 



225 

clean - well aligned, and good use of white space to clearly separate unrelated elements. 

compelling - has a clear point of entry (visual salient feature, or an emphasized component). 

For this task, you will use Scout to find 3 clean and compelling alternatives to the weather app 

screen. You should make them distinct and diverse. 

This task has two parts: idea exploration, and refinements. 

Part 1: Idea Exploration (20-25 minutes) 

Use Scout to find and save 3 distinct alternative layouts that you like. We have imported the 

components into Scout, including two different sunny icons to use to use shown below (Hint: 

you can use an alternate group to try out layouts using a single alternate option at a time). 

Part 2: Refinements (5-10 minutes) 

Export your saved ideas by clicking "Export Saved Ideas" in the Scout toolbar. Then, open XD 

from the dock and drag the SVGs into Adobe XD. Make any refinements youâĂZd like to the´ 

Scout ideas. We will remind you when there is 5-10 minutes left to begin your refinements. 

Image A lternate 1 Weather 

-6.-
/ I ' 

A lternate 2 Weather Image 

I Horizontal 
Optiona horizont al) 
Separator (Keep 

Tues 

Seattle 
d March 11th Mon ay, 

44° 
Sunny 

Winds, S 14mph 

[A] 
lYJ 

y 
Thur 



226 

Goal Subgoal 
Clear point of 

emphasis 

Visual 
Balance 

Typographical 
Hierarchy 

Alignment 

WhitespaceC
le

an
 

C
om

pe
ll

in
g 

Great (2) 
The wireframe has a 
clear point of entry 
or a single visually 
salient feature, that 
does not overwhelm 

the design. 

Layout is easy to 
scan, symmetrical 

and all elements are 
aligned with respect 
to axes of symmetry. 

All elements follow a 
typographical 

hierarchy and are 
easily readable and 
proportionally sized 
with respect to each 

other. 

All elements in the 
wireframe are 

aligned with one or 
more other 
elements. 

Whitespace 
effectively used to 
separate unrelated 

components. 

Good (1) 
The wireframe has a 
clear point of entry 
or single visually 

salient feature, but it 
could be more 
salient without 

overwhelming the 
design. 

Layout is not easy to 
scan, 1-2 elements 
are not distributed 

with respect to axes 
of symmetry. 

1-2 elements do not 
follow a 

typographical 
hierarchy and are 
not easily readable 
and proportionally 

sized with respect to 
each other. 

1-2 elements are 
misaligned to other 

elements. 

Whitespace 
sometimes 

effectively used to 
separate unrelated 

components. 

Needs Imp. (0) 
Unable to tell if 

there is a clear point 
of entry or visually 
prominent feature, 

or there are multiple 
things that are 
competing for 

saliency. 
Layout is not easy to 

scan, 3 or more 
elements are not 
distributed with 

respect to axes of 
symmetry. 

3 or more elements 
do not follow a 
typographical 

hierarchy and are 
not easily readable 
and proportionally 

sized with respect to 
each other. 

1-2 elements are 
misaligned to other 

elements. 

Whitespace not 
effectively used to 
separate unrelated 

components. 

Table A.1: Quality evaluation rubric that the independent designer panel used to assess the 
quality of Scout and Baseline designs created by the designers in the Scout user study. 



227 

A.3 Quality Evaluation Rubric 

During the Scout user study, each designer created a total of 6 designs. I had a panel of 2 

independent interface designers assess each design with a rubric, shown in Table A.1. The 

designers used the rubric to evaluate designs for 3 compelling metrics: clear point of emphasis, 

visual balance, and typographical hierarchy as detailed in Table A.1. The designers also used 

the rubric to evaluate each design for two clean metrics: alignment and whitespace. Each 

designer assigned scores to each design of 0, 1, or 2 for each rubric item based on the criteria 

detailed in the corresponding columns. Overall, the layout quality score, detailed in Chapter 3 

(Section 3.3), for each design was a weighted sum of the scores for each rubric item, summed 

across the two designers. 

A.4 Qualitative Interview Questions 

As part of the user study for Scout, which I present in Chapter 3, I conducted qualitative 

interviews to understand more about the impact of Scout on the process of designers in exploring 

alternatives to their designs early in the design process, and on the diversity and quality of the 

designers’ final design alternatives. I include the full set of interview questions below. Chapter 3 

presents the full results of the qualitative analysis. For the questions below, the section of Scout 

Post-Task Questions and the section of Baseline Post-Task Questions were not necessarily presented 

in this order. I asked half of the designers the Baseline questions first, and half of the designers 

the Scout questions first. 

A.4.1 Scout Post-Task Questions 

The following are the set of interview questions that I asked designers immediately after 

completing the Scout task with Scout (20 minutes) and Adobe XD for refinements (10 minutes). 

With these questions, I wanted to understand the strategy designers followed in coming up with 

the alternatives, and the role of Scout in that. Additionally, I wanted to understand the aspects 

of Scout that were useful and not useful to their process of exploring alternatives. 



228 

1. You’ve just used Scout to explore ideas, and Adobe XD to refine alternatives for a Social 

Media|Weather App interface. 

(a) What strategy did you use to come up with the alternative designs? 

(b) How did Scout play a role in that strategy? 

(c) What aspects of Scout were particularly useful in your process, if any? 

(d) What aspects of Scout were particularly not useful in your process, if any? 

2. We asked you to make three diverse design alternatives that were both clean and com-

pelling. 

(a) How successful do you feel you were at creating diverse designs with Scout+Adobe 

XD together? 

(b) How successful do you feel you were at creating clean and compelling designs with 

Scout+Adobe XD together? 

3. Is there anything else you want to share with me about Scout or this task before we move 

on? 

A.4.2 Baseline Post-Task Questions 

The following are the set of interview questions that I asked designers immediately after 

completing the Baseline task with Adobe XD only (30 minutes). With these questions, I wanted 

to understand more about the strategy designers followed in coming up with the alternatives. 

Additionally, I wanted to understand if there were any aspects of XD that were useful or not 

useful to them in exploring alternatives. 

1. You’ve just used Adobe XD to create alternatives for a <Social Media/Weather App> 

interface. 

(a) What strategy did you use to come up with the alternative designs? 

(b) How did Adobe XD play a role in that strategy? 

(c) What aspects of Adobe XD were particularly useful in your process, if any? 

(d) What aspects of Adobe XD were particularly not useful in your process, if any? 



229 

2. We asked you to make three diverse design alternatives that were both clean and com-

pelling. 

(a) How successful do you feel you were at creating diverse designs with Adobe XD? 

(b) How successful do you feel you were at creating clean and compelling designs with 

Adobe XD? 

3. Is there anything else you want to share with me about Adobe XD or this task before we 

move on? 

A.4.3 Post Study Interview Questions 

I asked the designers to answer the following questions after completing both the Scout and 

Baseline tasks. This enabled them to reflect on their past design processes for coming up with 

and creating alternatives, and how they could imagine using a tool like Scout in that process. 

I also had them compare and contrast their approach in creating alternatives in both tasks. 

Finally, I had them reflect on the impact of the tools in both conditions on the quality (i.e., clean 

and compelling) and diversity of their alternative designs. 

1. Think about the last interface you created (before this study). Did you try to come up 

with alternative designs at any point in that process? 

(a) If so, what did you do? And how well did it work? 

(b) If not, why not? 

2. How could you see yourself using a tool like Scout in that process? 

3. Today, you used two different workflows to make alternative designs: Adobe XD alone, 

and then Scout for idea exploration and Adobe XD for refining the Scout ideas. 

(a) How did your approach to creating alternatives using Scout and Adobe XD together 

differ from your approach using Adobe XD alone? 

I asked the designers the following questions to have them reflect on which tool workflow 

resulted in more diversity in their final designs. 



230 

1. Which tool workflow do you feel helped you to come up with more diverse design 

alternatives? 

2. How did <workflow> help you to do that better than <other workflow>? 

I asked the designers the following questions to have them reflect on which tool workflow 

resulted in more clean and compelling designs. 

1. Which tool workflow you feel helped you to come up with cleaner and more compelling 

designs? 

2. How did <workflow> help you to do that better than <other workflow>? 

Finally, I concluded the interview by having the designers give any last thoughts on Scout, and 

on the differences between Scout and Adobe XD. Typically, this is where they provided any 

open-ended feedback. 

1. Are there any last thoughts on Scout, or the differences between Scout and Adobe XD, 

that you’d like to share before we wrap up? 


	Expanding_Interface_Design_Capabilities_through_Semantic_Data_Driven_Analyses___Dissertation_v7
	Expanding_Interface_Design_Capabilities_through_Semantic_Data_Driven_Analyses___Dissertation_v8_fonts



