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ABSTRACT
This paper presents the results of a 36 participant empirical
comparison of touch mode-switching. Six techniques are eval-
uated, spanning current and future techniques: long press, non-
dominant hand, two-fingers, hard press, knuckle, and thumb-
on-finger. Two poses are controlled for: seated with the tablet
on a desk and standing with the tablet held on the forearm.
Findings indicate pose has no effect on mode switching time
and little effect on error rate; using two-fingers is fastest while
long press is much slower; non-preferred hand and thumb-on-
finger also rate highly in subjective scores. The experiment
protocol is based on Li et al.’s pen mode-switching study, en-
abling a comparison of touch and pen mode switching. Among
the common techniques, the non-dominant hand is faster than
pressure with touch, whereas no significant difference had
been found for pen. Our work addresses the lack of empirical
evidence comparing touch mode-switching techniques and pro-
vides guidance to practitioners when choosing techniques and
to researchers when designing new mode-switching methods.
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INTRODUCTION
Most interfaces have multiple modes in which input is mapped
to different actions. In a touch interface, the current mode
can change how a single touch is interpreted: for example,
it could draw a line, pan the canvas, select a shape, or enter
a command. Switching between modes can be frequent, so
finding optimum mode-switching methods is important. There
have been numerous experimental investigations comparing
mode-switching techniques for pucks, mice, and pens [32, 13,
36, 54, 28], but there has been no comprehensive analysis of
mode-switching techniques for touch input.

This is surprising considering that a number of touch mode-
switching techniques have been developed. Some are unique to
touch since they rely on features such as multiple contacts [10,
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46], using knuckles or other parts of the hand [23, 39], or
characteristics of finger contact [6, 47]. Some touch mode-
switching techniques are similar to those evaluated with pens,
such as using pressure [42, 25] or using the non-dominant
hand [15, 57]. However, generalizing pen-based empirical re-
sults to touch is highly speculative, considering distinct touch
characteristics like reduced precision from “fat fingers” [3,
14, 50] and greater friction [9]. This lack of formal compar-
isons of touch mode-switching techniques may be one reason
why current mode-switching methods for touch seem limited
compared to other input methods.

In this paper, we compare the performance of six mode-
switching techniques for touch input on a tablet: the standard
long press, pressing a button with the non-dominant hand,
two-finger multi-touch, pressing hard, using the knuckle, and
touching the thumb to the side of the finger. The investigated
techniques include current methods, new methods recently
made available in commercial devices, and techniques likely
possible in the near future. Given the tablet mobility, we also
control for two poses: seated with the tablet on a desk and
standing while holding the tablet. Our evaluation protocol
is based on Li et al.’s widely cited comparison of pen mode-
switching [36]. This increases the replicability and validity
of our work, and enables a discussion of touch versus pen
mode-switching. Direct comparisons are possible for pressure,
long press, and non-preferred hand, and to some extent thumb-
on-finger and knuckle if considered analogues to Li et al.’s
pen barrel button and eraser.

Our results contribute the following results and insights:

• Techniques ordered from fastest to slowest are: two-fingers,
non-preferred hand button, finger-on-thumb, knuckle or
hard press, and much slower long-press.

• A sitting or standing pose has no effect on speed and little
or no effect on errors (only hard press and non-preferred
hand error rates showed some interaction with pose).

• Pressing hard was perceived to be the least accurate, one of
the most fatiguing, and hardest to learn technique.

• Compared to Li et al.’s results for pen, our touch mode-
switching timings and error rates are higher (except for
knuckle compared to eraser).

• Our results can inform design, returning to the opening
example: one finger could draw, two fingers pan, thumb-on-
finger to select, and knuckle for a command menu.
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BACKGROUND AND RELATED WORK
We build on, and extend research developing new mode-
switching techniques and formal experiments to analyse them.

Mode Switching Techniques
Early mode-switching techniques focused on pucks, mice, and
especially pens (styli). We provide a brief overview of pen
techniques first since they have been arguably the most thor-
oughly studied and are the topic of Li et al.. We subsequently
focus on multi-touch input, the most relevant to our work.

Pen Input
With pens, there is a common need to switch between an inking
mode and a command input mode, but many techniques can
be combined to support multiple modes. Perhaps the most
straightforward method to switch the pen mode, other than the
classic “long press” with the nib, is to press a button. This can
be single-handed, using the barrel button on the pen [36], a
touch sensor below the palm of the writing hand [51], or more
commonly with the other (non-dominant) hand [40, 1, 33, 28].
Using two hands exploits the benefits of bimanual interaction
[32, 27]. Li et al. [36] found a physical button activated by the
non-dominant hand was both faster and more accurate. A later
study by Tu et al. led to similar results [54].

Having a well-positioned button on a device is not always a
practical solution and there is often a need to trigger multiple
mode switches. Additional techniques have been proposed
to overcome those limitations. On pen and touch tabletop
systems, there is a large body of work examining different pos-
tures performed with the non-dominant hand on the surface
to activate command modes for the pen held by the dominant
hand [7, 31, 41]. Other techniques include short stroke ges-
tures [26, 34, 20], pressing firmly or lightly [36, 54, 45], stylus
rolling [5], contacting with different parts of a multi-faceted
crayon [56], and pen-holding postures [52, 30].

Touch Input
Many mode-switching techniques designed for pens or other
devices have been applied to direct touch input. For instance,
typing capital letters by holding the shift key with the other
hand is a simple form of non-preferred hand mode activation.
Even the shape of the non-dominant hand [58, 61, 24] or the
number of fingers used [60] can trigger a mode change. BiPad
[57] and SPad [15] explore the possibility of using the hand
holding a tablet to activate different modes by pressing soft
buttons. Pressure [42, 25, 46] and grip-based [17] controls
have also received much attention. Some of the latest mobile
devices integrate pressure-based technology and functionality
(3D Touch, Force Touch, Press Touch etc.) [53]. The number,
shape and mobility of fingers afford further interaction possi-
bilities. Multiple fingers performing similar path movement
(two- three-finger swipes etc.) can be used to trigger different
actions [35, 60] and if individual fingers can be identified, in-
teractions can be made finger-specific [10]. Further properties
of finger input such as contact size [6], slight rolling move-
ments [47] and which part of a finger touches the display [23]
can also be recognized to support mode-switching or general
interactions.

Mode Switching Analysis
With many possible mode-switching techniques, it is no won-
der researchers have attempted to develop models and evalu-
ation protocols to rigorously assess their performance under
different settings. Using the non-dominant hand for pen mode
switching has been studied in detail by Ruiz et al. who de-
veloped a temporal model [48], Lank et al. [33] who show
concurrent mode-switching is fastest, and Ruiz and Lank [49]
who explore these aspects with multiple modes.

To compare performance of mode-switching techniques, a
common methodology is Dillon et al’s “subtraction tech-
nique” [11]. It determines the precise cost of mode-switching
by subtracting the time to perform the same series of tasks us-
ing a single mode and when alternating between two modes. It
is the approach for comparing pen mode switching techniques
in Hinckley et al. [28], Song et al. [52], and Li et al.’s[36]
highly cited comparison on which we model our work.

We are unaware of a comprehensive study systematically ex-
amining and comparing mode-changing techniques for direct
touch input. The touch techniques explicitly or implicitly
used to trigger mode changes that have been proposed have
mostly been superficially or individually evaluated for non-
frequent mode-switches. Therefore, it is not clear how well
they fare compared to each other and in a context, where state
changes are very frequent. Furthermore, the results for pen-
based mode-switching may not transfer to touch input, not
to mention that touch input enables other techniques such as
multiple touches not applicable to pens.

MODE SWITCHING TECHNIQUES
We chose six mode switching techniques among those in cur-
rent use, described in previous research, or soon plausible
given emerging sensor capabilities. Some are analogous to the
pen mode switching techniques tested by Li et al. [36]. All
techniques were designed for a tablet when placed on a desk,
or when supported with the non-dominant arm.

Long Press
Performing a long press (also called “press-and-hold” or
“dwelling”) is a common method to trigger command modes
in current touch interfaces. For example, Android and IOS use
a long press to organize app launch icons. We use a long press
duration of 500ms , the default Android setting. Li et al. also
included a pen long press, but used a 1000ms duration.

Long press detection begins after touch down with a “hold
detection phase”: as long as finger movement remains within a
3mm radius bounding circle centred on the initial touch point,
the finger is considered held still. A circle 25mm in diameter
is displayed around the touch point showing the progression
towards the 500ms duration. If the finger remains in the box
for 500ms, the mode is activated. If the finger exits the box
before that time, the hold detection phase restarts with a new
bounding circle centred on the new finger position. Our 3mm
radius bound is twice that used by Li et al. to account for touch
sensor noise. Once detected, the mode remains engaged until
touch up regardless of subsequent finger movement. We did
not implement a second “hold through” phase to cancel the
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mode switch like Li et al. because, to our knowledge, this is
not used on touch input devices or needed for the experiment.

Two-Finger Multi-touch
One of the simplest distinctions for touch input is whether one
or two fingers contact the display at the same time. This is
common in Android and IOS, and researchers have used two
fingers to activate marking menus [35] and distinguish between
dragging and hovering in the DTMouse technique [12]. There
is no equivalent technique with pen input.

A two-finger touch is detected when two correlated touches
occur soon after initial touch down. For our experiment, two
touches must be detected before crossing into the first rectan-
gle (typically less than 80ms). To remain comparable with
other single touch techniques, a single input position is defined
using the midpoint between touch points. We selected the mid-
point based on pilot tests examining the perceived input point
for two touches. This positioning is also used for DTMouse in
hover mode. Once detected, the mode remains engaged until
touch up regardless of the number of touches.

Non-Preferred Hand
Touch interfaces can support using the non-preferred hand to
activate a mode with soft buttons, a simple example is holding
the SHIFT key while typing. Li et al. found that pressing a
physical button was one of the fastest ways to activate a mode
with pen input. Our equivalent technique uses a rendered touch
button since it is more practical with current tablets.

(a) (b)

Figure 1: Position of the mode-switch button (in green) activated by the
non-preferred hand when (a) sitting; and (b) standing.

To engage the mode, the non-dominant hand presses and holds
a 45 × 25mm button before the dominant hand touches down.
Once the touch down event occurs, the mode remains engaged
until both the dominant-hand touch up event occurs and the
mode switch button is released. We require the button to be
pressed before the dominant hand touch down to be consistent
with Li et al.. The mode button location is dependent on the
participant’s handedness and whether the tablet is supported
by a surface (e.g. sitting at a desk) or supported by the non-
dominant forearm (e.g. when standing). When supported
by a surface, the button is displayed at the bottom-left (or
bottom-right) corner (Fig. 1-left). When supported by the
non-dominant arm, the button is displayed at the top-right (or
top-left) corner (Fig. 1-right). This enables the user to reach
and tap the mode switch button comfortably with the fingers
of the hand holding the device, a common posture reported by
Wagner et al. [57] We fixed button locations and sizes for our
experiment, but techniques exist to automatically detect how

a mobile device is held so such mode-switch button could be
positioned accordingly [17].

Hard Press
Pressure-based touch interaction has been described in previ-
ous work [2, 4, 25, 46] and recent technology developments
suggest pressure sensing will be supported on commercial
touch devices in the near future [53]. Using pressure-based
mode-selection for pens has been well studied (e.g. [45]) and
it was a method evaluated in Li et al.’s experiments.

Most current touch devices report a simulated pressure read-
ing based on the size of the touch contact. On vision-based
tabletops the actual contact size is captured by a camera [4],
but capacitive devices estimate it from the signal strength. We
found simulated pressure with capacitive tablets is unreliable
due to factors like skin moisture, relative humidity, and body
hydration. To get a true measure of pressure, we initially
experimented with placing multiple external force-sensitive
resistors under the tablet and training a classifier to recognize
touch events with normal and hard pressure. This worked rea-
sonably well on a desk, but designing a housing for accurate
sensing when standing proved difficult. Instead we detect hard
presses indirectly, based on muscle tension sensed using a
MYO electromyographic (EMG) armband. Benko et al. used
the same technique with a similar EMG sensor [2]. Note that
our objective is to simulate a future pressure sensing technique
in our experiment; we are not proposing that people wear a
MYO armband when using a tablet.

A simple threshold-based classifier is trained for each partic-
ipant (Li et al. used a global threshold for pressure across
all participants, but found it unreliable). To train, the partic-
ipant crosses through five rectangles, alternating between a
normal touch and a hard press touch according to rectangle
colour. This is repeated 4 times. The data from the 8 arm-
band EMG sensors are smoothed using the one-euro filter [8]
and synchronized with the touch events and expected type
of touch. The median and standard deviation of each sensor
signal for normal touches and hard presses is calculated using
events logged from touch down until the rectangle is entered.
All sensors where the hard press median minus two standard
deviations is greater than the normal touch median plus two
standard deviations are considered differentiating sensors. If
less than two differentiating sensors are found, the armband is
adjusted and the training repeated. Otherwise, each sensor is
assigned a threshold equal to the hard press median minus two
standard deviations (EMG signals for hard press are always
greater than normal press). Once trained, a touch is considered
a hard press if two or more of the differentiating electrodes
exceed the thresholds determined in training. A 5-person pilot
found the method was almost 99% accurate.

To use hard press for mode-switching, sufficient pressure must
be applied to the tablet screen to cross the threshold. During
the experiment, a hard press must be identified before crossing
into the rectangle. The mode is disengaged upon touch up.

Thumb-on-Finger
Pressing a “barrel button” is a classic way to change the mode
using a pen, and this technique was included in Li et al’s study.
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(a)

(b)

Figure 2: Hardware to robustly detect future input actions for the pur-
pose of the experiment: (a) knuckle touches using accelerometer; and
(b) thumb-on-finger using pressure sensor attached to index finger.

We approximate barrel button mode-engagement for touch
input with a thumb press on the index finger, similar to tech-
niques used for mid-air clicking [21, 55] and NanoStylus [62].
We anticipate that with technologies such as Project Soli [19],
these types of gestures will be able to be sensed.

In our experiment, we use a wearable device with a force-
sensitive resistor (FSR) taped to the proximal phalanges of
the index finger (Fig. 2 b). We ensured this apparatus did not
impede natural touch interaction with the tablet. The FSR
is 12.7 mm in diameter and 0.47 mm thick. The sensing
range is 0 to 175 psi and we used a global threshold of 51
psi to detect when the thumb lightly contacts the finger. The
FSR is connected to an ATmega328 Arduino strapped to the
wrist. The Arduino sends pressure readings to the tablet over
Bluetooth. To reduce weight, an external battery is connected
to the wearable device with a lightweight wire.

The mode is activated by pressing the thumb to the side of
the index finger before touching down. Once the touch down
event occurs, the mode remains active until both the touch up
event occurs and the thumb is released from the finger.

Knuckle
Using the knuckle for touch input has been described in Mar-
quardt et al. [39] and Tapsense [23]. Knuckle-sensing is al-
ready offered on some smartphones [16]. Turning the hand
over to engage the knuckle also bears some similarity to using
the eraser end of a pen, a mode-switching technique included
in Li et al.’s study.

Our tablet does not sense knuckles natively, so we simulate
a future knuckle sensor. An ADXL335 3-axis accelerometer
mounted on the back of the hand with tape detects wrist rota-
tion. Specifically, the mode is switched when the z axis of the
accelerometer exceeds a 90 degree angle (it is 0 degree when
the sensor is horizontal). This simple threshold is sufficient to
differentiate between knuckle and normal finger pad touches.
The accelerometer is connected to the same wrist-mounted ap-
paratus used for thumb-on-finger sensing. In our experiment,
all but one participant used their middle finger knuckle to per-
form this technique. Given the mechanics of the movement,
the mode must be engaged before the first touch. The mode
remains active until both the touch up event occurs and the
wrist rotates back to the finger pad touch orientation.

Figure 3: Compound task: five oriented rectangles (180° shown) are
crossed while alternating between default and command modes. Each
row above is a screen capture of the task (top to bottom): about to cross
first baseline target; crossing first target; crossing second “moded” tar-
get; about to cross third baseline target. The baseline task looks identical
except all rectangles are grey and only the default mode is used.

EXPERIMENT
The goal of this experiment is to compare mode-switching
time, error rates, and subjective ratings for the six techniques
described above. Given the mobile nature of tablets, both
seated and standing poses are tested. The experiment task
and design is a near-replication of Li et al.’s [36] pen mode-
switching study.

Participants
We recruited 36 participants (mean age 24.1 sd = 2.4, 8
women, all right-handed). 24 participants had experience
using multi-touch tablets. A $10 remuneration was provided.

Apparatus
The experiment was performed on a Google Nexus 10 tablet
(1.7 GHz Cortex A15 CPU with 1 GB RAM) running Android
OS 5.1.1. The tablet’s 264 × 178 mm display has a resolution
of 2560 × 1600 px, a density of 11.8 px/mm (300 PPI). The
device weighs approximately 603 grams. The experiment
task code was written in Processing using the Android export
library. Using Ng. et al.’s method [44] and a 240 fps camera,
end-to-end latency was 100 ms, comparable to current apps.

Tasks
Our experimental tasks are closely based on Li et al. [36].
Five 20 × 22 mm rectangles are crossed in succession where
the 20 mm ends form two parallel crossing targets (Fig. 3).
Note that 20 mm crossing targets are 63% larger than the
minimum size recommend by Luo and Vogel to achieve a 4%
error rate [37]. The rectangle is a simplification of the pie
section used by Li et al.. All five rectangles are displayed in
a horizontal row, all oriented in the same direction with the
required crossing direction indicated by a white arrow.

There are two task variations. In the baseline task, five grey
rectangles are shown and the participant crosses them using
standard touch input. In the compound task, the five rectangles
alternate between grey and red, with the first rectangle grey.
The participant must cross each grey rectangle using standard
touch input and each red rectangle using the specified mode-
switching technique. All touches leave a trail for feedback,
black for standard touches and red when the mode is engaged.
Note that the red or black trails function only as an abstract
representation of two different modes. A small circle in the

Pens, Ink, Input CHI 2017, May 6–11, 2017, Denver, CO, USA

3270



top-left corner of the display also turns red when the mode is
engaged. If there is any crossing or mode error, a beep sounds
and the rectangle must be crossed again to continue. Error
detection and classification are described below.

Design and Procedure
The experiment is a repeated measures mixed design. The
participant pose while using the tablet is a between-subjects
factor (sit or stand). Half of the participants completed all
tasks while seated with the tablet placed flat on a table and the
other half completed all tasks while standing with the tablet
held on their non-dominant forearm. The mode-switching
technique is a within-subjects factor with levels corresponding
to the six mode-switching techniques (longpress, twofinger,
nonpref, hardpress, thumb, knuckle).

Participants were randomly assigned to a pose condition and
technique order was counter-balanced using a 6 × 6 Latin
square. For each technique, there was a 1 to 3 min training
period (after wearable hardware was attached and calibrated
for hardpress, thumb, and knuckle). Once training was over,
the participant completed 9 blocks of tasks. Odd numbered
blocks were entirely baseline tasks and even numbered blocks
entirely compound tasks. Before each block, the participant
had to press a start button. Each block presented the task using
4 crossing directions (N, E, S, W) in random order. Note that
Li et al.’s design had 8 directions, but they report no significant
differences. Our four cardinal directions are representative
of common actions like swiping, and a reduced number of
directions enabled all six techniques to be tested in less than
1 hour with minimal fatigue. Participants were allowed to take
breaks between blocks.

In sum there were: 6 techniques × 9 blocks (5 baseline, 4
compound) × 4 directions × 5 rectangle crossing = 1,080
rectangle crossings per participant.

Quantitative Measures
Three measures are calculated from experiment event logs.

Errors and Error Rates
Like Li et al., we identify three types of errors. A crossing
error occurs if the touch stroke did not cross both ends of
the rectangle in the correct order and direction. This captures
errors related to crossing accuracy. An out-of-target error
occurs if the touch stroke did not intersect with any part of the
rectangle. This most often captures a case when the participant
intentionally aborted a rectangle crossing. These errors are
only possible on the current rectangle, strokes intersecting
with other rectangles are ignored. A mode error occurs when
the wrong mode is used to cross a rectangle. In other words,
stroking a grey rectangle with red or vice versa. Mode errors
are only possible in compound tasks.

We further distinguish between mode-in and mode-out errors.
A mode-in error occurs when the participant fails to transition
from standard touch input to the specified mode-switching
technique. This is detected during the second or fourth rectan-
gle crossing. A mode-out error is when the participant fails
to transition from the specified mode-switching technique to
standard touch input. This is detected during the third or fifth

rectangle crossing. Finally, a combined error occurs if any
of the errors above happen. Each of these error types are
recorded as an indicator variable: 1 if the error occurred and 0
otherwise. The mean value of one type of indicator variable
across trials produces the corresponding error rate.

Crossing Time
The crossing time is the duration between the touch up event
after the previous rectangle was crossed until the touch up
event after the current rectangle is crossed. There are four
measurable rectangle crossings per task.

Mode-switching Time
Naively, one might directly compare crossing times in the
baseline task with crossing times in the compound task (where
a mode switch was required). However, both crossings share
a common overhead of moving from the end of the previous
rectangle to the start of the current rectangle. Therefore, we
use the “subtraction method” used by Li et al. (adopted from
Dillon et al. [11]) to isolate mode-switching time.

The method defines three cycles during a task. The first cycle
is from the moment the start button is pressed until the touch
up event after crossing the first rectangle. The second cycle
begins immediately after, ending when all fingers are lifted
after crossing the third rectangle. The third cycle begins imme-
diately after, ending when all fingers are lifted after crossing
the fifth rectangle. The second and third cycles are full cycles.
During the compound task, each full cycle captures a complete
mode-switch operation: the participant switches into a mode
using the specified technique, crosses a rectangle, switches out
of the mode, crosses another rectangle, and lifts their finger(s).
The purpose of the first cycle is to ensure standard touch input
is used before the second cycle. In each block, there are 8 full
cycles (two cycles per direction). For each technique, each
participant completes 32 full cycles with mode switching (in
the 4 compound task blocks) and 40 full cycles with standard
touch input only (in the 5 baseline task blocks).

The subtraction method isolates mode switching time using
mean times from second and third cycles. For each block, the
mean time for second and third cycle is calculated using error-
free cycles (recall there are four task directions per block, so
each full cycle is repeated four times). The mode-switch time
is calculated by subtracting the mean full cycle time of two
adjacent baseline blocks from the mean full cycle time from a
compound block. In total, this provides 8 mode-switch time
measurements per-participant, per-technique (2 per block).

RESULTS
All results, including subjective ratings, are continuous, so the
same analysis procedure was used for all data. Specifically,
we performed repeated measures ANOVA and pairwise t-tests
with Bonferonni corrections when main or interaction effects
were found. For interaction effects, we restricted pairwise tests
to comparing means across factor dimensions independently.
When the assumption of sphericity was violated, degrees of
freedom were adjusted using Greenhouse-Geisser (ε < 0.75)
or Huynh-Feldt (ε ≥ 0.75). Non-normal skewed distributions,
were corrected using a log transform or Aligned Rank Trans-
form [59] depending on the severity and direction of skewness.
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Data Pre-Processing
We examined error-free crossing times to identify outliers
more than 3 standard deviations from the mean for each task
divided by pose. This removed 4.6% of the rectangle crossing
trials (3.8% to 6.7% per technique), comparable to similar
touch experiments [37].

Using the remaining error-free full cycles, we used the sub-
traction method described above to calculate mode-switch
times. Visual inspection of the mode-switch times distribution
suggested non-normality, confirmed by a Shapiro-Wilk and
Anderson–Darling tests. To compensate, we log-transformed
all data points for mode-switch time. There were 33 data
points with slightly negative mode-switch times. This only
appeared for twofinger, the fastest technique. To compensate,
we first added 306ms to all times to guarantee positive values
required by the log function. Note that this log transformed
data is used for statistical tests involving mode-switch time.
All times presented in the paper are actual measured values.
Error rate distributions did not suggest non-normality.

Learning Effects
To determine if performance changed during the four com-
pound blocks, we tested for effects of pose × technique ×
block on mode-switch time and combined error rate. We
found no statistically significant interaction involving block
indicating no learning effect across blocks. This matches the
performance stability noted by Li et al. All blocks are used in
subsequent analyses.

Mode-Switching Time
We expected pose would alter how the techniques were
performed, but there was no significant main effect
of pose, or pose × technique interaction effect on
mode-switch time. There was a significant main ef-
fect of technique (F5,170 = 109.52, p < .0001, η2

p = .76).
Post hoc tests found all techniques significantly differ-
ent p < .0001, except hard press and knuckle. Rank-
ing techniques from fastest to slowest mode-switch time:
twofinger (222ms); nonpref (311ms); thumb (408ms);
knuckle and hardpress (500ms and 568ms respectively, not
significantly different); and longpress (1244ms). longpress
is more than twice as slow as the next fastest techniques and
more than five times slower than the fastest technique.

Comparing the switching times of techniques used in Li
et al., we notice that our values are systematically higher.
For nonpref and hardpress, the authors report mean times of
139ms and 284ms respectively, which are roughly half of our
values. Tu et al. [54] also evaluated those techniques and
while the pressure-based technique is reportedly even faster
(mean time 228ms), the timing for their version of nonpref,
304ms, is very similar to ours.

Although there was no effect of pose, we examine technique
by pose given our a priori control. For each pose, we ran a one-
way ANOVA for technique on mode-switch time. Main effects
were found for sit (F5,85 = 69.60, p < .0001, η2

p = .80) and
stand (F5,85 = 44.42, p < .0001, η2

p = .72). The pattern of
post hoc differences was very similar to the technique main
effect (all p < .0001). The only difference is for stand: there
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Figure 4: Mean mode-switch times by pose and technique with 95% CI.
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Figure 5: Combined error rate for techniques by pose

was one other non-significant difference between thumb and
nonpref. Without that one exception, the order of techniques
from fastest to slowest is consistent between poses and with
combined poses (see Fig. 4).

Error Analysis
Before examining specific error rates for techniques and poses,
we note that the overall error rate for baseline crossing cy-
cles is a 4.1% with no detectable differences between pose.
This rate suggests participants were balancing speed and accu-
racy [63] and is low enough to suggest using the subtraction
method is valid. Li et al. do not report baseline rates.

Unlike mode-switch time, we did find a significant in-
teraction for pose × technique on combined error rate
(F3.40,115.66 = 3.02, p = .012, η2

p = .081). There was a sig-
nificant main effect for technique as well, but the interaction
with pose is most relevant. To determine if the technique
combined error rate was significantly different between poses,
we performed six pairwise tests. With Bonferonni correction,
only a borderline difference in hardpress p = .06 exists. Like
mode-switch time, it appears that pose has little or no effect
on overall error rate.

Continuing to explore the significant interaction, we examine if
the technique combined error rates were significantly different
using pairwise tests between techniques when considering
sit and stand separately. For sit, we found no significantly
different techniques. The measured rates ranged between
4.8% and 7.5%. Again, we observe a contrast with Li et al.’s
reported error rates, which are systematically lower. Their
hold technique led to the most errors (due to a slippery screen)
and NonPrefHand to the lowest rates. Tu et al. once more
show different results (Holding being the least error-causing
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Figure 6: Proportion of specific error rates for techniques for sit. Note
more than one type of specific error can occur during a cycle.

technique in their experiment) and error rate ranges that are
partially closer to ours.

For stand, we found significant differences between twofinger
and hardpress, longpress and hardpress (both p < .05),
and a borderline difference between nonpref and longpress
(p = .05). The measured rate for hardpress is 13.5% and
nonpref is 10.8%, with the remaining techniques ranging be-
tween 3.3% and 7.1%. This provides more evidence that,
relative to the other techniques, hardpress and nonpref are
harder to perform when standing.

We also investigate the effect of pose and technique on specific
types of errors (illustrated by pose in Fig. 6 & 7).

For crossing error rate, we found a main effect for technique
(F5,170 = 3.97, p < .001, η2

p = .104). Post hoc tests showed
nonpref had a higher rate (3.9%) than hardpress (1.2%) and
thumb (1.5%). Measured rates were between 1.2% and 3.9%.

For out-of-target error rate, we also found a main effect
for technique (F5,170 = 5.41, p < .0001, η2

p = .14). Post
hoc tests showed the rate for thumb (1.0%) was lower than
knuckle (2.6%), nonpref (5.0%), and twofinger (5.9%). Also
hardpress (2.5%) was lower than twofinger. Measured rates
were between 1.0% and 6.3%. Note that Li et al. had almost
no out-of-target errors.

For mode-in error rate, technique had a main effect but we
focus on the more relevant significant pose × technique inter-
action (F5,170 = 2.44, p = .036, η2

p = .066). For sit, post
hoc tests showed twofinger (1.0%) was lower than longpress
(3.1%). For stand, knuckle (0.7%) was lower than hardpress
(6.9%) (all p < .05). Measured rates were between 1.0% and
5.0% for sit and between .07% and 6.9% for stand.

For mode-out error rate, technique had a main effect
(F3.56,121.07 = 6.28, p < .001, η2

p = .16). Post hoc tests
showed twofinger (0.3%) was lower than nonpref (2.4%) and
hardpress (3.1%) hardpress was higher than thumb (0.9%)
and longpress (0.6%) (all p < .05). Measured rates were
between 0.3% and 3.1%. There is some evidence that nonpref
and hardpress both are more difficult to disengage.

Subjective Ratings
After completing trials for all techniques, participants provided
subjective ratings of the techniques with respect to six aspects:
ease-of-learning, ease-of-use, accuracy, speed, eye fatigue,
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Figure 7: Proportion of specific error rates for techniques for stand. Note
more than one type of specific error can occur during a cycle.

and hand fatigue. All ratings were on a continuous numeric
scale from 1 to 5, with 1 being the worst score (e.g. low
accuracy, hard to learn, very fatiguing) and 5 the best (e.g.
high accuracy, easy to learn, not fatiguing).

Table 1 summarizes subjective ratings by pose. The distribu-
tions for ratings was non-normal due to high negative skew-
ness, so the values were transformed using the Aligned Rank
Transform method [59]. ANOVAs performed on this trans-
formed data did not reveal any significant main effects or
interactions involving pose on any any of the ratings. How-
ever, there are significant main effects for technique regardless
of pose. We report the main results of pairwise comparisons
between technique for each rating.

• For hand fatigue and ease-of-use, hardpress and knuckle
were reported respectively more tiring and less easy to use
compared to the other techniques (all p < .032). This is un-
derstandable, given the pressure and wrist efforts required.
Participant feedback confirmed the difficulty and physical
demand of hardpress (seven people) with one participant
commenting that it almost felt like breaking the tablet. As
for knuckle, two participants reported it was tiring and two
pointed out that it resulted in increased occlusion; however,
two people also said it was "fun". For nonpref, four par-
ticipants remarked that the technique required well-timed
coordination and thus getting used to to be efficient. For
the standing position, we also observed that participants
with small hands (two in particular) sometimes had trouble
reaching the button with the fingers of the non-preferred
hand across the bezel of the tablet.

• In terms of ease-of-learning, hardpress was rated signif-
icantly harder to master than longpress and twofinger
(p = .0043 and p = .0102 respectively). We believe
this is because participants had to learn to adjust touch pres-
sure levels to be able to activate the two different modes
reliably as well as because of the extra training required for
the EMG classifier.

• With respect to accuracy, hardpress was consistently per-
ceived as having the lowest precision (p < .007 compared
to all other techniques). Note that hardpress and nonpref
have the highest overall error rates, yet hardpress was rated
more accurate. Hence, there appears to be an increased per-
ception of poor accuracy with hardpress. For twofinger,
we observed that, during training, participants needed a
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long two non hard

SIT press finger pref press thumb knuckle

Learning 4.4±.21 4.4±.20 4.7±.13 3.7±.32 4.6±.14 4.1±.23

Ease-of-Use 3.9±.24 4.2±.22 4.0±.28 3.0±.31 4.3±.24 2.7±.26

Accuracy 4.3±.20 4.1±.26 4.5±.16 3.2±.26 4.3±.20 4.2±.18

Speed 2.6±.23 4.3±.22 4.2±.17 3.4±.30 4.2±.20 3.4±.33

Eye Fatigue 4.7±.15 4.8±.10 4.8±.12 4.4±.25 4.7±.17 4.5±.21

Hand Fatigue 3.7±.27 4.1±.27 4.4±.22 3.0±.32 4.0±.26 3.0±.31

Combined 3.9±.1 4.3±.1 4.4±.1 3.5±.1 4.4±.1 3.6±.1

long two non hard

STAND press finger pref press thumb knuckle

Learning 4.6±.22 4.7±.16 3.9±.32 3.8±.26 4.3±.24 4.0±.27

Ease-of-Use 3.9±.22 4.2±.24 3.2±.36 3.0±.31 3.9±.29 3.2±.33

Accuracy 4.5±.18 4.2±.19 3.9±.33 3.1±.28 4.1±.23 3.8±.26

Speed 2.8±.30 4.6±.20 3.4±.30 3.3±.27 4.1±.26 3.4±.25

Eye Fatigue 5.0±.0 5.0±.0 4.9±.05 4.9±.05 5.0±.0 4.7±.17

Hand Fatigue 4.3±.30 4.5±.18 3.6±.32 2.9±.34 4.3±.26 3.6±.30

Combined 4.2±.1 4.5±.1 3.8±.1 3.5±.1 4.3±.1 3.8±.1

Table 1: Mean subjective ratings: sit (top) and stand (bottom).

short adaptation time to position their two fingers for the
ink to appear at the desired spot.

• Finally, regarding speed, twofinger was rated significantly
faster than all other techniques except thumb (p < .01),
thumb was judged faster than hardpress, knuckle and
longpress (p < .013) and longpress considered sig-
nificantly slower than all techniques except hardpress
(p < .03). All those results are consistent with the time
measurements.

DISCUSSION
Our results provide evidence that regardless of whether a tablet
is used flat on a desk, or held by the non-dominant arm while
standing, the performance characteristics and subjective im-
pressions of these techniques are comparable. This may bolster
the validity of other non-mode-switching touch input studies
evaluated only when a tablet is laid flat on a desk (e.g. [38, 18,
43]). However, more styles of touch input need to be tested in
sitting and standing poses to verify any general claims.

Regarding mode-switching techniques, our results show long
press is the worst and two-finger multi-touch the best, unless
target accuracy is critical. When accuracy is needed, thumb-
on-finger is the best option with lower out-of-target errors
than two-finger (and others) and lower crossing errors than
non-preferred hand. Subjective ratings for thumb-on-finger do
not indicate a pattern of any strong preference or dislike. One
caveat is that, although there were no significant differences
for thumb-on-finger in mode-in errors, the measured values
are high (Figs. 6 and 7). Given the high variance preventing
statistical difference, individual mastery of thumb-on-finger
mode-switching varies.

When considering mode-switching time only, non-preferred
hand, knuckle, and hard press are all within 100ms from the
mean time for thumb-on-finger. At first this may suggest
they are all comparable, but high rates of mode-switching
errors and a pattern of lower subjective ratings cast doubt on
using pressure for touch mode-switching. Although there is
subjective support for the non-preferred hand, it has a higher
mode-out error rate than other techniques and a surprising
pattern of frequent crossing and out-of-target errors.

Given the novelty of using a knuckle for touch input, we
were surprised to see it perform as well as it did. It has an
overall error rate comparable to the best techniques with one
of the lowest mode-in error rates. Although out-of-target er-
rors are higher than some, there is no statistical evidence of
a higher crossing error rate. This is encouraging consider-
ing we expected the increased occlusion to make knuckle
crossing wildly inaccurate. However, subjective ratings and
comments show a pattern of mild dislike due to higher fatigue
and perceived slower speed. Note that only two-finger and
knuckle instantly combine the mode-switch with the initial
touch position. This “merging of command selection and
direct manipulation” has been shown to be beneficial [22].

Subtraction Method Validity
Like Li et al., we confirm that we can apply the subtraction
method in our experimental protocol since drawing and posi-
tioning movements are not strictly fixed as in Dillon et al.’s
point-connecting task [11]. We accomplish this by comparing
the total movement distance in a full cycle between baseline
and compound tasks. A sufficiently small difference indicates
that movements required for the two types of tasks were simi-
lar. Due to how we logged multiple simultaneous touches, au-
tomatic calculation of movement time for non-preferred hand
and multi-touch proved error-prone. We chose to not include
them in this analysis. Among techniques, non-preferred hand
and multi-touch are arguably the most similar to non-mode
touching crossing movements.

For the remaining four techniques, we found a mean move-
ment distance for a full cycle to be 55.2mm (690px). This
is 1.4mm greater than the baseline condition, in which mean
movement distance was 53.8mm (672px). This difference of
only 2.7%, compares favourably with Li et al.’s difference of
4.7mm (20px)1, or 3.4%. Li et al. also report a similar single
full cycle mean movement distance of 66 mm (290px). This
demonstrates using the subtraction method was valid.

Temporal Pattern Analysis
We analyse the temporal submovements pattern to understand
different techniques, and use this to classify them into different
temporal models. This is directly based on the “keystroke level
analysis” performed by Li et al.. We use the same models and
compare our results with their findings.

A full cycle can be decomposed into four submovements with
corresponding times:

Tcycle = TP1 + TC1 + TP2 + TC2

where TPi is the time taken to position the finger in the air
before crossing the ith rectangle and TCi is the time taken to
drag the finger on the display and cross the ith rectangle. TPi
begins on touch up of the previous rectangle and ends on touch
down of the ith rectangle. TCi begins on touch down and ends
on touch up after crossing through the ith rectangle.

Each two-rectangle full cycle during a compound task requires
crossing rectangle 1 (the ‘red’ one) with the mode engaged and
crossing rectangle 2 (the ‘grey’ one) with the mode disengaged.
1Li et al. used a 12.1” diagonal, 1024 × 768px TabletPC.

Pens, Ink, Input CHI 2017, May 6–11, 2017, Denver, CO, USA

3274



long two non hard

baseline press finger pref press thumb knuckle

TP1 323 392 375 486 415 502 546
TC1 196 1239 210 189 420 276 267
TP2 317 415 435 419 514 433 510
TC2 195 220 200 208 234 218 218

TENG N/A 1130 401 318 459 536 544
TDIS N/A 51 100 421 91 61 531
TGES N/A 552 284 779 466 303 799

Table 2: Cycle decomposition times (ms).

Therefore, the mode is engaged either during TP1, or near the
beginning of TC1. The time to engage a mode TENG is the
duration from the start of a cycle until the mode is engaged.
Note that TENG equals TP1 if the mode is engaged precisely
at touch down (e.g. knuckle); TENG may be less than TP1
if the mode can be engaged before touch down (e.g. non-
preferred hand); and TENG may be greater than TP1 if the
mode is engaged after touch down (e.g. hard press). TGES
is the time spent gesturing, defined from the later of mode
engagement and touch down until touch up. Beyond these
durations defined by Li et al., we define a mode disengage
time TDIS as the duration from disengagement until touch up.

Table 2 provides mean times for these submovements for all
techniques. A further verification that the task and subtrac-
tion method worked as it should is that the TC2 times are
the same for the baseline task and all techniques. As in Li
et al., our absolute timings for TC2 all appear close to the
baseline. To verify this, we conducted a one-way ANOVA for
the effect of technique (including baseline) on TC2. There was
a main effect (F4.07,138.27 = 9.5754, p < .001) and post hoc
tests reveal that all but two-finger multi-touch are significantly
different. However, the differences between all techniques and
the baseline is less than 40 ms.

Temporal models
All techniques follow the temporal models described in Li
et al.’s keystroke level analysis. Although the authors did not
perform statistical tests on timing decompositions, we provide
this extra level of validation when applicable.

Using Non-Preferred Hand and Thumb-on-Finger
The two techniques obey the same temporal model, as they
require the mode to be engaged before touch down, with re-
lease possible during, or after completion of the gesture. As in
Li et al., we calculate an estimate of the gesture engagement
time by subtracting TP1 of the baseline task from TP1 of the
compound task. We obtain 164ms for nonpref and 179ms
for thumb, with no significant difference between them. This
contrasts with Li et al., where the mode engagement time
for NonPrefHand and BarrelButton were 65ms and 144ms
respectively, a greater difference.

Disregarding the absolute timings which are systematically
lower for Li et al., we believe there may be two reasons for this
greater difference. First, it may be easier and faster to hit the
index finger with one’s thumb than to reach and press a barrel
button on a stylus. Second, although our participants held
their finger poised above the touchscreen button before each
non-dominant hand trial, Li et al.’s NonPrefHand participants
could exploit the physical button by resting their finger on it

to minimize activation and eliminate targeting. The physical
button may have been the primary reason for the very strong
performance of NonPrefHand in Li et al.. Perhaps the full
potential of non-preferred hand mode-switching cannot be
realized on a touchscreen.

Using Long Press (Hold)
Li et al. note that there is a difference between the TP1 timings
of Hold and the baseline even though gesture mode engage-
ment is started upon touch down and thus, at first glance, the
two TP1 should be close. They attribute this difference to an
additional preparation time needed when slowing down the
pen movement to hold it in a steady position. We also observe
this phenomenon with a statistically significant difference of
69.5ms between the TP1 timings (p < .0001), albeit a much
lower one.

Li et al. also calculate the time participants took to respond to
the feedback showing that the mode had been engaged (a full
circle) using the formula:

Tresponse = TENG + TP1−Holdtime

Their response time is 137ms. Ours is: 1130− 392− 500 =
238ms.

Using Hard Press (Pressure) and Two-Finger Multi-touch
In Li et al., Pressure is the technique with the lowest TP1, but
again, without statistical analyses we do not know if timings
are significantly different from other techniques. Even though
hardpress appears to be third best only from the mean values,
ANOVAs and post hoc tests do not reveal any significant
differences between the TP1 values for hardpress, twofinger
and longpress and hence we are not able to conclude which
of the three techniques has the shortest positioning time.

Similar to Li et et al., we calculate the time to increase touch
pressure to the required level in order to activate the gesture
mode: TENG −TP1 = 45ms. This value is much lower than
their 176ms. We attribute that to the possibility that it might
be easier to sense and apply the required pressure level using
direct input than with an instrument such as a stylus. The
fact that we used an EMG armband with a high data rate and
adapted pressure thresholds for each participant might also
have been factors.

Like Li et al, we observe that drawing with hardpress takes
more time than without (the difference between the two TC1
values is 223ms, which is significant). The difference is likely
even more pronounced with a finger than with a stylus due to
the increased friction of dragging (Li et al. report a drawing
time of 176ms, but, once more, we cannot determine if the
differences are significant).

The model for twofinger is similar, as the mode is engaged
after touch down and has to be maintained throughout the
moded action. However, we expect the time to engage the
mode after touch down to be very short, as the two fingers are
usually put down almost simultaneously. Similar to hard press,
we calculate the engagement time after touch down, which is
TENG −TP1 = 26ms. A t-test confirms that the difference with
hardpress is significant (p < .0001).
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Using Knuckle
Our knuckle technique follows the temporal model of the
Eraser in Li et al.. The authors notice very similar TC1 timings
for the Eraser and the baseline task, meaning that drawing
with the eraser end of the stylus requires no extra effort. This
was not the case with knuckle. Drawing with the knuckle
took an extra 71ms, statistically significant compared to the
baseline (p < .0001). Li et al. further calculate times to turn
and revert the pen in order to use the eraser by subtracting the
TP1 and TP2 timings. They report values of 661ms and 555ms.
A stylus being typically longer and the rotation required to
use its eraser larger, our wrist-rotation times for knuckle are
predictably lower: 223ms and 193ms respectively.

Improvements to Mode-Switching Techniques
None of the techniques we tested were perfect in all aspects.
Even two-finger multi-touch suffers from accuracy problems
when the demands for targeting and tracing precision are high.
To improve that, a cursor could appear between fingers when
approaching the screen (assuming pre-touch sensing is avail-
able [29]). For hard press, it would be interesting to see if a
device with built-in touch pressure sensors and a smart adap-
tive thresholding algorithm could improve the measured and
perceived accuracy as well as reduce fatigue.

For knuckle, our realisation of the technique is based on the
rotation of the wrist, which causes both strain and occlusion
problems. Those issues might be alleviated if knuckle inter-
action could be performed without turning the hand (i.e. by
bending the finger and using the distal interphalangeal joint).

Regarding techniques which require the mode switch to be
engaged before touch down, mode-in errors would presumably
be reduced if that condition is relaxed so the mode change
could occur after touching the device. This has been shown
in pen mode-switching for direct manipulation contexts that
permit late mode activation [33, 48]. The extended period
allowed for the switch could be chosen depending on the
application context and which functions the moded and non-
moded actions are mapped to: a long period if late mode
engagement has minimal disturbance (e.g. changing stroke
style) and a short period when late mode engagement would
be disruptive (e.g. switching between panning and inking).

Hybrid techniques are an interesting avenue for exploration.
For example, pressure-based activation could be combined
with non-preferred-hand to simulate behaviour of a physical
button: the fingers of the non-preferred hand could rest on
the screen to minimize activation time and eliminate targeting.
This might be especially helpful when supporting the tablet
with that non-preferred hand, as the holding posture is main-
tained at all times and therefore stability is likely increased. It
would be particularly interesting to see how techniques can be
combined to support several mode changes, such as combining
two-finger or knuckle with non-preferred hand.

LIMITATIONS
While our experiments provide insightful results, we acknowl-
edge their scope of validity and the limitations within which
they can be interpreted. First, since our study design followed
Li et al., we operate with the same constraints regarding a

single mode switch applied with a relatively high and regular
frequency in a synthetic linear task. This design allowed us
to perform fine-grained analyses, but further studies could
validate our results in more realistic and less controlled tasks.
Furthermore, applications often include more than two modes,
so techniques could also be evaluated with multiple modes to
assess scalability.

Although we strived to design optimized and representative
techniques, there are possible limitations in the way they were
implemented. Knuckle, hard press, and pressure required
participants to wear extra sensors. Although none reported
any particular impediment or discomfort, results for those
techniques might change if alternate sensing was used. For
non-preferred hand, the size and position of the trigger button
was fixed for all participants. Prior work and several pilot
tests informed our final design, but size and position could
be personalized to individual people, especially when used in
a standing position. Finally, the dwell time used to activate
a long-press naturally influences the performance and accu-
racy of the switch. Our choice of 500ms is used in popular
operating systems, but this could be further optimized.

CONCLUSION
We presented a detailed analysis of touch input mode-
switching techniques. Our results can be used as guidelines
for selecting mode-switching techniques. When restricted to
current device capabilities, two-finger multi-touch should be
selected if accuracy is not critical and a non-preferred hand
button otherwise. As more advanced sensors are available,
touching the thumb to the side of the finger will also be a good
choice. Using the knuckle works surprisingly well, though
many people perceive it as being inaccurate and uncomfort-
able. In most cases, long press should be avoided. In contrast
to reasonable performance for pen pressure mode-switching
reported by Li et al. [36], using pressure for touch mode-
switching appears problematic. It is possible that hard press
performance and perceived inaccuracy may improve on a de-
vice with built-in pressure sensors, but we suspect this has
more to do with touch friction and fatigue.

Though numerous experimental investigations have compared
mode-switching techniques for pucks, mice, and pens, we
believe we are the first to do so for touch input. This work
fills an important knowledge gap, especially when considering
how fundamental mode-switching is to touch interaction.
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