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Foveated image reconstruction recovers full image from a sparse set of samples distributed according to the human visual
system’s retinal sensitivity that rapidly drops with eccentricity. Recently, the use of Generative Adversarial Networks was
shown to be a promising solution for such a task as they can successfully hallucinate missing image information. Like for other
supervised learning approaches, also for this one, the definition of the loss function and training strategy heavily influences
the output quality. In this work, we pose the question of how to efficiently guide the training of foveated reconstruction
techniques such that they are fully aware of the human visual system’s capabilities and limitations, and therefore, reconstruct
visually important image features. Due to the nature of GAN-based solutions, we concentrate on the human’s sensitivity to
hallucination for different input sample densities. We present new psychophysical experiments, a dataset, and a procedure
for training foveated image reconstruction. The strategy provides flexibility to the generator network by penalizing only
perceptually important deviations in the output. As a result, the method aims to preserve perceived image statistics rather
than natural image statistics. We evaluate our strategy and compare it to alternative solutions using a newly trained objective
metric and user experiments.

1 INTRODUCTION

Wide-field-of-view displays, such as virtual and augmented reality headsets, require efficient methods for
generating and transmitting high-resolution images. The novel, foveated techniques try to overcome the problem
by leveraging the humans’ non-uniform sensitivity to spatial distortions across a wide field of view and present
high image quality only around gaze location indicated by an eye-tracking device. Such foveated systems usually
consist of two main steps [22, 47, 54]. First, an image is generated or transmitted in a form of a sparse set of
samples generated according to the gaze location. Second, the image is reconstructed from the sparse information
before it is shown to the observer. A particular example of such a technique is foveated rendering [14] where
fewer image samples are computed for the peripheral vision to save computation during rendering (Figure 1).
Our work focuses on the second step, i.e., reconstructing an image from sparse samples. While simple techniques,
such as interpolation [47] can be used, it has been demonstrated that generative adversarial networks (GANSs)
can provide superior results [22] thanks to their ability to hallucinate missing content based on learned image or
video statistics. More precisely, even though such reconstruction requires additional computation, it can provide
similar reconstruction quality with lower number of input samples. However, like other supervised learning
solutions, the performance of such methods is heavily influenced by the choice of architecture and training loss
and strategy. And even though it is acknowledged that for any task where the perceived quality is critical the loss
function must capitalize on visually-important image features, it is unclear how to fully exploit the properties of
the human visual perception to guide foveated reconstructions. While many foveated systems have previously
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exploited the loss of sensitivity to high-frequency information [14, 54], the effect does not fully explain the
visibility of missing information in the peripheral vision. For example, previous psychophysical experiments
suggest that even though a perfect reconstruction of fine image details in the periphery is not critical, a complete
lack of high frequencies is detectable [51]. Another effect that is not fully explained by the reduced sensitivity to
higher spatial frequencies in the periphery is increased positional uncertainty [27]. Building upon these findings,
we pose the question of how to efficiently guide the training of foveated reconstruction techniques such that
they are fully aware of the human visual system (HVS) capabilities and limitations.
To address the above question, we establish a con-

nection between perceived quality degradation and samples  reconstruction
machine learning-based foveated reconstruction by O “

introducing a new training scheme. First, we design
and conduct psychophysical experiments to study the
human’s sensitivity to content hallucination across a
wide visual field. We employ a texture synthesis tech-
nique guided by image statistics of the original images
to generate stimuli with varying amounts of halluci-
nated content. We argue that this type of distortions reconstruction
resembles the content synthesized using GAN-based
image reconstruction, and our experiments quantify

near periphery

Fig. 1. The input to the foveated image reconstruction are

heir visibility. N d h : sparse samples (magnify the top-left part of the image or see
therr visibility. Next, we demonstrate how to Incorpo- p, insets), based on which, the technique reconstructs the

rate the experimental results into training. A known images (bottom-right part of the image). In this example, the
and applied strategy for including perceptual findings  image consists of three regions: fovea (100% samples), near
into the training GAN is to use a perceptual loss func- periphery (12% samples), and far periphery (0.7% samples).
tion, e.g., LPIPS [64], as a generator loss. Our main The white cross in the center indicates the gaze position. The
hypothesis is that this is insufficient, and also the dis- reconstructed regions are combined using linear blending to
criminator training should be altered to better comply ~create a smooth transition between them.

with perception. Consequently, instead of providing

the discriminator with original images during training, we propose to use a dataset with imperceptible distortions
derived from our perceptual experiment. This way the discriminator network inherits limitations of the HVS
represented in the data. The key idea here is to make the discriminator penalize the generator network only
for the deviations in the output with visible distortions and not for perceptually-plausible hallucination. Such a
strategy, by focusing on perceptually-important image features, can provide the same perceived quality using
fewer samples, leading to savings in bandwidth or rendering time. We argue that this is possible because our
foveated reconstruction method aims to preserve perceived image statistics rather than natural image statistics as
done by standard, GAN-based image reconstruction. We refer here to perceived image statistic as a term which
describes statistics computed on images that encode relevant for the human visual system information. This
is in contrast to natural image statistics which characterize natural images [44] and do not account for human
perception. The new dataset also allows us to calibrate application-specific objective metrics that predict image
quality. We use the new metric as well as perceptual experiments to evaluate our new training strategy and
compare it with alternative solutions.

2 RELATED WORK

Our work takes inspiration from and bridges the expertise in visual perception, computer graphics, and machine
learning. Here, we provide an overview of relevant works from these fields.
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2.1 Foveal vs. peripheral vision

Retina. Perceptual capabilities of the HVS has been studied extensively in the past for different positions of
the visual stimuli in the visual field. The perception is not uniform across the visual field because of optical
and physiological limitations. Studies on the retina revealed that the human photoreceptor density is highly
heterogeneous [7, 62]. The central region of the retina called fovea centralis (or fovea) is characterized by relatively
high density of the cone photoreceptors and retinal ganglion cells (RGCs). This provides the foveal vision with a
superior perceptual capability compared to the non-foveal (or the peripheral) vision. Although fovea provides a
sharp central vision, it is relatively small and corresponds to approximately 2° of the visual field, which spans up
to 160-170° [25]. On the other hand, the peripheral vision corresponds to more than 99 % of our visual field.

Peripheral contrast sensitivity. In order to study the differences between foveal and peripheral vision, earlier
psychophysical studies focused on the measurements of the contrast sensitivity function (CSF) which is the
sensitivity to changes in the contrast at different spatial frequencies [3, 24, 28]. In the fovea, studies showed that
the human CSF curve has a peak around 4-8 cycles per degree (cpd) with its tail reaching up to 50-60 cpd. Later,
Peli et al. [33] and more recently, Chwesiuk et al. [6] extended these measurements to the peripheral vision and
observed that the decline in the contrast sensitivity is characterized by a smaller peak that shifts towards lower
spatial frequencies as the eccentricity increases. This implies a loss of sensitivity to the high spatial frequency
content in the peripheral vision.

Foveated rendering. The differences between foveal and peripheral vision which are mentioned above led to
gaze-contingent techniques that process and display images depending on the gaze position of the observer. In this
domain, foveated rendering is an actively studied gaze-contingent technique, which uses the gaze position from an
eye tracker for low-resolution image reconstruction in the periphery [5, 14, 23, 30, 32, 47]. These works significantly
improve the computational cost of rendering because they effectively reduce the number of pixels to be rendered
[63]. However, their reconstruction methods are mostly based on simple interpolation of subsampled image
and postprocessing steps such as temporal antialiasing and contrast enhancement. Unfortunately, such a simple
reconstruction approach does not aim to replace the high-frequency spatial details lost due to undersampling of
the underlying content, which leads to visible quality degradation.

Hallucinating image details. Psychophysical measurements show that the peripheral vision requires a more
sophisticated model than a simple boundary between perceptible and imperceptible regions of contrast guided by
the shape of the CSF [40, 42]. Thibos et al. [51] revealed that the resolution threshold declines from 14 cpd to
2.6 cpd in the eccentricity range 5° to 35°, whereas the detection threshold drops from 46 cpd to 28 cpd in the same
eccentricity range. As a result of the faster drop-off in the resolution threshold, for each specific eccentricity there
exists a band of spatial frequencies that can be detected but not accurately resolved. Additional studies show that
the spatial phase discrimination performance also decreases with increasing eccentricity and a higher positional
uncertainty is observed in visual perception [27, 31, 35]. Rosenholtz [39] claimed that the HVS encodes image
statistics rather than the precise location information in the peripheral vision, which leads to a performance
decline in resolving the stimulus position. These studies have important implications on the design of foveated
image reconstruction methods because they clearly show that the HVS models driving the reconstruction must
be comprehensive enough to take multiple aspects of the visual perception into account. In contrast to standard
reconstruction techniques mentioned above, we address this missing piece in the foveated image reconstruction
pipeline.

2.2 Metamers

The visual stimuli which are physically different but perceptually identical are called metamers. The limitations
of the HVS perception has inspired several important studies on metamerism. Initial works aimed towards
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texture synthesis, where the goal is to obtain perceptually identical image patches from an examplar. To this
end, Portilla and Simoncelli [34] used an iterative optimization that is run until a randomly initialized image
patch converges to the same summary statistics as the target texture. Balas et al. [2] revealed that the summary
statistics representation could explain the crowding effects observed in the periphery. Inspired by this perceptual
phenomenon, Rosenholtz et al. [41, 42] introduced texture tiling model (TTM) based on summary statistics to
model the performance of visual search in the periphery. Later, Fridman et al. [12] proposed a convolutional
network to reproduce the outputs of TTM, and Deza et al. [9] introduced a generative model for creating metamers
using neural networks. Instead of using hand-crafted summary statistics as previously introduced by Portilla
and Simoncelli [34], Deza et al. used channel autocorrelation statistics computed from the pretrained VGG
network features [45]. Although those works showed promising results, their main goal is to study foveal texture
perception or to provide a reference model for studying the properties of the peripheral vision (e.g. for visual
crowding).

Recently, Kaplanyan et al. [22] introduced a foveated image compression solution using a GAN model where
they reconstruct perceptually plausible image sequences from significantly sparse samples while maintaining
temporal coherence. Our goal is also attaining the best perceived quality while minimizing the required number
of samples from the underlying content. Different from Kaplanyan et al. ’s work, we focus on reconstructing by
hallucination, capitalizing on positional uncertainty and distortions as suggested by Thibos [51]. We aim to find
out how much flexibility we have in such a training scheme using the perceptual data collected through a series
of systematic experiments.

2.3 Image metrics and perceptual loss

One possibility to guide image reconstruction is to use image metrics. Existing foveal quality metrics use
the properties of central vision and provide inaccurate predictions for the periphery. The growing research
on peripheral vision and its applications to foveated image reconstruction suggest a need for new foveated
metrics [16, 19, 37, 43, 49, 52, 53, 56, 59]. These metrics are promising candidates for guiding the loss function in
learning-based approaches. However, their complex implementations, costly computations, and in some cases,
non-differentiable operations pose challenges for training image reconstruction models using them. An alternative
to this is to use a training loss defined on the feature maps from a pre-trained deep network. This has become
one of the most common approaches for learning-based image reconstruction, especially for super-resolution
techniques [10, 21, 64]. Compared to simpler loss functions like mean squared error (MSE), the hierarchical
architecture of deep networks more closely resembles how the HVS processes visual information. But still, there
may be significant differences between a deep network representation and the human visual perception [11].
In addition, some of the most commonly used pre-trained networks are shown to have redundancy in their
feature representations when reconstructing for the best-perceived quality [50]. The losses defined on those
feature representations improve the perceived quality in the fovea, but they are not specifically optimized for
the peripheral vision. In this work, we take an orthogonal approach in the context of GAN training. Apart from
using a perceptual loss to train a generator, our main contribution is a modification to the discriminator training
such that it better reflects the discriminative power of a human observer.

3 PERCEPTUAL EXPERIMENTS

There is an important connection between the studies on metamers and foveated image reconstructions using
GANs discussed above. While the former postulates the importance of preserving image statistics for the peripheral
vision, the latter reconstructs the content according to the discriminator trained on natural images and videos.
However, we argue that training the discriminator using natural images does not sufficiently reflect the HVS’ lack
of sensitivity to spatial distortions and leads to overconstraining the generator in hallucinating content. Therefore,
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we propose to train the discriminator on a dataset composed of images that include distortions imperceptible
for observers. It is important to note that the primary goal of this procedure is not to make the GAN produce
distortions but rather make it insensitive to the distortions that humans cannot detect and focus on penalizing
perceptually important artifacts. To derive this dataset, we rely on a texture synthesis technique where we
control the strength of image distortions, and consequently, their visibility. This allows us to perform perceptual
experiments to quantify the visibility of the introduced distortions and construct a training set with imperceptible
distortions.

3.1 Stimuli generation

Our stimuli generation model is based on the texture synthesis method proposed by Gatys et al. [13]. Their
method is formulated as an optimization procedure on the feature maps of pretrained VGG-19 [45] network
which optimizes X for an input exemplar X by minimizing the loss function:

L
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where Gf ; and Gf ; are the Gram matrices for feature maps i and j in layer [, N; is the number of feature maps, M;
is the total number of neurons in a layer, and w; is an additional weight associated with layer . To synthesize
images for our experiment, we use the same procedure, but we additionally constrain a portion of randomly
chosen pixel values in X to have equal RGB intensities as the corresponding pixels in X. We refer to these pixels
as guiding samples. We enforce the quality constraint by projecting the solution to the feasible space in each
iteration of a gradient descent optimization.

We observed that running the constrained optimiza-
tion results in subtle artifacts in the form of checker- initialization final patch
board patterns due to the backpropagation of gradi- o ot o 2dopt O
ents through convolutional layers (Figure 2, first row —
middle). We identified two solutions to address this is-
sue. The first one consists of running the constrained
optimization until convergence, then removing the initialization final patch
checkerboard artifacts characterized by a high spa- o et O
tial frequency by applying a low-pass Gaussian filter
(0 = 1) and running a second round of the optimization
without the constraint. We also perceptually verified
that similar results may be achieved when the con- Fig. 2. The figure presents two strategies for synthesizing stim-
strained optimization is initialized with the guiding i with guiding samples. Top: a two-step procedure where
samples filtered bY a Gaussian filter (Figure 2,second  second unconstrained optimization is performed to remove
row). R subtle checkerboard artifacts after applying Gaussian filter

Using the above procedure, we compute images fp, with o = 1. Bottom: a constrained optimization initialized with
where p% is the percentage of the guiding samples @ blurred version of guiding samples.

(Figure 3, left). For p = 0, our synthesis is equivalent
to the original technique presented by Gatys et al.

The loss of high spatial frequencies (as commonly observed when reducing input resolution) is an important
factor on the perceived quality. In order to improve the sensitivity of the trained metrics to a visible decline of
resolution, we also created a separate dataset of image with different amount of Gaussian blur, i.e., different o
parameter of the Gaussian kernel (Figure 3, right). The results of the perceptual experiment obtained with these
stimuli were used to expand the dataset of images used for training image metrics in Section 5.2.
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3.2 Experiment protocol

The amount of guiding samples p and o value of the Gaussian kernel provide a parametrization for our investiga-
tion of the HVS’ sensitivity to the deviations from the original images. More precisely, in our main experiment
with stimuli generated using texture synthesis, we seek a direct relationship between the amount of guiding
samples and the probability of detecting the distortions by a human observer at a particular eccentricity. We later
use this relation to generate a much larger dataset of images with imperceptible distortions required for training
GAN-based foveated reconstruction. In contrast, the additional experiment with Gaussian blur only seeks pairs
of images and the corresponding probability of blur detection, as a smaller dataset is be sufficient for training our
image metrics.

Stimuli. We prepared 20 image patches of size 256 X 256 each from a different 4K image. The images are
grouped into two main categories: nature and architecture, to create a mixture of images with and without a
clear structure, as we expected that reconstructing images with clear structure may be more challenging. For
each patch, we generated a corresponding set of distorted patches for p € {0, 3,5,7.5, 10}. The set of p values was
determined in a preliminary experiment where we found that p > 10% leads to images that are almost always
perceptually indistinguishable from the originals. The same set of 20 ground truth patches was used to generate
a set of blurred patches for o € {0.25, 1.25, 2.25, 3.25, 4.25}. The range was chosen to uniformly span the range of
visible blur across the considered field of view [54]. The sample of our stimuli is presented in Figure 3.

Task. In each trial, three patches were presented on the screen: (1) the original patch at the fixation point, (2) a
synthesized stimulus on either right or left side at a given eccentricity, and (3) the original patch on the opposite
side at the same eccentricity. The stimuli were visible to both eyes, and the participants were asked to select the
patch that was more similar to the reference by pressing the left or right arrow keys. With this procedure we
tested the visibility of distortions at the following eccentricities: 8° (the end of parafovea [57]), 14° (the center of
perifovea [48, 57]), and 20°, for which the stimuli spanned 3.21°, 3.08° and 2.89°. The participants were instructed
to maintain their gaze on the central image. At the same time, we kept the position of the stimuli relative to
the gaze position obtained from an eye tracker fixed to maintain the desired localization of the stimuli in the
periphery. In total, each participant performed 1500 trials. The order of the images, eccentricities, and the sides

exemplars exemplars
10% 0.25
3
o
g
v
o 5% 3 125
£ S
] ©
3 £
< =)
o 3% w225
€
=3
g
< 0% 3.25

Fig. 3. Results of our stimuli generation for different amount of guiding samples (left) and o values (right) of the Gaussian
filter. Note the increased distortions with respect to the exemplar when the number of guiding samples decreases (left) and
when o increases (right).
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on which the test stimuli were presented was randomized. The same experiment was performed with images
containing artifacts from texture synthesis and Gaussian blur.

Hardware. We used a setup consisting of a 27” Acer Predator display operating at a resolution of 3840x2160 px
at 120 Hz and a peak luminance of 170 cd/m?. For tracking the gaze position, we used a Tobii Pro Spectrum eye
tracker with 600 Hz sampling rate.

Participants. 5 participants between ages 25-36 with normal or corrected-to-normal vision took part in the
experiment. 4 of them were the authors and the remaining participant was completely naive to the study. During
a short initial warm-up phase, the participants were given instructions about the task.

3.3 Results

The results for the Gaussian blur were directly used 2 ° Eccentricity:

for training image metrics (Section 5.2). The rest of R 8 degrees
the data, i.e., for texture synthesis stimuli, was pro- £ o090 o~ e 14 degrees
cessed by aggregating the results across all images for -gn oss4 ON L., — 20degrees
each eccentricity. Figure 4 presents the probability of g ood NG S~ >~
identifying the synthesized stimuli as a function of the =~ 3 S

amount of guiding samples and eccentricity at which 2 LA S~

the stimuli were presented. Using the inverse function ;;u e e A B Sl -
and interpolating the values by a cubic function, we % oesd 471 689] 9099
found the sampling rates corresponding to a detection = 00 =0 *5'_0 s 00
rate of 75%, usually considered as a visibility threshold: amount of guiding samples [%]

9.09%, 6.89% and 4.71%, for eccentricities 8°, 14° and

20°, respectively. In other words, we found threshold Fig. 4. The probability of detecting differences between original

sampling rates required to generate images with arti- ;4 synthesized images as a function of amount of guiding
facts that remain invisible to human observers. These samples and eccentricity. The error bars visualize standard

values were later used as the amount of guiding sam- errors of the means.
ples to prepare the inputs for the discriminator in GAN
training (Section 4.1).

4 METHOD

The results of the perceptual experiments described in the previous section provide the measured thresholds
for structural distortions for a standard observer. We use these data to control the learned manifold of target
images in foveated image reconstruction. To this end, we present an improved training scheme for GAN where
the training data consists of a set of both natural and synthesized images.

Our foveated reconstruction network uses Wasserstein GAN [1] training scheme to produce perceptually
optimized reconstructions from subsampled images. The network topology is based on the encoder-decoder
structure of UNet with skip connections [38] (Figure 5). This network design is similar to the model previously
used by Kaplanyan et al. [22]. The encoder part of the generator network (G) consists of downsampling residual
blocks using average pooling layers [17]. Each residual block of the encoder consists of two convolutional layers
with a filter size of 5 X 5, except for the main branch, where we use a 1 X 1 filter to adjust the dimensionality. The
numbers of filters are 16-32-64-128-128 in each block, respectively. The decoder part is a mirrored version of the
first four encoder blocks with upsampling blocks using bilinear interpolation instead of average pooling. The
encoder and the decoder are connected by an additional bilinear upsampling layer. We use LeakyReLU activation
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Sampling Mask  Subset of Pixels Bilinear Interpolation

Generator for
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—b< —
Generator for reconstruction (G) Discriminator (D; o
Downsampling Block Upsampling Block
Bilinear upsampling layer Flatten layer Fully connected layer @ Leaky RelLU @ Tanh > Skip Connection

Fig. 5. The architecture of our proposed network.

with a negative slope coefficient of a = 0.2 throughout the network, except for the final layer of the generator,
which uses tanh activation.

The discriminator network or critic (D) is based on PatchGAN [20] with a patch size of 64X 64. The discriminator
consists of downsampling blocks similar to the encoder part of the generator (the number of filters: 16-32-64-128-
128). The output of downsampling blocks is flattened and passed to a fully connected layer which produces a
scalar. Compared to the previous model of Kaplanyan et al. , we use a more compact generator with the number
of filters reduced by half in the first and last three blocks. Using such a compact generator is made possible by
our more permissive training scheme, which allows for imperceptible deviations from the target image statistics.
In contrast, the discriminator loss used by Kaplanyan et al. aims to match the target image statistics as closely as
possible. This important difference in our training scheme makes it possible to retain the perceptual quality with
a more compact network.

4.1 Dataset

We used two datasets for the inputs of the generator and for the set of images provided to the discriminator,
respectively. The input dataset of the generator consists of patches from natural images with a size of 256 x256. The
patches are generated by cropping images with random offsets. In order to maintain a balanced data representation,
50 images are randomly selected from each one of the 1000 classes in the ImageNet dataset [8], which provided
us with a total of 50K patches. These images are later subsampled using the void-and-cluster algorithm [55]
with a sampling rate 12% for the near periphery and 0.7% for the far periphery. This choice is done according
to a content-aware foveated rendering method proposed by Tursun et al. [54]. The subsampling is followed by
bilinear interpolation before passing the images to the generator as inputs.

As for the inputs of the discriminator, we used the texture synthesis method described in Section 3.1 using the
results of the perceptual experiment described in Section 3.2. This dataset consists of 50K patches synthesized
using 9.09 % and 6.89 % of the pixels as guiding samples respectively for near and far peripheral regions in addition
to the full-resolution ground truth images.

4.2 Discriminator loss

The training of the discriminator, D, uses the same loss function as the original WGAN design [1]:
Lago = D(x) - D(G(z)), (2)

where z represents the inputs to the generator network G, D(x) is the output of the discriminator to real samples
(natural images), and D(G(z)) is the output of the discriminator to the reconstructions from G. This training
is equivalent to the optimizations performed in previous works when x € I, where I is the set of images from
ImageNet.
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training with mask training without mask

Fig. 6. Training with (left) and without (right) input sampling mask.

In our experiments, we update this formulation by using x* € I* where I" is the set of images with visually
imperceptible structural distortions, as we described in Section 3.2. We denote the discriminator loss operating
on this manifold of synthesized images with structural distortions as:

L:,, = D(x") = D(G(2)). 3)

For training stability of WGAN, we imposed a soft Lipschitz constraint using gradient penalty [15].

4.3 Generator loss

Our optimization trains generator networks with a weighted sum of different types of losses. To have a compre-
hensive evaluation of our new training scheme, we focused our analysis on three types of generators trained
with standard and perceptual losses. The first generator, Gy, was trained with a combination of the standard
MSE loss and the adversarial loss. The second generator, Gy pps, was trained with the learned perceptual image
patch similarity loss term. We used the learned linear weights on top of the VGG network as provided by the
authors in their work [64]. Additionally, inspired by [18], we add the generator Gy 4y that used Laplacian-based
loss. It is defined as a weighted sum of mean squared error between the corresponding levels of the Laplacian
pyramid for the reconstruction and the ground truth. We assigned the weights to each level according to a
Gaussian with ¢ = 1.0. By centering the Gaussian around different levels we can put more emphasis on the
reconstruction fidelity of different spatial frequencies in the pyramid decomposition. The main motivation behind
the loss was that by putting more weight on lower spatial frequencies, the network will be given more freedom
in hallucinating high spatial frequencies, which might be desired in the periphery. All the generator losses used
in our experiments are listed in Table 1.

4.4  Training

Similar to the previous work of Guenter et al. [14], we divide the image into three regions with different levels of
structural distortions controlled by the amount of guiding samples used while training the generators. In order to
provide conservative approximations, we take our estimations from Section 3 at the eccentricities corresponding
to the inner boundary of near and far peripheral regions, which are at 8° and 14°, respectively (represented as red
and green circles in Figure 1). The contents of the foveal region are directly transferred from a full resolution
image. We train two distinct generator networks, each of which is responsible for the reconstruction of near
and far peripheral regions. For benchmarking purposes, we also train separate networks for each one of the two
different discriminator losses (using our Ez 4o @nd the standard loss La4) and three different generator losses
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L2 E%z =wiz - L2+ Wado - Lado

L2 ours LG =wry- Lo+ Waao - LD,

LPIPS LE™PS = wiprps - LLpips + Wado  Lado
LPIPS ours LEPTPS = wipips - Lrpips + Wado - L,
Laplacian Eéap = Wrapl * Lrapl + Wado * Lado
Laplacian ours £éﬁp - Wrapl * LLapl + Wado " L, ;.

Table 1. The loss functions that we used for training the generator in our evaluations.

(using L2, /Jéplps, and £éapl). Relative weights of loss terms are set to wr; = 2000, wrprps = 100, wygp; = 100,
and wgg, = 1.

We used Adam optimizer with a learning rate of 2 X 107> (8; = 0.5, 2 = 0.999, € = 1078). The training lasts
for 20-30 epochs until convergence which takes approximately one day on an Nvidia 2080 Ti GPU. We assume
convergence when the training loss reaches a plateau. The sample reconstructions from the converged network
are also visually checked against potential instabilities during training.

4.5 Sampling mask

Capitalizing on the potential correlation between subsequent frames, the network introduced by Kaplanyan et
al. uses recurrent connections as an important part of their design which are able to retain information from
the previously subsampled frames. This high-level temporal reprojection provides the network with additional
information when the underlying content is only partially observed due to sparse subsampling. In order to
observe the effects of different training schemes more clearly, we decided to use the information from only one
frame and isolate the reconstruction from the effects of this temporal information flow. In our initial experiments,
we observed that such a design decision made the network more sensitive to the sampling mask used in the inputs
due to the absence of temporal information flow, which would otherwise compensate for the lack of information
about the true values of missing samples. In order to address this issue, as a first attempt we filled in the missing
information by interpolating the sampled pixels while keeping the sampling mask as a channel of the input.
However, visual inspection revealed visual artifacts collocated with the sampled pixels (Figure 6) whose visibility
was dependent on the weights assigned to the loss terms. The effect was the most pronounced when we used L
in training and less visible with Lrprps. As a remedy, we removed the sampling mask from the training input,
decided to provide the generator with the bilinearly interpolated input consisting of RGB channels, as shown in
Figure 5. This solution seemed to be effective in removing visual artifacts from the reconstruction (please refer to
Figure 6 for a visual comparison).

5 RESULTS AND EVALUATION

We evaluated our strategy of training foveated image reconstruction using trained image metric and perceptual
experiment. We compared all six methods for training the network. They are combinations of using LPIPS, L2,
and Laplacian pyramid as the generator loss function, as well as using original and our new patch dataset for
training the discriminator network (Table 1).

5.1 Visual inspection

Figure 7 presents reconstruction results obtained using differently trained architectures for four different images.
For reference, we also include original high-resolution and standard foveated reconstruction using an interpolation
with Gaussian weights. For the results of training using Laplacian loss we introduce a notation consisting of
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Fig. 7. Sample reconstructions of all evaluated methods for nature and architecture images performed for far periphery. Lapl
MM refers to the highest weight placed on the medium spatial frequencies, while Lapl HH puts the highest weight on the
high spatial frequencies.

two letters, Lapl XY, where X, Y € {H, M} encode the position of the Gaussian peak at far and near periphery,
respectively. The letter H represents the position of the peak located at the first level of the pyramid (characterized
by placing more emphasis on high spatial frequencies) whereas M represents the position of the peak located at
the fourth level of the pyramid (medium spatial frequencies). For example, the method denoted as Lapl HM, refers
to a reconstruction using a network trained with the Laplacian pyramid-based loss where for the far periphery
the high spatial frequencies are weighted more, and for near-periphery, the medium frequencies are given higher
importance.

The first observation is that all eight GAN-based reconstruction results exhibit clear hallucinated results,
and the reconstruction of very fine details is not exact. While this is visible with direct visual inspection, such
deviations are less visible when shown in the periphery. Furthermore, all reconstructions introduce high spatial
frequencies and strong edges, but training with L2 loss makes them sparser and more exaggerated. The visual
comparison (Figure 7) between the discriminator trained with and without our synthesized dataset (i.e., L2 vs.
L2 ours, LPIPS vs. LPIPS ours, Lapl MM vs. Lapl MM ours, Lapl HH vs. Lapl HH ours) show that our results
include more high spatial frequencies. We argue that this is due to the flexibility of the discriminator, which
penalizes hallucinations of high spatial frequencies less harshly. This is a desired effect because while the HVS is
sensitive to removing some of the high spatial frequencies in the periphery, it is less sensitive to the changes in
their positions (Section 2).

To further investigate the spatial frequency distribution characteristics of our reconstructions, we visualize the
frequency band decomposition outputs from the Laplacian Pyramid and compute the differences of two layers
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original LPIPS LPIPS ours std fov original LPIPS LPIPS ours std fov

level 1

level 2

Fig. 8. High-frequency content hallucination using LPIPS, LPIPS ours, and standard Gaussian blur.

from the bottom of the pyramid’, which encode the highest frequency band and one octave below it (Figure 8).
We observe that our reconstructions provide additional hallucinated high-frequency details that do not exist in
the traditional foveated image reconstruction. Please refer to supplementary material for an interactive demo
with more results.

5.2 Objective image metric

Since there is no established foveated image metric, we propose to use our perceptual data to calibrate existing
metrics: L2, SSIM [60], MS-SSIM [61], and LPIPS [64], separately for different eccentricities. The calibration was
performed by fitting the following logistic function [36]:

y(t) =a+(k—a)/(c+q-eT)s. (4)

to reflect the nonlinear relation between the distortion magnitude and detection probability, with a, b, ¢, k, g, v
being free parameters. Inspired by LPIPS [64], we also considered reweighing the contribution of the individual
convolution and pooling layers of VGG-19 for each eccentricity separately. We refer to this metric as Cal. VGG.

For all metrics, the free parameters (i.e., parameters of logistic functions, as well as weights and bias for VGG-19
layers) were obtained by minimizing mean squared error in predicting the detection probability:

> sy -

(% %) €S,

2
>

®)

where M is one of the original metrics, S, is the set of distorted and undistorted pairs of images for eccentricity
r € 8,14, 20, and P is the probability of detecting the difference. The minimization was performed using nonlinear
curve-fitting through trust-region-reflective and Levenberg-Marquardt optimizations [4, 26] with multiple random
initializations. Additionally, we constrained the VGG weights to be nonnegative to keep the positive correlation
between image dissimilarity and the magnitude of differences in VGG features, as motivated in [64]. To make our
dataset more comprehensive, we added stimuli from an additional experiment that analyzed the visibility of blur.
The procedure followed the one described in Section 3.2.

1Please note the difference between frequency decomposition using Laplacian Pyramid and the Laplacian pyramid-based loss function.
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To validate our calibration, we performed five-fold cross-validation. Figure 9 presents Pearson’s correlation
coefficients for all trained metrics and eccentricities computed as an average across all the folds. Each bar shows
the correlation for uncalibrated (bright part) and calibrated (dark part) metrics. For uncalibrated case, we use the
standard sigmoid logistic function: y(t) = 1/(1 + e™*). We also present aggregated results where the correlation
is analyzed across all eccentricities. The individual scores show that increasing the eccentricity reduces the
performance of the original metrics. The additional calibration improves prediction for all metrics significantly.
An interesting observation is that LPIPS performs very well for small eccentricities (8°). For larger ones (14°
and 20°), as the metric was not trained for the periphery, its performance is significantly reduced even with the
optimized logistic function. However, when the weights for the deep layers of VGG-19 are optimized (Cal. VGG),
the performance significantly increases. This suggests that such metrics are promising, but depending on the
eccentricity the contribution of the individual layers to the prediction must change. Since our Cal. VGG performed
best in the tests, we use it to benchmark the foveated image reconstruction techniques listed in Table 1.

To this end, we first extend the Cal. VGG to han-
dle full images. To support continuous values of ec- Cal. VGG~ SSIM  MS-SSIM  LPIPS L2 Aggregated
centricities, we linearly interpolate the results of the  os] ' b . b b . '
metric for 8 and 20 degrees. Additionally, we used one %77
logistic function trained according to the procedure s |
mentioned above using experimental data for all ec- 947
centricities. Since such metric operates on patches, we g |

Cal. VGG
MS-SSIM
PIPS

compute the average value across all the patches. For 017 | ol b sliS (S N < S
the benchmark of the different reconstruction meth-

ods, we randomly selected 10 publicly available 4K Fig. 9. Pearson’s correlation coefficient for analyzed methods.
images with both architectural and natural features. Bright bars: uncalibrated metrics, dark bars: calibrated metrics.
Before applying different reconstruction techniques,

we split the images into three regions: fovea, near periphery, and far periphery and draw sparse samples according
as visualized in (Figure 1). We later reconstruct the images and compute the error with respect to the ground
truth images using adopted Cal. VGG. Additionally, to test the quality provided for different sample distributions,
we analyze the methods for different radius of far periphery region.

Figure 10 presents the results. Training the reconstruction using LPIPS provides reconstructions that are the
least likely to be distinguished from the original images. Additionally, with L2 and LPIPS, better results are
achieved when the discriminator was trained using our new strategy, which demonstrates its effectiveness. We
also computed the predictions by separating the images into two groups: nature and architecture (with orderly
structured features). The results show that the preference of our method for nature images increases but decreases
for architecture (Table 3).

N
|||

5.3 Subjective experiments

The psychovisual experiment used to derive the data for training our reconstruction methods was performed by
five participants. While it is common to use a smaller number of participants in such experiments due to their
complexity and the fact that they should capture the general properties of the HVS, such experiments do not
investigate potential differences in population. Also, it is unclear whether the method derived from the perceptual
data is effective or not. Therefore, to further validate our claims regarding the new training strategy as well as
verify the significance of the improvements revealed using calibrated metrics, we conducted an additional user
subjective experiment, in which naive participants directly compared different reconstruction methods.

Stimuli and task. 10 4K resolution images from two classes (nature and architecture) were used in the experiment.
They were sub-sampled and reconstructed following Figure 1, using L2 and LPIPS methods with and without our
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Table 2. Preference rates for the methods L2 ours, LPIPS ours over L2, LPIPS.

Nature | Architecture | All

L2 ours vs L2 0.75 0.37 0.56
LPIPS ours vs LPIPS 0.75 0.43 0.59
All ours vs All 0.75 0.40 0.57

modification to the discriminator training. In each trial, the participants were shown the original image on the
left and one of the two reconstructions on the right. They were asked to select the reconstruction, which was
more similar to the reference by pressing a keyboard key. During the experiment, the eye-tracker was used to
align the images to the participants’ gaze.

Participants. 15 participants with normal or corrected-
to-normal vision took part in the experiment. All were
naive to the purpose of the study and given instruc-

I
N
N

[0}
tions at its beginning. Each participant compared all € .69 tz Ours
. . . . S NN T
pairs of techniques for each image (60 comparisons 2 LPIPS Ours
per participant). § L NN U A LPIPS
. c — Laplacian Ours
Results. Table 2 contains the preference rates of the aE“é 0.631 NG TN ] Laplacian

results produced using networks trained using our pro-
cedure (LPIPS ours, L2 ours) when compared to stan-
dard procedure (LPIPS, L2). We report the results for 8 10 far1§erip1h4ery ::diu; [%eg]zo 22
all images (last column) but also when split into nature
and architecture images. For statistical significance, Fig. 10. Detection rate averaged across all image patches as
we performed a series of binomial tests and mentioned predicted by Cal. VGG for increasing radius of far periphery.
here all significant results. The reconstructions ob- The lower values indicates a higher quality of reconstruction.
tained using a network trained with our strategy are
preferred in 57% of cases (p = 0.013). The difference
is significant when LPIPS is considered separately (p = 0.04). Regarding different image classes, our method
provides significant benefits for nature images, either when we consider L2 and LPIPS separetely or jointly (for
each case preferred in 75 % of cases, p < 0.001). For architecture we observe the preference for L2 (63%, p = 0.037).
For all techniques, our method is preferred in 40 % of cases (p = 0.018). This follows the results from VGG metric
calibration, where our method had lower probability of detection for nature images and similar probability for
architecture. We hypothesize that there might be several reasons for lower performance on architecture images.
First, architecture images contain clear structure which might have not been represented well in 256 X 256
patches used for the experiment. We limited the size in such a way as larger patches spread across a wide
eccentricity range, posing challenges to the experiment and perceptual modeling. This, however, limits the scale
of considered distortions and the consequent detection rate. The patches might be too small to represent larger
structures typically presented on architecture images. Another possible cause is that we performed the perceptual
experiment together for architecture and nature images and did not make any distinction when modeling the
perception of artifacts for these two groups. We believe that the performance can be improved by tailoring both
the experiments and training to such content.

In Table 3, we report the preference of the individual methods when compared to all other training strategies,
including different loss functions, i.e., perceptual LPIPS, and simple L2. LPIPS ours gained the highest preference
of 38% (p < 0.001) while L2 the lowest (24%, p < 0.001). When divided into classes, LPIPS ours and L2 ours were

o
)
S




Learning Foveated Reconstruction to Preserve Perceived Image Statistics « 15

Table 3. Preference rate for analyzed methods. Overall, the stimuli generated with our injection methods were preferred over
the standard ones. The trend is more emphasized for the nature images, despite the slight worsening on the architecture
images.

Nature | Architecture | All
LPIPS ours | 0.41 0.35 0.38
LPIPS 0.22 0.37 0.29
L2 ours 0.37 0.21 0.29
L2 0.20 0.27 0.24

preferred the most: 41% (p < 0.001) and 37% (p = 0.003), respectively. Other methods reached lower preference
levels - 22% for LPIPS (p < 0.001) and 20% for L2 (p < 0.001). For architecture images, the results show the favour
for LPIPS (37%, p = 0.005) and LPIPS ours (35%, p = 0.032). The L2 ours was selected the fewest number of times
(21%, p < 0.001). All other results did not show statistical significance.

6 CONCLUSIONS AND FUTURE WORK

Current techniques use a perceptual loss to guide a network training to capitalize on perceptually-important
image features. The goal of this work is to inject perceptual information into the discriminator network. To this
end, during training, we provide the discriminator with images containing distortions imperceptible by a human
observer. This allows the discriminator to inherit the properties of the HVS encoded in the training dataset. Our
new dataset includes images with invisible spatial distortions coming from texture synthesis. We argue that such
distortions are much closer to artifacts introduced by GAN-based reconstruction than previously considered blur.
Additionally, the new dataset allows us to train several image metrics to improve their predictions for stimuli
presented in the periphery.

We studied the suitability of the new training strategy for foveated image reconstruction. In the future, it is
essential to extend the investigation to video content with potential benefits when the sensitivity of the HVS
to temporal artifacts is incorporated. We trained separate networks for the near and far periphery. While this
makes the training procedure easier, a more practical solution is to train one network to handle spatially-varying
density. One alternative solution to reach this goal is to use a fully convolutional network in log-polar domain
[46, 58]. We also did not focus on computational performance. Currently, our unoptimized inference takes 3
seconds on our hardware. While previous work [22] demonstrates the feasibility of using GAN in such scenarios,
the computational efficiency is still an important concern. We believe that making the networks and their training
aware of the limitations of human perception will be important for closing the gaps.

Another exciting research direction is designing a foveated image metric that accounts for a wide range of
effects. While the concurrent work by Mantiuk et al. [29], takes this path; in contrast to our focus, they target
image quality instead of distortion visibility. The challenge here lies in collecting large-scale perceptual data with
eye-tracking information containing information about the visibility of distortions. And even though our data
set collects such information, it is not enough to train a general-purpose visibility metric for both foveal and
peripheral vision.
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Foveated image reconstruction recovers full image from a sparse set of samples distributed according to the human visual
system’s retinal sensitivity that rapidly drops with eccentricity. Recently, the use of Generative Adversarial Networks was
shown to be a promising solution for such a task as they can successfully hallucinate missing image information. Like for other
supervised learning approaches, also for this one, the definition of the loss function and training strategy heavily influences
the output quality. In this work, we pose the question of how to efficiently guide the training of foveated reconstruction
techniques such that they are fully aware of the human visual system’s capabilities and limitations, and therefore, reconstruct
visually important image features. Due to the nature of GAN-based solutions, we concentrate on the human’s sensitivity to
hallucination for different input sample densities. We present new psychophysical experiments, a dataset, and a procedure
for training foveated image reconstruction. The strategy provides flexibility to the generator network by penalizing only
perceptually important deviations in the output. As a result, the method aims to preserve perceived image statistics rather
than natural image statistics. We evaluate our strategy and compare it to alternative solutions using a newly trained objective
metric and user experiments.

A INTRODUCTION

This document provides supplementary information for ICCV 2021 paper submission 9929: Learning Foveated
Reconstruction to Preserve Perceived Image Statistics. The material provides additional information regarding the
stimuli used in the experiments and the calibration of the image metrics and the obtained parameters.

The anonymous GIT repository ! containing the source code, also includes an offline web-based demo which
provides an interactive version of the results obtained using different training strategies. The interface allows for
easy navigation through the foveated images from center to far-periphery and a comparison between different
methods. The demo serves as an extension to Figures 1 and 7 from the main paper. To run the demo, the reader is
encouraged to open the file “reconstructions.html” in the “demo” folder.

B ADDITIONAL STIMULI

In the main perceptual experiment (Section 3, main paper), we investigated the sensitivity of the HVS to
hallucination. The full set of stimuli used in the experiment is shown in Figure 11 and Figure 12.

Uhttps://github.com/LFRPPIS/Learning-Foveated-Reconstruction
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Fig. 11. Results of our stimuli generation for different o values of the Gaussian filter. Note the increased blur with respect to
the exemplar as o increases.
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Fig. 12. Results of our stimuli generation for different o values of the Gaussian filter. Note the increased blur with respect to
the exemplar as o increases.
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C OBJECTIVE IMAGE METRIC

In Section 5.2 of the main paper, we described how we trained multiple objective image metrics to evaluate
different training strategies. To this end, we fit the following logistic psychometric function to compute the
probability of detection by a human observer from image metrics scores:

#_ ©)
(c+q-ebt)s

In Figure 15, we present the fitting result for all of the metrics in 45 subplots. Each column shows the results of
fitting the metric. In each column, every three rows correspond to different datasets used for fitting. The first
three show the fitting for the images with all types of distortions, the middle three were fitted using only blurred
images, and the last three using only images with structural distortions. In those triplets, every individual subplot
corresponds to the data gathered at the eccentricity of 8°, 14° and 20°. Every subplot shows the samples used
during the training. x-axis represents the metric’s value whereas y-axis is the real detection rate of the difference
between given images. The red line is the fitted logistic function that has to be applied to the metric in order to
obtain the predicted detection rate value.

As described in Section 5.2 of the main paper, the

y(t) =a+

Calibrated VGG metric performed the best in our tests.

Consequently, we extended the metric to introduce — LaplHHours
a predictor for the probability of a human observer g 0.72 - t:z: '\Hﬂ: ours
detecting the foveation and used it to evaluate differ- % 77777 Lapl MH

ent reconstruction methods. We compute the predic- g 069 — Lapl HM ours
tion on 256x256 patches separately and average across g fffff Lapl HM
them. In addition to Figure 10 in the paper, which an- g 0-66 — LaplMMours
alyzes the detection rate of different reconstruction | TS| Lapl MM
methods as a function of far-periphery radius, Figures 0630 12 14 16 18 20 22

14a and 14b present the same data but separately for far periphery radius [deg]

nature and architectural images. In the figures, it can
be observed that the strategy proposed in the paper
provides a more significant improvement for nature
images. This is manifested by a larger gap between
solid lines (our strategy) and dashed lines (standard
strategy). This observation is in line with the results of our validation in subjective experiments. Please see the
discussion in Section 5.3 of the main paper.

Fig. 13. Detection rate averaged across all images using Cali-
brated VGG metric, computed for results of different weighting
schemes with Laplacian pyramid loss function.
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l Method name a ‘ k ‘ c ‘ q ‘ b v
L2, fitted for blurred images at 8 deg -0.8275 | 1.1566 | 1.0839 | 0.4307 | 0.0580 | 0.9784
L2, fitted for blurred images at 14 deg 0.0603 | 0.5351 | 0.0002 | 1.4677 | 0.2120 | 18.0421
L2, fitted for blurred images at 20 deg 0.1296 | 0.5012 | 0.0014 | 1.4559 | 0.1324 11.1431
L2, fitted for synthesized images at 8 deg 1.0000 | 0.8578 | 1.0000 | 1.0000 | 1.0000 | 1.0000
L2, fitted for synthesized images at 14 deg 1.0000 | 0.7928 | 1.0000 | 1.0000 | 1.0000 | 1.0000
L2, fitted for synthesized images at 20 deg 1.0000 | 0.7470 | 1.0000 | 1.0000 | 1.0000 | 1.0000
L2, fitted for all images at 8 deg -1.5724 | 1.1916 1.0003 | 0.0005 | 0.0610 0.0024
L2, fitted for all images at 14 deg -1.5250 | 1.1680 | 1.0017 | 0.0023 | 0.0240 0.0147
L2, fitted for all images at 20 deg -1.5994 | 1.1420 | 1.0017 | 0.0031 | 0.0153 0.0176
LPIPS, fitted for blurred images at 8 deg 0.4115 | 0.5541 | 0.1556 | 2.7971 | 8.1785 1.3117
LPIPS, fitted for blurred images at 14 deg 0.5261 | 1.3795 | 1.0222 | 0.4079 | 6.7496 | 0.0243
LPIPS, fitted for blurred images at 20 deg 0.5038 | 1.1974 | 1.0089 | 1.8666 | 11.7229 | 0.0092
LPIPS, fitted for synthesized images at 8 deg -1.8664 | 2.0275 | 1.0035 | 0.0025 | 5.4190 | 0.0113
LPIPS, fitted for synthesized images at 14 deg -1.7855 | 1.7645 | 1.0029 | 0.0018 | 3.7249 | 0.0109
LPIPS, fitted for synthesized images at 20 deg -1.9407 | 1.8200 | 1.0279 | 0.0304 | 1.7105 | 0.1318
LPIPS, fitted for all images at 8 deg -1.9437 | 1.9609 | 1.0067 | 0.0049 | 3.7454 0.0240
LPIPS, fitted for all images at 14 deg -1.6496 | 1.5661 1.0551 | 0.0353 | 3.1857 0.2225
LPIPS, fitted for all images at 20 deg -1.2599 | 1.4337 | 1.2268 | 0.1641 | 3.5770 0.7646
MS-SSIM, fitted for blurred images at 8 deg 1.0065 | -0.8641 | -0.6884 | 2.0076 | 0.1594 | 0.0185
MS-SSIM, fitted for blurred images at 14 deg 1.1278 | -0.6995 | -0.4912 | 2.2396 | 0.3064 0.1335
MS-SSIM, fitted for blurred images at 20 deg 0.8689 | -0.5834 | 0.4690 | 1.5626 | 0.8504 | 0.0981
MS-SSIM, fitted for synthesized images at 8 deg 1.1339 | 0.9955 | -1.3392 | 2.2630 | 0.4319 | 1.1751
MS-SSIM, fitted for synthesized images at 14 deg 0.8920 | 0.2792 | 0.5939 | 1.3321 | 1.0262 0.1648
MS-SSIM, fitted for synthesized images at 20 deg 0.8476 | 0.1738 | 0.8122 | 1.0888 | 1.3951 | 0.1464
MS-SSIM, fitted for all images at 8 deg 0.9162 | 0.3365 | 0.1974 | 1.4729 | 0.5961 0.0314
MS-SSIM, fitted for all images at 14 deg 0.8490 | 0.4375 | 0.5523 | 1.9660 | 1.4316 0.1052
MS-SSIM, fitted for all images at 20 deg 0.8198 | 0.7478 | -0.6954 | 2.4228 | 0.5294 | 0.2014
SSIM, fitted for blurred images at 8 deg 0.9719 | -0.2663 | 1.0032 | 0.8654 | 3.6542 | 0.0278
SSIM, fitted for blurred images at 14 deg 0.8564 | -0.0452 | 1.0009 | 0.0208 | 4.1712 | 0.0012
SSIM, fitted for blurred images at 20 deg 0.7681 | 0.0005 | 1.0001 | 0.0037 | 6.4049 | 0.0001
SSIM, fitted for synthesized images at 8 deg 0.9441 | 0.8724 | 0.4893 | 3.2029 | 4.2918 | 0.2933
SSIM, fitted for synthesized images at 14 deg 0.8616 | 0.4078 | 0.9651 | 2.1697 | 3.7867 | 0.1680
SSIM, fitted for synthesized images at 20 deg 0.8086 | -0.0623 | 1.0219 | 0.5260 | 4.6636 | 0.0318
SSIM, fitted for all images at 8 deg 0.9422 | 0.3296 | 0.8555 | 2.3633 | 2.5179 0.1648
SSIM, fitted for all images at 14 deg 0.8518 | 0.0553 | 1.0404 | 1.0015 | 4.2294 0.0610
SSIM, fitted for all images at 20 deg 0.7950 | 0.0058 | 1.0049 | 0.1659 | 5.7480 0.0057
Calibrated VGG, fitted for blurred images at 8 deg -0.0049 | 0.1984 | 0.1912 | 1.2225 | 0.9965 | 0.9955
Calibrated VGG, fitted for blurred images at 14 deg -0.0043 | 0.0996 | 0.0915 | 1.0736 | 0.9574 | 0.9959
Calibrated VGG, fitted for blurred images at 20 deg -0.0008 | 1.1439 | 1.2118 | 0.4494 | 0.8092 | 0.9977
Calibrated VGG, fitted for synthesized images at 8 deg | -0.0135 | 1.6502 | 1.7198 | 4.7628 | 0.5564 | 0.9832
Calibrated VGG, fitted for synthesized images at 14 deg | -0.0076 | 0.8010 | 0.8718 | 0.4328 | 0.9957 | 0.9935
Calibrated VGG, fitted for synthesized images at 20 deg | -0.0130 | 0.7177 | 0.7731 | 3.2664 | 0.8968 | 0.9884
Calibrated VGG, fitted for all images at 8 deg 0.0060 | 1.6617 | 1.6213 | 3.0235 | 0.9019 | 0.9989
Calibrated VGG, fitted for all images at 14 deg 0.0038 | 0.4219 | 0.4057 | 1.1894 | 0.8611 | 0.9976
Calibrated VGG, fitted for all images at 20 deg -0.0236 | 0.9341 | 0.9850 | 0.8796 | 0.9291 | 0.9805

Table 4. Generalized logistic function parameters for all trained metrics.
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Layer Blurred images Synthesized images All images
8 deg 14 deg | 20deg | 8 deg 14 deg 20 deg | 8 deg 14 deg 20 deg
bias 1.587 2.312 -1.246 -7.164e-1 | -6.493e-1 | 1.100 3.713e-1 | 1.120 -1.006e-1

convl-1 | 5.115e-5 | 3.909e-5 | 7.193e-4 | 9.443e-4 | 5.728e-4 | 5.235e-5 | 4.233e-4 | 5.029e-4 6.661e-4
convl-2 | 3.190e-4 | 1.112e-4 | 5.738e-4 | 5.887e-4 | 2.881e-4 | 1.807e-4 | 1.134e-4 | 1.441e-4 1.126e-5
pool1 3.144e-4 | 1.044e-4 | 2.909e-4 | 3.950e-4 | 4.605e-4 | 2.882e-4 | 1.169e-4 | 6.371e-5 2.600e-4
conv2-1 | 1.756e-4 | 1.875e-5 | 3.040e-4 | 2.324e-4 | 7.695e-6 | 2.836e-5 | 1.549e-5 | 1.375e-5 2.895e-5
conv2-2 | 2.709e-4 | 4.976e-5 | 1.174e-4 | 1.050e-4 | 6.867e-5 | 1.387e-5 | 1.398e-7 | 3.212e-5 5.933e-5
pool2 8.101e-6 | 5.861e-6 | 2.164e-4 | 2.938e-4 | 2.036e-4 | 1.122e-5 | 2.769e-5 | 4.773e-5 4.259¢-5
conv3-1 | 2.220e-5 | 8.808e-7 | 4.938e-5 | 1.586e-4 | 4.253e-5 | 2.148e-5 | 4.129e-6 | 6.549¢-7 9.656e-6
conv3-2 | 8.622e-5 | 3.225e-6 | 1.120e-4 | 2.631e-4 | 5.301e-5 | 6.497e-5 | 1.524e-5 | 1.140e-6 3.508e-6
conv3-3 | 4.218e-4 | 7.714e-5 | 1.203e-4 | 3.956e-4 | 1.406e-4 | 1.433e-4 | 7.521e-5 | 1.397e-5 4.584e-5
conv3-4 | 5.386e-4 | 1.156e-4 | 1.916e-4 | 4.445e-4 | 1.197e-5 | 2.207e-5 | 2.353e-5 | 4.176e-5 1.857e-5
pool3 1.265e-4 | 2.265e-5 | 2.915e-4 | 2.620e-4 | 4.622e-5 | 1.164e-5 | 3.413e-5 | 1.353e-6 1.388e-5
conv4-1 | 6.064e-6 | 2.436e-6 | 4.221e-6 | 4.415e-4 | 2.184e-5 | 2.459e-5 | 1.168e-4 | 9.106e-13 | 1.469e-6
conv4-2 | 1.163e-4 | 1.994e-5 | 6.841e-5 | 5.248e-3 | 8.723e-5 | 1.057e-4 | 1.011e-3 | 1.339e-5 2.908e-5
conv4-3 | 3.092e-4 | 9.000e-5 | 2.400e-4 | 2.119e-3 | 1.621e-4 | 9.065e-5 | 2.025e-4 | 2.260e-4 1.295e-4
conv4-4 | 2.883e-4 | 1.505e-4 | 3.017e-4 | 1.203e-3 1.290e-4 | 2.036e-4 | 1.449e-4 | 4.483e-4 1.398e-4
pool4 6.958e-4 | 4.035e-4 | 3.000e-3 | 1.318e-3 | 1.41le-4 | 6.272e-4 | 5.519e-4 | 2.970e-3 9.817e-3
conv5-1 | 3.772e-3 | 7.210e-4 | 9.182e-4 | 2.443e-3 | 8.311e-4 | 1.433e-3 | 5.852e-4 | 2.003e-3 6.144e-4
conv5-2 | 2.356e-3 | 3.301e-3 | 2.616e-4 | 5.079e-4 1.040e-2 7.866e-3 | 3.365e-3 | 1.694e-3 7.141e-4
conv5-3 | 8.696e-4 | 8.612e-4 | 8.410e-4 | 1.352e-3 | 8.421e-3 | 1.015e-2 | 6.328e-3 | 8.783e-4 5.821e-4
conv5-4 | 1.626e-2 | 1.805e-2 | 5.045e-4 | 2.617e-3 | 1.583e-2 | 4.425e-2 | 4.423e-2 | 2.114e-2 2.848e-3
pool5 7.985e-3 | 9.232e-3 | 7.596e-4 | 5.953e-4 | 2.428e-3 | 1.960e-3 | 6.607e-4 | 1.357e-2 1.039¢-3
Table 5. Weights for all layers of calibrated VGG network.
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(a) Detection rate averaged across nature images using Cali- (b) Detection rate averaged across architectural images using
brated VGG metric. Calibrated VGG metric.

Fig. 14. A discussion about the visible (a) and small (b) difference between dashed and solid lines is provided in Section 5.3 of
the main paper.
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Fig. 15. Plots showing fitting and correlation coefficients of all trained metrics. rp, rs and MAE stand for Pearson correlation
coefficient, Spearman correlation coefficient, and mean absolute error, respectively.
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autumn23, s. 10%

yosemite6, s. 10%

garden?, s. 3%

streets3, s. 3%

waterfalls71, s. 3%

autumn2, s. 5%

valley4, s. 5%

america, s. 7.5%

new_city38, s. 7.5%

streets16, s. 7.5%

streets3, s. 7.5%

valley4, s. 7.5%

amsterdam, b. 0.25 o

trees, b. 0.25 o

valley33, b. 0.25 o

new_city34, b. 1.25 ¢

valley4, b. 1.25 o

waterfalls1, b. 1.25 o

waterfalls71, b. 1.25 o

yosemite6, b. 1.25 o

america, b. 2.25 o

autumn?23, b. 2.25 ¢

garden38, b. 3.25 o

new_city38, b. 3.25 o

streets16, b. 3.25 ¢

valley33, b. 3.25 o

waterfalls71, b. 3.25 o

gallerial8, b. 4.25 o

garden7, b. 4.25 ¢

new_city34,b. 4.25 ¢

new_city38, b. 4.25 ¢

Table 6. Cross validation folds used for the fitting. b. is an abbreviation for blurred, s. for guided samples.




