
  

 
 
 
 
 

 

 
 
 

 
   

 
 

    
  
   
  

     
 

 
 
 

   

 

  

 

 

  

   

 

    

ABSTRACT 

Title of Dissertation: HANDSIGHT: A TOUCH-BASED 
WEARABLE SYSTEM TO INCREASE 
INFORMATION ACCESSIBILITY FOR 
PEOPLE WITH VISUAL IMPAIRMENTS 

Lee Stearns, Doctor of Philosophy, 2018 

Dissertation directed by: Professor Jon E. Froehlich 
Department of Computer Science 

Many activities of daily living such as getting dressed, preparing food, wayfinding, or 

shopping rely heavily on visual information, and the inability to access that information 

can negatively impact the quality of life for people with vision impairments. While 

numerous researchers have explored solutions for assisting with visual tasks that can 

be performed at a distance, such as identifying landmarks for navigation or recognizing 

people and objects, few have attempted to provide access to nearby visual information 

through touch. Touch is a highly attuned means of acquiring tactile and spatial 

information, especially for people with vision impairments. By supporting touch-based 

access to information, we may help users to better understand how a surface appears 

(e.g., document layout, clothing patterns), thereby improving the quality of life. 



  

  

 

   

 

 

  

  

 

    

 

   

   

 

  

 

 

  

To address this gap in research, this dissertation explores methods to augment 

a visually impaired user’s sense of touch with interactive, real-time computer vision to 

access information about the physical world. These explorations span three application 

areas: reading and exploring printed documents, controlling mobile devices, and 

identifying colors and visual textures. At the core of each application is a system called 

HandSight that uses wearable cameras and other sensors to detect touch events and 

identify surface content beneath the user’s finger. To create HandSight, we designed 

and implemented the physical hardware, developed signal processing and computer 

vision algorithms, and designed real-time feedback that enables users to interpret visual 

or digital content. We involve visually impaired users throughout the design and 

development process, conducting several user studies to assess usability and robustness 

and to improve our prototype designs. 

The contributions of this dissertation include: (i) developing and iteratively 

refining HandSight, a novel wearable system to assist visually impaired users in their 

daily lives; (ii) evaluating HandSight across a diverse set of tasks, and identifying 

tradeoffs of a finger-worn approach in terms of physical design, algorithmic complexity 

and robustness, and usability; and (iii) identifying broader design implications for 

future wearable systems and for the fields of accessibility, computer vision, augmented 

and virtual reality, and human-computer interaction. 
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Chapter 1: Introduction 

Many activities of daily living such as getting dressed, preparing food, wayfinding, or 

shopping rely heavily upon visual information, and the inability to access that 

information can negatively impact the quality of life for people with visual impairments 

[16,72,108]. While previous research has explored solutions for assisting with visual 

tasks that can be performed at a distance, such as identifying landmarks for navigation 

[23,29,74,75,121,128,171] or recognizing people and objects [11,23,29,145,146,204], 

few have attempted to provide access to visual information through touch. Touch is a 

highly attuned means of acquiring textural and spatial information, especially for 

people with visual impairments [55,149]. By supporting touch-based access to 

information, we may help users to better understand how a surface appears (e.g., 

document layout, clothing patterns), thereby improving the quality of life. 

An assistive device that can detect touch events on physical surfaces and 

identify the content that is beneath the user’s finger enables several potential 

applications, which can be subdivided into two categories: (1) access to visual 

information in the physical world, such as printed text, colors and textures, images, 

maps, and charts, and (2) control of computers or mobile devices to access digital 

information or specify application-specific commands. For the former, previous work 

has primarily focused on reading text on printed documents, product labels, or 

appliance displays [61,91,189,190]. Work in the second category has been more varied 

(e.g., speech control [8], midair gestures [5,26]), but several approaches use touch-
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based input performed on the body or other physical surfaces [25,63,64,70,184,228]. 

For example, OmniTouch [70] projects virtual controls onto the user’s hand, arm, or a 

handheld object, and detects touch input using a shoulder-worn depth camera. 

While researchers have begun to explore some aspects of touch-based 

information accessibility, several important open questions remain. Most prominent 

among these are the issues of sensing and feedback: what is the best method to 

recognize the content the user is touching, and how should information about that 

content be conveyed to the user? In particular, the location of the sensors plays a large 

role in the design of the physical system, algorithms, and user interactions—we 

hypothesize that finger-worn sensors will enable intuitive interactions and simplified 

algorithms. Furthermore, while touch-based interactions have several potential 

advantages, they also introduce new challenges—for example, accurately tracing a line 

of text while reading may be difficult for blind users. These issues must be addressed 

for a system that supports general touch-based access to information to be feasible. 

1.1 Research Approach and Overview 
To explore the potential benefits of accessing visual information through touch, the 

research in this dissertation focuses on augmenting a visually impaired user’s finger 

with interactive, real-time computer vision to help them access information about the 

physical world. In particular, we present the design and evaluation of different 

prototypes for a system called HandSight, which uses wearable cameras and other 

sensors to detect touch events and identify surface content beneath the user’s finger 
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(e.g., text, colors and textures, images). There are four key aspects of HandSight: (i) 

designing and implementing the physical hardware, (ii) developing signal processing 

and computer vision algorithms, (iii) designing real-time auditory, haptic, or visual 

feedback that enables users with vision impairments to interpret surface content, and 

(iv) evaluating prototypes with visually impaired users to assess usability. 

This dissertation describes several distinct but interrelated threads of research, 

each of which ties back to the core goal of supporting access to information through 

touch. We implemented and tested five proof-of-concept HandSight prototypes (Figure 

1.1) consisting of a finger-mounted camera and other sensors. While our overarching 

goal is to increase the accessibility of information across a wide variety of settings, this 

dissertation focuses on three specific application areas: reading and exploring printed 

(a) Prototype 1 (b) Prototype 2 (c) Prototype 3 

(d) Prototype 4 (e) Prototype 5 
Figure 1.1: Five iterations of the HandSight prototype wearable finger-camera system. (a) and 
(b) show the iterations that were used for reading printed text, while (c) and (d) show the 
iterations that were used for detecting on-body input to control mobile devices and accessing 
digital information, and (e) shows a final iteration used for augmented reality magnification 
and for identifying clothing colors and visual patterns. 
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documents [197–200], controlling mobile devices through on-body interaction 

[202,203], and identifying colors and visual textures [135,201]. User studies 

demonstrate the feasibility of reliably recognizing several types of touch content, 

highlight strengths and weaknesses of our approach, and help uncover tradeoffs that 

will be important to consider when designing future wearable assistive devices. 

1.1.1 Reading and Exploring Printed Documents 

We first applied HandSight to reading and exploring printed documents. We conducted 

three studies to assess the feasibility of touch-based exploration and sequential reading. 

An important component of this feasibility evaluation was to determine if participants 

would be able to accurately follow a line of printed text in the absence of visual or 

tactile cues. In the first two studies [198,199], we used an iPad test platform to collect 

accurate finger-traces and isolate the interface from implementation details. We 

compared haptic and audio directional guidance and identified tradeoffs between the 

two conditions. Audio may result in slightly better line-tracing accuracy and be more 

familiar to users but could also distract from the synthesized speech content; haptic 

uses a different sensory channel and potentially offers clearer directional guidance but 

is less precise and may cause desensitization over time. 

The third study [198] used a proof-of-concept finger-worn camera system to 

read physical documents and compared it with a state-of-the art smartphone application 

for reading printed text. Participants appreciated that our prototype provided immediate 

access to text content without the need to first capture the document, but overall they 
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preferred the fast and smooth text-to-speech output of the smartphone app. Ultimately, 

a finger-based reading approach may be best suited to material that is inherently spatial, 

such as maps or graphs, whereas existing applications that capture a global image of 

the document for text-to-speech may be preferred for text-heavy material. 

In follow-up work [197,200], we extended our approach to assist low vision 

users with reading printed materials using augmented reality (AR) magnification. We 

conducted a series of design sessions with low vision participants to collect feedback 

on initial prototypes and solicit open-ended ideas about future wearable magnification 

aids. Our designs explored several virtual display options (e.g., affixed to real objects 

vs. moving with the pointing finger), image acquisition approaches (head-mounted, 

finger-mounted, or smartphone), and interaction techniques (e.g., voice commands, 

midair gestures, or touchscreen controls). Overall, participants liked the concept of AR 

magnification, especially the natural reading experience and ability to multitask 

afforded by the projected 3D displays. At the same time, our system also presented 

difficulties compared to participants’ existing magnification aids, most notably a 

steeper learning curve and limitations of the AR hardware we used. 

1.1.2 Controlling Mobile Devices with On-Body Input 

Next, we applied HandSight to accessing digital information by controlling mobile 

devices. On-body input, which employs the user’s own body as an interactive surface, 

offers several advantages compared to existing touchscreen devices. On-body taps and 

swipes provide lightweight and always-available control (e.g., [63,70]), an expanded 
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input space compared to small-screen wearable devices like smartwatches (e.g., 

[109,118,150,152]), and proprioceptive and tactile cues that can enable accurate input 

even without visual feedback compared to a touchscreen’s smooth surface [64,154]. 

We investigated the feasibility of using finger-worn sensors to recognize on-

body input and, in particular, the potential of location-specific, semantically 

meaningful contextual gestures (e.g., tapping on the wrist to check the time or swiping 

on the thigh to control a fitness app). We conducted three studies to test this idea, two 

as offline algorithmic evaluations with sighted participants [202,203] and one in 

realtime with visually impaired participants [203]. For the first two studies we collected 

images and gestural data and performed offline experiments to test whether we could 

distinguish location-specific gestures on the body. We developed localization and 

gesture classification algorithms and evaluated their accuracy across the locations and 

gestures we had gathered. The high classification accuracies—above 95% on average 

for coarse body locations and gestures—demonstrated the feasibility of our approach. 

In the third study, we implemented a realtime system with three distinct 

interaction techniques for performing common tasks (e.g., checking the time, 

answering a phone call, or activating voice input). We then investigated the usability 

and potential of the realtime system with visually impaired participants. Our findings 

validated realtime performance with our target population and highlighted tradeoffs in 

accuracy and user preference across different on-body inputs. Participants’ comments 

highlight positive reactions to on-body input as well as tradeoffs between the three 

interaction techniques. These tradeoffs reflect both algorithmic performance and 

6 



 

 
 

 
 

  

 

   

   

 

 

  

  

    

 

 

  

 

  

  

  

 

 

 

 

broader design implications. Our findings also highlight obstacles to robust on-body 

input recognition, especially for visually impaired users who cannot rely on visual cues. 

1.1.3 Identifying Colors and Visual Patterns 

Lastly, we applied HandSight to identifying clothing colors and visual patterns 

[135,201]. To assess feasibility, we collected two image datasets with various fabric 

patterns—one a small dataset collected using a finger-mounted camera representative 

of the items in a single user’s closet, and one a much larger and more varied dataset 

assembled from online sources. We repurposed and fine-tuned state-of-the-art object 

classifiers to the task of fabric pattern classification, achieving high accuracy (99% and 

92%) when training and testing with the first and second datasets individually. When 

training with the second, larger dataset and testing on the first—a much more difficult 

task, but one which demonstrates robustness and scalability—we achieve 73% 

accuracy, with most errors attributable to the finger-mounted camera’s proximity to the 

fabric. We built an interactive prototype that positions the camera farther back on the 

user’s finger to address this problem, and that also identifies the dominant fabric colors 

(e.g., “striped blue and white”). 

This work is preliminary and primarily algorithmic, but it demonstrates 

feasibility and highlights the flexibility of a finger-based wearable device. Positioning 

the camera on the user’s finger helps mitigate issues with inconsistent lighting and 

distance that can impact the accuracy of existing color and texture recognizers and 

allows for touch-based interrogation to better understand clothing appearance. Our 
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approach should allow users to quickly explore a surface and combine their sense of 

touch with visual texture and color information to make informed decisions about what 

to wear or buy. 

1.2 Summary of Contributions 
In summary, the overarching contributions of this dissertation are: 

• Development and iterative refinement of HandSight, a novel wearable system 

to assist visually impaired users in their daily lives. 

• Evaluation of HandSight across a diverse set of tasks, providing both empirical 

evidence and qualitative user feedback that demonstrate the advantages and 

disadvantages of a finger-worn approach in terms of physical design, 

algorithmic complexity and robustness, and usability. 

• Identification of implications for the design of future wearable assistive systems 

and for the broader fields of accessibility, computer vision, augmented and 

virtual reality, and human-computer interaction. 

This dissertation also makes specific contributions in four application areas, including: 

• Implementation and systematic evaluation of haptic and auditory cues to assist 

blind users in following a line of printed text, identifying tradeoffs in terms of 

accuracy and user preference (Chapters 3 & 4). 

• Exploration of the design space for augmented reality magnification and image 

enhancement, including proof-of-concept implementations evaluated and 
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refined through iterative co-design with low vision users and recommendations 

for future AR vision enhancement aids (Chapter 5). 

• Offline algorithmic evaluations to test the feasibility of supporting on-body 

input using a finger-mounted camera and other sensors (Chapters 6 & 7). 

• Design, implementation, and evaluation of a realtime on-body input system 

using finger- and wrist-worn sensors, with design reflections for on-body 

gestural interfaces in terms of what locations and gestures can be recognized 

most reliably across users (Chapter 7). 

• Two novel fabric texture datasets, one collected systematically using a finger-

mounted camera and the other assembled from fabric images downloaded from 

Google Images and augmented synthetically using rotations, scaling and 

cropping (Chapter 8). 

1.3 Dissertation Outline 
This dissertation is organized around three distinct applications of touch-based access 

to information. Chapter 2 provides background and related work. Chapters 3-5 explore 

the potential of using a finger-mounted camera to read printed materials; Chapter 3 

describes preliminary work toward helping blind users to read through touch, and 

Chapter 4 builds on that work by investigating in greater depth questions related to 

reading using a finger-mounted camera and guiding a user’s finger across a page. 

Chapter 5 considers the needs of low vision users, investigating augmented reality as a 

magnification aid. Chapters 6 and 7 apply the finger-mounted camera to help visually 
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impaired users control mobile devices and access digital information; Chapter 6 is a 

preliminary algorithmic investigation of the potential for localizing skin features from 

small image patches, and Chapter 7 explores the potential of using finger-worn sensors 

to recognize location-specific touch gestures on the user’s skin and clothing. Chapter 8 

applies the finger-worn camera system to identifying clothing colors and visual fabric 

patterns. And finally, Chapter 9 summarizes our findings and contributions and 

discusses opportunities for future work. 
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Chapter 2: Background and Related Work 

This chapter covers background and related work for three areas of research most 

relevant to this dissertation. First, we survey academic literature and commercial 

products that use mobile or wearable cameras to assist users with visual impairments. 

We then focus on our specific goal of supporting touch-based information access, 

which is separated into two categories: access to visual surface information, and access 

to digital information (e.g., by controlling a mobile device). 

2.1 Portable Assistive Camera Systems 
Rapid advances in camera technology and computer vision algorithms along with the 

ubiquity of mobile phone cameras have led to a wide variety of camera-based assistive 

devices for users with visual impairments [11,120,126,207,230,235]. For example, 

mobile and wearable cameras have been used as magnifiers for users with limited 

vision [35,170,235] and for both blind and low-vision users to support navigation and 

wayfinding [23,34,81], identification of faces [102,104], facial expressions [6,103], 

objects [23,29,81], and text on signs, products, or physical documents 

[163,187,189,190,230,233]. Applications that exploit mobile phone cameras are 

particularly appealing due to their affordability, portability, and adoption rate among 

visually impaired users [92,229]. However, mobile applications also require the use of 

one or both hands, limiting their availability while the user is otherwise occupied (e.g., 

while walking with a cane or guide dog) [229]. Wearable systems benefit from being 

always available, potentially smaller, and more flexible in how they allow users to 
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interact with the device or external surfaces. These systems exist in a variety of form 

factors, including head-mounted (e.g., glasses or headsets [104,128,132]), torso-

mounted (e.g., medallions, belts, backpacks [96,178,212]), wrist-mounted (e.g., 

watches [194,195]), and finger-mounted (e.g., rings [145,146,190]). Each of these 

designs offers advantages and disadvantages in terms of sensor flexibility and field of 

view as well as the user’s sensitivity toward feedback mechanisms (e.g., audio, haptic) 

that are co-located with the device. Mayol-Cuevas [133] and Velazquez [215] have 

written surveys that summarize these tradeoffs. 

2.1.1 Smartphone Applications 

Smartphone adoption among visually impaired individuals is nearly as high as it is for 

sighted individuals [229]. The ubiquity and accessibility of these devices means that 

assistive smartphone applications have the potential both to reach a large audience and 

to make a significant impact in the lives of visually impaired individuals [92]. Several 

applications apply the phones’ camera hardware, processing power, and networking 

capabilities to help users read text, identify people or objects, or navigate indoor and 

outdoor environments. For example, LookTel [204] is an application that is designed to 

recognize money or user-customizable objects using the camera and scale-invariant 

(SIFT) features [122]. KNFB Reader1 and Text Detective2 are popular mobile 

applications that allow blind users to capture images of physical documents or signs, 

1 http://www.knfbreader.com/ 
2 http://blindsight.com/textdetective/ 
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which are parsed and read aloud using OCR and screen reader software. Apple3 and 

Android4 phones now include a built-in magnifier to assist low vision users and 

numerous free or low-cost third-party apps are available in the Apple or Google stores. 

Seeing AI5 uses online servers to recognize and describe scenery, including text, 

currency, people, and colors. In contrast, VizWiz [11] does not perform automated 

recognition but instead sends images to paid crowd workers who can answer nearly any 

visual question (e.g., reading text, identifying an object), providing greater flexibility 

and reliability—albeit at a slower rate, and with reduced interactivity and privacy [15]. 

VizLens [61] builds upon that work using computer-vision techniques for object and 

finger tracking to support interactive exploration of physical interfaces (e.g., 

microwave buttons), while still benefiting from the reliability of crowd recognition and 

labeling. However, as a mobile phone application it still requires the use of one hand 

to hold the phone steady and aimed toward the target object, which could be 

challenging for blind users. Instead, our research uses wearable cameras to mitigate 

issues with aiming and to allow users to move both hands freely; we compare our work 

against smartphone applications in Chapters 4 and 5. 

2.1.2 Cameras Worn on the Upper Body 

While mobile phone applications are appealing because they use existing mass-market 

products and are therefore more affordable, reliable, and socially acceptable [92,192], 

3 iOS Accessibility: https://www.apple.com/accessibility/iphone/vision/ 
4 Android Accessibility: https://support.google.com/accessibility/android/answer/6006949 
5 Seeing AI: https://www.microsoft.com/en-us/seeing-ai/ 
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they are also limited to the types of sensing hardware and interactions available on the 

phone, require the use of one or both hands, and can be difficult to aim accurately 

toward the target object or content in the absence of sight [125]. Wearable cameras 

offer a potential alternative that could mitigate some or all of these issues. By mounting 

the camera on the head or chest, for example, a camera sensor will inherently face the 

same direction as the user and could therefore simplify the targeting process. 

Furthermore, a body-mounted camera leaves both of the user’s hands free for 

performing other tasks, which is particularly important for use while navigating with a 

cane or guide dog. 

A second iteration of the aforementioned VizLens [61] uses the Google Glass6 

head-mounted camera for capturing images and performing object and finger tracking. 

However, while the authors state that their prototype resulted in improved image 

quality through pilot testing, they did formally evaluate its usability. In contrast, a 

commercial product called OrCam7 uses a glasses-mounted camera with speech 

feedback to recognize and read back text or to identify stored products and faces. In 

addition to processing complete images from the camera when users press a button, 

OrCam can also recognize pointing gestures to allow users to select a particular piece 

of content to be read aloud. User studies with legally blind and low vision participants 

are promising [140,217], but they have not evaluated the device’s usability for totally 

blind users or tested the utility of spatial layout information for complex documents. 

6 https://www.google.com/glass/start/ 
7 http://www.orcam.com/ 
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Other researchers have explored the use of cameras mounted on the chest or 

shoulder to detect gestures performed midair or on nearby surfaces (including the user’s 

own body). These types of gestures provide greater flexibility and availability than 

other mobile interfaces (e.g., compared to touchscreens or voice input), and could allow 

visually impaired users to more easily interact with mobile devices to access digital 

information. For example, OmniTouch [70] used a shoulder-mounted depth camera to 

track the user’s fingers and enable touch gestures on the palm, arm, or other surface 

alongside a small projector for visual feedback. They did not evaluate their device with 

visually impaired users and the interaction space was limited by the camera’s field of 

view; however, their experiments and demonstrations are impressive and demonstrate 

the feasibility of supporting touch-based interactions on the body or other nearby 

surfaces using wearable cameras. Several other projects have also used cameras 

mounted on the chest to support recognition of midair [26,96,196] or on-body [63] 

gestures in order to control computers or mobile devices. In contrast, we use a finger-

worn camera to provide similar touch-based content recognition capabilities and to 

support on-body interactions, while mitigating issues with framing the target content 

and supporting a wider and more flexible interaction space. 

2.1.3 Head-Worn Vision Enhancement Systems 

In Chapter 5, we explore a novel augmented-reality approach for vision enhancement 

using a head-worn system. Head-worn systems that include both a camera and display 

to enhance visual content are particularly promising for low vision users. Head-

mounted displays (HMDs) for low vision users were first proposed in the 1990s 
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[66,130]. For example, the Low Vision Enhancement System (LVES, 1992; [130]) and 

the Joint Optical Reflective Display (JORDY, 1999; [45]) both used head-worn optics 

and displays to help low vision users magnify and enhance objects and text. Compared 

to other types of low vision aids, HMD-based solutions offer the potential advantages 

of portability, ready availability, and privacy while displaying enhanced information 

within the wearer’s field of view. However, while some early work exists, HMD vision 

enhancement aids have only recently become truly feasible, and as such have been 

subject to very few empirical human-centered studies to assess their usability and 

potential. A recent study by Zolyomi et al. [237] showed that one such device (eSight 

[238]) improved access to information and social engagement but also had negative 

social impacts [237]. Another study by Profita et al. [168] investigated the social 

acceptability of HMDs, showing greater acceptance if the device is perceived as being 

used for an assistive purpose as opposed for a general mobile computing task. 

Most HMD-based systems for low vision users project magnified and/or 

enhanced 2D video captured from a wearable camera onto screens mounted in front of 

the user’s eyes [130,235,238–240]. Some recent examples have used consumer VR 

hardware: ForeSee [235] uses an Oculus Rift headset and IrisVision [240] uses a head-

mounted smartphone (Samsung GearVR). Optical see-through displays have also been 

employed for vision enhancement [82,170], where virtual information is overlaid on a 

transparent display, thus augmenting rather than replacing the user’s vision—the 

approach we take in Chapter 5. Google Glass has been used to display a magnified 

view of a smartphone screen [170] and to overlay enhanced edges onto the wearer’s 
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view of the real world [82]; however, Glass itself is a low-resolution display (640×360) 

and not designed as a vision enhancement aid or augmented reality device (e.g., the 

display is positioned in the user’s visual periphery). In contrast, Zhao et al. [234] 

conducted an accessibility evaluation of the Epson Moverio BT-200 smart glasses with 

participants with low vision. They concluded that while the semi-transparency of 

optical see-through displays did reduce contrast and make it somewhat harder for low 

vision users to read text or identify shapes, participants were able to successfully use 

the device and were positive about the experience, confirming that such devices are a 

useful prototyping platform for providing visual content to low vision users. 

2.1.4 Cameras Worn on the Finger 

As an alternative to cameras mounted on the upper body, the finger may offer several 

advantages. Especially for touch-based applications, moving the camera to the active 

finger may simplify the sensing algorithms, mitigate issues with framing or occlusion, 

and provide a higher-resolution view of the touched surface. Furthermore, for blind 

users the finger is a primary and highly attuned method for acquiring information 

during proximal tasks [55,149], and by augmenting the finger with additional sensing 

and feedback capabilities we may enable interesting and novel opportunities for touch-

based interactions with the physical world. Finger-worn devices are becoming 

increasingly popular as sensors and processors continues to become smaller and more 

power-efficient, with the number of products, patents, academic publications, and 

conceptual designs increasing yearly (Table 2.1; see also the survey by Shilkrot et al. 
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System Name Sensor type Target Users Application(s) Proximity Output 
Merrill and Maes 
(Unnamed) [137] 

IR transmitter 
and receiver Sighted Augmented reality interactions 

with physical objects. Distant Visual, speech 

SmartFinger 
[172] RGB camera Sighted Interact with digital devices, 

copy/paste data and images Close/Touch N/A 

EyeRing 
[145,146] RGB camera Mainly BLV, 

also sighted 
Identify currency, bar codes, 
copy and paste text Close Speech 

Magic Finger 
[228] 

RGB camera, 
optical mouse Any Recognize surface gestures, 

identify touched material Touch N/A 

CyclopsRing [25] RGB camera 
with fisheye lens Any Recognize midair & touch 

gestures, identify people/objects Multiple N/A 

FingerSight [79] Camera, laser BLV Recognize and convey edges 
using vibration cues Distant Haptic vibration 

FingerReader 
[188–190] RGB camera BLV Read printed text, music Touch Speech, Audio Cues, 

Haptic Vibrations 
HandSight 
(our work) 

RGB camera, IR, 
IMU BLV Read printed text, identify colors 

and patterns, recognize gestures Touch Speech, Audio Cues, 
Haptic Vibrations 

Table 2.1: Overview of several recent finger-worn camera systems alongside our own work. 
“BLV” indicates that the system was designed for both blind and low vision users. 

[191]). Ring form-factors are particularly appealing due to their potential for providing 

subtle, natural, and socially acceptable interactions and interfaces [177].  

Several other researchers have explored applications of finger-mounted 

cameras, from reading to navigation to gestural input. One of the first instances of these 

was Merrill and Maes in 2007 [137], who used a finger-mounted infrared transmitter 

and receiver to enable distant augmented-reality interactions with physical objects. 

SmartFinger [172] and EyeRing [145,146] similarly enabled interactions with real-

world objects through the use of a finger-mounted camera and simple computer vision 

algorithms, the latter also presenting a preliminary design of a shopping assistant 

application along with subjective reactions from visually impaired users. 

Most relevant to our research are four recent projects: Magic Finger, 

CyclopsRing, FingerSight, and FingerReader. Magic Finger [228] used a small finger-

mounted camera combined with an optical mouse sensor to enable touch gestures on 

any surface. In addition to detecting touch events and precise relative movements using 
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the optical mouse sensor, they were able to classify different types of surfaces using a 

tiny (1×1mm) RGB camera—potentially enabling context-specific interactions. While 

their evaluation was limited and their work was not intended specifically for visually 

impaired users, their methods for sensing touch locations and touch-based gestures 

strongly influenced our own finger-based approach. 

In contrast, CyclopsRing [25] consisted of a camera with a wide-angle lens 

mounted between the fingers, which the authors used to recognize whole hand gestures 

(e.g., pointing, pinching) or on-palm touch input (i.e., drawing or performing gestures 

on the palm), as well as identifying objects that the user is pointing toward. It was not 

intended for users with visual impairments and was not evaluated formally; however, 

the example applications that the authors propose are promising and could extend to 

visually impaired users as well as sighted. 

FingerSight [79] used a finger-mounted camera to enable blind users to 

interrogate the visual features of the surrounding environment through haptic sensory 

substitution. While they focused on distal interrogation, their methods could easily be 

applied to touch-based exploration of lines and other visual primitives. The authors 

concluded that their approach would enable blind users to differentiate between lines 

with an angular resolution of less than 15°, although they did not evaluate it with 

visually impaired users. This angular resolution somewhat contradicts our own findings 

in a related study with visually impaired participants [78], where we encountered a 

lower limit of ~23° for directional guidance. However, as our participants and methods 

were quite different, perhaps the two are not directly comparable. 
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Finally, FingerReader [188–190] used a finger-mounted camera alongside 

haptic and audio feedback to enable blind users to read printed text documents. They 

evaluated their prototype in two small studies with 3–4 blind participants, 

demonstrating the feasibility and technical capabilities of their approach. However, 

they did not report on any quantitative performance metrics, their participant 

preferences were conflicting, and all of the participants in their most recent study found 

it difficult to use FingerReader for reading printed text. These factors suggest that 

further investigation into the feasibility and usability of touch-based reading is 

necessary, especially in comparison to existing methods such as mobile scanners. We 

explore a similar touch-based reading approach in Chapters 3 and 4, evaluating our 

system with a larger number of participants—27 across three user studies—and 

focusing especially on methods for guiding the user’s finger across the page while 

reading. Later work by Chu et al. extended FingerReader to read Chinese characters 

[31], while Shilkrot et al. built on their own work with FingerReader to read and play 

back sheet music [188]. 

2.2 Access to Visual Surface Information 
By far the most important type of surface content for blind users to access is text. The 

inability to read menus, receipts and handouts, bills and other mail can negatively 

impact the daily activities of those living with visual impairments [16,72]. However, 

access to other visual surface information—such as colors and textures—are necessary 

for activities of daily living such as getting dressed or preparing food. Additionally, 
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access to lines, symbols, and images could help with understanding complex 

documents such as charts, tables, or maps. This section summarizes existing work 

toward improving the accessibility of this information in the physical world. 

2.2.1 Reading Text using Optical Character Recognition (OCR) 

Scientists have long sought to support blind people in reading printed text by 

developing new technologies (for reviews: [24,33,126]). Many early so-called “reading 

machines for the blind” used a sensory substitution approach where the visual signals 

of words were converted into non-verbal auditory or tactile cues. These systems were 

complicated to learn but increased the accessibility of printed text. Two such examples 

include the Optophone developed in 1914, which used musical chords or ‘motifs’ [37] 

and the Optacon (OPtical to TActile CONverter) from 1973, which used a vibro-tactile 

signal [12,54]. The Optacon continues to be used by blind readers, despite its slow 

reading speed and high learning curve, suggesting that these challenges are not 

necessarily a barrier to use. 

With advances in sensing, computation, and OCR, modern approaches attempt 

to scan, recognize, and read aloud text in real-time. This transition to OCR and speech 

synthesis occurred first with specialized devices (e.g., SARA CE8 , the original KNFB 

Reader9 , [51]), then mobile phones (e.g., Text Detective, KNFB Reader iOS), and now 

wearables (e.g., FingerReader [189,190] and OrCam, described in the previous 

8 SARA CE: http://www.freedomscientific.com/Products/LowVision/SARA 
9 KNFB Reader Classic: http://www.knfbreader.com/products-classic.php 
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sections). Many of these devices and applications function as mobile scanners designed 

for capturing and processing documents under ideal conditions (i.e., high contrast 

documents, simple fonts, good lighting and minimal perspective); however, others have 

begun to support recognition of text on signs and in natural scenes [47,186]. While 

decades of OCR work exist (e.g., [28,142,187,219]), even state-of-the-art reading 

systems become unusable in poor lighting and require careful camera framing [86,127]. 

These limitations are true even for crowd-powered assistive applications such as 

VizWiz [11], VizLens [61], and BeMyEyes10, which also introduce delays and negative 

implications for privacy compared to automated methods. Few existing systems 

provide access to spatial information that may be important for understanding content 

such as newspapers or menus. Two exceptions are OrCam, which supports basic 

pointing gestures to browse lines of text, and Kane et al.’s Access Lens [91], which is 

described in the next section. Compared to existing reading devices, our approach: (1) 

provides more intuitive and precise control over scanning and text-to-speech; (2) 

enables increased spatial understanding of the text layout; and (3) mitigates camera 

framing, focus, and lighting issues. 

2.2.2 Identifying Colors and Patterns 

Although text is the most common type of surface information that blind and visually 

impaired users need to access, other types of information can aid in various activities 

of daily living as well. Color and visual patterns are important for locating specific 

10 http://www.bemyeyes.org/ 
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articles of clothing while getting dressed or shopping, and for coordinating outfits in a 

way that is visually appealing and socially acceptable [19,221]. This information is also 

important for distinguishing ingredients when preparing food (e.g., green vs. red 

pepper), products on a shelf when shopping, or shaded regions when interpreting a 

graph or map. 

Numerous commercial devices or smartphone applications have been designed 

to assist visually impaired users in identifying colors. For example, Color Teller11 is a 

handheld device that users touch to an object, press a button, and then hear the 

recognized color aloud; Color Star12 is also handheld and conveys color information 

through speech, but it functions at a distance and can also detect the presence of light 

sources, which it conveys through auditory cues or haptic vibrations. Smartphone 

applications such as Color Identifier, Colored Eye, and Color Grab—a few of the many 

that are currently available in the iOS and Android stores—function similarly but use 

the smartphone’s camera and are much more affordable. While these products are 

highly beneficial and popular among visually impaired users, they have several 

important limitations. All are susceptible to the effects of ambient lighting and the 

distance from the target surface, especially the smartphone applications which must use 

the camera and flash that were not designed for up-close usage. Also, none support the 

recognition of textures or patterns, or efficient interrogation of multiple locations to 

assist in identifying multi-colored clothing and other objects. 

11 http://brytech.com/colorteller/ 
12 http://www.caretec.at/Start.29.0.html 
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Showing promise for more advanced clothing pattern identification, Yuan et al. 

[209,227,231] developed a system to identify 4 patterns and 11 colors in images 

captured with a mobile phone or head-mounted camera. Blind users responded 

positively to the system although more detailed identification of colors and support for 

additional types of clothing patterns were desired. The interaction was also inefficient, 

requiring the user to hold out the clothing in front of them and use speech input to 

individually capture each still image to be classified. In contrast, Kane et al.’s Access 

Lens [91], which was primarily designed to enable touch-based access to physical 

documents, also included a color interrogation mode that allowed users to interrogate 

a document or object’s color at arbitrary locations. However, Access Lens did not 

support recognition of textures or other visual primitives, and the authors did not 

present any findings from their evaluation of the color identification mode. Yang et 

al.’s Magic Finger [228] did support identification of textures for surface classification 

but did not focus on visually impaired users or consider ways to convey that 

information. Other researchers have explored haptic vibrations as a means to convey 

edges [79] or to identify colors and textures [18]; however, this research was 

preliminary and did not evaluate usability in practice, especially when combined with 

access to other information such as text. In Chapter 8, we apply our finger-mounted 

camera approach to identify clothing colors and visual patterns, allowing users to move 

their finger across an article of clothing and combine tactile information with 

continuous audio description of the fabric’s appearance. 
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2.3 Access to Digital Information 
While the above sections described work related to supporting access to visual 

information in the physical world, this section discusses the related task of accessing 

digital information from computers and mobile devices. The accessibility these devices 

has seen significant improvements in recent years, primarily due to advancements in 

touchscreen gestures, voice input, and screen reader technology. However, an HCI task 

that is simple for a sighted user may be much slower and more challenging for a blind 

user. For example, manually finding and playing a song can take 15 seconds for a blind 

user [89] while entering a four-digit passcode to unlock a smartphone requires on 

average eight seconds, leading many blind users to forgo this security feature altogether 

[9]. This disparity between sighted and blind or visually impaired users on common 

HCI tasks suggests that there is room for improvement. In this section, we summarize 

several techniques that have been proposed to make smartphones and wearable devices 

more accessible for users with visual impairments. We then survey alternate interaction 

techniques that use gestures on tables and other surrounding surfaces, or on the user’s 

own skin and clothing. We apply these techniques as an input mechanism for 

HandSight to select between modes and to access digital information. 

2.3.1 Smartphone and Smartwatch Accessibility 

As mentioned in Section 2.1.1, smartphone adoption rates among blind and visually 

impaired users is very high [229], thanks in large part to advancements in speech 

recognition technology and the improved accessibility of touchscreens. The 
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combination of voice input and synthesized speech feedback (e.g., Apple’s Siri13 or 

Google’s Assistant14) provides a natural interface in the absence of visual information 

for dictating text, specifying commands, or requesting information. Indeed, previous 

research has shown that blind users tend to use this these features more frequently and 

for longer periods than sighted users [8]. However, speech input is not always possible 

due to concerns over privacy or social acceptability, and so it is important to support 

more discrete forms of input using the touchscreen or peripheral devices as well. 

Although touchscreens have existed for decades, until relatively recently they 

presented a significant barrier to accessibility for people with vision impairments due 

to their reliance on visual cues and lack of tactile feedback. The ubiquity of 

smartphones and tablets that use a touchscreen as their primary input mechanism has 

brought a renewed interest in making touch interfaces accessible to all users 

[13,50,60,90]; some of this research has been incorporated into commercial products. 

For example, Kane et al.’s Slide Rule [90] interface allows the user to browse the 

screen’s contents through multi-touch gestures and speech feedback in a manner that is 

very similar to Apple’s VoiceOver15 and Google’s TalkBack16 interfaces. While these 

interfaces significantly improve the accessibility of touchscreen devices, several 

limitations still exist [113,134]. The glass touchscreen does not offer much in the way 

of tactile feedback, which may limit the speed and accuracy of touch input for visually 

13 http://www.apple.com/ios/siri/ 
14 https://assistant.google.com/ 
15 http://www.apple.com/accessibility/iphone/vision/ 
16 https://developer.android.com/design/patterns/accessibility.html 
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impaired users compared to alternative approaches [154]. Furthermore, for 

smartwatches and other wearable devices using small touchscreens for input, the size 

of the interaction space is severely limited and requires precise touch input that is 

challenging even for sighted users. 

2.3.2 Touch Gestures on Arbitrary Surfaces 

Numerous researchers have investigated the potential for augmenting physical surfaces 

to enable touch-based interactions with computers or home automation systems. For 

example, Rekimoto’s SmartSkin interface [173,174] adds multi-touch capacitive 

sensing capabilities to tabletops and other surfaces using a grid of copper wires. Several 

other researchers [83,222,223,226] have explored the use of depth sensing cameras 

(e.g., Microsoft Kinect) that are positioned above a table, and that can model the 3D 

geometry of a scene to recognize touch or midair gestures. The idea of augmenting a 

variety of physical surfaces to enable tangible touch-based interactions and create a 

larger interaction space is appealing, but as a general input mechanism it does not scale 

well; augmenting every surface with which a user might potentially wish to interact is 

simply not feasible. Sato et al.’s Touché system [184] requires only a single electrode 

to be attached to support capacitive touch sensing on nearly any physical surface, 

including tables, doorknobs, skin, and even water; however, even it cannot support 

interaction with arbitrary surfaces without prior modifications. Instead, if the user’s 

body is augmented with self-contained sensing and feedback mechanisms, then the idea 

becomes much more tractable. 
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While a camera positioned above the input surface has a simpler calibration and 

sensing process, body-worn cameras can also support touch detection and gestural 

input in midair or on arbitrary surfaces. For example, Harrison et al.’s OmniTouch [70] 

uses a shoulder-worn depth camera and pico-projector to provide a portable touch 

display on a variety of surfaces including tabletops, walls, handheld notebooks, and the 

palm of the user’s hand. Mistry and Maes’s SixthSense [139] similarly uses a small 

RGB camera and projector worn around the neck as a pendant to enable interactions 

with arbitrary surfaces, although the absence of depth information prevents it from 

explicitly distinguishing touch gestures from midair pointing gestures. 

As mentioned in earlier sections, finger-worn sensors have several potential 

advantages compared to those worn elsewhere on the body, including greater flexibility 

of input location and reduced problems with camera framing or occlusion. Despite 

these potential advantages, few researchers have applied them to sensing touch input 

on arbitrary surfaces. Kienzle and Hinckley’s LightRing [97] uses a ring containing an 

infrared range sensor and gyroscope. Together, these sensors can detect touch events 

and recognize basic gestures, although their simplicity and positioning mean that they 

are not robust to unexpected finger movements and can recognize only relative motion. 

In contrast, Yang et al.’s Magic Finger [228] (discussed in Sections 2.1.4 and 2.2.2) 

combines a finger-worn optical mouse sensor for detecting touch events and track 

finger movement with a slower but higher-resolution camera to capture details for 

surface classification. These two sensors provide much more information enabling 
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more precise gesture tracking and localization, albeit at greater size and expense. Magic 

Finger also covers the user’s fingertip, greatly reducing tactile sensitivity. 

2.3.3 On-Body Input 

On-body input provides several potential advantages over handheld or wearable 

touchscreen input (e.g., smartphones or smartwatches) offering a larger input surface 

and more precise touch input even without visual cues [64,154]. However, how to sense 

this input and what form it should take are still open questions—which our research 

explores and partially addresses. Researchers have investigated a wide variety of 

wearable sensing approaches, including cameras [25,40,65,70,195,206,218], infrared 

[109,150–152], ultrasonic rangefinders [117,119], bio-acoustics [69,110], magnetic 

fields [27], electromyography (EMG) [131], electromagnetic phase shift [234], and 

capacitance sensors [117,131,184,220]. These approaches support a similarly wide 

variety of inputs, including discrete touches at different body locations [110,131,184], 

continuous touch localization on the hand or wrist similar to touchscreen input 

System Name Sensor type Sensor placement On body Interaction Space Interaction type 
On or above the hands or 

OmniTouch [70] Camera (Depth) On the shoulder arms (limited by camera 
FoV) 

Continuous touch locations 

Touché [184] Capacitive Flexible (one on wrist, one 
elsewhere on body) 

Flexible (requires the target 
location to be instrumented) 

Discrete touch locations, 
body or hand pose 

CyclopsRing [25] Camera (RGB, 
Fisheye Lens) 

Between fingers of passive 
hand (for on-body input) 

On or above the 
instrumented hand 

Continuous touch locations, 
touch gestures, hand pose 

Botential [131] EMG, capacitive On the wrist (or arm, leg) Flexible, different body parts Discrete touch locations 

ViBand [110] Bio-acoustic On the wrist On the instrumented hand 
or arm 

Discrete touch locations, 
non-directional gestures 

SkinTrack [234] Electromagnetic 
phase shift 

On the wrist, ring on 
opposite hand 

On the skin surface around 
the instrumented wrist 

Continuous touch locations, 
touch gestures 

WatchSense [195] Camera (Depth) On the wrist, facing toward 
fingers 

On or above the 
instrumented hand (limited 
by camera FoV) 

Continuous touch locations, 
touch and midair gestures 

HandSight Camera On top/side of the Flexible (does not require Discrete touch locations, 
(Our Work) (Grayscale), IMU, IR gesturing finger and wrist additional instrumentation) touch gestures 

Table 2.2: Overview of several recent on-body input approaches alongside our own work. 
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[25,70,195,234], and input based on 3D finger or arm positions [25,184,195]. We 

summarize a subset of this prior work alongside our own in Table 2.2, which helps to 

highlight the diversity of sensing approaches and on-body interactions. While these 

past approaches are promising, their sensor types and placements limit the types of 

interactions that they can support.  

First, the interaction space is often constrained to a small surface (e.g., wrist or 

arm) or to a narrow window in front of the user. Approaches using cameras mounted 

on the upper body (e.g., [40,65,70,206]) restrict interactions to a pre-defined region 

within the camera’s field of view. OmniTouch [70], for example, can only detect 

gestures on the hands or arms in a relatively small space in front of the user. Similarly, 

approaches using sensors mounted on one wrist or hand to detect gestures performed 

by the other hand (e.g., [25,69,109,110,117,151,195,218,220,234]) limit on-body 

interactions to a relatively small area around the sensors. Some approaches such as 

Touché [184] or iSkin [220] are more flexible but still require instrumentation at the 

target interaction location, which limits scalability. In contrast, our approach places 

sensors on the gesturing finger, supporting input at a variety of body locations within 

the user’s reach without requiring additional instrumentation. Further, our design could 

be readily extended to interact with surfaces beyond the body. 

Second, prior work attempts to either identify touched body locations or detect 

motion gestures but not both. For example, Touché [184] and Botential [131] can 

localize touch input at various locations on the body using EMG or capacitance sensors. 

However, these systems cannot recognize relative surface gestures such as directional 
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swipes. In contrast, systems such as PalmGesture [218], SkinTrack [151], or 

WatchSense [195] can estimate precise 2D touch coordinates, enabling complex 

gesture interactions like shapes. However, these methods require sensors affixed on or 

near the interaction surface to achieve such precision, and they therefore cannot easily 

be extended to recognize multiple locations. Our approach uses a small finger-worn 

camera to identify touched locations, augmented by inertial and IR sensors for robust 

gesture recognition; together, these sensors enable location-specific gestures. 

2.4 Summary 
In this chapter we surveyed the academic literature and commercial products most 

relevant to our goal of supporting touch-based access to information for visually 

impaired users using wearable cameras and other sensors. We covered three active 

research areas, summarizing: (i) the current state of the art on mobile and wearable 

camera systems designed to assist visually impaired users, (ii) work toward increasing 

the accessibility of visual surface information (e.g., text, colors, and patterns), and (iii) 

work toward supporting access to digital information using mobile devices, and in 

particular using on-body input. We build upon this existing body of work in subsequent 

chapters, exploring issues related to the physical design, algorithms, and usability as 

we design and test HandSight. 
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Chapter 3: Reading Printed Materials by Touch: Initial 
Exploration 

Despite the increased availability of digital information and screen reader software, 

reading printed text materials remains an important but challenging task for people who 

are blind or visually impaired. The inability to read menus, receipts and handouts, bills 

and other mail can negatively impact the daily activities of those living with visual 

impairments (e.g., [16,72]). Although braille has long provided a promising alternative, 

fewer than 10% of the approximately 2 million adults with severe visual impairment in 

the United States are braille literate [147,148], and many materials are not available in 

braille format. 

Although many devices and mobile applications—such as SARA CE17, KNFB 

Reader iOS18, and OrCam19—attempt to provide access to printed materials through 

camera capture and optical character recognition (OCR), open questions remain. One 

challenge is how to help blind readers properly aim the camera so that a target object 

is completely visible and centered within the camera’s field of view (e.g., [36,86,213]). 

To accommodate this issue, the popular KNFB Reader iPhone application, for example, 

provides a spoken report to describe whether the document is fully visible and rotated 

This chapter contains work published in the proceedings of the 2nd Workshop on Assistive Computer 
Vision and Robotics (ACVR'14) in Conjunction with the European Conference on Computer Vision 
(ECCV'14) [199]. 

17 SARA CE: http://www.freedomscientific.com/Products/LowVision/SARA 
18 KNFB Reader: http://knfbreader.com/ 
19 OrCam: http://www.orcam.com/ 
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correctly. Another challenge is how to interpret and communicate documents with 

complex layouts such as newspapers or menus. Determining which blocks of text to 

read, in what order, and what layout details to convey are known issues even with 

digital content [14,111].  

Compared to mobile applications, our finger-based approach may mitigate 

overhead camera framing issues, enable a blind reader to better understand the spatial 

layout of a document, and provide better control over pace and rereading. A finger-

based approach, however, also introduces new challenges that have not been fully 

investigated. Because the field of view from a finger-mounted camera is limited, the 

reader must precisely trace along the current line of text so that the image does not get 

cut off or distorted. Physical navigation through the document is also needed to support 

reading, such as finding the start of a text passage and moving from one line to the next. 

Thus, a finger-based reading approach is contingent not only on accurate text capture 

and OCR, but also on effective finger guidance. 

As an initial exploration of finger-based sensing and feedback, we focused on 

the challenges associated with helping a blind user read printed text. At this stage, our 

research questions were primarily exploratory, spanning both the human-computer 

interaction (HCI) and computer vision algorithms: (i) How can we effectively guide 

the user’s finger via haptic and auditory feedback to appropriately scan the target text 

and provide notifications for certain events (e.g., start/end of line or paragraph 

reached)? (ii) How accurately can optical character recognition (OCR) be achieved at 
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a speed that is responsive to the user’s touch? (iii) How does the position, angle, and 

lighting of the finger-mounted camera affect OCR performance? 

We pursued two parallel approaches; to answer the computer vision questions, 

we developed an early HandSight prototype along with efficient algorithms for 

perspective and rotation correction, text detection and tracking, and OCR. This chapter 

presents preliminary evaluations and demonstrates the feasibility of our envisioned 

system. To answer the HCI-related questions, we developed a custom touchscreen-

based test apparatus that simulated the experience of using HandSight but provided 

additional experimental control and allowed us to more precisely track the user’s finger 

in response to feedback conditions. Using this setup, we report on a preliminary 

evaluation with four visually impaired participants (three blind) across three finger 

guidance conditions. 

3.1 System Design 
HandSight is comprised of three core components: sensors, feedback mechanisms, and 

a computing unit for processing. Our initial prototype is shown in Figure 3.1. Before 

describing each component in more detail, we enumerate our six design goals. 

3.1.1 Design Goals 

We developed the following design goals for our system based on prior work and our 

own experiences developing assistive technology: 
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1) Touch-based interaction. Although future extensions to HandSight could 

examine distal interaction, we focus on digitally augmenting the sense of touch. 

2) Should not hinder normal tactile function. Fingers are complex tactile 

sensors [87,112] that are particularly attuned for people with visual 

impairments [55,149]; HandSight should not impede normal tactile senses or 

hand function. 

3) Easy-to-learn/use. Many sensory aids fail due to their complexity and 

extensive training requirements [33]; to ensure HandSight is approachable and 

easy to use, we employ an iterative, human-centered design approach. 

4) Always available. HandSight should allow for seamless transitions between its 

use and real-world tasks. There is limited prior work on so-called always-

available input [143,182,183,228] for blind or low-vision users.  

5) Comfortable & robust. HandSight’s physical design should support, not 

encumber, everyday activities. 

6) Responsive & accurate. HandSight should allow the user to explore the target 

objects (e.g., utility bills, books) quickly—the computer vision and OCR 

algorithms should work accurately and in real-time. 

3.1.2 Hardware 

Our initial prototype used a small camera, vibration motors, and a laptop for processing 

and power. We describe each individual component below. 
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(a) Close-up front view (b) Close-up side view (c) Full system view 
Figure 3.1: The initial HandSight prototype with a NanEye ring camera, two vibration motors, 
and an Arduino. Finger rings and mounts are constructed from custom 3D-printed designs and 
fabric. Processing is performed in real-time on a laptop (not shown). 

Sensing Hardware. We use a single 1×1mm2 AWAIBA NanEye 2C camera [7] 

that can capture 250×250 resolution images at 44 frames per second (fps). The NanEye 

was originally developed for minimally invasive surgical procedures such as 

endoscopies and laparoscopies and is thus robust, lightweight, and precise. The camera 

also has four LEDs coincident with the lens (2.5mm ring), which enables dynamic 

illumination control. The small size allows for a variety of finger-based form factors 

including small rings or acrylic nail attachments. In our current prototype, the camera 

is attached to an adjustable Velcro ring via a custom 3D-printed clip. 

Processing. For processing, we use a wrist-mounted Arduino Pro Micro with 

an attached Bluetooth module that controls the haptic feedback cues. The video feed 

from the camera is processed in real time on a laptop computer (our experiments used 

a Lenovo ThinkPad X201 with an Intel Core i5 processor running a single computation 

thread at approximately 30fps). 

Feedback. HandSight provides continuous finger-guidance feedback via 

vibration motors, pitch-controlled audio, or both. The initial prototype includes two 
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Figure 3.2: A demonstration of our perspective and rotation correction algorithm 

vibration motors, 8mm diameter and 3.4mm thick (Figure 3.1). A text-to-speech system 

reads each word aloud as the user’s finger passes over it, and distinctive audio and/or 

haptic cues can be used to signal other events, such as end of line, start of line, etc. 

3.1.3 Image Processing Algorithms and Offline Evaluation 

Our initial text detection and recognition algorithms involve a series of frame-level 

processing stages followed by between-frame tracking and merging once the complete 

word has been observed. Below, we describe our five stage OCR process and some 

preliminary experiments evaluating performance. 

Stage 1: Preprocessing. We acquire grayscale video frames at ~40fps and 

250x250px resolution from the NanEye camera (Figure 3.2). With each video frame, 

we apply four preprocessing algorithms: first, to correct radial and (slight) tangential 

distortion, we use standard camera calibration algorithms [71]. Second, to control 

lighting for the next frame, we optimize the LED intensity using average pixel 

brightness and contrast. Third, to reduce noise, perform binarization necessary for 

OCR, and adapt to uneven lighting from the LED, we filter the frame using an adaptive 

threshold in a Gaussian window; finally, to reduce false positives, we perform a 
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connected component analysis and remove components with areas too small or aspect 

ratios too narrow to be characters. 

Stage 2: Perspective and Rotation Correction. The finger-based camera is 

seldom aligned perfectly with the printed text (e.g., top-down, orthogonal to text). We 

have observed that even small amounts of perspective distortion and rotation can 

reduce the accuracy of text detection and OCR. To correct perspective and rotation 

effects, we apply an efficient approach detailed in [71,84,232], which relies on the 

parallel line structure of text for rectification. We briefly describe this approach below. 

To identify potential text baselines, we apply a Canny filter that highlights 

character edges and a randomized Hough transform that fits lines to the remaining 

pixels. From this, we obtain a noisy set of candidate baselines. Unlikely candidates are 

discarded (e.g., vertical lines, intersections that imply severe distortion). The remaining 

baselines are enumerated in pairs; each pair implies a potential rectification, which is 

tested against the other baselines. The pair that minimizes the baseline angle variance 

is selected and the resulting rectification is applied to the complete image. 

More precisely, the intersection of each pair of baselines implies a horizontal 

vanishing point 𝑉𝑉𝑥𝑥 = 𝑙𝑙1 × 𝑙𝑙2 in homogeneous coordinates. If we assume the ideal 

vertical vanishing point 𝑉𝑉𝑦𝑦 = [0, 1, 0]𝑇𝑇, then we can calculate the homography, H, that 

will make those lines parallel. Let 𝑙𝑙∞ = 𝑉𝑉𝑥𝑥 × 𝑉𝑉𝑦𝑦 = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐]𝑇𝑇 and calculate the 

perspective homography, 𝐻𝐻𝑝𝑝, using those values. The perspective homography makes 
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the lines parallel but does not align them with the x-axis. We must rotate the lines by 

an angle 𝜃𝜃 using a second matrix, 𝐻𝐻𝑟𝑟. The complete rectifying homography matrix is: 

cos(𝜃𝜃) −sin(𝜃𝜃) 0 1 0 0 cos(𝜃𝜃) −sin(𝜃𝜃) 0 
𝐻𝐻 = 𝐻𝐻𝑟𝑟𝐻𝐻𝑝𝑝 = �sin(𝜃𝜃) cos(𝜃𝜃) 0� � 0 1 0� = �sin(𝜃𝜃) cos(𝜃𝜃) 0� (1) 

0 0 1 𝑎𝑎/𝑐𝑐 𝑏𝑏/𝑐𝑐 1 𝑎𝑎/𝑐𝑐 𝑏𝑏/𝑐𝑐 1 

To investigate the effect of lateral perspective angle on performance, we 

performed a synthetic experiment that varied the lateral angle from -45° to 45° across 

five randomly selected document image patches. The raw rectification performance is 

shown in Figure 3.3a and the effect of rectification on character-level OCR accuracy is 

shown in Figure 3.3b (the algorithm for OCR is described below). 

Stage 3: Text Detection. The goal of the text detection stage is to build a 

hierarchy of text lines, words, and characters. This task is simplified because we 

assume the perspective and rotation correction in Stage 2 has made the text parallel to 

the x-axis. First, we split the image into lines of text by searching for large gaps between 

text pixels in each row. Next, we split each line into words using an identical process 

on the columns of pixels. Gaps larger than 25% of the line height are classified as 

spaces between words. Finally, we segment each word into individual characters by 

searching for local minima in the number of text pixels within each column. 

Stage 4: Character Classification. Real-time performance is important for 

responsive feedback, which prevents us from using established OCR engines such as 

Tesseract. Thus, we compute efficient character features (from [1]), and perform 

classification using a support vector machine (SVM). Each character candidate is 

centered and scaled to fit within a 32x32 pixel window, preserving the aspect ratio. The 
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window is split into four horizontal and vertical strips, which are summed along the 

short axis to generate eight vectors of length 32 each. These vectors, along with the 

aspect ratio, perimeter, area, and thinness ratio make up the complete feature vector. 

The thinness ratio is defined as T=4π(A/P2) where 𝐴𝐴 is the area and 𝑃𝑃 is the perimeter. 

We compensate for the classifier’s relatively low accuracy by identifying the top k most 

likely matches. By aggregating the results over multiple frames, we boost performance. 

Stage 5: Tracking and final OCR result output. The camera’s limited field 

of view means that a complete word is seldom fully contained within a single frame. 

We must track the characters between frames and wait for the end of the word to 

become visible before we can confidently identify it. Character tracking uses sparse 

low-level features for efficiency. First, we extract FAST corners [179], and apply a 

KLT tracker [211] at their locations. We estimate the homography relating the matched 

corners using the random sample consensus [48]. After determining the motion 

between frames, we relate the lines, words, and individual characters by projecting their 

locations in the previous frame to the current frame. The bounding boxes with the 

greatest amount of overlap after projection determine the matches. When the end of a 

word is visible, we sort the aggregated character classifications and accept the most 

frequent classification. This process can be improved by incorporating a language 

dictionary model, albeit at the expense of efficiency. A text-to-speech engine reads 

aloud the identified word. 

To investigate the effect of finger movement speed on OCR accuracy, we 

recorded five different speeds using a single line of text. The results are presented in 
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Figure 3.3: Results from preliminary evaluations of our (a-b) Stage 2 algorithms and (c) the 
effect of finger speed on overall character- and word-level accuracy. 

Figure 3.3c. With greater speed, motion blur is introduced, and feature tracking 

becomes less accurate. In our experience, a “natural” finger speed movement for 

sighted readers is roughly 2–3cm/s. So, with the current prototype, one must move 

slower than natural for acceptable performance. Future iterations can compensate by 

using a higher frame rate camera (100fps) and by skipping frames as needed. 

3.2 User Study to Assess Audio and Haptic Feedback 
Our initial prototype implementation supported haptic and audio feedback, but how 

best to implement this feedback for efficient direct-touch reading is an open question. 

We planned to later conduct a user evaluation of the full system to assess the combined 

real-time OCR and finger guidance for a variety of reading tasks. At this initial stage, 

however, our goal was to refine the finger guidance component of the system through 

a preliminary evaluation of three types of feedback: (1) audio only, (2) haptic only, and 

(3) a combined audio and haptic approach. We conducted a user study with four 

visually impaired participants to collect subjective and performance data on these three 
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feedback types. To isolate the finger guidance from the image processing algorithms, 

we used a custom iPad app that simulated the experience of using the full system. 

3.2.1 Method 

We summarize our experimental setup and methods below. 

Participants. We recruited four VI participants; details are shown in Table 3.1. 

All participants had braille experience, and three reported regular use of screen readers. 

Test apparatus. The setup simulated the experience of reading a printed sheet 

of paper with HandSight (Figure 3.4). It consisted of the hand-mounted haptic 

component of the HandSight system controlled by an Arduino Micro, which was in 

turn connected via Bluetooth to an Apple iPad running a custom experimental app. A 

thin foam rectangle acted as a physical boundary around the edge of the screen to 

simulate the edge of a sheet of paper, and the iPad was further covered by a piece of 

tracing paper to provide the feel of real paper and to reduce friction. The app displayed 

text documents, guiding the user to trace each line of the document from left to right 

and top to bottom. As the user traced their finger on the screen, text-to-speech audio 

was generated, along with the following feedback guidance cues: start and end of a line 

of text, end of a paragraph, and vertical guidance for when the finger strayed above or 

ID Age Gender Handedness Level of Vision Duration of 
Vision Loss 

Diagnosed Medical Condition Hearing Difficulties 

P1 64 Female Left Totally blind Since birth Retinopathy of prematurity N/A 
P2 61 Female Left Totally blind Since birth Retinopathy of prematurity Slight hearing loss 
P3 48 Male Right Totally blind Since age 5 N/A N/A 
P4 43 Female Right No vision one eye, 30 years Glaucoma N/A 

20/400 other eye 

Table 3.1: Background of the four user study participants. 

42 



 

 
 

 
 

     

 

  

 

       

 

  

   

   

 

  

  

 

     

 
   

  
(a) iPad test apparatus (b) Participant 1 (c) Participant 3 

Figure 3.4: Study setup and test apparatus: (a) overview; (b-c) in use by two participants. 

below the current line. Lines were 36 pixels in height and vertical guidance began when 

the finger was more than 8 pixels above or below the vertical center of the line.  

Feedback conditions tested. We compared three finger guidance options, 

testing audio and haptic cues individually or in combination: 

• Audio only. All guidance cues were provided through non-speech audio. The 

start and end of line cues each consisted of a pair of tonal percussive 

(xylophone) notes played in ascending or descending order, respectively. The 

end of paragraph sound was a soft vibraphone note. When the user’s finger 

drifted below or above a line, a continuous audio tone would be played to 

indicate that proper corrective movement. A lower tone (300 Hz) played to 

indicate downward corrective movement (i.e., the user was above the line). The 

pitch decreased at a rate of 0.83Hz/pixel to a minimum of 200Hz at 127 pixels 

above the line. A higher tone (500 Hz) was used to indicate upward corrective 

movement (up to a maximum of 600Hz with the same step value as before).  

• Haptic only. The haptic feedback consisted of two finger-mounted haptic 

motors, one on top and one underneath the index finger (see Section 3.1.2). 
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Based on piloting within the research team, the motors were placed on separate 

phalanges so that the signal from each was easily distinguishable. To cue the 

start of a line, two short pulses played on both motors, with the second pulse 

more intense than the first; the reverse pattern indicated the end of a line. For 

the end of a paragraph, each motor vibrated one at a time, which repeated for a 

total of four pulses. For vertical guidance, when the finger strayed too high, the 

motor beneath the finger vibrated, with the vibration increasing in intensity 

from a low perceivable value to maximum intensity, reached at 127 pixels 

above the line; below the line, the top motor vibrated instead (again with the 

maximum intensity reached at 127 pixels). 

• Combined audio/haptic. The combined condition included all of the audio and 

haptic cues described above, allowing the two types of feedback to complement 

each other in case one was more salient for certain cues than the other. 

Procedure. The procedure lasted up to 90 minutes. For each feedback 

condition, we first demonstrated the feedback cues for the start/end of each line, end of 

paragraph, and vertical guidance. Next, we prepared a training article and guided the 

user through the first few lines. Participants then finished reading the training article at 

their own pace. Finally, we prepared a test article and asked participants to read through 

the text as quickly and accurately as possible. While we manually guided participants 

as necessary for the training article (e.g., adjusting their finger), no manual guidance 

was provided during the test task. Four articles of approximately equivalent complexity 

were selected from Voice of America (a news organization), one for the training tasks 
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(a) Participant 1 finger trace (audio only condition) (b) Participant 1 finger trace (haptic only condition) 

Figure 3.5: Our iPad test apparatus allowed us to precisely track and measure finger 
movement. Example trace graphs for Participant 1 (P1) across the audio- and haptic-only 
conditions are shown above (green is on-line; red indicates off-line and guidance provided). 
These traces were also used to calculate a range of performance measures. For example, for P1 
the average overall time to read a line was 11.3s (SD=3.9s) in the audio condition and 18.9s 
(SD=8.3s) in the haptic condition. The average time to find the beginning of the next line 
(traces not shown above for simplicity but were recorded) was 2.2s (SD=0.88s) in the audio 
condition and 2.7s (SD=2.4s) in the haptic condition. 

and one to test each feedback condition; all articles had three paragraphs and on average 

11.0 lines (SD=1.0) and 107.0 words (SD=13.5). The order of presentation for the 

feedback conditions was randomized per participant, while the test articles were always 

shown in the same order. After each condition and at the end of the study, we asked 

questions on ease of use. We video recorded the sessions and logged all touch events. 

3.2.2 Analysis and Findings 

We analyzed subjective responses to the feedback conditions, and user performance 

based on logged touch events. Figure 3.5 shows a sample visualization from one 

participant (P1) completing the reading task in the audio-only and haptic-only 

conditions. Due to the small sample size, all findings in this section should be 

considered preliminary, but point to the potential impacts of HandSight and tradeoffs 

of different feedback types. 
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In terms of overall preference, three participants preferred audio-only feedback; 

see Table 3.2. Reasons included that they were more familiar with audio than haptic 

signals (P1, P3), and that it was easier to attend to text-to-speech plus audio than to 

text-to-speech plus haptic (P4). P2’s most preferred condition was the combined 

feedback because she liked audio cues for line tracing and haptic cues for start/end of 

line notifications. In contrast, haptic-only feedback was least preferred by three 

participants. For example, concerned by the desensitization of her nerves, P1 expressed 

that: “…if your hands are cold, a real cold air-conditioned room, it’s [my tactile 

sensation] not going to pick it up as well.” P4 also commented on being attuned to 

sound even in the haptic condition: “You don’t know if it’s the top or the bottom 

[vibrating]…It was the same noise, the same sound.” As shown in Figure 3.6, ease of 

use ratings on specific components of the task mirrored overall preference rankings. 

Participants were also asked to compare their experience with HandSight to 

braille, screen readers and printed-text reading using 5-point scales (1-much worse to 

Rank 1 Rank 2 Rank 3 
P1 Audio Combined Haptic 
P2 Combined Audio Haptic 
P3 Audio Haptic Combined 
P4 Audio Combined Haptic 

Table 3.2: Overall preference rankings by 
participant. Audio feedback was the most 
positively received. 

Braille Printed TextScreen Reader 
P1 3 3 3 
P2 3 5 5 
P3 4 4 4 
P4 5 5 5 

Table 3.3: Ratings comparing prior text 
reading experiences with HandSight; 1-
much worse to 5-much better. 

Perceived Ease of Use (1-5; 5 is easiest) 

Combined Haptic Audio 
5 

4 

3 

2 

1 
OOverall Line Paragraph Line Line 

Understanding Tracing Ending Ending Beginning 

Figure 3.6: Average perceived ease of use of 
different text guidance attributes based on a 5-
point scale (1-very difficult; 5-very easy). Error 
bars are standard error (N=4). 
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5-much better). As shown in Table 3.3, HandSight was perceived to be at least as good 

(3) or better compared to each of the other reading activities. In general, all participants 

appreciated HandSight because it allowed them to become more independent when 

reading non-braille printed documents. For example, P3 stated, “It puts the blind 

reading on equal footing with rest of the society, because I am reading from the same 

reading material that others read, not just braille, which is limited to blind people 

only”. P1, who had experience with Optacon [95], Sara CE, and other printed-text 

scanning devices also commented on HandSight’s relative portability. 

In terms of performance, we examined four primary measures averaged across 

all lines per participant (Figure 3.7): average absolute vertical distance from the line 

center, time spent off the line (i.e., during which vertical feedback was provided), time 

from start to end of a line, and time from the end of a line to the start of the next line. 

While it is difficult to generalize based on performance data from only four 

participants, audio-only may offer a performance advantage over the other two 

conditions. Audio-only resulted in the lowest average vertical distance to the line center 

for all participants. Compared to the haptic-only condition, audio-only reduced the 

205 10 

Tim
e: 

En
d 

Lin
e 

to
 N

ex
t L

in
e 

(s)

Tim
e 

Sp
en

t O
ff 

th
e 

Lin
e 

(s)

Av
g 

Di
sta

nc
e 

fro
m

 Li
ne

 C
en

te
r (

px
) 

Tim
e: 

St
ar

t t
o 

En
d 

of
 L

in
e 

(s)

4 

3 

2 

1 

0 

8 15 

10 

5 

0 

6 

4 

2 

0 

Figure 3.7: Average performance data from the four user study participants across the three 
feedback conditions. While preliminary, these results suggest that audio-only feedback may 
be more effective than the other options tested. Error bars show standard error; (N=4). 
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amount of time spent off the line by about half. It was also faster for all participants 

than haptic-only in moving from the end of a line to the start of the next line. We 

conduct a larger study in Chapter 4 to confirm these findings and to better assess what 

impact the feedback conditions have on reading speed from start to end of a line. 

3.3 Discussion 
Below, we discuss our preliminary findings and opportunities for future work.  

Haptic Feedback. Though we have created many different types of finger-

mounted haptic feedback in our lab, we tested only one in the user study: when the user 

moved above or below the current line, he or she would feel a continuous vibration 

proportional in strength to the distance from the vertical line center. Future work should 

experiment more with form factors, haptic patterns (e.g., intensity, frequency, rhythm, 

pressure), number of haptic devices on the finger, as well as the type of actuator itself 

(e.g., Figure 3.8). While our current haptic implementation performed the worst of the 

feedback conditions, we expect that, ultimately, some form of haptics will be necessary 

for notifications and finger guidance. 

Blind reading. Compared to current state-of-the-art reading approaches, our 

long-term goals are to: (1) provide more intuitive and precise control over scanning and 

text-to-speech; (2) increase spatial understanding of the text layout; and (3) mitigate 

camera framing, focus, and lighting issues. Moreover, because pointing and reading are 
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(a) (b) (c) (d) 
Figure 3.8: Haptic feedback alternatives: (a) 10×2.7mm2 vibro-discs; (b) 5×0.4 mm2 piezo 
discs; (c) 3×8 mm2 vibro-motors; (d) 0.08mm Flexinol wire (shape memory alloy). 

tightly coupled, finger-based interaction intrinsically supports advanced features such 

as rereading (for sighted readers, rereading occurs 10-15% of the time [94] and 

increases comprehension and retention [43,114]). We focused purely on reading text 

on simple documents, but in Chapter 4 we investigate more complex layouts so that the 

user can sweep their finger over a document and sense where pictures are located, 

headings, and so on. Future work should explore a variety of documents (e.g., plain 

text, magazines, bills) and household objects (e.g., cans of food, cleaning supplies), and 

examine questions such as: How should feedback be provided to indicate where 

text/images are located? How should advanced features such as re-reading, excerpting, 

and annotating be supported, perhaps through additional gestural input and voice notes? 

Computer Vision. Our preliminary algorithms are efficient and reasonably 

accurate, but there is much room for improvement. By incorporating constraints on 

lower-level text features we may be able to rectify vertical perspective effects and 

affine skew. We can also apply deblurring and image stabilization algorithms to 

improve the maximum reading speed the system is able to support. Robust and efficient 

document mosaicking and incorporation of prior knowledge will likely be a key 

component for supporting a wider range of reading tasks. 
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Multi-sensory approach. Currently, our prototype relies on only local 

information gleaned from the on-finger camera. However, in the future, we would like 

to combine camera streams from both a body-mounted camera (e.g., Orcam [159]) and 

a finger-mounted camera. We expect the former could provide more global, holistic 

information about a scene or text which could be used to guide the finger towards a 

target of interest or to explore the physical document’s layout. We could also use the 

information to improve the performance of the OCR algorithms, by dynamically 

training the classifier on the page fonts and creating a generative model (e.g., [123]). 

3.4 Summary 
Our overarching vision is to transform how people with VI access visual information 

through touch. Though we focused specifically on reading, this initial investigation 

offers a first step toward providing a general platform for touch-vision applications. 

The design and algorithmic evaluation of our initial HandSight prototype show the 

feasibility of our approach and highlight important technical issues that we must 

consider. Additionally, our user study, which evaluated three finger-guidance 

approaches using a controlled setup (the iPad test apparatus), found that, in contrast to 

prior work [189], haptic feedback was the least preferred guidance condition. The 

pitch-controlled audio feedback condition was not only subjectively rated the most 

preferred but also appeared to improve user performance. Clearly, however, more work 

is needed to explore this and other aspects of a touch-based approach to reading and 

exploring printed text materials, which we investigate in the next chapter. 
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Chapter 4: Evaluating Haptic and Auditory Directional 
Finger Guidance 

Previous research—including the work described in the previous chapter as well as 

concurrent work by Shilkrot et al. [189,190] using a similar system called 

FingerReader—explored ring-based devices with embedded cameras that allow blind 

readers to trace their finger over printed text and hear real-time speech output. 

However, these studies focused on feasibility with small sample sizes (3–4 participants) 

and did not report on quantitative performance metrics. This prevents an in-depth 

understanding of finger guidance effectiveness, reading performance, and user 

reactions. The most recent of these studies underscores the need for further 

investigation: despite the theoretical advantages of finger-based reading, all three 

participants found it difficult to read text with FingerReader [190]. This provokes the 

question: why? To what extent are finger-based cameras a viable accessibility solution 

for reading printed text? What design choices can improve this viability? 

To further investigate the feasibility of a finger-based sensing and feedback 

system for reading printed text, we conducted a controlled lab experiment to compare 

audio and haptic directional finger guidance with 19 blind participants using an iPad-

based testbed (Study I). The primary goal was to compare the effects of the two 

guidance methods in terms of line tracing accuracy, reading speed, comprehension 

(through standardized comprehension questions), and subjective response. We later 

This chapter contains work published in the ACM Transactions on Accessible Computing (TACCESS 
November 2016) [198]. 
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(a) Camera Sensor (b) Finger-mounted Camera (c) Full Prototype 
Figure 4.1: The first two iterations of the HandSight prototype use a 1×1mm2 AWAIBA 
NanEye 2C camera developed for minimally invasive surgeries (e.g., endoscopies) that can 
capture 250×250px images at 44fps (a). Also shown are two views of our finger-based reading 
system (b) and (c). Future designs can be made much smaller. 

also randomly selected 4 of those participants to provide feedback on an updated 

HandSight wearable prototype (Figure 4.1), so as to help guide its design (Study II). 

These participants also provided feedback on the use of a smartphone app (KNFB 

Reader iOS) to read printed documents, which allowed us to compile a list of some of 

the relative advantages and disadvantages of each. 

The findings from Study I showed similar performance between haptic and 

audio directional guidance, although audio may offer an accuracy advantage for line 

tracing. While a small majority of participants preferred haptic guidance to audio, the 

overall split reflects contradictions found in previous research [189,190,199]. Open-

ended comments also highlight the tradeoffs of the two types of guidance, such as the 

interference of audio guidance with speech output and the potential for desensitization 

to haptic guidance. Finally, while several participants appreciated the direct access to 

layout information provided with HandSight’s exploration mode, and the lower 

learning curve of HandSight as compared to braille, important concerns arose about 

ease of use and the amount of concentration required. In the follow-up sessions (Study 

II), while not offering a controlled comparison, participants appreciated that HandSight 
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provided immediate access to text content without the need to worry about first 

capturing the document, but overall they preferred the fast and smooth text-to-speech 

output of KNFB Reader iOS. Combined, these findings lead to new questions about 

finger-based reading, who may benefit the most from such an approach, and how to 

refine the design tested in our study. 

The contributions of this chapter are: (1) empirical results comparing audio and 

haptic directional finger guidance for a reading task in terms of user performance and 

subjective response; (2) the implementation and preliminary evaluation of a real-time 

proof-of-concept system that combines a small finger-mounted camera and feedback 

mechanism with efficient computer vision algorithms to read printed text; and (3) 

design reflections for finger-based reading devices for people who are blind. While our 

long-term goal is to investigate the many interactions made possible by collocating 

sensing and feedback on the fingers, our focus here is on the interactions necessary to 

use such a system to explore and read a physical document. 

4.1 Study I: Audio vs. Haptic Guidance for Finger-Based 
Reading 

To investigate the exploration and reading of printed text documents using finger-based 

interactions, we conducted a controlled lab study with 19 blind participants. The 

primary goal of this study was to compare audio and haptic directional finger guidance 

methods in terms of user performance and preference. However, as the first larger-scale 

study of finger-based reading (N=19 vs. N=3 and N=4 [190,199]), the study also 
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quantitatively explored to what extent a finger-based reading approach can allow a 

blind reader to interpret the spatial layout of a document and to read and understand 

that document. 

As in Chapter 3, we simulated the experience of reading a physical document 

using a touchscreen tablet (an iPad) covered with a sheet of paper (Figure 2c). This 

approach allowed us to bypass certain technical challenges in implementing a real-time 

camera and text recognition system, and instead to focus on the user experience of 

finger-based reading. The iPad also allowed us to collect precise finger traces to enable 

detailed finger-movement analysis not previously possible. 

4.1.1 Method 

In this controlled lab study, participants read two types of printed documents with audio 

and haptic finger guidance. We used a within-subjects design with a single factor of 

Directional Guidance that had two levels (Audio and Haptic); order of presentation of 

the conditions was fully counterbalanced. In addition to measuring reading speed and 

finger movement, we collected subjective feedback and assessed basic document 

comprehension using standardized questions. Despite similarities to Shilkrot et al.’s 

method [189,190], our protocol is an extension of our previous work [199], which was 

underway prior to the first FingerReader publication [189]. The final apparatus and 

method described here were also refined through pilot sessions with 5 additional 

participants (1 sighted, 1 low vision, 3 blind) who did not take part in the full study. 
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ID Age Sex Vision 
Level 

Braille Screen Reader Computer 
Use Comfort Use Comfort Comfort 

P1 54 F Blind 5 5 4 3 4 
P2 33 F Light 4 5 5 5 5 
P3 55 M Blind 3 5 5 5 4 
P4 44 M Light 2 2 5 5 5 
P5 67 M Blind 3 4 5 5 4 
P6 62 M Light 3 4 5 5 4 
P7 40 M Blind 1 1 5 4 4 
P8 27 F Light 5 5 5 5 4 
P9 49 F Light 5 5 5 5 3 
P10 43 M Blind 5 4 1 1 3 
P11 44 M Light 4 4 1 1 1 
P12 39 M Blind 4 5 5 5 5 
P13 67 M Blind 3 3 1 1 1 
P14 50 F Light 4 4 5 5 5 
P15 26 M Blind 5 5 5 5 5 
P16 48 M Blind 5 4 5 4 4 
P17 59 F Light 2 3 1 1 1 
P18 47 F Blind 4 3 1 1 1 
P19 64 F Light 4 3 4 4 3 

Mean (SD) 48.3 (12.0) N/A N/A 3.7 (1.2) 3.8 (1.1) 3.8 (1.7) 3.7 (1.7) 3.5 (1.4) 

Table 4.1: Study I participants. All participants were either blind or had minimal light 
perception (denoted “Light”). Frequency of use varied from 1 (“never”) to 5 (“very often”), 
while comfort level varied from 1 (“very uncomfortable”) to 5 (“very comfortable”). 

Participants. Twenty participants were originally recruited via campus email 

lists and local organizations, but one participant’s data was discarded because he was 

unable to complete all of the required tasks. Of the remaining 19 participants, 11 were 

male and 8 were female, and the median age was 48 (SD=12.0, range 26–67). All 

participants were completely blind or had only minimal light perception. Five 

participants were congenitally blind, while the others had lost their vision later in life 

(some as recently as two years ago). As shown in Table 4.1, most participants were 

frequent users of braille, although 6 were just learning to read it and rated their comfort 

level as lower. All but 5 participants used screen readers at least some of the time and 

only 4 were not comfortable with computers and/or mobile devices. Participants were 

compensated for time and transportation. 
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(a) Screenshot of iPad software (b) Haptic feedback device, with (c) Test setup, with physical paper 
showing a single-column document. actuator mounted on the finger. covering the iPad. 

Figure 4.2: Study I test apparatus. 

Apparatus. The test apparatus consists of an Apple iPad running custom 

software and connected via Bluetooth to a custom-built finger-worn haptic device 

(Figure 4.2). The source code is available on GitHub20. As noted previously, the iPad 

was used to provide a dynamic test environment that could precisely track finger 

movement in response to our directional guidance conditions. To simulate the feel of a 

physical document and reduce friction from the screen, a thin, blank paper covered the 

iPad. In addition, because there is no tactile border between the iPad screen and bezel, 

we added our own physical border made of 1/16” flexible foam (Figure 4.2c). The 

software displays documents and provides two modes of interaction: exploration and 

reading. All touch events (down, up, and move) on the screen are logged with x, y 

coordinates and timestamps.  

Exploration mode. In this mode, audio cues allow users to gain a spatial sense 

of the document layout (e.g., locations of images, columns, paragraphs) before 

transitioning to reading mode. As the user traces their finger over the document, they 

hear either a high-pitched flute sound when on a block of text or a low-pitched cello 

20 https://github.com/HCIL/HandSight 
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Figure 4.3: Reading mode interaction is bimanual. The user (1) places the right index finger 
in the “line start region” and moves vertically to find the start of the current line; (2) places the 
left index next to the right finger as an anchor; (3) traces the right finger along the line until it 
reaches the “line end region”; (4) returns the right index finger to beside the left finger before 
moving down to the next line. When the right finger is directly on the line (green trace) no 
directional guidance is provided, but when the finger moves too high or low (red trace), audio 
or haptic guidance indicates which direction to move to return to the line. 

sound when on a picture. These sounds were selected and refined via pilot testing to be 

easily distinguishable by their pitch and timbre. When over whitespace, such as 

between paragraphs or columns, no sound plays. 

Reading mode. In this mode, the user traces their finger from left to right along 

each line of text, while the system generates text-to-speech output using Apple’s default 

iOS speech synthesis engine and provides directional finger guidance (haptic or audio 

depending on the condition). Reading is bimanual: the left hand, which is 

uninstrumented, serves as a line anchor (see “line start region” in Figure 4.3) while the 

right index finger traces the line. To begin reading, the user moves their right finger to 

the line start region shown in Figure 4.3 and an audio cue of ascending xylophone notes 

plays. If the finger is not already at the first line of text, audio or haptic feedback guides 

the user’s finger up or down. Once the right finger is properly positioned over the “line 

start region” of the first line, the left hand joins the right hand and subsequently serves 

as a line anchor. 
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The user then traces his/her finger along the line to the right, while the system 

speaks each word aloud and provides audio or haptic guidance whenever the finger 

strays above or below the line (Figure 4.3). The speed of the text-to-speech output 

adapts to match the speed of the finger movement. Speech is provided only for the 

current line, and only when the user’s finger is within 73 pixels (0.7cm) of the middle 

of the line (simulating a finger-mounted camera’s field of view). At the end of the line 

(“line end region”; Figure 4.3), another audio cue plays, this time with descending 

xylophone notes, and the text-to-speech stops. The user then moves their finger left 

again to find the line start region and read the next line in the same manner. Finally, at 

the end of a paragraph, a new audio chime plays. The audio cues for the start and end 

of line and end of paragraph were selected to be easily distinguishable, which we again 

verified using early feedback from pilot participants.  

For audio directional guidance, the system provides a continuous tone that 

varies in pitch. A low pitch indicates that the finger should move downward, and a high 

pitch indicates that the finger should move upward. If the finger is properly positioned 

over the current line, no audio plays. If the user’s finger moves above the line, an audio 

tone at frequency 300Hz begins playing. If the user’s upward movement continues, the 

frequency linearly decreases based on distance, down to a minimum of 200Hz at 127 

pixels (1.2 cm). The 200Hz tone continues for any movement more than 2.4cm above 

the line. Similarly, if the user’s finger strays below the line, the audio frequency begins 

at 500Hz and increases to a maximum of 600Hz at 127 or more pixels away. The choice 
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Figure 4.4: Close-up view of the haptic motors mounted on the finger via Velcro rings. The 
top motor vibrates when the user’s finger moves below the line, providing upward guidance; 
the bottom motor vibrates when the user’s finger moves above the line, providing downward 
guidance. The intensity of vibration depends upon the distance to the line, achieving maximum 
intensity at 127 pixels (~1.2 cm). 

to vary audio frequency to indicate distance and direction was motivated by our prior 

work [155,199], and the exact pitches and thresholds were selected after pilot sessions. 

The haptic directional guidance includes two vibration motors (8mm diameter 

disc, 3.4mm thick) controlled by an Arduino Pro Micro that communicates with the 

iPad via Bluetooth. The motors are attached to the user’s right index finger with 

separate Velcro rings (Figure 4.4), one on top of the finger on the intermediate phalange 

and one below the finger on the proximal phalange. The lower motor indicates that the 

finger should move downward, and the upper motor indicates the opposite. Neither 

motor vibrates while the user’s finger is directly over the current line of text. Vibration 

intensities off the line range from a minimum perceptible strength to the maximum 

strength the motors can provide, using the same distance thresholds as the audio 

condition. The choice to vary the position and intensity of vibration to indicate direction 

and distance was also motivated by our prior work [199] and validated in pilot sessions. 
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In early testing within our research lab and with external pilot participants, we 

tested multiple mappings for audio and haptic cues and intended finger direction (e.g., 

higher pitch to indicate up vs. the opposite). Users were split in terms of which 

mappings were most intuitive, a point we revisit in the Discussion (Section 4.3.1). 

Procedure. Each study session lasted 1.5–2 hours. Throughout, we employed 

two document types (Figure 4.5): single-column plain text, and two-column magazine-

style with a figure and an article heading. For the reading tasks described below, we 

adapted four test documents from a Grade 8 Iowa Test of Basic Skills practice book 

[167]. The original text was modified slightly for length and to ensure clarity with our 

speech synthesis engine (e.g., removing unnecessary proper nouns); see Appendix. The 

documents were thus all at similar reading levels and had multiple-choice 

comprehension questions. We also created training documents that were similar in 

length to the four test documents.  

Following a background questionnaire, participants first learned how to use the 

document exploration mode as a precursor to the more complex task of both exploring 

and reading a document. The experimenter demonstrated the audio cues for text and 

images in exploration mode, then asked participants to explore one plain document and 

Figure 4.5: Examples of our test documents: plain text (left), and magazine (right). 
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one magazine document for up to three minutes each. To ensure that participants 

understood the exploration mode, we asked questions about the structure and layout of 

each document (i.e., how many paragraphs and columns, are there pictures or headings 

and if so where are they located). To avoid biasing participants toward a particular 

exploration strategy or interpretation, we initially provided very little direction aside 

from demonstrating the audio cues and warning participants of the questions they 

would be expected to answer. After recording the answers for a document, the 

experimenter then guided participants to find the correct answers to ensure that they 

could later use the mode correctly prior to each reading task. 

After the introduction of the exploration mode, participants explored and read 

documents with each of the directional guidance conditions (audio and haptic). The 

order of presentation for these conditions was fully counterbalanced. Document order 

was identical across all participants so that the documents themselves were matched an 

equal number of times with each guidance condition. To ensure similar physical 

experiences across conditions, participants wore the Arduino wristband and finger 

rings with the haptic motors throughout the full study session. 

The procedure for each directional guidance condition was identical, with 

training using a plain document (~10 minutes) followed by testing with two documents 

(one plain and one magazine). For the training document, the experimenter 

demonstrated the feedback cues and participants incrementally learned to follow a line, 

find the next line or paragraph, and listen to the speech feedback while moving their 

finger. For each test document, participants were allowed up to 90 seconds in 
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exploration mode to assess the layout before the experimenter switched the system to 

reading mode. For the plain document, the reading task was to locate the first line of 

text and read the entire document. For the magazine document, participants read the 

last paragraph in the first column and the first paragraph in the second column. 

Exploration mode was used to locate the start of text for each document, as well as the 

start of the second column for the magazine document. After each test document, two 

multiple-choice comprehension questions provided in the Grade 8 Iowa Test of Basic 

Skills practice book were administered. At the end of each guidance condition, 

participants were asked about subjective ease of use. Finally, at the end of the study 

participants were asked to compare the two directional guidance conditions. See 

Appendix B for the full text of the subjective questionnaires. 

Before conducting this study, we validated our selection of test documents and 

comprehension questions in a simple baseline study. Ten sighted college-age 

participants listened to synthesized speech of the four test documents and the 

comprehension questions. All 10 participants answered the questions correctly. 

Data and Analysis. Collected data included log files from the iPad, participant 

responses to close- and open-form questions, and experimenter observations. To 

compare reading performance with haptic and audio guidance, we examined the 

following subtasks separately: 

• Line finding: Finding the start of the current line. A line finding instance 

began with the first right-handed touch within the line start region (Figure 

4.3) and ended with the finger exiting that region. Sometimes participants’ 
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search paths resulted in more than one exit from the start region, so we 

included all data up to the final exit. For each instance, we calculated elapsed 

time and, as an error measure, the length of the movement path traced. 

• Line tracing: Tracing left-to-right along the current line. A line tracing 

instance included all touch points after a successful line finding subtask until 

the right index finger entered the line end region (Figure 4.3). For each 

instance, we calculated reading speed in words per minute (wpm), and, as an 

error measure, the average absolute distance of the finger from the vertical 

center of the line across all x-coordinates in that line trace. 

• Full document: Reading the full document from the start of the first line to 

the end of the final line. This comprehensive analysis includes all line finding 

and line tracing subtasks for a single document, as well as the time to 

transition between columns for the magazine documents. For each 

document, we calculated the average reading speed in words per minute 

(wpm) as well as the number of skipped words that were not read aloud. 

Across the 19 participants, we collected data for 1513 lines. We identified 

outlier samples that were more than 3 standard deviations away from the mean for a 

given participant and condition, removing 31 samples (2.0%) of line tracing subtask 

samples and 49 (3.4%) of line finding subtask samples.  

We used paired t-tests to compare line tracing speed between haptic and audio 

guidance. However, other measures violated the normality assumption of a t-test 
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(determined using separate Shapiro-Wilk tests for each measure, p < 0.05). For these 

measures, we conducted non-parametric Wilcoxon signed rank tests to compare haptic 

and audio. For all posthoc pairwise comparisons, we applied Holm’s sequential 

Bonferroni adjustments to protect against Type I error [77].  

4.1.2 Findings 

Our findings include quantitative performance results derived from the log data and 

exploratory qualitative descriptions of how participants responded to and interacted 

with the finger-based reading approach (e.g., initial use of exploration mode, potential 

advantages of such an approach). 

Reading Mode—Line Tracing. Figure 4.6 shows line tracing performance. 

For plain documents, the average reading speed with haptic guidance was 120.9 wpm 

(SD=57.0), compared to only 106.3 wpm (SD=46.2) with audio; however, a paired t-

test comparing the two types of guidance was not statistically significant. A similar 

trend followed for magazine documents, at 111.8 wpm (SD=43.3) and 106.7 wpm 

(SD=54.1) for haptic and audio, respectively, with a paired t-test revealing no 

statistically significant difference between the two.  

In terms of error, audio guidance was significantly more accurate than haptic 

guidance for the magazine documents, with an average distance of 11.2 px (SD=3.5) to 

the center of the line versus 14.6 px (SD=5.7). A Wilcoxon signed rank test was 

statistically significant on this measure, with a large effect size (Z19=-2.374, p=.018, 

r=.54). Figure 4.7 shows a representative finger trace that illustrates this performance 
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Line Tracing Performance Results 

* 

(a) Average line tracing speed (b) Average line tracing error 

Figure 4.6: Average line tracing speed (higher is better), and average error—vertical distance 
offset from the center of the line (lower is better). Error bars indicate standard error (N=19). 
Performance was generally similar between the audio and haptic conditions, but audio resulted 
in significantly lower line tracing error for the magazine document (*). 

(a) Audio and magazine document (P8) (b) Haptic and magazine document (P8) 

(c) Audio and plain document (P7) 

Figure 4.7: Example finger traces. Solid (green) indicates that the finger was on the line, while 
dotted (red) indicates that the finger was off the line and directional guidance was being 
provided. (a) and (b) illustrate the difference in accuracy between the audio and haptic guidance 
conditions for P8. Participants frequently reacted more immediately to audio guidance but 
tended to ignore small amounts of vibration with haptic guidance. This observation may 
explain the significant difference in error between the audio and haptic conditions. Participants 
also tended to drift consistently above or below a line as they read, as seen in (a), (b) and (c). 
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difference. For the plain documents, however, the two guidance conditions resulted in 

more similar distances, at 11.9 pixels for audio (SD=4.6) and 12.8 pixels for haptic 

(SD=4.6). This difference was not significant using a Wilcoxon signed rank test.  

Participants tended to drift frequently, spending on average 29.7% (SD=13.2) 

of their line tracing time off of the line for the audio condition and 37.8% (SD=14.7) 

for the haptic condition. Reflecting the distance accuracy results above, this difference 

was statistically significant with a Wilcoxon signed rank test (Z19=-2.57, p=.010, 

r=.59). In addition, participants tended to drift consistently above or below the line. 

Figure 4.7a, for example, illustrates downward drift whereas Figure 4.7c shows upward 

drift. We observed 11 participants who drifted consistently upward, 4 who drifted 

consistently down, and 4 who varied by document or did not tend toward either 

direction. This tendency may have been affected by how each participant’s arm was 

positioned relative to the iPad—participants were instructed to rotate the screen as 

needed, but few chose to do so.  

Reading Mode—Line Finding. As shown in Figure 4.8, line finding 

performance was similar across all directional guidance conditions and document 

types. No significant differences were found between haptic and audio guidance for 

either document type or performance measure using Wilcoxon signed-rank tests. 

Across all conditions, it took participants on average 2.6–3.4 seconds to find the next 

line in a document (plain: haptic M=2.8 seconds, SD=1.9, and audio M=3.4, SD=2.7; 

magazine: haptic M=2.6, SD=1.7, and audio M=2.6, SD=1.9). For error, measured as 

the average path length while searching for the start of a line, haptic averaged 181.2 
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Line Finding Performance Results 
5 350 

Haptic 
4 300 Audio 

Plain Magazine Plain Magazine 

Li
ne

 F
in

di
ng

 E
rr

or
 (p

ix
el

s)
 

250 

200 

150 

100 

Li
ne

 F
in

di
ng

 T
im

e 
(s

ec
.) 4 

3 

3 

2 

2 

1 
501 

0 0 

(a) Average line finding speed (b) Average line finding error 
Figure 4.8: The average time elapsed (left) and error (right) in finding the next line; lower is is 
better for both graphs. The error bars indicate standard error (N=19). Performance differenceses 
between the two conditions were not significant. 

Comprehensive Performance Results 
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(a) Average comprehensive reading speed (b) Average number of skipped words 

Figure 4.9: The comprehensive reading speed for an entire document (higher is better) and 
total number of skipped words (lower is better) by document. The error bars indicate standard 
error (N=19). Performance differences between the two conditions were not significant. 

pixels (SD=114.0) with plain documents, while audio averaged 270.9 pixels 

(SD=241.1). In contrast, for magazine documents, haptic averaged 217.1 pixels 

(SD=184.4), compared to 179.8 pixels for audio (SD=147.5). Again, however, these 

differences were not found to be statistically significant. 

Reading Mode—Overall Performance and Comprehension. Figure 4.9 

shows comprehensive performance over the documents, including the total reading 
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time and number of skipped words. Reading speeds ranged from 63–81 wpm (plain: 

haptic M=81.1 wpm, SD=42.1 and audio M=75.8 wpm, SD=29.0; magazine: haptic 

M=65.4, SD=25.6 and audio M=63.0, SD=31.9). Overall, the number of skipped words, 

that is, words that were not read aloud by the text-to-speech engine, was uniformly low 

across conditions. The four documents contained an average of 211.5 words, but only 

1–5 of those words were skipped on average for any given document. The number of 

skipped words was also similar between conditions for the plain documents (plain: 

haptic M=3.3, SD=5.2 and audio M=3.2, SD=7.5; magazine: haptic M=4.0, SD=5.9 and 

audio M=1.3, SD=3.3). Using Wilcoxon signed-ranks tests, no significant differences 

were found between haptic and audio guidance for either measure (speed, number of 

skipped words) with either document type. 

While further investigation is needed to determine to what extent audio and 

haptic guidance impact comprehension, overall, participants answered the 

comprehension questions with high accuracy. Across all participants and conditions, 

85% of the questions were answered correctly (Table 4.2). 

Overall Subjective Response. Overall preference was split, with a small 

majority of participants (11 out of 19) preferring haptic feedback, 7 preferring audio, 

and 1 reporting equal preference. Participants also rated the two types of guidance in 

terms of comprehension and line tracing ease, from 1 – very difficult to 5 – very easy. 

The ratings, shown in Table 4.3a, support the overall preference patterns. Both 

guidance conditions were rated somewhat positively for both measures (3.1 or higher 

on average), and the differences between the two conditions were not statistically 
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Guidance Document 2/2 Correct 1/2 Correct 0/2 Correct 
Audio Plain 14 participants 3 participants 2 participants 
Haptic Plain 17 2 0 
Audio Magazine 12 5 2 
Haptic Magazine 14 5 0 

Table 4.2: Number of participants who answered the set of two comprehension questions 
correctly in each experimental condition (N=19). Most questions were answered correctly 
regardless of condition. 

(a) 

(b) 

(c) 

Ease of use: 
Haptic vs. audio 

Question 
Reading comprehension with audio guidance 
Reading comprehension with haptic guidance 
Line tracing with audio guidance 
Line tracing with haptic guidance 

N 
19 
19 
19 
19 

Mean 
3.2 
3.7 
3.3 
3.1 

SD 
1.3 
1.2 
1.3 
1.4 

Ease of use: 
Elements common to both 
conditions 

Start of text detection 
Start of line detection 
End of line detection 
End of paragraph detection 
Start of column detection 

19 
19 
19 
19 
19 

4.5 
4.2 
4.7 
4.6 
3.8 

0.7 
0.6 
0.5 
0.8 
1.2 

Comparison to existing 
technologies 

HandSight vs. braille 
HandSight vs. screen readers 
HandSight vs. other reading aids 

18 
14 
12 

3.0 
2.9 
2.4 

1.0 
1.2 
1.2 

Table 4.3: Study I subjective ratings from 1 to 5 where 5 is best. (a) Reading comprehension 
and line tracing for each guidance condition. (b) Experience with subtasks common to both 
guidance conditions. (c) Overall comparison (better/worse) of HandSight versus braille, screen 
readers, and other reading aids. A score of 5 indicates that HandSight was perceived as much 
better than the existing technology, while a score of 1 indicates that it was much worse. 

significant with Wilcoxon signed rank tests. Some challenges with the HandSight 

approach were seen as common to both types of guidance. For example, P12 said, “The 

haptic feedback only tells you when you’re not in line, not where the next thing would 

be”, and made a similar comment for audio guidance.   

The 11 participants who preferred haptic guidance generally felt that it was 

more intuitive, easier to use or faster than the audio. For example, P13 stated: “It gave 

me a clearer indication of which way, up or down”. P9 also commented, “The 

vibrations kind of helped as a prompt, so that I automatically would go in the right 

direction, and I was able to read faster”. Six of the participants who preferred haptic 

guidance also mentioned that the audio guidance was more distracting, and that made 

69 



 

 
 

 
 

  

  

 

 

 

 

  

  

    

 

  

 

   

  

    

  

  

 

 

  

     

it harder to focus on the speech feedback: “You could focus on the audio of the text, 

and not be listening for other sounds” (P7), or “I missed a couple words because I was 

being distracted by the [audio]” (P15). Even 4 of those who preferred audio guidance 

mentioned that the overlapping sounds could be somewhat distracting. 

Of the 7 participants who preferred audio, almost all (N=6) found haptic 

guidance to be confusing: “Sometimes when I use the vibrations I would forget which 

direction I was going based on where the vibration was” (P5), or “I had to analyze 

more what the vibrations meant” (P14). Two participants also mentioned concerns 

about comfort, especially for prolonged use, for example: “If you’re reading longer 

your finger might get numb and it might get more difficult to figure out where the 

vibration was” (P14). 

Participants found the audio cues common to both guidance conditions 

relatively easy to use. Using these audio cues to detect the start of the text, line start/end 

areas, start of a column, and end of paragraph were all rated above 3.8 on a 5-point 

scale (Table 3b). Detecting the start of a column received the lowest score (M=3.8), 

perhaps reflecting the challenge of reading text with a more complex layout. This 

challenge can be non-trivial for some users. It should be noted that the participant 

whose data we discarded (described in Section 4.1.1, under “Participants”), had been 

blind since early childhood and was thus unfamiliar with the concept of a two-column 

document, an issue that requires further consideration in future work. He asked: “Can 

a document be structured this way, with a paragraph just taking half part of the page?” 
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Other participants also found the magazine document to be more difficult, especially 

those who were congenitally blind, but all were able to successfully complete the task. 

Comparison with Other Technologies. As shown in Table 4.3c, the overall 

experience of HandSight was rated similarly compared to braille (M=3.0, SD=1.0), and 

somewhat negatively compared to other aids such as cell phone apps or scanner 

hardware (M=2.9, SD=1.2), and screen reader software (M=2.4, SD = 1.2). 

Seven participants who were not comfortable with braille or existing reading 

technologies generally liked the lower learning curve and flexibility of our reading 

approach. For example, P11, who was currently learning braille said: “With braille you 

gotta always constantly remember which dots are for which letters […]. this will tell 

you what the word is. Less stress.” (P11). P7 also commented on the utility of being 

able to directly control reading speed with our approach: “A [screen] reader you get 

like one speed, it doesn’t slow down for any reason, and sometimes it’s a lot harder to 

go back and get your place from where you stopped.” 

However, nine participants who were more familiar with braille and other 

reading devices raised concerns about ease of use and cognitive load. P14, for example, 

preferred braille: “Reading braille I can read at a steadier pace and I can know where 

the punctuation is, and it’s easier for me to find the next line” (P14). Both P16 and P18 

commented on cognitive load: “There’s the need to concentrate on staying within 

lines” (P16), and, “I’m so focused on trying to read the document, I’m not necessarily 

retaining the information the way I want to” (P18). 
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Initial Use of Exploration Mode. The analyses above focus on reading mode, 

but at the start of the study, participants first used exploration mode to receive feedback 

on the presence of text, images and whitespace in both plain text and magazine 

documents. Even with this initial use, all but one participant correctly identified the 

presence or absence of a picture in both documents and described the picture’s location. 

Determining whether audio breaks represented a gap between two paragraphs or two 

columns was more difficult, such that 11 participants initially identified multiple 

columns in the plain text document. However, between the two documents, the 

experimenter revisited how to distinguish between paragraphs and columns, and almost 

all participants (17 out of 19) were able to report the correct number of columns for the 

magazine document. Precisely counting paragraphs was still difficult, with only 9 and 

3 participants reporting the correct number for the plain and magazine documents, 

respectively. For the magazine document the primary source of error was confusion 

over the definition of a paragraph in a multi-column document—the majority (N=15) 

did not count the paragraphs in the two columns separately. Additionally, 7 participants 

mistook the heading in the magazine document for another paragraph, and only 9 

answered questions about it correctly. 

We observed a few exploration strategies, with some participants using multiple 

strategies: 8 initially moved their fingers quickly but in no discernible pattern, 

searching out the locations of images and text within the document; 8 followed a 

procedure similar to reading braille, exploring left to right sequentially down the page; 

12 explored sequentially left to right then top to bottom, counting breaks in the sound 
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to identify paragraphs and columns. Though we only told participants that we would 

ask them about the number of paragraphs, columns, and the presence/location of certain 

features (e.g., headings, pictures), 6 participants provided additional details such as the 

width of the margins and the size and locations of the images and blocks of text. 

Four participants provided unprompted feedback that they liked the document 

layout knowledge provided by the exploration mode. P6, for example, compared this 

advantage of the finger-based approach to a traditional screen reader: 

“You have a perspective of the document layout—how many columns, 

where the graphics are located, the heading, and things like distribution of 

the text itself. […] When you use screen readers, you don’t have any idea 

about that, you just get the text, you just get the content, but you don’t 

have any direct access or idea of the document layout” (P6) 

P15 was particularly excited about the idea, using the exploration mode to 

identify the size and locations of images and blocks of text, and speculating based on 

their relative positions that “maybe [this block of text is] a description of the picture. I 

always wonder things like that.” In contrast, P12 stated that he didn’t see a use for 

spatial information in most situations: “Not for blocks of text, but […] for diagrams or 

for maps it might be, because that’s the only time that you actually need spatial 

orientation on a page.” He felt that a system that could automatically process a page 

and abstract the layout would be preferable. Further investigation is needed to evaluate 

how much this additional spatial information impacts comprehension or document 
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understanding, as well as how to best present that information to the user via audio or 

haptic feedback. We return to this point in the Discussion section. 

Summary of Study I Findings. Audio and haptic guidance resulted in 

relatively similar user performance, although audio may offer an accuracy advantage 

for line tracing with some documents (it was significantly better than haptic for the 

magazine document). Although the majority of participants preferred haptic guidance, 

the overall split in preference reflects contradictions found in previous research 

[189,190,199]. Open-ended comments also highlight the tradeoffs of the two types of 

guidance, such as the interference of audio guidance with speech output and the 

potential for desensitization with haptic guidance. Finally, while several participants 

appreciated the direct access to layout information provided with HandSight’s 

exploration mode, and the lower learning curve of HandSight compared to braille, 

important concerns arose about ease of use and the amount of concentration required. 

4.2 Study II: Preliminary Use of a Proof-of-Concept 
Prototype 

Following the in-depth comparison of audio and haptic finger guidance in Study I, we 

recruited 4 participants to return and provide qualitative feedback on a proof-of-concept 

wearable prototype. These follow-up sessions allowed us to collect preliminary 

evidence of: (1) the extent to which a blind reader can use a finger-mounted camera 

and directional guidance system to explore and read a printed document, and (2) the 

strengths and weaknesses of finger-reading versus a mobile scanner and screen reader. 
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4.2.1 Method 

Participants explored and read printed documents using a proof-of-concept finger-

mounted camera system, followed by KNFB Reader iOS, a popular mobile document 

reader. This was not intended to be a controlled comparison of the two technologies, 

but instead allowed for preliminary user experience feedback. 

Participants. We randomly selected 4 participants from Study I to return for 

this follow-up study, with the constraint that they represent a mix of preferences for 

haptic and audio directional guidance. Study II was conducted shortly after Study I was 

completed, with participants returning between 1 and 3 weeks after their initial session. 

Participants’ durations of blindness varied from 2 to 30 years, but none were 

congenitally blind. Only one participant (P12) had experience with KNFB Reader iOS. 

Refer to Table 4.1 for demographic information and to Table 4.4 for experience with 

specific technologies, including KNFB Reader iOS. As with Study I, participants were 

compensated for their time and transportation costs. 

Apparatus. The proof-of-concept HandSight prototype consisted of a desktop 

computer running custom software, external speakers, a finger-mounted camera, and 

the haptic device from Study I (Figure 4.10). The camera was a self-illuminated Awaiba 

NanEye 2C CMOS camera and LED ring (~40 fps, 90° square field of view, 250x250 

ID Study 1 Feedback Preference Frequency of 
Braille Use 

Frequency of 
Screen Reader Use 

Familiar with KNFB 
Reader iOS? 

P10 No Preference (Tested Audio) 5 1 No 
P11 Haptic 4 1 No 
P12 Audio 4 5 Yes 
P19 Haptic 4 4 No 

Table 4.4: Study II participants; IDs are carried over from Study I. Comfort levels ranged 
from 1-5, with 1 indicating “very uncomfortable” and 5 indicating “very comfortable”. 
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pixels, 2.4mm diameter), embedded in an adjustable ring and positioned above the 

finger to point down at the page (Figure 4.1b). The camera was positioned 1–2cm above 

the page and had a field of view approximately 1.5cm across (2–3 lines of text). These 

numbers varied somewhat depending on the participant’s hand position.   

As with Study I, the software provided two modes of interaction: exploration 

and reading. Exploration mode provided the same feedback as in Study I, except that 

(a) HandSight experimental setup. (b) KNFB experimental setup. 

(c) Screenshot of HandSight software. (d) Screenshots of KNFB Reader iOS. 

Figure 4.10: Study II experimental setup. (a) The HandSight test apparatus consisted of a 
desktop computer running a custom reading program, stereo speakers, a finger-mounted 
camera system, and the haptic feedback device from our first study. Participants were asked to 
read through two documents using our prototype system. (b) The KNFB experimental setup 
consisted simply of an iPhone with the KNFB Reader iOS app. Participants were asked to read 
three documents using the app. (c) A screenshot of HandSight’s OCR interface (this was not 
shown to the participant and used only by the experimenter). (d) Two screenshots of KNFB 
Reader iOS: (left) the ‘capture’ interface helps users orient the phone’s camera to take a photo 
of the target document; (right) the digitized document screen-reading interface. 

76 



 

 
 

 
 

  

 

  

    

    

  

  

  

 

  

 

  

 

  

 

    

  

  

                                                 
 

   
   

the prototype system did not detect images; as such, documents used in Study II did 

not include images. To ensure that the flute sound did not stop between individual 

characters or lines of text, the system first blurred the text using a blur radius that was 

manually calibrated prior to beginning the exploration tasks. The audio and haptic cues 

in reading mode were identical to those in Study I, with text-to-speech output using the 

IVONA Voice for Windows speech synthesis engine. 21 Exploration and reading events 

were logged with timestamps, but we could not log precise finger-trace data as we had 

done with the iPad in Study I. 

The software processed each video frame from the camera using OpenCV22, an 

open-source computer vision and image-processing library. With each frame, we 

applied four preprocessing algorithms. First, to correct radial distortion from the 

camera lens, we used standard camera calibration algorithms [71]. Second, to reduce 

noise, perform binarization necessary for OCR, and adapt to uneven lighting from the 

LED, we filtered each frame using an adaptive threshold in a sliding window. Third, to 

reduce false positives, we performed a connected component analysis and removed 

components with areas too small or aspect ratios too narrow to be characters. Finally, 

to correct for finger rotation, we blurred the image to efficiently group the components 

into likely lines of text, then extracted the minimum-area bounding rectangle for each 

new component. We used the estimated orientation of this rectangle to correct for 

21 http://www.ivona.com/us/for-individuals/voices-for-windows/ 
22 http://opencv.org/ 
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camera rotation, inverting it so that the lines of text were parallel to the x-axis. This 

process is similar to that described in Chapter 3 [181]. 

To simplify sensing for this proof-of-concept prototype, we assumed that a 

complete image of the page was available to the system in advance. The software then 

estimated the current finger location by performing OCR on the visible text and 

matching it to the known content of the page. We used the Tesseract OCR library23 for 

text detection and recognition of each preprocessed frame, then compared the results 

to the pre-computed document text. For efficiency, we tracked character motion 

between frames and only performed OCR when sufficient motion had occurred or when 

the system was unable to reliably estimate the current location (allowing us to achieve 

an average processing rate of 20–30 fps). Because the camera’s field of view was large 

enough to encompass multiple partial words across 2-3 lines of text (Figure 4.10c), the 

system did not generally encounter difficulty distinguishing the locations of repeated 

words. The likelihood of this potential problem was further reduced using recent 

location estimates and the motion of the user’s finger to resolve conflicts. We tracked 

the current line of text using the camera’s estimated motion and the known content of 

the page, and only provided text-to-speech feedback when the user advanced on the 

current line. In order to provide a smooth reading experience, it was not possible to 

skip or repeat words. Although this enforced sequential reading of the text, it mitigated 

several potential sources of confusion that would have arisen had we allowed rereading 

23 https://code.google.com/p/tesseract-ocr/ 
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or moving between lines. The software detected that the user had reached the start or 

end of a line or paragraph using the known content of the page, and provided the same 

audio cues as in Study I. Also, as with Study I, the speed of the text-to-speech feedback 

was adjusted to match the user’s finger speed. 

The test apparatus for the second part of the study consisted of the KNFB 

Reader iOS application running on an iPhone 5S with the VoiceOver feature enabled. 

To take a picture, users tapped on the left side of the screen to select the “Take Picture” 

button, and then double-tapped the button to capture an image. The software played a 

shutter sound to inform the user that the picture was captured successfully, and then 

immediately began reading any recognized text. 

Procedure. These exploratory study sessions lasted 1–2 hours. The participant 

first used HandSight with his or her preferred directional guidance method from Study 

I. As with Study 1, training and testing documents were selected from the Iowa Test of 

Basic Skills. For training, the experimenter first re-introduced exploration mode and 

asked the participant to explore a plain document for up to three minutes. Participants 

were directed to count the number of paragraphs and columns, and to note the size and 

position of the margins. The experimenter then re-introduced reading mode’s audio 

cues and directional guidance, and helped the participant read the training document, 

providing verbal or physical guidance if necessary. The training tasks lasted 10–15 

minutes. After training, participants explored and read one single-column test 

document, with the experimenter providing verbal assistance only if the participant was 

unable to proceed. Afterward, participants answered questions about the layout of the 
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document, three multiple-choice questions to judge comprehension, and subjective 

questions about the experience. We did not use a magazine-style document because the 

HandSight camera prototype does not currently support two-column documents. 

Following the use of HandSight, the experimenter introduced KNFB Reader 

iOS: how to position the phone’s camera over a page, take a picture, and listen to the 

recognized text. Although the KNFB Reader iOS application included a spoken field 

of view report to assist with framing a document, we did not evaluate this feature due 

to time constraints and because it was not the focus of this study. Participants were 

allowed to repeat this process up to three times with a single-column training document, 

with verbal or physical guidance as needed. This training task lasted 10–15 minutes. 

Participants then read two test documents unassisted: a single-column document (from 

the Iowa Test of Basic Skills) and a two-column magazine document (from USA 

Today) similar to those read in Study I but without images. KNFB Reader iOS 

advertises support for multicolumn formats, and the procedure for capturing and 

reading the two types of document was identical. If the participant was unsatisfied with 

the reading result, they were allowed one additional attempt per document. Participants 

answered multiple-choice comprehension questions after the single-column document 

and summarized the content of the two-column document. Finally, participants 

reported on their experience using the application. See Appendix B for the full text of 

the subjective questionnaires for both HandSight and KNFB Reader iOS. 
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Participant Identifier P10 P11 P12 P19 Mean 
Guidance Type 
Start of Text 
Start of Line 
End of Line 
End of Paragraph 
Line Tracing 
Understanding Cues 
Reading and Understanding 
Mean Ease of Use Rating 

Average Reading Speed per Line (wpm) 

Average Line Finding Time per Line (s) 

Time to Read Full Document (s) 
Comprehension Questions Score 

Audio 
5 
5 
5 
3 
2 
5 
3 

4.0 

Haptic 
2 
2 
5 
5 
2 
5 
3 

3.4 

Audio Haptic N/A 
5 1 3.3 
2 2 2.8 
5 5 5.0 
5 5 4.5 
3 2 2.3 
5 3 4.5 
5 4 3.8 

4.3 3.1 3.7 
18.4 56.6 60.2 44.9 45.0 

(SD=5.5) (SD=16.4) (SD=11.1) (SD=17.1) 
30.5 8.8 7.3 18.0 16.15 

(SD=24.4) (SD=5.6) (SD=5.0) (SD=12.7) 
1493 469 409 717 
2/3 3/3 3/3 3/3 2.75/3 

Table 4.5: Top: Ease of use responses while using the HandSight prototype. Responses range 
from 1 - very difficult to 5 - very easy. Bottom: Performance metrics from the HandSight 
reading task. The document for this task consisted of 282.6 words (normalized to 5-character 
length) across 17 lines. 

4.2.2 Findings 

Our findings are exploratory, including general observations about how participants 

approached the reading tasks, and subjective responses to both our proof-of-concept 

implementation and KNFB Reader iOS. While the focus is on qualitatively describing 

experiences with the technologies, we include performance statistics such as reading 

speed, line finding time, and number of skipped words. 

Overall Experience. All four participants completed the reading tasks, but with 

varying levels of success (Table 4.5). P10 read slowly and required frequent verbal and 

physical intervention by the tester to adjust hand position and answer questions about 

the directional audio cues. P11 and P19 read more quickly, and only needed infrequent 

verbal reminders (P11 was reminded once about hand position, and P19 was reminded 

once about hand position and the procedure for finding the start of a line). P12, who 

was very comfortable with both braille and screen readers, read the fastest, at 60.2 
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wpm, and did not require any assistance. Only P10 failed to answer all three 

comprehension questions correctly, likely due to decreased attention to the content 

while struggling to complete the task. 

Comments were similarly mixed. P19 was enthusiastic about the concept, 

stating: “I’m very pleased and excited about the system. I think it could make a great 

difference in my life.” P12 was more critical, finding the approach to be slower than 

expected: “It seems like a lot of effort for reading text.” P10, P11, and P19 were all 

learning to read braille at the time of the study, and P11 and P19 found the reading 

experience using HandSight to be easier than braille for reasons similar to those 

expressed in Study I (e.g., lower learning curve, less to remember). P10 stated that 

braille and finger-reading were both difficult at times, requiring too much concentration 

to read quickly or fully comprehend the text. P12, who had the most braille experience, 

found HandSight to be “much worse” than braille and “somewhat worse” than other 

technologies for reading printed documents. In addition to commenting on the ease of 

following a line of braille text due to the tactile feel of the dots and the lack of layout 

issues such as multiple columns, P12 said that he typically scans printed documents to 

read on his computer or mobile device, an approach he finds faster compared to 

HandSight and one that does not require the use of both hands. 

Cognitive Load. Although they were able to complete the reading task, all 

participants expressed concern about the level of concentration required to interpret the 

directional guidance and other audio cues while listening to synthesized speech. P11, 

for example, commented on the difficulty of remembering how to map the haptic 
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guidance to up/down movement: “it gets you a little confused sometimes, especially if 

you was [sic] into reading the story and you forget which one was the vibration for 

moving up and which one was for moving to the bottom.” P11 also commented on the 

focus and practice required, concluding that it would be difficult to use, “if you’re tired, 

if you’ve had a long day.” More practice with the device may address some of these 

issues, though interaction design changes are also likely needed (e.g., more intuitive 

and responsive directional cues to reduce required concentration on line tracing task, 

efficient rereading to enhance comprehension). 

Technical limitations with the prototype may have exacerbated cognitive load 

issues. Although our algorithms ran at approximately 30 fps on average, they tended to 

run more slowly after rapid finger movements. This limitation caused a noticeable lag 

at times, which P11 and P19 reported required more concentration. P19, for example, 

commented that after the start-of-line audio cue there was sometimes a delay before the 

speech began, causing problems: “I wasn't getting that in my head to just wait for the 

delay. I started moving my finger”. 

Physical Design. Three participants identified limitations with the prototype’s 

physical design. The primary issue stemmed from the camera placement: for the text 

to be an appropriate size and orientation within the camera’s field of view, participants’ 

hands needed to be held at a specific angle. Although the camera’s placement on the 

finger was adjusted at the start of each study session, it could not easily be readjusted. 

Participants thus had to hold their hand at nearly the same angle throughout the study. 

Two participants reported that this position was too uncomfortable for extended use, 
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(a) (b) (c) (d) (e) 
Figure 4.11: Examples of situations where HandSight was unable to provide feedback. All 
images have been preprocessed to emphasize text and highlight baselines for the current line. 
(a), (b) Not enough text is visible in the margins to provide directional guidance. (c) The camera 
position changed after calibration and is too far from the page to reliably recognize text. (d) 
The camera is moving too quickly, blurring the text and reducing the frame rate of the 
recognition algorithms. (e) The user’s middle finger is in the camera’s field of view, preventing 
correct segmentation of the lines of text. 

suggesting that the physical design will need to improve in future versions and/or the 

camera location should be easily adjustable. We also identified the need for feedback 

when the system loses its position in the text or is unable to recognize visible text in 

reading mode (Figure 4.11 shows examples); this occurred when the hand position 

changed too much or, more commonly, when the participant moved into the upper or 

lower margins of the document.  

HandSight vs. KNFB Reader iOS. While the study did not offer a controlled 

comparison of HandSight and KNFB Reader iOS, we can draw preliminary 

conclusions about tradeoffs between the two. Even without KNFB Reader iOS’s 

document-framing guidance enabled, participants unanimously preferred it to 

HandSight, with three participants rating it as 5 – much better and one as 4 – somewhat 

better. The primary reason was the fluidity of the reading experience after capturing an 

image with KNFB—the application read the full document quickly and participants 

were able to concentrate solely on the content of the passage. For example: “It just did 

it all for you, that way you just listen to what it’s saying and then take in the details” 
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(P11). P12, who had previous experience with KNFB, also stated: “I like that the text 

is immediately available to use for other purposes […] I can go back and review the 

text letter by letter if I need to.”  The average reading time was only 187 seconds for 

the first document and 146 seconds for the second, even with the two attempts that 

participants were allowed, as compared to an average time of 772 seconds to complete 

the reading task with HandSight (Tables 4.5 and 4.6).  

Although participants preferred KNFB Reader iOS overall, the process of 

capturing an image was not always straightforward without the document-framing 

guidance. P11, for example, said: “It was easy to read it once you got it right, but it 

was difficult to center [the camera] in order to get the whole text” (P11); see Figure 

4.12 for examples of images captured by participants during this study. With the 

Participant Identifier 
Document 1: Number of Attempts 
Document 2: Number of Attempts 
Document 1: Total Time (s) 
Document 2: Total Time (s) 
Document 1: Text Lost (%) 
Document 2: Text Lost (%) 
Comprehension Questions Score 

P10 P11 P12 P19 Mean 
2 2 1 2 N/A 
2 2 1 2 N/A 

230 198 93 225 187 
138 219 89 137 146 

29.7% 48.6% 0.4% 10.4% 22.3% 
51.5% 0.0% 0.0% 51.5% 25.8% 

1/3 3/3 3/3 3/3 2.5/3 

Table 4.6: Performance metrics from the KNFB Reader iOS reading tasks. The amount of text 
lost includes both cropped and misrecognized words, and the percentages indicate the best 
performance out of the two attempts participants were allowed for each document. 

(a) (b) (c) (d) 
Figure 4.12: Examples of cases where the KNFB Reader iOS application failed to fully capture 
the content of a document due to partial visibility or excessive rotation. 
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exception of P12, all participants required a second attempt to capture each document, 

and even with a second attempt part of the document was frequently omitted. Although 

accuracy varied across participants and attempts, approximately one quarter of the 

documents’ content was missed on average (see Table 4.6). 

Document comprehension appeared to be similar to reading with HandSight, 

with three participants answering all comprehension questions correctly (Tables 4.5 

and 4.6). However, even when participants were able to understand the main points of 

a document, the reading experience was not always smooth due to missing text: “It's 

not always easy to know if I have the entire page. That was a problem with the first test 

document. While it was still understandable, I clearly lost some of the text” (P12). 

Summary of Study II Findings. While this study was not meant to be a 

controlled comparison of finger-based reading versus a mobile scanner, it offers some 

guidance for future studies. HandSight provided more immediate access to text content 

than KNFB Reader iOS but was much slower and was perceived as requiring a greater 

level of concentration. Once the document was successfully scanned, KNFB Reader 

iOS offered a faster and smoother reading experience and was preferred by all 

participants. HandSight provided additional information about the spatial layout of 

documents, but further investigation is needed to determine the impact that may have 

on document understanding. 
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4.3 Discussion 
Our findings highlight tradeoffs between haptic and audio directional guidance for 

finger-based reading. We also reflect on the feasibility of finger-based reading 

compared to existing methods, and outline ideas for iteration on HandSight’s design. 

4.3.1 Audio versus Haptic Directional Guidance 

For blind users, effective finger guidance is critical for line-by-line reading, and 

therefore directly impacts the feasibility of the finger-based reading approach. 

Although there were few statistically significant differences between audio and haptic 

finger guidance in Study I, some tradeoffs emerged. For the magazine documents, 

audio guidance resulted in significantly more accurate line tracing than haptic 

guidance. The exact cause is unclear. To scaffold participants in learning how to do 

finger-based reading, we always presented plain documents before the more complex 

magazine documents. That audio was more accurate than haptic for the magazine 

document thus suggests that haptic may have a steeper learning curve, participants have 

become desensitized to the haptic vibration over time, or that haptic is somehow not as 

effective with complex document layouts.  

In terms of subjective responses, our findings reflect the conflicting results seen 

in prior work [189,190,199]. Out of 19 participants, 11 preferred haptic, 7 preferred 

audio, and one was undecided. One downside of the audio guidance is that it occupies 

the same channel as the speech output, which made it difficult for some participants to 

concentrate on the text-to-speech synthesis. Twelve participants, half of whom even 
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preferred audio guidance, commented on this issue. For haptic guidance, the potential 

issue of desensitization or numbness arose even in this short study, suggesting that a 

longer-term evaluation will be important. 

We also encountered disagreement over how audio and haptic cues should map 

to up/down direction, which could have impacted results. The mappings used in our 

studies were the result of pilot testing and our experiences in [199]. For audio, we used 

high pitch to indicate that the finger should move up and low pitch for down. For haptic, 

the vibration motor on the underside of the finger indicated downward movement, 

while the top vibration motor indicated upward movement (in essence, pulling the 

finger). While the majority of Study I participants were satisfied with these mappings, 

4 felt audio should be reversed and 3 felt haptic should be reversed. More work is 

needed to identify which mapping is best for both audio and haptic, or whether 

additional training time would mitigate the issue. Ultimately, this setting may need to 

be user-configurable. Future work should also investigate alternative feedback 

approaches (e.g., the pitch of the speech synthesis could provide directional guidance). 

4.3.2 Feasibility of a Finger-Based Reading Approach 

We had expected a finger-based reading approach such as HandSight or Shilkrot et 

al.’s FingerReader [189,190] to offer many advantages over mobile-based scanners for 

reading printed text: access to spatial layout information, direct as opposed to 

sequential access to text on the page, reduced camera framing issues, and, compared to 

crowdsourced approaches (e.g., [11], BeMyEyes), real-time OCR. However, while we 
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observed some of these advantages, important concerns also arose. Here, we reflect on 

the feasibility of finger-based reading, incorporating ideas for future work throughout. 

Document Layout and Spatial Awareness. A primary motivation for 

investigating HandSight’s finger-based reading approach was to provide users direct 

access to spatial layout information. Our exploration mode provided audio cues to 

indicate text, pictures, or white space beneath the user’s finger. While four participants 

in Study I commented positively and unprompted on this information, one participant 

was strongly against the idea, feeling that software that could automatically process a 

document’s layout to extract content would be preferable in most situations. The 

difficulties encountered by the participant who was removed from our dataset in Study 

I also highlight an unexpected but important potential for confusion: some users, 

particularly those who are congenitally blind, may have an inaccurate or incomplete 

understanding of basic document structures (e.g., columns, margins) simply because 

they have never encountered them. In that participant’s case, he was not familiar with 

the notion of columns, which led to confusion. Future work should explore the 

relationship between a user’s spatial abilities and their proficiency in exploring a 

document or responding to finger guidance. 

While exploration mode helped participants understand a document’s layout 

(e.g., number of images), distinguishing a gap between paragraphs versus columns was 

particularly challenging. Both types of gaps were indicated by white space, but 

participants were frequently unable to determine whether the white space occurred 

between two paragraphs or between two columns. We intended for paragraph gaps to 
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be distinct from column gaps by the direction in which the finger is moving—vertically 

for paragraphs or horizontally for columns. However, without sight, many participants 

tended to move their finger more diagonally, drifting accidentally between paragraphs 

and columns. This challenge could be addressed by designing cues to identify the 

horizontal and vertical edges of a block of text. 

Finally, we did not evaluate the potential utility of layout information for blind 

readers. And, arguably, for half the documents we used (the plain text documents), 

spatial information offered little benefit. The finger-based reading approach may be 

more beneficial for other types of documents, particularly those with inherent spatial 

characteristics such as maps or graphs. 

Cognitive Load and Physical Effort. Our studies indicate that line-by-line 

reading incurs high mental and physical effort. The reader must simultaneously attend 

to directional guidance, document events (e.g., start and end of line), and the 

synthesized speech content. Study II, in particular, highlighted the increased 

concentration and physical dexterity required to use HandSight compared to KNFB 

Reader iOS. This issue of physical effort confirms previous findings from a much 

smaller study (3 participants) [190]. With more practice, HandSight should not require 

as much effort to use, and, if the technology provides enough benefit, the need for this 

practice is not necessarily a barrier to adoption—braille and the Optacon [76,138], for 

example, require extensive practice. However, a multi-session study would be needed 

to assess just how much practice is needed and how efficiently experienced users can 

read with a finger-based approach. 
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Camera Placement. Whether they use crowdsourcing or automated OCR, both 

mobile document scanning approaches (e.g., KNFB Reader iOS) and body-mounted 

solutions (e.g., OrCam) require a global image of the document, properly aligned and 

in focus within the camera’s field of view. All participants in Study II reported at least 

some difficulty with this type of image capture using KNFB Reader iOS, but we had 

not introduced them to KNFB’s document-framing feature. That feature, along with 

findings from blind photography research (e.g. [36,86,213]), should help overcome the 

issue. The global image captured by KNFB also allowed for more fluent text-to-speech 

than with HandSight, which participants valued. At times, however, our own use of 

KNFB Reader iOS and observations of participants showed that this fluency can 

provide a false sense of confidence. That is, it is not always clear from the speech output 

if a part of the document is missing or the application has parsed and played text blocks 

in the wrong order. 

HandSight’s finger-mounted camera and direct control over text scanning and 

speech playback may overcome these issues to some extent, but Study II showed it also 

introduces new camera placement challenges. For example, participants frequently 

encountered difficulties tracing lines near the upper and lower margins because the 

system could not provide directional guidance when no text was visible.  

Future work could explore hybrid methods that may combine a body- or head-

mounted camera with a finger-mounted one, potentially overcoming the weaknesses of 

each and supporting a wider range of reading situations. A body-mounted camera could 

capture complete documents and allow for efficient, fluent reading using a screen-
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reader interface and relative exploration of content (e.g., swipes). At the same time, the 

finger-camera interface could provide knowledge about the document layout, acting as 

a cursor to quickly search through the content or provide contextual information. It 

would be useful to compare how well access to both types of interaction works 

compared to only the global, relative interaction or the finger-based interaction. 

Physical Design and Social Acceptability. Physical design and social 

acceptability influence the adoption of wearable technology [169,175,176]. While our 

early HandSight prototype is bulky, future versions could be substantially reduced in 

size since the underlying technology (i.e., the endoscopic camera) is extremely small. 

Still, whether blind users are interested in wearing a finger-mounted device for 

accessibility is an open question. Social acceptability could also change how users feel 

about the haptic line guidance compared to the audio guidance in practice. The majority 

of users preferred haptic guidance in Study I, but even in future iterations of the 

physical design, the haptic vibration motors would likely add bulk compared to audio 

alone. These issues are not unique to HandSight, and the question of where users will 

feel most comfortable having a camera mounted on their body (if at all) should be 

explored in future work. 

Target Users. While our prototype was designed to support totally blind users, 

the question of who may benefit most from a finger-based reading approach remains 

open. Low vision users, for example, may benefit from the direct access and physical 

gestures that a finger-based reading approach provides, without finding the line tracing 

as time consuming as for a totally blind reader. We recruited one low vision pilot 
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participant, who experienced no difficulties with describing the layout of the document 

or with line finding and line tracing. The device could then act as a more portable 

alternative to closed-circuit television (CCTV) magnifiers, automatically processing 

the words and providing additional information about the text upon request (e.g., font, 

spelling). Further investigation, however, is needed to explore this possibility and how 

it is received compared to commonly used magnifiers. 

4.3.3 Design Iteration 

In addition to the future work mentioned above—such as investigating the utility of 

spatial layout information, conducting a longer-term study, and evaluating HandSight 

with low-vision users—our findings lead to several design revisions that may improve 

blind users’ experience with HandSight. 

We designed the speech interface to adapt to the user’s finger speed to easily 

control the rate of feedback. Some participants liked this feature, but others found it to 

be uneven when compared to the continuous speech feedback of screen reader software, 

noting that it was difficult to identify the end of a sentence. More fluid speech feedback 

and additional audio cues to mark punctuation could ease the reading experience. 

An important observation from Study II is that a finger-based reading device 

should provide an easy way of determining when text is no longer contained within the 

camera’s field of view. Participants occasionally confused situations where the system 

could not provide guidance (not enough text in the frame) with being correctly centered 

over the current line and not receiving directional feedback. To address this issue and 
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provide users with more information while reading, document exploration and reading 

modes could be integrated. In doing so, however, we must take care not to further 

increase cognitive load and distract from the content of the text. 

To reduce the image capture issues seen in Study II, another possibility is to 

redesign the physical prototype to either move the sensor farther away from the text (as 

with FingerReader [189,190], which is on the upper part of the finger) or to use a wide-

angle lens. These options could expand the camera’s field of view, for example, 

allowing users to drift farther away from a line before the text is lost. 

Finally, our prototypes only allowed users to continue reading forward and did 

not support backtracking, rereading, or jumping to an arbitrary location in the text. 

Study I focused on sequential line-tracing guidance, but it would be interesting to 

implement and evaluate these additional reading actions. 

4.3.4 Limitations 

Using an iPad rather than a physical prototype to compare haptic and audio line 

guidance in Study I was a conscious study design choice, allowing us to bypass 

technical challenges in implementing a real-time prototype and to focus on the user 

experience and collect precise line traces. A limitation of this choice, however, is that 

the experience of reading with a physical prototype and paper may be different. As 

well, the font size and document layout for Study I were constrained to two specific 

formats, which do not fully represent the variety of real-world documents that users 

may encounter. In Study II, an important limitation of the proof-of-concept prototype 
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is that we assumed that the content of the page was known prior to beginning reading 

and constrained the system to allow participants to read text sequentially from left to 

right and top to bottom. These choices simplified how the system provided finger 

guidance—it only needed to estimate the finger location on the page and provide 

upward or downward guidance to return to the last known line. However, these artificial 

limitations also disregarded some of the potential advantages of a finger-based reading 

approach, such as re-reading or jumping to arbitrary locations. We also asked 

participants to hold their hand in a specific position for Study II, constraining their 

natural behavior when using a device such as ours. Study II was not meant to offer a 

controlled comparison of KNFB Reader iOS and HandSight, but limitations even for 

gathering exploratory feedback include that we did not evaluate the document framing 

feedback of KNFB Reader iOS, and that only one participant had previous experience 

with KNFB Reader iOS (all 4 had used finger-based reading). While a more controlled 

comparison is thus needed, it is important to note that participants still identified many 

strengths of KNFB Reader iOS. Finally, while we focused on blind readers, it would 

be interesting to expand the evaluation of finger-based reading to users with a wider 

range of visual abilities. 

4.4 Summary 
We conducted an in-depth study with 19 blind participants comparing audio and haptic 

cues for directional guidance to support finger-based reading. Our findings showed 

similar performance and user preference between the two types of guidance, although 
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audio resulted in significantly more accurate line tracing for some tasks. Subjective 

feedback was split but suggests that haptic guidance may be slightly preferred. In 

addition, our findings highlighted general strengths and weaknesses of a finger-based 

reading approach, such as improved understanding of a document’s layout and the 

difficulty encountered by blind users in accurately tracing a line of text with a finger. 

In follow-up sessions where 4 of the participants used a proof-of-concept finger-

reading prototype as well as KNFB Reader iOS, the mobile scanner was seen as 

offering a more fluent reading experience. Ultimately, a finger-based reading approach 

may be best suited to material that is inherently spatial, such as maps or graphs, whereas 

existing applications that capture a global image of the document for text-to-speech 

(e.g., KNFB Reader iOS) may be preferred for text-heavy material. Future work should 

investigate this possibility, as well as assess the potential of finger-based reading for 

low-vision users, for whom precise directional finger guidance may not be necessary. 
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Chapter 5: Augmented Reality Magnification for Low 
Vision Users 

Our work thus far has focused on helping users who are totally blind to read printed 

materials, but a similar device could also benefit low vision users without the need for 

complex audio and haptic guidance. Furthermore, the ability to provide visual feedback 

alongside the other channels opens up a new realm of design possibilities. This chapter 

explores recent advancements in augmented reality (AR), which have the potential to 

increase the quality of life for people with visual impairments. For low vision users, 

head-mounted displays (HMDs) that enhance existing visual capabilities are 

particularly promising. For example, ForeSee [235] used an Oculus Rift VR headset 

with an attached camera to magnify and enhance text content, and other researchers 

used Google Glass to enhance edges within the wearer’s field of view [82] or display 

magnified content from a smartphone screen [170]. Several commercial HMDs (e.g., 

eSight [238], NuEyes [239], IrisVision [240]) display magnified video captured from 

a head-mounted camera, and provide image enhancement features such as contrast 

adjustment. A recent study investigating the use of one of these systems (eSight) was 

generally positive, showing the impact HMDs can make in users’ lives [237]. 

While these systems have begun to explore how HMDs and wearable cameras 

can be used to augment visual perception, they are limited to enhancing and/or 

magnifying the 2D image from a video camera. In contrast, the classical definition of 

This chapter contains work scheduled to be published in the proceedings of the 20th International ACM 
SIGACCESS Conference on Computers and Accessibility (ASSETS 2018) [200]. 

97 



 

 
 

 
 

 

 

    

  

  

 

 

  

 

 

 

    

  

 
  

 
    

AR integrates 3D virtual objects into the 3D physical environment [10], which would 

allow for new visual enhancement possibilities that are better integrated with the user’s 

real-world tasks. For example, a magnified view of an object can be rendered directly 

on top of the real object, fixed to a desk near the user’s primary work focus, or 

“projected” on a nearby wall. Off-the-shelf technologies such as the Microsoft 

HoloLens [241], an optical see-through display, are beginning to have the capability to 

support these types of 3D AR designs. 

To investigate the design possibilities for AR magnification tools enabled by 

registering virtual content in real 3D space, we conducted a series of iterative design 

sessions with seven low-vision participants. We developed initial prototype designs on 

a Microsoft HoloLens, which we presented to participants to solicit feedback and open-

ended ideas about future wearable magnification aids. Our designs explored several 

different virtual display options (e.g., affixed to real objects vs. moving with pointing 

finger), image acquisition approaches (head-mounted, finger-mounted, or smartphone), 

Figure 5.1. Prototype AR Magnification system using a 
transparent HMD (the Microsoft HoloLens) and a handheld 
smartphone (iPhone X) as a camera and input device. 
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and interaction techniques (e.g., Figure 5.1). The designs were updated between 

sessions based on participant feedback as well as our own observations.  

Overall, participants liked the concept of a wearable AR magnification aid, 

especially the natural reading experience and ability to multitask that the projected 3D 

renderings enabled. At the same time, our system presented some difficulties compared 

to participants’ existing magnification aids. We discuss these issues along with 

potential solutions and design implications. 

Our contributions include: (i) an exploration of the design space for augmented 

reality magnification; (ii) proof-of-concept implementations evaluated and refined 

through iterative design with low vision users; and (iii) common themes and 

recommendations that should inform the design of future AR vision enhancement aids 

for low vision users. 

5.1 A Design Space for Magnification Aids 
To inform the design of an AR magnification aid for low vision users, we first outline 

our goals and key design dimensions for mobile and/or wearable magnification aids. 

5.1.1 Design Goals 

Informed by prior work, existing commercial systems, and our own experience working 

with initial AR prototypes, we formulated the following design goals for our study: 
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• Augment rather than replace. Whenever possible, avoid interfering with the 

user’s existing vision capabilities. Provide enhanced content alongside the real 

world with easy controls to hide or reposition the digital information as needed. 

• Leverage augmented reality. Go beyond the static 2D displays provided by 

existing systems and explore applications for persistent digital content overlaid 

in 3D onto the physical world. 

• Prioritize customization and flexibility. To support a wide range of vision 

levels and different situations, the ability to customize how the enhanced 

content functions and appears is crucial [92]. 

5.1.2 Design Dimensions 

To achieve these goals, we considered several design dimensions in addition to virtual 

display position, our primary dimension of interest: 

• Virtual display position. The ability to anchor virtual content to a physical 

location in 3D space enables several possible virtual display designs. 

Specifically, we explore four positions. The first, simplest position is a fixed 

heads-up display that moves with the user’s head to always stay within their 

field of vision. The second position is a stationary display attached to a location 

in the physical world, which maintains its position as the user moves. The third 

option is a dynamic display that acts as a magnifying glass and follows the 

user’s hand or other moveable object (e.g., a ring or smartphone). Finally, the 
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fourth position projects an image directly onto the physical object that is being 

enhanced (e.g., a magnified view shown atop a document). 

• Content capture. To capture video for processing and display, possible camera 

locations include head-worn (e.g., [159,235,238–240]), hand-held (e.g., [242– 

244]), and finger or wrist-worn (e.g., ring or smartwatch; [190,194,197]). We 

explore these options and discuss the advantages and disadvantages of each. 

• Image enhancements. To support a range of vision levels, important 

enhancements include magnification, changes to brightness and contrast, binary 

thresholding, and color alterations (e.g., as described in [235]). Although not 

the focus of our study, optical character recognition could also be useful, either 

to read text aloud or to visually enhance the detected text by increasing the 

resolution or replacing fonts. 

• Physical HMD. Several display types have been explored previously. 

However, an optical see-through display and 3D sensing capabilities are needed 

to achieve our design goals, making the Microsoft HoloLens the obvious choice 

at the time this research was conducted. The HoloLens allowed us to rapidly 

prototype and iterate on AR designs; however, we fully expect that future 

HMDs for AR will be more streamlined, lightweight, and portable (e.g., 

integrated into traditional glasses). 

• User input. To support our goal of customizability and flexibility, the AR 

system needs to provide intuitive and easy-to-use interactive controls. A few 
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options include physical controls on the device or a separate remote (e.g., eSight 

[238], Glass [56]), gaze tracking, midair gestures, and voice commands (e.g., 

OrCam [159], HoloLens [241]), or 3D tracking of a physical object (e.g., 

Oculus Rift controller [245]). We explore a few of these options to see how well 

they work for low vision users and in different situations. 

5.2 Iterative Design of a Prototype System 
To explore these design dimensions and evaluate which designs and features would 

work best for low vision users, we conducted a series of iterative design sessions. These 

sessions were structured to elicit general feedback and open-ended design ideas from 

participants, drawing on elements of cooperative [58] and participatory [185] design 

methodologies. Based on ideas from existing magnification aids, knowledge of 

available hardware capabilities, and our own experience working with low vision users, 

we developed an initial prototype system that implemented several user interface 

designs. We then asked participants to use the system and provide feedback, refining 

our design over nine design sessions with seven unique participants (two participants 

returned for a second session). While we modified the system between sessions to fix 

issues and make minor improvements, for ease of presentation, we group our 

prototypes into three basic designs based on the broad design elements, components, 

and user interactions. 
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5.2.1 Initial Investigation: HoloLens Only 

Our initial design used only the HoloLens headset. As mentioned earlier, the HoloLens 

includes an optical see-through display on which translucent virtual objects 

(“holograms”) can be overlaid in real 3D space. The estimated field of view is 30° × 

17.5° with 2500 light points per radian. Microsoft’s APIs include motion tracking and 

3D scene analysis functions that allow developers to anchor digital content to a physical 

location in the world so that it will remain stationary as the user moves. The APIs also 

support input using midair gestures, the direction the user’s head is pointing, and voice. 

This initial prototype used the HoloLens’s built-in camera to capture images of 

what the user looked at and provided two modes for displaying an enhanced version of 

those images: fixed 2D and fixed 3D. While we describe these display modes in more 

detail in the next section, the fixed 2D display moved with the user’s head to always 

remain within view while the fixed 3D mode was anchored to a surface in the physical 

world. Users could toggle between modes using voice commands and two image 

enhancement options were provided: binary thresholding (black text on a white 

background) and color inversion. 

While this initial design was functional, internal testing revealed that the 

HoloLens’ built-in camera resolution was simply too low to be useful when magnified. 

Additionally, requiring users to turn their head to look at desired content for 

magnification was uncomfortable, and the voice commands were cumbersome and 

imprecise. We used these observations to develop the next iteration of our prototype, 

which was the first to be tested with low vision participants. 
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Figure 5.2: First AR magnification prototype system design: (a) full system with the 

HoloLens, (b) close-up of the finger-worn camera 

5.2.2 Prototype 1: HoloLens and Finger-Worn Camera 

To address the issues observed in our initial investigations and to expand on our design, 

we added an external camera, implemented two additional display modes and more 

customization options, and replaced the voice commands with a virtual menu 

controlled using midair gestures. We then conducted design sessions with three 

participants, making minor changes to the system between sessions based on feedback 

(e.g., modifying the perceptual distance at which the AR displays were drawn, 

simplifying and polishing user input). 

Implementation Details 
Below we describe the prototype’s components and physical design, the four display 

modes, and the user interactions.  

Hardware and Physical Design. This prototype used an external camera24 

mounted on the user’ finger using a custom 3D-printed ring with Velcro straps and an 

24 Awaiba NanEye GS Idule Module, 640×640px, 30° FoV 
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LED to provide consistent lighting (Figure 5.2). The camera provided a close-up view 

of the target content and allowed the user to read without needing to frame the text 

within the head-worn camera’s field of view. As discussed earlier, similar wearable 

cameras have been used for other assistive devices [146,190,198,203], albeit primarily 

for people with more severe visual impairments. We used a laptop computer to capture 

and process images from the camera, which we streamed wirelessly in real-time to the 

HoloLens for display. 

Virtual Display. To elicit feedback on a range of AR display designs, we 

implemented four options for displaying the enhanced view from the camera, including 

the two explored in the initial prototype (Figure 5.3 and video figure): 

• Fixed 2D: This design displayed the image at a fixed location relative to the 

user’s head, with the display within the user’s view at all times. This design is 

similar to past work using HMDs for visual enhancement (e.g., [82,235,238]), 

and it is possible to implement on more basic HMDs such as Glass. 

• Fixed 3D Vertical: This design allowed the user to place the enhanced view 

from the video camera at a fixed position in the physical world. The display was 

(a) Fixed 2D (b) Fixed 3D (Vertical) (c) Fixed 3D (Horizontal) (d) Finger Tracked 
Figure 5.3: Prototype 1 provided four virtual display modes, which could be customized 
(position, size, zoom) using midair gestures. See the accompanying video figure for a 
demonstration: https://youtu.be/i0IDbHGir-8. 
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oriented vertically, allowing for placement on a vertical surface like a wall. It 

remained at the fixed location as the user turned their head or moved around.  

• Fixed 3D Horizontal: This design was similar to Fixed 3D Vertical but was 

oriented horizontally so it could be placed on a tabletop or other flat surface.  

• Finger Tracked: In this design, the display was oriented vertically above the 

user’s finger and moved along with the user’s hand like a magnifying glass. 

Because the HoloLens APIs could not detect the user’s hand when touching a 

page, we used a simple image processing technique to detect the bright LED 

from the finger-mounted camera and position the display near it. 

As with the previous prototype, the system provided image binarization and color 

inversion features, which participants could use as desired. The brightness of the LED 

and the HoloLens display could also be adjusted. 

User Interactions. Because voice commands proved too limiting for the 

variety of customization options we wanted to support, we used the gesture recognition 

capabilities provided by the HoloLens to allow users to adjust the display’s position, 

size, and zoom level. Users opened the virtual menu using the default HoloLens “air 

tap” gesture, and selected from three options (position, size, or zoom level) by turning 

their head to position a cursor atop the desired item and then performing another air tap 

gesture. To move or adjust the display, users performed a “manipulation” gesture, first 

lowering their index finger, moving their hand in any direction, then raising their finger 

again once satisfied. 
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The first two VI participants found these interactions to be difficult, so we 

reduced the number of menu items (leaving only position and size) and added remote 

controls to allow us adjust settings as directed by the participant if needed. 

Design Sessions 
Three participants used our first prototype, comparing the display modes and 

discussing the overall idea of augmented reality vision enhancement. 

Participants. We recruited three participants who used a CCTV or other 

magnification aid in their daily lives (two male, one female, age range 28–54). The 

cause and severity of participants’ visual impairments varied (Table 5.1). 

Methods. After an open-ended interview to collect demographic information 

and participants’ experience with magnification aids, we introduced our system and 

demonstrated its features. Participants then used each of the four display modes in a 

partially counterbalanced order (using 3 out of 4 orders from a balanced Latin square) 

to read text on a variety of objects, including simple printed documents as well as mail, 

a pill bottle, and a box of cereal. After each mode, participants provided feedback on 

their likes and dislikes for that particular mode, as well as thoughts about the 

ID S1 S2 AgeGender Diagnosis Visual Acuity Visual Field (self reported) 

P1   28 M LHON 20/400 or 20/450 Limited central vision 
P2  46 F Retinitis pigmentatosa Low vision (acuity unknown) Limited 
P3   54 M Optic atrophy (meningitis) 20/200 Full 
P4  29 F Tumor Low vision (acuity unknown) None in left, tunnel vision in right 

P5  58 M Cone-rod dystrophy Light and shapes (acuity Limited central vision unknown) 
P6  33 F Oculocutaneous albinism 20/400 in good lighting Full 
P7  68 F High myopia 20/400, better in ideal conditions Full, but better peripheral vision 

Table 5.1: Demographic information for the participants across all co-design session. Columns 
“S1” and “S2” indicate participation in sessions with prototype 1 and prototype 2, respectively. 

107 



 

 
 

 
 

 

 

 

 

 

  

  

  

 

 

 

 

   

 

 

  

 

  

 

  

customization options. At the end of the study, we asked about experiences using the 

system and which display modes were most and least preferred, discussed the overall 

design of the system, and elicited suggestions for improvements and new features. Each 

session lasted approximately two hours, and participants were compensated $60 for 

time and travel costs. 

Overall Response and Display Modes. The participants each used the system 

to read the provided materials, with varying levels of success. P1 and P3 reacted 

positively to the concept of a wearable AR magnifier. P1 commented: 

“If there was something I could just wear and then be able to see 

something better, point the camera at it and then have it right there in 

front of my eyeball then I would use that all the time… You could certainly 

do many things that you’re not able to do by yourself at this point.” 

Both P1 and P3 observed advantages to the 3D design elements incorporated 

into three of the display modes. They considered the two fixed 3D display modes to be 

more like the reading experience with a CCTV or handheld magnifier than the other 

two designs, while the dynamic finger tracking design could potentially help to quickly 

locate a particular location in a document. 

Overall, P1 preferred the two fixed 3D designs (either vertical or flat) because 

they were steadiest and easiest to read, while P3 preferred the fixed 2D design because 

it was always visible and required the least concentration to use. In contrast to the other 

two participants, P2 found the reading process too difficult and did not see advantages 
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to the AR magnification approach, stating that she would prefer to use audio output 

from a screenreader for most reading tasks. 

All three participants disliked the dynamic finger tracking display, primarily 

due to technical issues with our implementation. This design required participants to 

turn their head to look directly at their finger, which had two problems: first it was 

uncomfortable and required additional concentration to keep their finger always within 

the HoloLens camera’s field of view, which interfered with the reading experience. 

Second, the bright LED reduced the contrast of the virtual display and made it more 

difficult to read the enhanced text. Interestingly, P1 also found the Fixed 2D display to 

be difficult to use because its perceptual distance was fixed too far away—we made 

this setting adjustable for future participants. 

Finger-worn Camera. Perceptions of the finger-worn camera were also mixed. 

The wearable camera allowed for hands-free use, and separation from the display 

allowed participants to find a comfortable reading position. However, participants 

disliked the need to move their finger to read (P2) or found it difficult to move from 

one line to the next for longer passages (P3). The biggest limitation was the small field 

of view due to the camera’s proximity to the page—each image contained only 3–4 

lines of text and a few words across. This problem was compounded by the limited 

field of view of the HoloLens, which when magnified to a readable size sometimes 

meant that participants could only fit a word or two on the display at a time. All three 

participants mentioned that their existing magnification aids had a similar problem, but 

also stated that our system was worse in its current implementation. 
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The HoloLens Device. Participants’ other feedback about the prototype system 

primarily centered around limitations of our chosen hardware, especially the physical 

size, weight, and display contrast. Contrast was a source of difficulty for all three 

participants, to varying degrees. Images displayed on the HoloLens screen are 

translucent, which meant that text could be difficult to recognize depending on the 

background imagery. This issue was addressed somewhat by lowering the room 

lighting or moving the display so that it was positioned over a flat, high-contrast surface 

(e.g., a white wall or black screen). As mentioned above, the bright LED interfered 

with reading, so the participants mostly positioned the virtual displays so that they were 

not looking directly toward it. Even with these measures, P2 was unable to successfully 

use the system to read because of how the HoloLens display functioned, only able to 

make out a few scattered words and letters. This finding fits with previous mixed results 

using optical see-through displays for low vision users [234], and suggests that the 

HoloLens may work better for some types of visual impairment than others. 

User Input. While P1 and P3 were able to use the midair “air tap” gestures to 

adjust the display, all three participants found the gestures to be cumbersome and 

difficult to use. We frequently needed to assist with changing settings. Because of these 

difficulties, participants may not have fully customized the system to meet their specific 

needs. Additionally, the combination of the slow input and the camera’s physical 

positioning meant that participants could not quickly adjust the magnification level to 

help with locating the start of a new line or another desired location in a document. 
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Technology Comparisons. When asked to compare the device with their 

existing magnification aids, all participants stated that the current version was less 

convenient, primarily due to limitations with the physical hardware. However, if those 

issues could be solved, one participant stated: 

“In comparison to the portable CCTV I have or the full size one, this 

would be something you could wear and take with you… If you just have a 

pair of glasses that could essentially do the same thing [as a phone] then I 

would probably use that even more than my phone.” (P1) 

Summary. Two participants reacted positively to the idea of AR magnification 

and observed potential advantages to our 3D display modes. Hardware and user 

interface issues—especially the field of view, image contrast, and midair gestures— 

limited the usability of our prototype, with one participant unable to use the system to 

read at all. Despite these issues, the overall concept showed promise. 

5.2.3 Prototype 2: HoloLens and Smartphone 

To address these Session 1 study findings, we redesigned several aspects of our system 

(detailed below). We then recruited six participants for further design sessions using 

the updated prototype. 

Implementation Details 
Below we describe changes to the prototype’s components and physical design, display 

modes, and new user interactions. Figure 5.4 shows the updated prototype in action. 
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Figure 5.4: Second prototype AR magnification 
system using the HoloLens and a hand-held iPhone X. 

Hardware and Physical Design. Because the finger-worn camera had a 

narrow field of view and required manual focus, we decided to instead experiment with 

a handheld smartphone camera (an iPhone X). The smartphone is heavier than the 

finger-worn camera and does not allow hands-free usage—a feature of the previous 

design that participants found appealing—but the change allowed us to use a higher-

quality camera with built-in processing and wireless communication capabilities. In 

particular, the camera’s high resolution and autofocus allowed users to easily control 

the amount of text captured by moving the phone toward or away from the page. Users 

could also adjust the brightness of the phone’s camera flash LED to help with contrast. 

We imagine that a future wearable device (e.g., ring or smartwatch) could incorporate 

these features as well, if they proved useful for applications like this one. 

The use of a smartphone also enabled several new user interactions to control 

the display settings using the touchscreen and motion sensors, which we discuss below. 

The phone connected wirelessly with the HoloLens to stream video, touchscreen 

gestures, and 3D motion data. 

112 



 

 
 

 
 

 

  

    

    

 

  

  

  

     

 

 

  

   

  

  

  

 

   
  

     

(a) Attached to Headset (b) Attached to World (c) Attached to Phone 
Figure 5.5: Prototype 2 provided three virtual display modes, which were refined versions of 
the four included with Prototype 1. See the accompanying video figure for a demonstration. 

Virtual Display. Our updated prototype provided three display modes (Figure 

5.5; video figure), which were refined versions of the four tested previously. We 

differentiated the modes by the object to which the display was attached: 

• Attached to Headset. This display mode was based on the Fixed 2D mode 

described previously, but with finer-grained control over the relative position 

and angle of the display. Users could place the display at a location in front of 

them, and it would move and rotate with them as they turned their head or 

moved their body, always maintaining the same relative position. 

• Attached to World. This mode combined the two Fixed 3D designs from the 

previous study into a single flexible approach that allowed users to position the 

display in the physical world at any location and angle. As with the earlier 

designs, the display remained fixed at that physical position as the user moved.  

• Attached to Phone. This mode functioned similarly to the Finger Tracked 

design from the previous prototype. It positioned the display atop the 

smartphone and the display moved as the user moved the phone, acting like a 

magnifying glass but with an arbitrarily large virtual display. Users could 

reposition the display—for example, so that it would be vertical while they held 
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the phone horizontally—but the display would always move to maintain the 

specified position and rotation relative to the phone.  

Aside from the three display designs, we also provided controls for users to 

adjust the image colors and contrast. As before, we made changes to our designs 

between sessions. For example, in addition to the black and white color inversion 

options included for the previous prototype, at the request of P4 we implemented 

standard white/blue, yellow/blue, grayscale, yellow/black, and red/black filters 

provided by other digital magnifiers. To address comments from P1 and P3, who were 

the first to try the new prototype, we also added a “freeze frame” mode which allowed 

users to press a button to stop the video capture and send a full-resolution photograph 

to the HoloLens for display. Users could then control the image size and position on 

the AR display as before, but without needing to hold their phone above the target 

content while reading. 

User Input. Touchscreen controls were used for most input (Figure 5.6), 

including: double-tapping to open the display mode menu, tapping to select buttons on 

the screen, pinching to control the size of the virtual display, and sliding to move the 

display during “freeze frame”. 

To control the display’s 3D position and rotation, we implemented a motion 

tracking feature using the iPhone’s built-in ARKit APIs [246]. The API provides 

functions to track the phone’s 3D pose relative to its starting location, which we stream 

to the HoloLens and use to position and rotate the virtual display. Because the iPhone 

and HoloLens had different internal 3D reference frames, we manually initialized the 
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Figure 5.6: Touchscreen controls on the iPhone prototype. Left to right: main screen, display 

mode menu, text colors menu. 

transformation between the two at the start of each session using a simple procedure 

that required visually positioning the phone atop a virtual representation. This 

procedure is overly simplistic, and a more robust method will likely be necessary for 

long-term use. However, it proved sufficiently reliable for the duration of our study. 

Users could move the phone to position the virtual screen as desired for each of 

the three display modes. In both the Attached to Headset and Attached to World modes, 

users pressed a finger firmly on the screen until the phone vibrated, moved the virtual 

screen to the desired location (3D position and rotation), then released their finger after 

they were satisfied with the 3D position and rotation. The interaction was slightly 

different for the Attached to Phone mode, with users first moving the phone to where 

they wished the screen to be located, then pressing firmly and moving the phone to 

where they wished to hold it while reading. After lifting their finger off the touchscreen, 
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the virtual screen maintained the offset between the initial and final positions as they 

continued to move the phone. 

Design Sessions 
Six participants tested our updated prototype, comparing the display modes and 

providing general feedback as well as open-ended suggestions about their ideal 

magnification aid. 

Participants. We recruited six people with visual impairments (3 male, 3 

female, ages 28–68) to participate in design sessions with our updated prototype. P1 

and P3 returned from the previous sessions, while four participants had not used our 

prior prototypes. As with the previous co-design sessions, the cause and severity of the 

participants’ visual impairments varied (Table 5.1) but all participants regularly used 

some type of magnification aid. 

Methods. The user sessions were structured similarly to the previous ones. 

Participants were introduced to the updated prototype and allowed time to explore the 

options while reading a simple document. After becoming comfortable with the 

controls, participants then used each of the three display modes in a fully 

counterbalanced order to read text on a variety of objects, including simple printed 

documents, magazine articles, mail, and product labels (e.g., box of cereal, pill bottle). 

After each mode, participants provided feedback on what they liked and disliked. The 

session closed with a discussion of participants’ overall experience using the system, 

preferred display modes, and feedback on the system and AR magnification in general, 

as well as participants’ envisioned ideal magnification aid. As with the previous stage, 
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sessions lasted approximately two hours, and participants were compensated $60 for 

time and travel. 

Overall Response. Participants were in general more successful and positive 

about the experience of using this prototype than we had observed with the previous 

version. The iPhone provided higher quality images and better control over the amount 

of visible text, and the touchscreen and motion controls provided faster and easier 

control over enhancements and virtual display settings. Participants were better able to 

experience the augmented reality aspects of our approach, which most participants 

found promising. One participant was particularly enthusiastic about the Attached to 

World design, stating that it was: 

“so much better [than her CCTV], you can go down the whole page and 

read it. Like if I want to read a book or something to my kids, Mommy 

doesn't have to go line by line. I can read it and keep the flow going. You 

can read your whole mail in its entirety without it being on your TV.” (P4) 

She felt that our system provided an experience more like what she remembered before 

her vision loss with advantages to portability and privacy compared to her existing aids, 

continuing “It's everything I need as far as being able to read independently” (P4). 

Virtual Display Modes. Participants’ display preferences were again mixed, 

with some participants stating that they liked the flexibility of having multiple designs 

available and would use different versions depending on the situation. P1 and P3 

preferred the Attached to Headset design because they found it easier to focus on the 
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text with fewer variables to consider. In contrast, P4 found that mode to be too 

distracting, especially when speaking with someone or otherwise multitasking, and 

preferred the Attached to World design since it functioned “like a private, portable 

CCTV that stays where you want it to stay” (P4). P5, P6, and P7 saw advantages to all 

three designs, including the simplicity of the Attached to Headset design, the natural 

reading experience and ability to multitask with the Attached to World design, and the 

versatility and intuitive interactions of the Attached to Phone design, especially while 

away from home (e.g., while shopping). However, all participants found the Attached 

to Phone design to be more difficult to use than the others for reading longer passages 

in its current implementation, suggesting that more robust motion tracking and image 

stabilization are needed to improve the reading experience. 

Smartphone Camera. The two participants who had used the previous 

prototype (P1 and P3) felt that the updated design was an improvement, with a better 

camera and more usable interactions. However, while the previous design was 

lightweight and could be used hands-free, the updated design required holding the 

iPhone steady in midair while reading. All participants found this to be somewhat 

difficult because of the additional physical effort and shaky image due to unsteady 

hands. This issue was initially exacerbated by a sometimes slow and uneven frame rate 

streaming the video from the phone to the HoloLens, which we fixed after the first two 

sessions, but it also prompted us to add the “freeze frame” feature described above. 

This feature functioned similarly to existing features on smartphone magnifiers, but 

with a significantly larger virtual display. Later participants (P4, P6, and P7) liked this 
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feature and found it to be much easier to use than live video when reading longer 

passages. The issue of image stability could also be addressed in the future by including 

a portable mount to help hold the phone steady, by adding optical or digital image 

stabilization, or by integrating the camera and motion controls into a smaller design 

(e.g., a smartwatch). 

The HoloLens Device. While replacing the finger-worn camera with an iPhone 

camera addressed one aspect of the limited field of view from the previous design 

(allowing more text to be captured at once), the narrow window that the HoloLens 

could display was still too small for some participants. This issue was particularly 

problematic for the two participants with central vision loss, one of whom was 

completely unable to use the system to read (P5) and one of whom was frustrated by 

how little of his available vision could be used (P1). In contrast, another participant 

with tunnel vision found the display to be perfectly sized. The contrast of the HoloLens 

display also continued to be problematic for some participants, especially for P5 who 

was unable to see anything on the screen without blocking out all external light. These 

highly variable results re-emphasize the need for customizability. 

Summary. Our second prototype system improved on several aspects of the 

first, with a better camera that could capture a greater amount of text, more polished 

and robust virtual display options, and efficient controls that allowed users to more 

easily customize the AR display to fit their needs. Participants were largely positive 

about our updated design, appreciating the options for customization and noting 

tradeoffs between the three AR display designs as well as advantages compared to 
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existing technology. The design sessions also helped to identify important features and 

design elements for future AR magnification aids. 

5.3 Discussion 
We reflect on the implications of our findings, focusing on ways to support a range of 

users with different visual impairments and a range of situations. 

5.3.1 Overall Experience with 3D Augmented Reality 

Our design sessions explored a novel AR magnification approach. The ability to display 

content in 3D space enables new interactions that are not possible with handheld 

devices or head-mounted 2D displays. For example, participants liked that they could 

use stationary 3D designs to create and position an arbitrarily large virtual display and 

then read a full document by turning their head, rather than scanning line by line as 

with other portable reading aids. Participants also liked how the design allowed them 

to easily multitask, for example, by turning away from the virtual display to speak with 

someone, then turning back to continue reading. 

However, some participants commented that our approach required more effort 

to use than other reading aids. These participants preferred the simplicity of designs 

that fixed the display in 2D in front of their vision (e.g., as in [235]), especially when 

they are trying to concentrate on the content of what they are reading. Further 

refinements to our designs and additional time for the participants to practice using the 

system may have improved their impressions of the system, but it is also possible that 
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more traditional reading aids or simple 2D image enhancements may work better for 

some situations or users. 

5.3.2 Reflections on Head-mounted AR vs. Handheld Tools 

AR magnification has potential benefits compared to other magnification approaches, 

but also limitations that must be addressed to provide a compelling alternative to 

existing aids. 

Usability. Smartphone magnifiers are portable and readily available but have 

limited screen size. Users can hold the phone close to their face to compensate, but that 

may be uncomfortable for extended periods. Current HMDs do not yet address these 

issues, but we expect that future iterations will be lighter-weight and provide a 

perceptually larger display. These physical advances should allow users to read more 

naturally than with a handheld magnifier. 

Flexibility. Our approach separates the camera from the display, allowing users 

to find a comfortable reading position regardless of the location of the physical world 

object, and supports customization so that users can adapt the display to their visual 

needs or context. 

Privacy and Discreet Use. Handheld magnifiers and smartphone apps offer 

portability but may require the user to hold the device close to their face to read, 

preventing discreet use. While current HMDs attract attention for other reasons 

(unusual, bulky), we expect that future designs will be smaller and less noticeable, and 
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that users will be able to use the magnification aid more privately and discreetly than 

with a handheld screen—a feature that one participant found particularly appealing. 

Ergonomics. Physical strain and fatigue are potential problems for many 

portable magnification aids [68]. This was also a limitation of our prototypes, but future 

AR designs could use a smaller wearable camera that can be aimed separately from the 

display for maximum flexibility and comfort. Participants also noted ergonomic 

problems with the HoloLens, including weight and eyestrain. These issues are also 

present to some extent with other head-worn vision enhancement systems. Future 

HMDs will need to be smaller and more ergonomic with screens designed to support a 

wide range of vision levels. 

5.3.3 Recommended Design and Future Work 

Based on the design sessions, we propose design recommendations and key features 

for assistive AR devices. 

HMD. Participants liked our use of a transparent display that did not block out 

external vision, unlike most existing HMD systems (e.g., [235,238]). Therefore, an 

ideal system should use an optical see-through HMD, but in a more lightweight form 

factor than the HoloLens, with a larger field of view to better support users with limited 

central vision. However, if contrast cannot be sufficiently improved in future optical 

see-through HMD devices, a video display that blocks out external light may be a better 

choice for some low vision users (e.g., P5). Future work should explore alternative 

display options and evaluate their suitability for different users and contexts. 
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Camera. Participants valued flexibility, comfort, a wide field of view, and 

hands-free use, suggesting the need for a wearable camera that can be aimed separately 

from the display. The finger-worn and handheld smartphone cameras that we tested did 

not meet these criteria, but neither do the head-worn cameras used in most existing 

commercial HMD systems (e.g., [238,240]). A head-worn camera should allow for 

movement and optical zoom independent of the headset so that target content can be 

captured without requiring users to precisely position their head. Separate motion of 

the camera and head is also crucial for allowing users to move their head to scan virtual 

content in 3D, an interaction which participants found intuitive and useful. This design 

would likely require the ability to detect the content a user is pointing toward so that it 

can be magnified (e.g., similar to the interaction used by OrCam [159]). Future work 

should explore these camera options in more depth. 

Virtual display. AR magnification systems should include multiple display 

options to support different users and situations. We encountered tradeoffs between 

designs, such as the ease of use and attention required, ability to multitask, usefulness 

for different situations (e.g., reading a long document vs. products in a store), and 

technical complexity and robustness. The ability to anchor virtual content in 3D space 

in the physical world can support a more natural and flexible reading experience 

compared to existing 2D vision enhancement systems, but it is also more complicated 

to implement and may have a steeper learning curve for users. Future work should 

investigate new AR designs, such as the ability to place multiple displays with different 
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targets or magnification levels, and an option to automatically display enhanced content 

directly over the text (e.g., on a page or sign). 

User input. Feedback from our study suggests that future systems should likely 

not use a smartphone camera because of the physical coordination and strain it required, 

but AR systems could still include intuitive and familiar touchscreen controls. Display 

settings could be adjusted using a smartphone or a smartwatch alongside the headset, 

or via touch controls on the headset itself (e.g., the touch slider on Google Glass [56]). 

Participants also requested voice controls for some options, as well as physical buttons 

for key settings (e.g., toggling the display, adjusting brightness and magnification). 

Future work should evaluate the efficiency and usability of these options. 

New features. Although we did not investigate them in this work, future 

systems should also include features to help users read more easily in different 

situations. For example, optical or digital image stabilization would ensure smooth 

video, and optical character recognition (OCR) could help enhance text readability 

(e.g., by changing fonts, increasing the resolution, or removing other visual elements 

such as images). OCR would also enable text-to-speech and other audio features (e.g., 

as provided by OrCam [159]) alongside visual enhancements, as requested by some 

participants. Existing systems include some of these features already, but future work 

should investigate the usability of AR with hybrid visual and audio feedback. And 

beyond the ability to magnify and read nearby printed text materials, participants also 

mentioned several other desirable applications, such as reading signs, recognizing 
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faces, and attending sports events; future work should also explore how best to use AR 

to support these applications.  

5.3.4 Limitations 

The HoloLens has a narrow and centrally located field of view (estimated at 30° × 

17.5°), which did not work well for some users. The translucent “holograms” that the 

HoloLens displays are also low-contrast, and colors are distorted by the screen material. 

Two participants were unable to use the device to read due to these issues, and most of 

the others mentioned them as limitations as well. We did not evaluate alternative 

headsets, although we anticipate that future versions of the HoloLens or similar 

technology will be able to address these issues. Future work should consult vision 

experts to better assess design requirements and usability for specific visual 

impairments. While our design sessions were informative and helped identify 

important design features for AR magnification aids, our study was not controlled, 

included a relatively small number of participants (7 total), and did not quantitatively 

evaluate usability or reading speed and comprehension. Future work should investigate 

possible camera positions and virtual display designs in more depth, and also directly 

compare AR magnification aids against existing technology. 

5.4 Summary 
This chapter explored novel applications of AR to assist low vision users, applying 

recent technology that can anchor 3D virtual content in the physical world. We 

explored the AR magnification design space and presented two prototype systems that 
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we evaluated and refined through iterative design sessions with low vision participants. 

Participants liked the general concept of a head-worn magnification aid for its 

improved portability, privacy, and ready availability compared to other magnification 

aids they had used. Participants also identified advantages to our 3D AR approach 

compared to handheld magnification tools, including a more natural reading experience 

and the ability to more easily multitask, but also some disadvantages such as a steeper 

learning curve and limitations of the particular hardware we used. Through our open-

ended design and evaluation sessions, we identified several common themes that 

should inform the design of future AR vision enhancement aids for low vision users. 
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Chapter 6: Localization of Skin Features on the Hand 
and Wrist 

We have demonstrated the feasibility of using finger-mounted sensing and feedback to 

enable blind users to access printed text materials, but our approach could also 

potentially support many additional applications. This chapter explores the preliminary 

algorithmic foundations necessary to support one such application: on-body 

interaction, an emerging paradigm in HCI where users tap or gesture on their own body 

to control a mobile device and access digital information (e.g., [40,69,70,117,139,151, 

153,209,223]). One advantage of this type of input is that it is always available, 

allowing the user to, for example, quickly tap or swipe on their palm to answer a phone 

call or listen to new emails (Figure 6.1a). On-body interaction is also useful when visual 

attention is limited because the skin’s tactile perception allows for more accurate input 

than is possible with a touchscreen [64,154]. 

a. b. 

Figure 6.1: (a) Conceptual visualization of on-hand input to control a mobile phone, as in [64]. 
(b) Cameras developed for minimally invasive surgeries are small enough to mount on the 
finger. Shown: AWAIBA NanEye (1×1mm2, 250×250px resolution) used in [199,228]. 

This chapter contains work published in the proceedings of the 23rd International Conference on Pattern 
Recognition (ICPR 2016) [202]. 
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Sensing these on-body taps and gestures, however, is a challenging problem. 

Researchers have investigated a variety of wearable cameras (e.g., [65,70]) and other 

sensors (e.g., bio-acoustics [69], ultrasonic rangefinders [117]). While promising, these 

approaches are limited by the placement and range of the sensor [65,151], suffer from 

occlusion [65] or precision [69] problems, or cover the user’s skin [220], reducing 

tactile sensitivity. Instead, we envision using close-up images from a small finger-

mounted camera (e.g., [199,228]) to sense and localize user input (Figure 6.1b). By 

instrumenting the gesturing finger with a camera, our approach extends the user’s 

interaction space to anything within reach and can support precise location-based input. 

Previous work in skin classification has largely been in the context of 

biometrics—that is, determining the uniqueness of a user’s skin patterns for 

identification purposes (e.g., [30,39,46,85,136,141,225]). In this chapter, rather than 

identifying who an image represents, we seek to identify where an image is located on 

a single user's body. More specifically, we investigate to what extent are surface image 

patches of the hand and wrist localizable? 

Localizing small (~1–2 cm) image patches within the larger skin surface is 

similar to partial finger and palm print recognition in forensic applications; however, 

high-resolution, high-contrast images of ridge impressions are typically needed to 

reliably extract distinctive point and line features. In contrast, cameras small enough to 

be mounted on the finger (Figure 6.1b) are low resolution and low contrast, making it 

difficult to detect minute ridge features. Several recent biometric systems recognize 

finger and palm prints using lower-quality images [31,40,43,45,94,141,159,163,218, 
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227]. Unfortunately, these approaches are frequently designed to align and process the 

finger or palm image as a whole and cannot reliably recognize a small portion of the 

print. To our knowledge, no work has attempted to recognize or localize a small skin 

patch from live camera images, which we do here. 

To ultimately support on-body localization using a finger-mounted camera, we 

investigate the classifiability of 17 locations on the front and back of the palm, fingers, 

wrist, nails, and knuckles. We introduce a hierarchical texture classification approach 

to first estimate the touch location on the body given close-up images of the skin surface 

and then refine the location estimate using keypoint matching and geometric 

verification. To evaluate our approach, we collected a skin-surface image dataset 

consisting of 30 individuals and the 17 hand and wrist locations (10,198 total images). 

When testing and training on an individual’s own skin data (within-person 

experiments), our results show that skin patches are classifiable by location under 

controlled conditions with 96.6% recall and 96.4% precision, suggesting that finger-

mounted cameras may be feasible for sensing on-body interactions. 

In summary, the contributions of this chapter include: (i) a robust algorithmic 

pipeline for recognizing several different locations on the hand from small patches of 

skin; (ii) classification results for a dataset consisting of 30 individuals, achieving 

accuracy above 96% on average for within-person experiments; and (iii) analysis of 

hand distinctiveness and similarities among users, which may impact accuracy and 

scalability (e.g., between-person training feasibility). 
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6.1 Touch Localization Pipeline 
Robust localization of close-up skin images from a finger-mounted camera is 

challenging due to the limited field of view (~1–2 cm) and relatively low contrast of 

the ridges and other skin surface features. To estimate the user’s touch location from 

close-up images, we developed a hierarchical classifier with four stages: (i) 

preprocessing, (ii) coarse-grained classification, (iii) fine-grained classification, (iv) 

geometric verification and refinement. The coarse-grained stage classifies an input 

image into one of five regions: palm, fingers, nail, knuckle, and other (wrist and back 

of hand). The fine-grained stage further classifies the image into a discrete location 

within that region (17 locations in all; see Figures 6.2 and 6.5). These locations were 

selected because previous work has shown that users can reliably locate them with high 

accuracy even without sight [154]. While our four-stage pipeline integrates multiple 

known approaches in fingerprint and palmprint enhancement, texture classification, 

and 2D keypoint matching, our primary innovation is in their novel combination and 

application towards localization rather than identification. 

(a) Without noise removal (b) With noise removal 
Figure 6.2: Stage 1 preprocessing first removes dirt and other noise 
before emphasizing ridge features using the energy of a set of Gabor 
filters with different orientations. Shown: an example image from the left 
side of the palm, scaled and cropped to demonstrate the effect that surface 
artifacts can have on the Gabor energy image. 
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Stage 1: Preprocessing. Images are first preprocessed to remove noise and 

emphasize ridge features. We apply an efficient median filter [88] to reduce the effect 

of dirt and other camera noise while preserving the edge information necessary for 

processing finger and palm prints (Figure 6.2). 

To emphasize the ridgelines, we adapt a technique from Huang et al. [80]. 

However, while they use a modified version of the finite radon transform to emphasize 

the principal lines and creases of the palm, these features are not as prominent in our 

images due to the narrow field of view. We instead use Gabor filters. We compute the 

Gabor energy image defined as the maximum response at each pixel from a set of Gabor 

filters with different orientations. Specifically, the energy at pixel location (x, y) is: 

𝐸𝐸𝑥𝑥,𝑦𝑦 = �max�𝐺𝐺𝜃𝜃 ∗ �𝐼𝐼�̅�𝑥,𝑦𝑦 − 𝐼𝐼𝑥𝑥,𝑦𝑦��� (1) 
θ 

where 𝐼𝐼𝑥𝑥,𝑦𝑦 is the gray-scale pixel value at (x, y) and 𝐼𝐼�̅�𝑥,𝑦𝑦 is the local mean in a window 

around that location (estimated using a Gaussian smoothing function), 𝐺𝐺𝜃𝜃 is a discrete 

Gabor filter with orientation 𝜃𝜃, and * is the convolution operator. In our experiments, 

we use 18 uniformly distributed orientations, with a fixed scale and bandwidth that 

were chosen empirically based upon the average ridge frequency in our preliminary 

experiments with a separate set of pilot data. Example energy images are shown in 

Figures 6.2, 6.3, and 6.4. 

Stage 2: Coarse-Grained Classification. After preprocessing, we obtain a 

rough classification of the image’s location using the visual texture, which we represent 

using LBP histograms. We chose LBP because of its computational efficiency and 
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Figure 6.3. The four stages of our localization algorithm, as applied to an example image from 
the left side of the palm. First, the image is preprocessed to remove surface artifacts and camera 
noise before calculating the Gabor energy to emphasize ridge and crease lines. Second, the 
image is classified into one of five coarse-grained locations (in this case, the palm) using a 2D 
texture histogram of LBP and pixel variances. Third, the image’s texture is compared against 
the templates from the predicted coarse-grained class, which are sorted by their 𝜒𝜒2 histogram 
distances to prioritize matching for the next stage. Finally, the image is compared geometrically 
against images from the predicted coarse-grained class, using a set of custom Gabor keypoints 
and descriptors. The image is compared against individual templates starting with the most 
likely match (as predicted in Stage 3), proceeding in order until a template with sufficient 
geometrically consistent keypoint matches is found. If a geometrically consistent match is 
found, then the fine-grained location can be estimated with a high degree of certainty (in this 
case, the left side of the palm); otherwise, the algorithm falls back upon the closest texture 
match from Stage 3. 

natural invariance to illumination variations. To improve accuracy and achieve rotation 

invariance, we use only the uniform patterns alongside the variance of the neighboring 

values as suggested in [157]. Our implementation uses a 2D histogram with 14 uniform 

pattern bins and 12 variance bins (𝐿𝐿𝐿𝐿𝑃𝑃12,2
𝑟𝑟𝑟𝑟𝑟𝑟2 and 𝑉𝑉𝐴𝐴𝑅𝑅12,2, as defined in [157]), computed 

at 3 scales. These parameters were selected because they provided a balance between 

classification accuracy and computational efficiency on our pilot data. The histograms 

for each scale are flattened and concatenated together to produce a 672-element feature 

vector, which is then normalized. To classify the LBP histograms into coarse-grained 

132 



 

 
 

 
 

   

      

   

    

    

   

 

    

 

 

    

    

    

    

 

 
    

   
 

 

 
 

 

body regions, we train a support vector machine (SVM)—commonly used in texture 

classification (e.g., [42,100,228]).  

Stage 3: Fine-Grained Classification. We compare the LBP histogram using 

a template matching approach against only the training templates from the coarse-

grained region identified in Stage 2. This hierarchical approach reduces the number of 

possible match locations and enables us to prioritize different features for each region 

individually (e.g., for the palm we can automatically weight the palmprint texture 

features that best discriminate the five different palm locations). For template 

comparisons, we use the 𝜒𝜒2 distance metric, which is known to perform well with LBP 

histograms (e.g., [4]). Stage 3 produces a sorted list of templates, with the lowest 

distance representing the most likely match. 

Stage 4: Geometric Verification and Refinement. Stage 4 ensures the validity 

of the texture match and refines the precise touch location using a set of keypoint 

matching and geometric verification steps. We investigated SIFT keypoints 

Source Image Matched Image Source Image Matched Image 

a b 

c d 

Figure 6.4: Keypoints in the Gabor energy images frequently appear visually similar (a), 
leading to a high percentage of mismatches (b). We filter outliers using a series of verification 
steps to ensure geometric consistency (c and d). 
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[141,162,225], Harris corners [162], and fingerprint minutiae [46,85,106], but found 

them too unreliable in preliminary tests. Instead, we use keypoints with a high Gabor 

filter response at two or more orientations, which tend to lie at the intersections of 

ridgelines or creases. The Gabor energy values in the 16×16px neighborhood 

surrounding the keypoint serve as a reliable descriptor. To achieve rotation invariance, 

we generate multiple descriptors at each keypoint location, rotating the neighborhood 

for each using the orientation of the filters with locally maximum response strength. 

We keep a list of keypoints for each training image. 

These image patches, however, are frequently visually similar (e.g., Figure 

6.4a), leading to a high percentage of mismatches between the keypoints (Figure 6.4b). 

We address this issue using a series of geometric verification steps. First, we filter the 

matches for orientation consistency, eliminating matches that do not agree with the 

majority vote for the relative rotation between images (i.e., any more than 20° from the 

average rotation across all matches). Second, we compute a homography matrix using 

random sample consensus (RANSAC), identifying inliers and ensuring that there are 

sufficient geometrically consistent feature matches (i.e., more than the minimum 

necessary to define a homography; in our experiments, we required 16 consistent 

matches). Although the palm and fingers are not rigid planar surfaces, in the close-up 

images we gathered they appear nearly so; we compensate for irregularities by allowing 

a greater than usual inlier distance of 10 pixels. Third, we verify that the homography 

matrix is well behaved using the following constraints, which ensure that the match 

preserves orientation and does not have extreme variations in scale or perspective: 
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1. 𝐻𝐻11𝐻𝐻22 − 𝐻𝐻21𝐻𝐻12 > 12
12. 
2 

< �𝐻𝐻112 + 𝐻𝐻212 < 2 
13. 
2 

< �𝐻𝐻122 + 𝐻𝐻222 < 2 (2) 

14. �𝐻𝐻312 + 𝐻𝐻322 < 
1000 

These constraints were selected empirically to eliminate most degenerate cases 

that could lead to false-positive matches. Fourth and finally, to avoid further degenerate 

cases, we ensure that the inlier features are not collinear and that they have sufficient 

spread. We do this by calculating the standard deviation along the two principal 

directions computed using principal component analysis; if 𝜎𝜎1 < 25 or 𝜎𝜎1⁄𝜎𝜎2 > 4, we 

declare the match invalid (these numbers were also selected empirically and validated 

on a separate set of pilot data). If a template match is declared invalid, we proceed to 

the next best texture match, stopping once we find one that passes all conditions. If a 

valid match is not found, then we fall back upon the best Stage 3 texture match.  

The output of our hierarchical algorithm is an estimated classification of a query 

image into one of 17 locations, along with a confidence score based upon the texture 

similarity and the number of inliers for the best template match. From the computed 

homography matrix, we also obtain a more precise location estimate relative to the 

matched templates, potentially enabling finer localization for future explorations. 

6.2 Data Collection and Dataset 
To evaluate our approach, we created an image dataset collected from 30 volunteers (7 

male, 23 female) recruited via campus email lists. The participants were on average 
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Participant Demographics 

Gender 23 female, 7 male 
Age Mean = 30.6, SD = 11.5, Min = 18, Max = 59 

Race Black, Afro-Caribbean, or Afro-American 6 
East Asian or Asian-American 5 
Latino or Hispanic American 1 
Non-Hispanic White or Euro-American 14 
South Asian or Indian American 2 
Other or Multiple 2 

Palm Size Mean = 98.3 mm, SD = 10.3 mm, Min = 79.7 mm, Max = 129.5 mm 

Table 6.1: Our dataset captures variations in gender, age, race, and 
palm size. Palm size was measured diagonally from the base of the 
thumb to base of the smallest finger while the fingers were spread 
and fully extended. 

30.6 years old (SD=11.5, range=18–59), and represented a variety of skin tones and 

palm sizes (Table 6.1). For each participant, we collected close-up images of 17 

locations (Figure 6.5) using a small 0.3MP micro-lens camera in the shape of a pen. 

The micro-lens camera is self-illuminated with a manually adjustable focal 

length, enabling us to capture clean 640×640px images of the hand from as close as 

1cm. We controlled for distance and perspective using two 3D-printed camera 

attachments that place the camera approximately 2.5cm from the surface of the hand, 

at either a 90° or 45° angle (Figure 6.5b). Compared to a finger-mounted camera, this 

form factor enabled us to more easily control for variables such as distance, perspective, 

focus, and lighting, while still capturing images that are representative of our target 

domain. Ultimately, we expect to use a smaller camera similar to Figure 6.1b.  

Participants used the camera to point to 17 locations on the hand and palm, with 

10 trials for each location and two perspectives (45° and 90°) resulting in 340 images 

per person. Rather than point 10 times in a row to the same location, the order of trials 

was randomized to provide variation in translation, rotation, and pressure (which 
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impacts scale and focus). In total, we have 10,198 close-up micro-lens images across 

the 30 participants (one participant skipped two trials). While we would like to release 

this dataset publicly, we cannot do so without risking the privacy of our participants. 

a. 

c. 

b. 

Figure 6.5: Data collection setup: (a) 17 close-up image locations on the left hand in 5 coarse-
grained regions–coded with different colors; (b) the pen-based camera and physical constraints 
(one angled at 45° and one at 90°) used for close-up image capture. (c) representative images 
from our dataset for each of the 17 locations, selected across 12 participants. 
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6.3 Experiments and Results 
We first describe results related to coarse- and fine-grained hand classification 

performance before presenting secondary analyses related to the effect of training 

sample size on performance and between-person classification. Our analyses report 

standard measures including precision, recall, and F1 scores. These metrics are more 

informative than accuracy due to the uneven number of training examples per class our 

hierarchy defines. 

6.3.1 Within-Person Classification 

To evaluate the overall location-level classifiability of the hand, we conducted a within-

person experiment. We used an n-fold, leave-one-out cross-validation approach. Our 

results are the average across all 20 folds for each of the 30 participants. We first 

present aggregate results before examining performance by location and by participant. 

At the coarse-grained level (Stage 2), the average precision is 99.1% 

(SD=0.9%) and average recall is 99.2% (SD=0.8%). At the initial fine-grained level 

(Stage 3), the average precision is 88.2% (SD=4.4%) and recall is 88.0% (SD=4.5%). 

After performing geometric validation and refinement (Stage 4), fine-grained 

classification increases to 96.6% precision (SD=2.2%) and 96.4% recall (SD=2.3%). 

The high precision and recall values demonstrate the feasibility of using close-up 

images to classify locations on the hand and wrist. Stage 2 precision and recall are very 

high (above 99%), which is important because errors in estimating the coarse-grained 

region will propagate to the next stage (a limitation of our hierarchical approach). 
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Stage 2: Coarse-grained Classification Confusion Matrix 
Palm Finger Nail Knuckle Other 

Palm 99.0% 0.5% 0.5% 
Finger 0.6% 99.3% 0.1% 

Nail 0.2% 0.1% 99.7% 0.1% 
Knuckle 0.2% 99.1% 0.7% 

Other 0.6% 0.1% 0.5% 98.8% 

Table 6.2: Classification percentages for classes at the coarse-grained level. Each cell indicates 
the percentage of images assigned to a predicted class (column) for each actual class (row). 

Across all stages, we observed classification errors that were caused primarily by 

similarities between the locations’ visual textures, poor image quality, and insufficient 

overlap between the training and testing images, although the high accuracies meant 

that there was not enough data for statistical analysis of the errors. 

To examine the impact of different hand/wrist locations on performance, we 

created confusion matrices for Stage 2 (coarse-grained) and Stage 4 (fine-grained) 

classifications. See Tables 6.2 and 6.3 respectively. The locations with the lowest F1 

score were those on the back of hand (M=92.3%; SD=10.1%) and wrist (M=91.8%; 

Stage 4: Fine-grained Classification Confusion Matrix 
Palm Fingers Nails Knuckles Other 
C U D L R 1st 2nd 3rd 4th 5th 1st 2nd 1st 2nd BH OW IW 

Palm Center (C) 98.3% 0.2% 0.2% 0.2% 0.2% 0.5% 0.5% 
Palm Up (U) 0.2% 98.5% 0.2% 0.2% 0.2% 0.3% 0.2% 0.3% 

Palm Down (D) 0.3% 1.2% 95.7% 0.2% 1.7% 0.3% 0.2% 0.2% 0.2% 0.2% 
Palm Left (L) 0.3% 0.3% 0.2% 98.7% 0.3% 0.3% 0.7% 

Palm Right (R) 0.7% 0.5% 0.3% 0.5% 97.5% 0.2% 0.2% 0.2% 
1st Finger 0.5% 0.2% 0.2% 0.7% 96.3% 0.3% 0.5% 0.5% 0.7% 0.2% 
2nd Finger 0.3% 0.2% 0.3% 95.8% 1.7% 0.5% 1.2% 
3rd Finger 0.3% 0.2% 1.3% 95.4% 2.2% 0.7% 
4th Finger 0.2% 0.3% 1.8% 95.3% 2.3% 
5th Finger 0.2% 0.2% 0.3% 0.5% 1.5% 97.0% 0.3% 

1st Nail 0.2% 98.2% 1.7% 
2nd Nail 02% 0.2% 0.5% 99.0% 0.2% 

1st Knuckle 0.2% 97.3% 1.2% 0.2% 0.2% 1.0% 
2nd Knuckle 0.2% 0.8% 98.8% 0.2% 

Back of Hand (BH) 0.2% 0.5% 0.2% 92.2% 4.7% 2.3% 
Outer Wrist (OW) 0.2% 0.2% 6.0% 90.2% 3.5% 

Inner Wrist (IW) 0.7% 0.7% 0.2% 0.2% 0.3% 0.2% 0.7% 0.2% 0.8% 0.5% 96.2% 

Table 6.3: Classification percentages for classes at the fine-grained level (Stage 4 output), 
averaged across 20 trials and 30 participants. Each cell indicates the percentage of images 
assigned to a predicted class (column) for each actual class (row). 
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Figure 6.6: Classification errors were caused Figure 6.7: Classification errors for several 
primarily by similarities between the participants were also caused by inconsistent 
locations’ visual textures and poor image touch locations. Shown are two examples of 
quality. Each set of images shows, in order, query, predicted, and correct locations (from 
two examples (from different participants) of two different participants) where the touched 
an incorrectly classified test image along with locations were far enough apart to appear as 
a training image from the predicted location. entirely unrelated images. 

SD=8.4%), which appear visually similar (Figure 6.6). This was true to a lesser extent 

across all coarse-grained regions, with the textures of different locations within each 

region appearing similar. While Stage 4 geometric validation reduced 

misclassifications, it was not always successful. For example, in some cases, an image 

for a participant did not sufficiently overlap any other image in the dataset, preventing 

geometric keypoint matching (Figure 6.7). In these cases, the algorithm fell back to the 

best Stage 3 texture match. 

To examine how performance varies across individuals, Figure 6.8a shows F1 

scores broken down by participant. F1 scores ranged from 95.9% to 100.0% at the 

coarse-grained level (Stage 2) and 86.5% to 99.7% at the fine-grained level (Stage 4). 

Participant 29 performed the worst, with a Stage 4 F1 score of 86.5%—4.4 standard 

deviations below the mean. Based on a qualitative examination, we found decreased 

skin contrast with fewer distinctive finger and palm features, as well as significant 
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 a. b. 

Figure 6.8: (a) Distribution of F1 scores by participant, with outlier P29 marked by the blue 
dot; (b) Effect of the number of training examples on mean texture classification F1 score at 
coarse-grained (Stage 2, blue) and fine-grained (Stage 3, orange) levels. 

variations in translation, rotation, and image focus for each location. In comparison, 

the top performing participants had high contrast skin textures, more consistent 

pressure (resulting in fewer variations in lighting and focus), and greater consistency 

in returning to the same touch location each trial. 

6.3.2 Effect of Training Set Size on Performance 

To explore performance as a function of training set size, we tested our algorithms 

again using n-fold cross-validation but this time varying the number of training samples 

from m = 1 to 19. Specifically, we randomly selected from the 20 images per class 

available for each participant, with one image set aside for testing. Figure 6.8b shows 

the average texture classification accuracy at the coarse-grained (Stage 2) and fine-

grained (Stage 3) levels when increasing the number of training examples. To reduce 

the effect of selecting the images randomly and obtain a more representative estimate, 

we averaged the results of 10 randomized trials. Each point represents the average F1 

score across all participants, locations, and trials when trained using m examples. 

Accuracy begins to level off above five training images per location, especially at the 

coarse-grained level (which approaches 100% accuracy). However, performance at 
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both levels steadily improves as the number of training images is increased. We did not 

evaluate Stage 4 for this experiment as its performance depends largely upon the 

amount of spatial overlap between the training and testing images rather than the 

number of training samples. 

6.3.3 Between-Person Classification 

To potentially bootstrap the training set and to identify similarities across individuals, 

we conducted a secondary classification experiment in which the training set and 

testing set consisted of images from different participants (i.e., between-person 

experiments). More specifically, we employed n-fold cross-validation, where each fold 

trained on data from 29 participants and tested on the remaining participant. We did 

not expect this approach to yield a high accuracy, especially at the fine-grained level 

since finger and palm prints can vary significantly person to person (which is the basis 

of biometric identification). However, we hoped to discover textural similarities across 

participants that could be used to boost future classifiers to either improve accuracy or 

reduce the amount of per-user training. 

As expected, the between-person classification results are lower than the 

within-person results. At the coarse-grained level, our classification algorithms achieve 

Between-person Coarse-grained Classification Confusion Matrix 
Palm Finger Nail Knuckle Other 

Palm 55.2% 16.8% 7.8% 4.0% 38.8% 
Finger 8.1% 85.5% 10.4% 2.1% 2.3% 

Nail 0.2% 3.4% 85.3% 4.4% 0.9% 
Knuckle 1.2% 0.2% 1.3% 67.8% 18.2% 

Other 12.4% 4.1% 0.1% 18.2% 60.3% 

Table 6.4: Between-person classification percentages for classes at the coarse-grained level. 
Each cell indicates the percentage of images assigned to a predicted class (column) for each 
actual class (row). 
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an average precision of 72.6% (SD=12.9%) and recall of 70.8% (SD=12.3%). Still, 

these results are considerably higher than chance for five classes (20%) or majority-

vote for the palm class (29.4%). See Table 6.4 for a confusion matrix. Average 

precision at the fine-grained level is 27.1% (SD=7.5%) and recall of 26.1% (SD=5.8%), 

which are also well above chance for 17 classes (5.9%). Although these accuracies are 

clearly too low to support a reliable user interface without an individual training 

procedure, they may provide enough information to allow for bootstrapping. 

6.4 Discussion 
Our controlled experiments explored the distinguishability of small image patches on 

the surface of the hand and wrist for localization purposes. In our within-person 

experiments we were able to achieve an average F1 score above 99% at the coarse-

grained level (Stage 2) and above 96% at the fine-grained level (Stage 4), which 

suggests that skin-surface image patches can be classified and localized on the body 

with high levels of accuracy. While an end-to-end deep learning approach may be more 

elegant, our more heuristic approach requires substantially less training data, and our 

performance results suggest that an on-body input system applying our algorithms is 

feasible. Here, we reflect on the implications of our findings as well as challenges for 

implementing a real-time system. 

6.4.1 Expanding On-Body Input 

While we only evaluated locations on the hand and wrist, our finger-mounted approach 

should support a range of input locations within the user’s reach, including on-body 
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and off-body surfaces (e.g., tabletops). This is in contrast to most previous on-body 

input approaches that are more limited by their fixed sensor placements and range. 

Although recognition accuracy may drop as the number of locations increases (e.g., 

thigh, forearm), we expect to boost performance through improvements to our 

hierarchical approach. Performance was particularly high at the first level of the 

hierarchy, with an F1 score above 99%. Thus, for each region we could apply different 

preprocessing and matching approaches at the second level that are tuned specifically 

to distinguish the fine-grained locations within that region. For example, we could 

extract knuckle-specific features (e.g., [30]) to distinguish knuckle locations, which 

may require completely different algorithms than the palm locations. Similarly, it will 

be important to explore the feasibility of extending the localization hierarchy further, 

for regions that can support an even finer level of granularity beyond the locations 

studied (e.g., palm, fingers); such granularity could enable highly precise on-body 

interactions (e.g., sliding your finger along your palm to trace a map route). 

6.4.2 Training a Camera-Based On-Body Localization System 

The procedure for training a new user may impact both algorithmic performance and 

user perceptions toward the system. As shown in Figure 7b, classification performance 

improves with the number of training examples, but begins to level off after five 

examples per class. However, it may be possible to boost accuracy while 

simultaneously reducing the number of training examples that are required of a new 

user. The images in our dataset relied on natural variations that were introduced through 

randomization during data collection. To potentially improve performance, the training 
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interface could prompt the user to vary rotations, poses, and perspectives—similar to 

Apple’s iPhone training procedure for their fingerprint sensor. In addition, as our 

preliminary experiments indicate, it may be possible to bootstrap the system using 

between-person data and reduce the amount of training required for a new user. This 

approach would work especially well in our first stage of classification to recognize 

surface classes that appear similar across many users (e.g., skin, knuckles, clothing). 

6.4.3 Limitations and Future Work 

Our experiments were conducted under controlled conditions, but a real-time system 

would likely need to deal with greater variations in image quality. Although we 

randomized trial order to introduce natural variation in translation, rotation, and 

pressure, we carefully controlled for other variables such as distance, lighting, and 

perspective. A finger-worn camera will likely constrain this complexity, potentially 

mitigating these concerns. For example, distance will remain relatively constant during 

touch-based interactions since the camera can be positioned at a fixed location on the 

finger and lighting can be controlled via a self-illuminated camera. While perspective 

may vary considerably, our results show that our algorithm functions well for both 90-

degree and 45-degree perspectives. Further work is necessary to explore variations 

under less controlled conditions, including potential changes over time (e.g., due to 

differences in humidity/dryness), as well as other variations in skin surface textures and 

features due to age, skin tone, and hand size. The above mitigating factors suggest that 

our approach should still be applicable. 
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Our work focused solely on RGB camera-based sensing using static images. 

Future research should explore other imaging and non-imaging sensors as well as 

combining video and multiple sensor streams (sensor fusion). For example, 

hyperspectral imaging would expose veins and other sub-dermal features that could be 

used for localization as well as improve the contrast of surface features across a wider 

range of skin tones (e.g., [53]). Depth sensors could provide 3D geometry of the hand 

and ridges, potentially improving robustness to variations in perspective and allowing 

us to more reliably extract finger and palm print features to use for localization (e.g., 

[116]). Finally, non-imaging sensors (e.g., infrared reflectance [151] or inertial motion 

[86]) could provide complementary information to help resolve visual ambiguities and 

better integrate localization with gesture recognition. 

6.5 Summary 
This chapter introduces an algorithmic pipeline for recognizing low-resolution, close-

up images of several different locations on the hand/wrist with an average F1 score of 

96.5% for within-person skin patch classification. While future work will need to 

address potential implementation challenges with a real-time system, our results 

suggest that a finger-mounted computer vision approach to support location-based on-

body interaction should be feasible and that the system training process may be able to 

be bootstrapped using a dataset of hand images collected from multiple individuals. 
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Chapter 7: Realtime Recognition of Location-Specific 
On-Body Gestures 

As discussed previously, on-body interaction offers several advantages over existing 

touchscreen devices. Taps, swipes, or other on-body gestures provide lightweight and 

always-available control (e.g., [63,70]) with an expanded input space compared to 

small-screen wearable devices like smartwatches (e.g., [109,118,150,152]). In addition, 

the proprioceptive and tactile cues afforded by on-body input can improve eyes-free 

interaction (e.g., [40,119,131,218]) and enable accurate input even without visual 

feedback compared to the smooth surface of a touchscreen [64,154]. These advantages 

are particularly compelling for users with visual impairments, who do not benefit from 

visual cues and who frequently possess a heightened sense of tactile acuity ([55,149]). 

Figure 7.1: TouchCam combines a finger-worn camera with 
wearable motion trackers to support location-specific, on-body 
interaction for users with visual impairments. See supplementary 
video for a demonstration: https://youtu.be/VREiWI_38BQ. 

This chapter contains work published in the Proceedings of the ACM on Interactive, Mobile, Wearable 
and Ubiquitous Technologies (IMWUT Dec 2017) [203]. 
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Reliably sensing on-body input, however, is still an open challenge. 

Researchers have explored a variety of approaches such as cameras (e.g., [25,70,195]), 

infrared-reflectance sensors [97,109,150], and bio-acoustics [69,110]. While 

promising, this prior work has not been specifically designed for or tested with visually 

impaired users, who likely have different needs and preferences. For example, blind 

users may encounter difficulty accurately aiming a camera (or other directed sensor) 

[86,213] and also rely more on their sense of touch [55,149] making it especially 

important to avoid covering the fingertips. Furthermore, prior work does not support 

complex gestures at multiple body locations. For example, Skinput [69] detects touches 

at a range of locations but not more complex gestures. In contrast, FingerPad [27] and 

PalmGesture [218] sense shape gestures performed on the fingertip or palm but cannot 

easily be extended to other locations. 

Our research explores an alternative approach using an updated finger wearable 

prototype to support location-specific, on-body interaction. We refer to this updated 

prototype as TouchCam (Figure 7.1) in this chapter to differentiate it from earlier work. 

The previous chapter demonstrated the feasibility of recognizing body locations from 

small skin surface images (1–2 cm) captured using a handheld camera; however, this 

work did not include sensor fusion, use a wearable form factor, or function in real-time. 

In addition, the previous prototype could only recognize locations (not gestures), and 

the images were collected under carefully controlled conditions. In this chapter, we 

build on that work and address these limitations. TouchCam combines data from 

infrared reflectance (IR) sensors, inertial measurement units (IMU), and a small camera 
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to classify body locations and gestures using supervised learning. Because TouchCam 

instruments the gesturing finger, on-body interaction is supported on a variety of 

locations within the user’s reach while also mitigating camera framing issues. 

TouchCam also enables new location-specific, contextual gestures that are 

semantically meaningful (e.g., tapping on the wrist to check the time or swiping on the 

thigh to control a fitness app). These features allow for flexible interface designs that 

can be customized based on the needs of the application or user. In this chapter, we 

explore four high-level research questions: 

RQ1. How well can we recognize location-specific on-body gestures using 

finger- and wrist-mounted sensors? 

RQ2. Which locations and gestures can be recognized most reliably using 

this sensing approach? 

RQ3. What tradeoffs must be considered when designing and building a 

realtime interactive on-body input system? 

RQ4. How accessible is this approach to users with visual impairments and 

what are their design preferences? 

To address these questions, we evaluated two prototype iterations across two 

studies. In Study I, we demonstrate feasibility through a controlled data collection study 

with 24 sighted participants who performed touch-based gestures using the first 

iteration of our prototype (TouchCam Offline). In offline experiments using classifiers 

trained per-user, we achieve 98% accuracy in classifying coarse-grained locations (e.g., 

palm, thigh), 84% in classifying fine-grained locations (e.g., five locations on the 
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palm), and 96% in classifying location-specific gestures. Informed by these results, we 

built a second prototype with updated hardware and software algorithms to support 

realtime on-body localization and gesture recognition (TouchCam Realtime). In Study 

II, we investigate the usability and potential of the realtime system with 12 blind and 

visually impaired participants. Our findings validate realtime performance with our 

target population and highlight tradeoffs in accuracy and user preferences across 

different on-body inputs.  

In summary, the primary contributions of this chapter include: (i) two iterations 

of TouchCam, a novel finger-worn camera system that uses machine learning to detect 

and recognize on-body location-specific gestures; (ii) a quantitative evaluation of our 

system’s accuracy and robustness across a variety of gestures and body locations; (iii) 

qualitative observations about the usability and utility of our on-body input approach 

for users with visual impairments; and (iv) design reflections for on-body gestural 

interfaces in terms of what locations and gestures can be most reliably recognized 

across users. While our prototype design is preliminary—we expect that future 

iterations will be much smaller and self-contained—our explorations build a foundation 

for robust and flexible on-body interactions that support contextual gestures at multiple 

body locations via supervised learning. Our primary focus is supporting users with 

visual impairments; however, our approach could also benefit users with situational 

impairments (e.g., while walking or conversing) or be applied as an input mechanism 

for virtual reality systems (e.g., for accurate touch-based input in eyes-free situations). 
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All software code and hardware design files are open sourced and available here: 

https://github.com/lstearns86/touchcam. 

7.1 TouchCam Offline: Initial Wearable Prototype 
We describe our first prototype, TouchCam Offline, which we evaluate offline using 

data collected from a controlled study. Study I focuses on addressing RQ1 and RQ2: 

how accurately can we recognize location-specific on-body gestures and which 

locations and gestures can be recognized most reliably? Our results inform the 

development of a realtime prototype, which is evaluated in Study II (Section 7.3). 

7.1.1 Prototype Hardware 

The TouchCam Offline hardware consists of: (i) a finger-worn multi-sensor package 

that includes two infrared (IR) reflectance sensors, an inertial measurement unit (IMU), 

and a small camera with an adjustable LED for illumination; and (ii) a wrist-worn 

microcontroller with a second IMU, which simulates a smartwatch and provides 

a b 

c 

Figure 7.2: (a) TouchCam Offline showing the finger and wrist-worn sensors and 
microcontroller. (b) Fifteen fine-grained body locations (individual circles) within six coarse-
grained locations (denoted by color), and (c) eight basic gestures. 
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additional sensing. The finger-based sensors are mounted on three laser-cut rings and 

positioned to avoid impeding the user’s sense of touch, which is particularly important 

for users with visual impairments. See Figure 7.2a.  

Infrared Reflectance Sensors. The two IR sensors25 (each 2.9 mm × 3.6 mm 

× 1.7 mm) have a sensing range of ~2–10 mm and are used to detect touch events and 

to aid in recognizing gestures. Unlike Magic Finger [228], which places optical sensors 

directly on the pad of the finger, we mount the sensors on the sides of the front-most 

ring, approximately 5 mm from the fingertip to avoid interfering with tactile sensitivity. 

Camera Sensor. A small (6 mm diameter) CMOS camera26 is mounted atop 

the user’s index finger, providing 640 × 640 px images at up to 90 fps with a 30° 

diagonal field of view (FOV). We use grayscale images from the camera to classify the 

touch location, extracting both texture and 2D point features. We also estimate visual 

motion between video frames to assist in classifying gestures. The camera includes a 

manually adjustable lens with a focal distance that varies from 15 mm to ∞. Because 

distances shorter than 30–40 mm provide a very narrow range of focus, we positioned 

the front of the lens ~50 mm from the user’s fingertip. This setup provides an effective 

FOV of ~27mm across the diagonal when the finger is touching a surface. To prevent 

lateral rotation and to fix the FOV center near the touch location, the camera is attached 

25 Fairchild Semiconductor QRE113GR 
26 Awaiba NanEye GS Idule Demo Kit 

152 



 

 
 

 
 

    

  

    

 

  

  

 

   

  

     

 

     

  

   

 

    

  

  

   

 

                                                 
 

  

   

to two rings 15 mm apart. A bright LED (3 mm diameter, 6000 mcd, 45° angle) 

mounted below the camera illuminates the touch surface regardless of ambient lighting. 

Inertial Measurement Units. Two IMUs27 are mounted on the user’s hand: 

one below the camera on the index finger and one on the wrist. We include two IMUs 

to examine the effect of sensor location on classification performance. The IMUs 

provide motion information at ~190 Hz, and each contains a three-axis accelerometer, 

gyroscope, and magnetometer. While the camera offers rich contextual information 

about a scene, its field of view and frame rate limit performance during quick motions. 

Therefore, the IMUs are our primary sensor for detecting motion and classifying 

gestures. The orientation of the gesturing finger and/or wrist may also be useful for 

distinguishing body locations (e.g., ear vs. thigh) although this is posture dependent. 

The IMUs are calibrated to correct magnetic bias and to establish a stable orientation 

estimate (described in Section 7.1.2). Calibration consists of rotating the unit along 

each axis for a few seconds and is performed only once per session—although future 

explorations may require repeated calibration to ensure long-term stability. 

Sensor Placement and Microcontroller. We designed custom laser-cut rings 

in multiple sizes (13–24 mm inner diameter in 0.5mm increments) with detachable 

sensors to fit each user. As shown in Figure 7.2a, the rings are worn on the index finger 

near the first and second joints. The IR and IMU sensors are controlled via a 

microcontroller28 mounted on a Velcro wristband, and the camera and microcontroller 

27 Adafruit Flora LSM9DS0 
28 Sparkfun Arduino Pro Micro (5V/16MHz) 
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are connected to a desktop computer29 via USB cables. All data is logged, timestamped, 

and analyzed post hoc on the desktop. 

7.1.2 Input Recognition Algorithms 

To recognize localized on-body input, we developed a four-stage approach: (i) touch 

segmentation; (ii) feature extraction; (iii) location classification; (iv) gesture 

classification. The two classification stages—location and gesture—are trained 

individually for each user and combine readings from multiple sensors for robustness. 

While the algorithms described next could be trained on any arbitrary set of locations 

and gestures, in our study, we evaluated six coarse-grained body locations (fingers, 

palm, back of hand or wrist, ear, shoulder, and thigh) with 15 fine-grained locations 

(thumb/index/middle/ring/pinky finger, palm up/down/left/right/center, back of hand, 

outer wrist, ear, shoulder, and thigh) and 8 basic gestures (tap, swipe 

up/down/left/right, circle, triangle, and square)—see Figures 7.2b and 7.2c. These 

locations are visually distinctive and can be located easily even without sight, and the 

gestures are simple shapes that can be drawn with a single touch down/up event. 

Stage I: Touch Segmentation. Our input recognition algorithms receive a 

sensor stream consisting of video, IMU, and IR data. We segment this input stream by 

detecting touch-down and touch-up events using the IR sensor readings, which 

represent distance from the touch surface (lower values are closer). While for real-

world use, a segmentation approach would need to identify these touch events within a 

29 Dell Precision Workstation, dual Intel Xeon CPU @2.1GHz, NVIDIA GeForce GTX 750Ti 
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continuous stream of data, to evaluate this initial prototype we made several 

assumptions to simplify the process (we eliminated these assumptions for the realtime 

prototype, described later). Based on experiments with pilot data, we developed a 

straightforward threshold-based approach using a variable threshold that was set to 

90% of the maximum IR value observed across the input stream for each trial. Within 

a trial, a touch-down event is triggered when either of the two IR values crosses below 

the threshold, while a touch-up event is triggered when both cross above the threshold. 

To be conservative, we assume that each trial contains a single gesture and segment the 

entire gesture from the first touch-down event in the trial to the last touch-up event. We 

crop each input stream to include only the sensor readings and video frames that 

occurred between the touch-down and touch-up event timestamps. 

Stage II: Feature Extraction. In Stage II, we extract static orientation and 

visual features for localization, and motion features for gesture classification. We 

describe each in turn below (see Table C.4 in Appendix C for more details). 

Localization Features. To extract static features for localization, we first 

determine the video frame that has the maximum focus in the segmented sequence, 

since it is the most likely to contain recognizable visual features. We define focus as 

the total number of pixels extracted using a Canny edge detector [21] tuned with a small 

aperture (𝜎𝜎 = 3) and relatively low thresholds (𝑇𝑇1 = 100, 𝑇𝑇2 = 50) to detect fine 

details. While this approach does not account for all image quality problems—motion 

blur in particular can cause it to fail—it is highly efficient and, in general, detects a 

much greater number of edges for images that are in focus than for those that are not. 
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We verified this trend empirically using pilot data. We then extract several features for 

the selected video frame, which include: (i) raw IR sensor readings, (ii) the estimated 

IMU orientation, (iii) image texture features for coarse-grained classification, and (iv) 

2D image keypoints for geometric verification to distinguish between locations with 

similar textures (i.e., fingertips, palm locations, back of wrist or hand). 

The orientation of each IMU is estimated by applying a Madgwick filter [124] 

on a sequence of raw accelerometer, magnetometer, and gyroscope readings resulting 

in a 4D orientation vector (i.e., quaternion). The filter is a standard sequential 

optimization approach to estimating IMU orientations that is updated at each time step. 

Our initial calibration procedure includes briefly rotating the device in all directions so 

that the filter can converge to an accurate orientation estimate. The orientation estimate 

at the selected video frame is used as a 4-dimensional feature vector (W, X, Y, and Z) 

for each IMU and concatenated into an 8-dimensional vector when both IMUs are used. 

The image-based features are extracted similarly to our prior work in the 

previous chapter: To represent image texture, we use a variant of local binary patterns 

(LBP) that is robust to changes in illumination and that achieves rotation invariance 

while exploiting the complementary nature of local spatial patterns and contrast 

information [62]. While we explored other common texture-based methods such as 

Gabor histograms [216] and wavelet principal components [44], we found that they 

offered negligible improvements over LBP despite their increased computational 

complexity. We extract uniform LBP patterns and local variance estimates from an 

image pyramid with eight scales to capture both fine and coarse texture information. 
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Specifically, we use 𝐿𝐿𝐿𝐿𝑃𝑃12,2
𝑟𝑟𝑟𝑟𝑟𝑟2/𝑉𝑉𝐴𝐴𝑅𝑅12,2 with 14 uniform pattern bins and 16 variance 

bins as defined in [62]. These values are accumulated into a histogram with 224 bins 

for each scale, all concatenated to obtain a 1792-element feature vector. To resolve 

ambiguities and ensure geometric consistency, we extract custom keypoints at 

locations with a high Gabor filter response at two or more orientations, which tend to 

lie at the intersections of ridgelines or creases. This approach was inspired by [80]. We 

use the Gabor energy in a 16 × 16px neighborhood around the keypoint as a descriptor 

extracted at 18 orientations to ensure rotation invariance. See Chapter 6 for full details. 

Motion Features. For gesture classification, we extract motion features from 

the sensor readings within the segmented timeframe (these are treated independently 

from the localization features). We use three standard signal preprocessing steps on the 

raw IMU and IR sensor readings: smoothing, normalization, and resampling. We first 

smooth the raw values using a Gaussian filter (σ =13, optimized based on pilot data) to 

reduce the effect of sensor noise and then normalize the smoothed sequence by 

subtracting its mean and dividing by its standard deviation. To obtain a fixed length 

sequence for robustness to variations in speed, we resample the sensor readings using 

linear interpolation at 50 equally spaced discrete time steps. These values, however, are 

still sensitive to small variations in speed and orientation. Thus, similar to [224], for 

each IMU and IR sensor we compute summary statistics for windows of 20 samples at 

10-step increments (i.e., four windows): mean, minimum, maximum, median, and 

absolute mean. Finally, for the 50 resampled accelerometer, magnetometer, and 

gyroscope readings, we compute x-y, x-z, and y-z correlations. The result is 639 features 
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for each IMU and 70 for each IR sensor, which we concatenate into a single feature 

vector to use when classifying gestures. 

We also extract motion features from the video frames between the touch-down 

and touch-up events. Because we support touch-based gestures only on flat or nearly 

flat surfaces, it is sufficient to estimate a global 2D motion vector for each frame; we 

do so using a template-matching approach. First, we down-sample each image from 

640 × 640px to 160 × 160px resolution for efficiency and noise robustness. Next, for 

each frame we extract a 40 × 40px region centered within the previous frame to use as 

a template, which we then match against the current frame using a sliding window to 

compute the normalized cross-correlation [115]. The position of the pixel with the 

highest cross-correlation value identifies the most likely displacement between frames, 

yielding a 2D motion vector estimate. Because images with higher contrast are more 

likely to yield reliable motion estimates, we weight each motion vector by an estimate 

of the frame’s contrast (the image variance). As with the other motion features, we 

smooth the motion estimates by applying a moving average (window size = 10). We 

then re-sample 50 points from this sequence of motion vectors and compute summary 

statistics as with the IMU and IR sensor readings to obtain a fixed-length vector of 140 

features for use in gesture classification. 

Stage III: Localization. Once we have extracted localization and motion 

features, we begin independently classifying on-body locations (Stage III) and gestures 

(Stage IV). For localization, we rely primarily on static visual features from the camera 

with IMU orientations and IR reflectance values to resolve ambiguities. 
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Our image-based touch localization algorithms function identically to our prior 

work [202]. We use a two-level location classification hierarchy: first classifying the 

location as one of the six course-grained regions then refining that location estimate 

where possible to finer-grained regions. In our offline user study (Study I), coarse-

grained regions include fingers, palm, back of hand or wrist, ear, shoulder, and thigh 

while fine-grained regions include specific fingertips, locations on the palm, and on the 

back of hand versus the wrist (Figure 7.2b). Some coarse-grained locations are not 

subdivided at this second level due to a lack of distinctive features—in the case of our 

study, the ear, shoulder, and thigh are not subdivided. We first classify the texture 

features into a coarse-grained location using an SVM30 then perform template matching 

against only the stored templates from that location to estimate the fine-grained 

location. Finally, we perform geometric verification using the extracted 2D point 

features to ensure a correct match. 

At both levels of the classification hierarchy, we resolve ambiguities using a 

sensor fusion approach. We combine predictions based on the static visual features 

from a video frame with predictions based on the IMU orientation and IR reflectance 

features with the same timestamp as that frame. Since the scales, lengths, and types of 

these feature vectors differ greatly, rather than concatenating the features for use with 

a single classifier we instead train a separate SVM with a Gaussian kernel on the non-

visual features. To robustly combine the predictions from the two disparate localization 

30 Aforge.NET: http://www.aforgenet.com (used for all SVM and neural network classifiers) 
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classifiers (one for the camera features and one for the IR and IMU features), we first 

tune the SVMs to output normalized probability predictions for each class using Platt 

scaling, as is standard [165]. We concatenate these predictions into a single feature 

vector, which we then use to train a third sensor fusion classifier that automatically 

learns how to prioritize sensors based on prediction confidence and location class. 

Inspired by [38], we use a feedforward neural network for this sensor fusion classifier. 

Our network has one fully connected hidden layer for flexibility of functional 

representation, and a softmax output layer for multiclass output; it is trained using 

resilient backpropagation [129]. The final output of our classification process is a 

combined location prediction from the six coarse-grained and fifteen fine-grained 

classes with approximate likelihoods for each class (sorted from most to least likely). 

Stage IV: Gesture Classification. Gesture classification is performed 

independent of localization using an additional SVM. As in texture classification, 

SVMs are commonly used for classifying gestures because they are robust and efficient 

for problems with high dimensionality. We use a linear kernel with feature weights that 

were optimized for performance across all participants. For the evaluation presented in 

Section 7.1.4, we trained an SVM to classify the following gestures as shown in Figure 

7.2c: tap, swipe up, swipe down, swipe left, swipe right, circle, triangle, and square. 

7.1.3 Study I: Data Collection and Dataset for Offline Experiments 

To evaluate our initial prototype and algorithms, we performed offline experiments 

using data collected from twenty-four participants. Each participant performed a series 
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of location-specific on-body input tasks with our prototype system. We were 

specifically interested in investigating our first two research questions enumerated in 

the Introduction: (i) How accurately can we recognize location-specific on-body 

gestures with a finger-worn camera and auxiliary sensors (IMU, IR)? (ii) Which body 

locations and gestures can be recognized most reliably using our approach? 

Participants. Twenty-four right-handed participants (16 female) were recruited 

via campus e-mail lists and word of mouth. Their average age was 28.9 (SD=7.95, 

range=19–51). All participants had normal vision as the goal of this study was to assess 

our algorithms and not issues related to usability or accessibility. Participants were 

compensated $25 for their time.  

Data Collection Apparatus. During data collection, participants wore the 

TouchCam Offline prototype. As described in Section 7.1.1, we selected ring sizes to 

fit the participant’s finger and adjusted positioning to ensure a consistent sensor range. 

A custom application written in C# displayed visual task prompts and a live feed from 

the finger-worn camera to assist with framing the target locations (Figure 7.3a). All 

(a) Following on-screen data collection protocol (b) Example skin images from Study I 
Figure 7.3: (a) Data collection setup showing our prototype, location and gesture instructions, 
and camera video feed. (b) Example skin-surface images recorded by our finger-mounted 
camera (fingerprint images omitted to protect our participants’ privacy). 
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IMU and IR sensor readings and camera video frames were logged with timestamps 

along with ground-truth touch location and gesture labels for each trial. 

Procedure. The procedure lasted up to 90 minutes. After a brief demographic 

questionnaire and setup period (i.e., selecting rings, putting on the prototype), 

participants completed the following tasks, in order: 

Location-specific touches. Participants touched and held their finger in place at 

15 locations (Figure 7.2b) with each location prompted visually on a monitor (Figure 

7.3a). After confirming the location and image quality, the experimenter logged the 

current location (e.g., timestamp, location label) and triggered the start of the next trial. 

Participants completed 10 blocks of trials, where each block consisted of a different 

random permutation of the 15 locations (150 trials in total). In total, this dataset 

includes 3600 location-specific touches across all participants. Example images are 

shown in Figure 7.3b. 

Location-specific gestures. Participants performed the eight basic gestures: tap, 

swipe up, swipe down, swipe left, swipe right, circle, triangle, and square (Figure 7.2c) 

at three body locations: the palm, wrist, and thigh. These locations were selected from 

the 15 locations in the first task because they are easy to access, unobtrusive, and have 

a relatively large input area thus allowing for more complex gestures. As with the first 

task, participants completed 10 blocks of trials, where each block consisted of a 

different random permutation of the 24 gesture and location combinations (240 trials 

in total). This dataset includes 5,760 location-specific gestures across all participants. 

162 



 

 
 

 
 

   

 

   

 

  

 

  

  

 

 

 

 

  

 

  

  

   

  

  

  

 

7.1.4 Study I: Offline Experiments and Results 

To investigate the accuracy of our location and gesture classification algorithms, we 

performed a series of offline experiments using the gathered data. Below, we evaluate 

coarse-grained localization, fine-grained localization, and location-specific gesture 

classification as well as the effect of each sensor on performance (e.g., finger-worn vs. 

wrist-worn IMUs). We compare sensor combinations using paired t-tests and Holm-

Bonferroni adjustments to protect against Type I error [77]. 

Training and Cross Validation. All of our experiments use leave-one-out 

cross validation and train and test on a single user’s data. Specifically, each experiment 

uses all available data from a single participant for training the location and gesture 

classification SVMs with a single sample set aside for testing. The localization and 

gesture classifiers are trained independently. The experiment is repeated for each 

sample and averaged across all possible combinations.  

Touch Localization. To examine the accuracy of our on-body localization 

algorithms, we used the location-specific touch dataset. Since our localization approach 

is hierarchical, we analyze performance at both the coarse-grained level (6 classes) and 

the fine-grained level (15 classes). 

We first report primary localization results using all available sensor readings 

(i.e., sensor fusion results). At the coarse-grained level, we achieve 98.0% (SD=2.3%) 

average accuracy. This is reduced to 88.7% (SD=7.0%) at the fine-grained level. Table 

7.1 shows the accuracy breakdown by class. The worst performing coarse-grained 

classes were the wrist/hand and ear, both at 93.8%, possibly due to their highly variable 
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Up Down Left Right Center 
Palm 84.6% 78.5% 85.0% 83.1% 91.5% 

Thumb Index Middle Ring Pinky 
Fingers 93.1% 85.4% 81.5% 88.1% 91.9% 

Palm Fingers Wrist/Hand Ear Shoulder Thigh 
Palm 99.1% 0.5% 0.4% 0.1% 

Fingers 0.3% 99.6% 0.1% 
Wrist/Hand 5.0% 0.2% 93.8% 0.2% 0.6% 0.2% 

Ear 4.2% 0.4% 1.2% 93.8% 0.4% 
Shoulder 0.8% 0.4% 98.8% 

Thigh 2.3% 0.4% 97.3% 
Outer Wrist Back of Hand Ear Shoulder Thigh 

87.3% 88.8% 93.8% 98.8% 97.3% 

(a) Coarse-grained Accuracy (b) Fine-grained Accuracy 

Table 7.1: Classification percentages averaged across 10 trials and 24 participants. (a) 
Accuracy for the six coarse-grained classes. Each cell indicates the percentage of images 
assigned to a predicted class (column) for each actual class (row); empty cells indicate 0%. (b) 
Accuracy for the 15 fine-grained classes, grouped by corresponding coarse-grained class. 

appearance and fewer distinctive visual features. In contrast, the fingers and palm 

perform best at 99.6% and 99.1% respectively although the individual fine-grained 

classification accuracies were lower. These results suggest that care must be taken in 

selecting body locations that are both visually distinctive and easy for participants to 

return to repeatedly. A qualitative analysis of our dataset revealed issues that account 

for some of the error: approximately 5% of the images gathered had focus, contrast, or 

illumination issues that interfered with extracting recognizable image features; see 

Figure 7.4. We took steps to mitigate these problems for the next TouchCam iteration. 

To investigate the effect of each sensor on localization performance, we 

repeated the classification experiment with the sensors individually and in 

combination. As expected, the camera is by far the most accurate single sensor for 

classifying location, with a coarse-grained accuracy of 97.5% (SD=2.6%) followed by 

Out of Focus Too Dark or Poor Contrast Oversaturated 
Figure 7.4: Approximately 5% of the images we collected had poor focus, contrast, or 
illumination, preventing robust feature extraction. We adjusted the camera and LED to mitigate 
these issues for TouchCam Realtime. 
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the finger-based IMU at 75.6% (SD=11.6%). Notably, the camera is significantly better 

even compared to the 87.5% (SD=7.0%) accuracy of combining all other sensors 

(p<0.001, t23=7.12, d=1.92). No significant differences were found between the camera 

alone or combined with other sensors, which suggests that the camera alone is sufficient 

for course-grained classification. At the fine-grained level, the camera is again the most 

accurate sensor (84.0%) even compared to all other sensors combined (52.9% accuracy; 

SD=12.0; p<0.001, t23=16.74, d=2.99). But, unlike at the coarse-grained level, adding 

any of the other three sensors to the camera further increases accuracy, with the highest 

accuracy (88.7%) resulting from the combination of all available sensors. 

Location-Specific Gesture Classification. To explore the possibility of 

supporting location-specific gestures, we conducted a classification experiment with 

the data from the location-specific gesture task (24 classes: 3 locations × 8 gestures). 

First, we classified the location using the image features from the camera (extracted 

from the video frame with maximal focus as described above). Since the location 

features from the IR and IMU sensors did not make a significant difference at the 

coarse-grained level, we omitted them here. Location accuracy for these three locations 

was 99.1% (SD=1.0%). Next, we classified the gesture using the motion features from 

all of the sensors (IMU, IR, and camera) achieving an accuracy of 96.6% (SD=2.6%). 

Figure 7.5: Mean classification accuracy using different sensor combinations to classify 
location-specific gestures. Boxes indicate the best sensor combinations as additional sensors 
are added, with each box significantly outperforming the last (from left to right). There was no 
significant difference between the finger- and wrist-mounted IMUs. 
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Finally, we combined the class predictions and calculated the overall location-specific 

gesture classification accuracy across all 24 classes, which was 95.7% (SD=3.2%). 

As a secondary analysis, we again examined classification accuracy as a 

function of each sensor (Figure 7.5) but this time for the 24 location-specific gestures. 

In general, adding more sensors significantly improves classification accuracy, 

although as a practical matter the differences between the pair of IMUs and other more 

complex combinations are fairly small (see Appendix C for statistical comparisons). 

Efficiency. For our initial prototype and algorithm development, our primary 

aim was to investigate the feasibility and accuracy of our approach rather than develop 

a realtime system. As such, our TouchCam Offline algorithms are slow. On our desktop 

computer (the Dell Precision Workstation described in Section 7.1.1), the image feature 

extraction and localization stages required, on average, two seconds per frame to 

process and classify an image. The most computationally demanding stage was 

geometric verification, which required approximately 243,000 feature comparisons on 

average. The other stages’ computation times are comparatively negligible. 

7.1.5 Summary of Study I Findings 

Our results address our first two research questions demonstrating the feasibility of 

recognizing location-specific gestures using finger- and wrist-worn sensors. While our 

experiments show advantages with sensor fusion when classifying both location and 

gesture, the practical differences are relatively small suggesting that we can simplify 

our algorithms by using each sensor type for the task for which it is best suited (i.e., IR 
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sensors for touch detection, camera for localization, and IMUs for gesture recognition). 

Individual accuracies per location suggest limits to the localization granularity of our 

algorithms, which performed well (≥98%) for coarse-grained locations but were less 

accurate (89%) for fine-grained locations. These results could likely be improved with 

a better camera (e.g., higher resolution, autofocus) and with more complex finger/palm 

print recognition algorithms. However, the high accuracy during our location-specific 

gesture experiment (96%) suggests that such steps may not be necessary for us to begin 

investigating these interactions with visually impaired users. We built upon these 

findings to implement the next iteration of TouchCam, described below. 

7.2 TouchCam Realtime: Improved Interactive Prototype 
Based on our Study I findings, we designed TouchCam Realtime, a realtime version of 

our offline system with updated hardware and algorithms. We first describe key 

changes to improve robustness and enable realtime interactions (addressing RQ3) 

before validating the new classification algorithms using the Study I data. 

7.2.1 Realtime Prototype Hardware 

TouchCam Realtime’s hardware (Figure 7.6) embeds all finger-mounted components 

in a single 3D-printed unit, which is attached to the user’s finger by a pair of Velcro 

strips to allow greater freedom of motion than the rigid rings from the previous version. 

This updated design is more stable and durable. The camera and IR sensors are 

repositioned to capture more consistent images and improve the reliability of touch 

detection, respectively. Although Study I found an accuracy advantage when using two 
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Figure 7.6: (a) TouchCam Realtime prototype showing the finger and wrist-worn sensors and 
wrist-worn microcontroller. (b) Comparison of TouchCam Offline and Realtime hardware. 

IMUs (~4%), we decided to remove the wrist-mounted IMU to simplify our hardware 

and algorithms. We compensated for the potential drop in accuracy by doubling the 

remaining (finger-mounted) IMU’s sampling rate. This change reduced the number of 

features used to classify gestures and the number of examples needed for training. 

7.2.2 Realtime Input Recognition Algorithms 

We made several changes to our input recognition algorithms to support realtime 

operation. First, we optimized our localization algorithms to run in realtime on a GPU 

and removed the computationally costly geometric verification step. Second, we 

updated the touch detection stage to support continuous use. Finally, we improved the 

gesture recognition stage, making it more robust to changes in orientation and pose. 

Localization Algorithm Changes. As noted previously, our offline 

localization algorithms required up to two seconds per frame, primarily limited by 

geometric keypoint matching between image templates. Simply removing keypoint 

matching increased our frame rate from 0.5fps to ~18.5fps, but with a ~9% reduction 

in Study I’s fine-grained localization accuracy. To address this loss, we made three 
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updates to our localization algorithms. First, we used an alternate LBP approach that 

better preserved spatial features [236], which increased the number of texture features 

per image from 1792 to 15,552. Second, we averaged class probability predictions 

across 20 video frames, a number selected after pilot tests to balance accuracy and 

latency. And third, we reduced the number of fine-grained locations, omitting the five 

fingertip locations evaluated in Study I. This decision was not solely due to algorithmic 

performance—the fingertips proved difficult for participants to capture reliably even 

with visual feedback due to the sensors’ positioning and small field of view. Also, while 

the fingertips are convenient locations for static touch-based input, they are too small 

to easily support gestural input. Finally, we implemented parallel GPU versions of our 

algorithms, which further improved the average localization speed to 35.7 fps.   

Touch Detection Algorithm Changes. To improve robustness and support 

continuous use, we made minor changes to the touch detection algorithms. We applied 

a moving average filter to the IR values to reduce sensor noise (window size = 50ms), 

and triggered touch-down and touch-up events when the sensors crossed a fixed 

threshold that was the same across all users rather than derived per gesture as with the 

offline system. This threshold was fixed at 90% of the maximum possible value the 

sensor could register, which we determined empirically to be robust to changes in 

ambient lighting and to work well for skin and clothing surfaces. To ensure that we 

captured the full gesture (and to support double-taps), we placed a delay of 100ms on 

the touch-up event and canceled it if the user touched down again within that period. 
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Gesture Recognition Algorithm Changes. Lastly, we made improvements to 

the gesture recognition algorithms. To compensate for variations in orientation and 

pose when performing gestures, we first rotated the IMU sensor readings relative to the 

estimated orientation at the start of the gesture (the touch-down event). We discarded 

the magnetometer readings after this step since they were overly sensitive to orientation 

and location. These changes allowed us to build a pre-trained cross-user gesture 

classifier with 1,720 samples in place of the individual classifiers used in Study I. 

7.2.3 Validation of Realtime Algorithms 

To test our updated algorithms and establish a performance benchmark for our realtime 

system, we conducted classification experiments on the data gathered during Study I. 

The average 10-fold cross-validation accuracy on the location-specific touches dataset 

was 97.5% (SD=2.4%) at the coarse-grained level (6 classes) and 84.5% (SD=8.2%) at 

the fine-grained level (15 classes), which is nearly identical to the TouchCam Offline 

system—see Table 7.2. The five finger locations were most impacted by the removal 

of the geometric verification step. Localization accuracy on the location-specific 

gestures dataset remains similarly high at 98.6%. As mentioned above, efficiency 

increased considerably: from 0.5fps to 35.7fps (a ~70x speedup). 

Palm Fingers Wrist/Hand Ear Shoulder Thigh 
Palm 98.5% 0.8% 0.5% 0.1% 0.1% 
Fingers 0.3% 99.7% 
Wrist/Hand 4.0% 0.4% 95.4% 0.2% 
Ear 5.4% 2.1% 92.1% 0.4% 
Shoulder 1.7% 0.4% 2.1% 95.4% 0.4% 
Thigh 1.7% 2.1% 0.4% 95.8% 

Up Down Left Right Center 
Palm 83.8% 82.5% 80.8% 85.4% 89.6% 

Thumb Index Middle Ring Pinky 
Fingers 92.1% 71.3% 71.3% 73.8% 79.6% 

Outer Wrist Back of Hand Ear Shoulder Thigh 
87.5% 85.8% 92.1% 95.4% 95.8% 

(a) Coarse-grained Accuracy (b) Fine-grained Accuracy 

Table 7.2: TouchCam Realtime performance on Study I dataset. (a) Coarse-grained 
classification averaged across 10 trials and 24 participants. Each cell indicates the percentage 
of images assigned to a predicted class (column) for each actual class (row). (b) Fine-grained 
classification averaged across the corresponding coarse-grained classes. 
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7.3 Study II: Realtime Evaluation with Visually Impaired 
Participants 

To assess the performance and accessibility of TouchCam Realtime under more 

realistic conditions and with our target population (RQ4), we conducted a second study. 

We recruited 12 blind and visually impaired participants who performed common 

interactions with TouchCam such as checking the time or reading text messages. We 

focus primarily on issues impacting the accuracy and usability of our system (see [156] 

for more about the interaction designs and participant feedback). 

7.3.1 Study II: Method 

Participants completed an adaptive calibration procedure for training and then used 

TouchCam Realtime to perform tasks using three on-body interaction techniques. 

Participants. Twelve participants (7 female, 5 male) were recruited through 

email lists, local organizations for people with visual impairments, and word of mouth. 

Nine participants were blind and three had low vision. The average age was 46.2 years 

old (SD=12.0, range=29–65). All participants were smartphone users (11 iPhone, 1 

Android) and all reported using a screenreader either “all” or “most” of the time. 

Participants were compensated $60 for time and travel. 

Apparatus. Throughout the study, participants wore the TouchCam Realtime 

prototype on their dominant hand. We assisted participants with putting on the ring and 

wristband and adjusted positioning to ensure consistent sensor readings. A custom C# 

application controlled a semi-automated training process, provided audio and 
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Palm Up Palm Down Palm Left Palm Right Palm Center Inner Wrist Outer Wrist Ear Thigh 

Figure 7.7: Sample image data from the nine locations collected with TouchCam Realtime. 
All images were selected from different participants. 

synthesized speech cues during the tasks, and displayed a camera and sensor view for 

the researcher to ensure correct positioning. All sensor readings and video frames were 

logged with timestamps. 

Location and Gestures. As described in Section 7.2.2, we refined the locations 

and gestures for Study II based on observations made during Study I. We reduced the 

coarse-grain set from 6 to 4 locations and the fine-grain set from 15 to 9 locations. 

Specifically, we replaced the back-of-the-hand location with the inner wrist due to 

inter-class similarity with the outer wrist, removed the shoulder location for ergonomic 

reasons, and removed the five finger locations because without 2D keypoint matching 

and geometric verification, classification accuracy for this region was considerably 

lower. The updated set of locations included: the palm (up, down, left, right, and 

center), the wrist (inner and outer), the thigh, and the ear (Figure 7.7). 

While Study I showed that TouchCam can support a variety of touch-based 

gestures, for Study II we specifically modeled our interactions after Apple’s 

VoiceOver31 and Google’s TalkBack32—two popular gesture-based mobile 

screenreaders for non-visual use. In total, we support 6 gestures, including: swipe left 

31 http://www.apple.com/accessibility/ios/voiceover/ 
32 https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback 
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or swipe right to move between menu items and double-tap to select an item. We also 

included a single-tap gesture to repeat a voice prompt, a swipe-down gesture to go to 

the previous menu, and a tap-and-hold gesture to select location-specific items. The 

tap-and-hold gesture was recognized by an 800ms timeout after the touch-down event 

while the other gestures were recognized using a pre-trained SVM classifier (as 

described in Section 7.1.2). These gestures can be performed at any body location.  

Training Procedure. To limit the amount of time needed to train our system, 

we implemented an adaptive training procedure inspired by boosting [49]. After 

capturing a single image of each of the nine locations for initialization, participants 

then moved their finger around each location in a fixed order as the system 

continuously classified the video frames. Whenever a video frame was misclassified, 

that frame and the current location label were saved, and the classifiers were retrained. 

This semi-automated training continued until convergence (i.e., until the researcher 

determined that the automated system was performing well). After training all 

locations, at least one additional round was necessary to ensure that new image samples 

did not negatively affect performance. We found that the initial training images plus 

two rounds of semi-automated training were sufficient for most users, which took 

roughly 15-20 minutes and resulted in an average of 13 training examples per location 

(SD=4.5; range=5-24). 

Procedure. The study procedure lasted up to two hours and consisted of: (i) an 

interview about mobile and wearable device usage including thoughts about on-body 

interaction (~20 minutes); (ii) system calibration and training (~30 minutes); (iii) using 
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(a) Location-independent (b) Location-specific (c) Location-specific 
gestures (LI) palm gestures (LSpalm) body gestures (LSbody) 

Figure 7.8: Three on-body interaction techniques: (a) for LI, users swipe left/right anywhere 
on the body to select an application. For (b) and (c), users select an application by double 
tapping on a specific location on their palm (LSpalm) or body (LSbody). 

TouchCam with three interaction techniques (~10 minutes each); and (iv) a post-study 

questionnaire (~15 minutes). For (iii), the VoiceOver-like interaction techniques were 

presented in a fully counterbalanced order. Each interaction technique supported the 

same set of applications and menu items accessed through a two-level hierarchical 

menu. The top-level menu had five applications (Clock, Daily Summary, Notifications, 

Health and Activities, and Voice Input), which were selected by double tapping. Once 

selected, each application had 3-4 submenu items except for Voice Input, which had no 

submenu. The three interaction techniques are described below (see also: Figure 7.8 

and the supplementary video at https://youtu.be/VREiWI_38BQ): 

1. Location-independent gestures (LI). Users swiped left or right anywhere to 

select an application. 

2. Location-specific palm gestures (LSpalm). Top-level applications were mapped 

to five different locations on the palm. Users pointed directly to a location to 

select that application or searched for an item by sliding their finger between 

locations (similar to VoiceOver). 
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3. Location-specific body gestures (LSbody). Functioned similarly to LSpalm but 

mapped the applications to five different locations on the body rather than just 

the palm. We attempted to use intuitive mappings. For example, tapping the 

outer wrist for Clock and the ear for Voice Input. The other mappings were: the 

palm for Notifications, the inner wrist for Daily Summary, and the thigh for 

Health and Activities. 

After activating an application, navigation of the submenus was identical across 

all three interaction techniques, using swipes left and right to select an item and a 

double-tap to activate it. For each of these interaction techniques, participants were 

instructed to complete the same set of 10 tasks in a random order. After an automated 

voice prompt said “begin,” a task consisted of selecting an application, opening its 

submenu, and then selecting and activating a specific menu item (e.g., “open the Alarm 

item under the Clock menu”). After the correct menu item had been activated by 

double-tapping, an automated voice prompt said “task complete,” and participants 

proceeded to the next task. 

The session concluded with open-ended questions about the participant’s 

experience using TouchCam Realtime and the three interaction techniques. 

Data and Analysis. Throughout the study, we logged all sensor readings, the 

location and gesture classifications, and event occurrences (e.g., task start/end, menu 

navigation). We analyze performance in terms of classification accuracy, as well as 

qualitative metrics of robustness and usability for the three on-body interaction 
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techniques that we tested. We also describe qualitative reactions and subjective 

preferences based on the interviews and questionnaires. 

7.3.2 Study II: Experiments and Results 

To evaluate TouchCam’s realtime performance and usability with our blind and low-

vision users, we observed participants’ behavior during the study and analyzed 

subjective feedback about our system. We also conducted offline experiments as with 

Study I, focusing on the sensor data gathered during the training phase of the study 

(rather than later data, which was unlabeled). Below, we summarize the details of our 

experiments and findings. 

General Observations and Reactions. All twelve participants successfully 

used TouchCam Realtime to complete tasks with each of the three interaction 

techniques. In the pre-study interview, most participants (N=9) reacted positively 

toward the idea of on-body interaction citing quick and easy access (N=7), the ability 

to map specific tasks to different body locations (N=6), reducing the number of devices 

to be carried (N=6), and not needing to hold a phone in hand, thus avoiding the risk of 

theft or damage and potentially freeing that hand for other tasks (N=4). 

Participants reacted similarly after using the TouchCam prototype. Preferences 

were split between the three interaction techniques. Participants appreciated the low 

learning curve and flexible input location of the LI interface, which supported simple 

swipe and tap gestures anywhere on the body, while the location-specific LSpalm and 

LSbody interfaces offered quicker and more direct selections once the location mappings 
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were learned. Some participants preferred the proximity of locations for LSpalm because 

it enabled easy exploration and minimal movement, while others liked the more 

intuitive location mappings of LSbody. Key concerns included TouchCam’s large 

physical size, the occasional difficulty with the LSpalm interface due to its lower fine-

grained accuracy, and the social acceptability of using LSbody in public (e.g., touching 

an ear may draw unwanted attention to the device). See [156] for a more thorough 

examination of qualitative reactions to our system. 

Localization Accuracy. To assess TouchCam’s localization accuracy and 

robustness for visually impaired users, we analyzed the data gathered during the 

training phase of the study. We first conducted a leave-one-out cross-validation 

experiment using the recorded training samples for each participant (similar to Study 

I). This resulted in an average accuracy of 91.2% (SD=3.5%) at the coarse-grained level 

and 76.3% (SD=76.3%) at the fine-grained level, which is a reduction in performance 

compared to Section 7.2.3. This decrease, however, is reflective of our adaptive training 

procedure: since new samples are added only when misclassified using the current 

SVM, we would naturally expect lower performance when removing even a single 

sample for cross-validation.  

Thus, we conducted an additional experiment using the full training set and 

classified other video frames from the training session (i.e., those recorded between the 

stored training samples). Here, the accuracy increases to 94.2% (SD=5.0%) and 81.3% 

(SD=6.6%) respectively. These latter numbers better reflect actual usage performance 

since we could not reliably measure ground truth during the actual user study (i.e., 
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Out of Focus Poor Contrast Too Dark Oversaturated Fingernail in View Off Target 
Figure 7.9: Some images captured during Study II were of poor quality due to the highlighted 
reasons. Despite these issues, performance remained adequate for participants to complete our 
specified tasks. 

when participants were using TouchCam with the three interaction techniques). We 

note that although performance should be improved in future work (see Discussion), 

these results were sufficient for using and evaluating TouchCam with our participants.  

Robustness. To investigate this reduction in performance in more detail, we 

performed a manual inspection of the 1,380 training images across the 12 participants 

using a custom image reviewing tool. While the severity of the problems varied widely, 

22.2% of the images had some issue that could interfere with reliable classification 

(Figure 9), including: poor focus (13.6%), insufficient illumination (5.4%), poor 

contrast (4.3%), or oversaturation (0.8%). In addition, 3.2% of the images did not 

capture the target location due to the offset between the participant’s touch location and 

the center of the camera’s field of view, and in 0.6% of the images the participant’s 

finger filled a large portion of the field of view, reducing the number of pixels available 

for identifying the target location. We further discuss robustness in the Discussion. 

7.3.3 Summary of Study II Findings 

Our findings validate TouchCam Realtime’s performance with our target population 

and demonstrate three possible on-body interaction techniques that our approach can 

support. Participants successfully performed several simple input tasks with our 
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system, and their comments highlight positive reactions to on-body input as well as 

tradeoffs between the three interaction techniques. These tradeoffs reflect both 

TouchCam’s performance (e.g., LSpalm was least accurate due to its reliance on fine-

grained localization) and broader design implications (e.g., user preferences for 

flexibility of input location, learning curve, and social acceptability). Our findings also 

highlight obstacles to robust on-body input recognition, especially for visually 

impaired users who cannot rely on visual cues. 

7.4 Discussion 
While prior work has explored preliminary issues related to the design of on-body 

interfaces for visually impaired users [64,153], TouchCam is the first realtime wearable 

on-body input system designed for and evaluated with this population. Moreover, our 

work contributes the first real-time system for localizing skin images, and the first to 

explore location-specific touch-based gestures at a wide set of body locations. Below 

we discuss TouchCam’s performance and usability and provide recommendations for 

future on-body input systems to support users with visual impairments. 

7.4.1 Robust On-Body Input Detection Using Sensors on the 
Gesturing Finger and Wrist 

Because TouchCam’s sensors move with the gesturing finger, they can support touch 

input at a variety of body (and non-body) locations without requiring additional 

instrumentation. This feature allows greater input flexibility than most other on-body 

input approaches (e.g., compared to ViBand [110] or Touché [184]) and means that the 
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user is also less likely to encounter issues with camera framing or occlusion—problems 

that are common for VI users when they use camera-based systems [3]. Although we 

did not examine non-body interactions in our work, TouchCam should support 

location-specific gestures at any surface with visually distinctive features. 

Our results demonstrate the feasibility of a computer-vision driven finger-worn 

camera approach for on-body input; however, we also encountered obstacles that limit 

TouchCam’s accuracy and precision. Because of the camera’s size and positioning, 

image quality was variable. A high percentage (22.2%) of the training images gathered 

during Study II were out of focus, low contrast, or poorly illuminated, and in some 

images the target location was not visible due to the offset between the participant’s 

touch location and the center of the camera’s field of view. These usage issues appeared 

to have a greater impact on performance than other potential factors such as ambient 

lighting, skin tone, age, or hand size, although future work should investigate these 

possibilities in greater detail. Improved camera hardware could help address some 

problems—for example, autofocus functionality would help ensure sharp focus across 

changes in camera distance or perspective and a wider-angle lens would provide 

additional contextual information to aid classification. Audio feedback that notifies 

users when there is a problem and helps them learn how to use the system, as provided 

by assistive devices for reading such as KNFB Reader33 or OrCam34, could also be 

helpful. Finally, future work should explore hybrid sensing approaches that combine a 

33 http://www.knfbreader.com/ 
34 http://www.orcam.com/ 
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finger-mounted camera with additional body-worn sensors on the head or chest, which 

could provide additional contextual information and assist with localization. 

7.4.2 An Expanded On-Body Input Vocabulary 

As mentioned above, our work introduces new types of on-body interactions that other 

systems cannot readily support without additional instrumentation. For example, the 

fixed sensors used by ViBand’s smartwatch platform limit interactions to a relatively 

small area on the hand and arm [110] while Touché requires modification of the target 

interaction surface and cannot detect gestural input [184]. In contrast, TouchCam can 

recognize location-specific gestures at several body locations, potentially allowing for 

intuitive context-specific input (e.g., tapping the wrist to check the time) and supporting 

a high degree of flexibility and customization. 

Participants identified tradeoffs between our three proof-of-concept interface 

designs, which should be considered when designing on-body interfaces to strike a 

balance between speed, accuracy, and learnability. Location-independent gestures (LI), 

which allow navigation using swipe gestures anywhere on the body, are easy to 

understand and learn, do not require individual calibration, and enable flexible input as 

needed for different situations (e.g., sitting at home vs. walking while holding a cane). 

Location-specific gestures (LSpalm and LSbody), where the user can directly select an 

application or menu item by touching a specific location, are potentially quicker once 

the location mappings have been learned and can also support intuitive context-specific 

gestures as mentioned above. The palm-only version (LSpalm), with its high touch 
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sensitivity and close proximity between mapped locations, could enable faster and 

more discrete input. Compared with the other two versions, it also more readily 

supports “touch and explore” functionality that could help participants learn the 

location mappings more quickly. However, in our experiments LSpalm was less accurate 

than the other two because of inter-class similarity between palm locations and thus 

required participants to more carefully position their hand and fingers. 

This expanded input vocabulary and flexibility of input locations may come at 

a cost, at least in the current iteration of TouchCam. While our prior work [202] 

suggested that we should be able to support precise localization on the palm and fingers 

using their rich visual features, our findings in this work highlight difficulty with 

robustly recognizing fine-grained locations. Future work should investigate ways to 

more reliably recognize fine locations, ideally with greater granularity than tested in 

our studies (e.g., more than five palm locations), and recognizing touch input at two or 

more locations simultaneously (e.g., using multiple finger-worn sensors) to support 

multi-touch gestures. In particular, future work should investigate how to extend our 

approach to support precise 2D localization (e.g., as with OmniTouch [70] or 

CyclopsRing [25]). These goals may be possible with the aid of additional sensors (e.g., 

a body-mounted camera) or with more efficient fingerprint and palmprint recognition 

algorithms that can support real-time interactions. 
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Figure 7.10: Classification accuracy across multiple sessions. In general, accuracy 
increases with more training sessions, suggesting that recalibration may initially be 
necessary, but that accuracy will eventually converge. 

7.4.3 Training and Calibration 

While TouchCam’s gesture recognition algorithms are robust enough to allow for a 

shared classifier that works across users, its localization algorithms rely on unique skin 

and clothing features and must be individually calibrated for each user. This 

requirement raises two concerns: (i) the time needed to complete the individual training 

procedure, and (ii) the stability and robustness of the classifiers over time as the system 

shifts position and the user’s body appearance varies (e.g., due to changing moisture 

levels or clothing). We took steps to address the first concern in Study II by introducing 

our automated training procedure, which took about 15-20 minutes for a new user 

compared to 30-45 minutes in Study I. However, this procedure will likely need to be 

simplified and further streamlined in future versions. One possibility would be to 

bootstrap the system using a large amount training data across multiple users, which 

could enable coarse-grained classification without individual training. Fine-grained 

accuracy could be improved over time by learning as the system is used. 

As for the second concern, it is possible (even likely) that shifts in the sensor 

positions after calibration negatively impacted performance for some participants 
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during Study II. Long-term performance is a challenge for many on-body input 

systems, since they can be highly sensitive to sensor positioning and biometric changes 

[234]. To explore how accuracy is affected over time, we conducted a small additional 

study with data gathered across five identical sessions with a single user (the first 

author). The time between sessions varied from 15 minutes to 24 hours, with the 

sessions completed over a three-day period. The prototype was fully removed between 

each session. Classification accuracy was measured similarly to the other experiments 

described above, except previous session data was used for training and the current 

session for testing. 

As expected, accuracy drops considerably when training on a single session and 

testing on another, from the 94.2% coarse-grained and 81.3% fine-grained numbers 

reported in Study II down to 88.2% and 73.6% on average respectively. However, 

combining training data across sessions improves accuracy reaching an average of 

96.5% and 91.8% at the two levels for four training sessions (Figure 7.10). A larger 

longitudinal study will be necessary to determine how well these results extend to other 

users and to a longer period of time, but these results are promising. 

7.4.4 Physical Design 

We designed TouchCam to avoid interfering with the user's movements and sense of 

touch, but the system is still large and requires tethering to a desktop computer for fast 

processing. With further algorithmic optimizations and increases in mobile processing 

power, we ultimately envision a smaller, self-contained system that uses a smartwatch 
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for processing and power. Furthermore, our priority with the finger-worn components 

was to ensure robustness and durability during our experiments, but our design can be 

streamlined considerably using existing technology. For example, the 6mm diameter 

camera module35 that we selected could be replaced with a much smaller 1mm unit 

from the same manufacturer36, and the IMU components could be embedded more 

directly into the ring (while the board we used is 16mm in diameter, the IMU itself is 

only 4mm square). The IR reflectance sensors positioned near the tip of the user's finger 

could potentially be replaced with an alternative touch detection method that is less 

intrusive—for example, an IR depth sensor with a longer range. Further work is needed 

to explore how these design changes impact accuracy, robustness, and user perceptions. 

7.4.5 Limitations 

Our system design and studies had several limitations. The TouchCam camera required 

manually focus adjustments and its relatively narrow field of view resulted in an offset 

between what the user was touching and what was sensed—the latter was particularly 

problematic for small locations (e.g., finger tips). Future work should explore auto-

focusing camera hardware with wide angle lens. The data collected during Studies I 

and II was collected under controlled conditions. Moreover, while the visually impaired 

participants in Study II were able to use TouchCam to complete all of the specified 

35 Awaiba NanEye GS Idule Demo Kit 
36 Awaiba NanEye 2D Sensor 
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tasks, they occasionally needed multiple attempts to do so. Future work should explore 

more realistic and longitudinal usage. 

7.5 Summary 
We introduced and investigated TouchCam, a variant of HandSight with additional 

sensors that was designed to support input at a variety of body locations while 

mitigating camera framing issues that blind users often experience. Our design also 

enables new types of contextual gestures based on location. We evaluated two iterations 

of the TouchCam system in terms of accuracy and robustness, as well as usability for 

our target group of visually impaired users. Our findings not only highlight the 

feasibility of our approach—greater than 95% accuracy at detecting 24 location-

specific gestures, and support for realtime interaction at approximately 35 frames per 

second—but also characterize tradeoffs in robustness and usability between different 

types of on-body input. Fine-grained input on the palm and fingers is desirable for 

efficient and discrete input, but these locations are more challenging to classify reliably 

due to their small size and similar visual features; in contrast, disparate body locations 

are easier to recognize and may enable more intuitive mappings between location and 

application, but may also be less efficient for a new user and potentially socially 

unacceptable. Location-specific gestures have the potential to support efficient 

interaction for expert users, flexible input locations depending on user preference or 

situation (e.g., while walking with a cane vs. sitting at home), task-based interactions 

tied to intuitive locations, and relatively fine-grained input for body areas that have 
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distinctive visual features (e.g., fingertips and palm). In future work, we plan to explore 

ways to improve robustness and evaluate our system’s long-term performance during 

a longitudinal study. 
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Chapter 8:  Identifying Clothing Colors and Patterns 

To extend HandSight’s functionality beyond accessing printed text materials and 

controlling mobile devices, we applied it to the task of identifying clothing colors and 

patterns. As discussed in Section 2.2.2, while color identification tools for users with 

visual impairments are widely available (e.g., [17,59]), they do not identify visual 

patterns or allow users to quickly inspect multiple locations—both of which are 

important for recognizing clothing [20]. For more advanced clothing pattern 

identification, Yuan et al. [209,227,231] developed systems to identify 4 patterns and 

11 colors in images captured with a mobile phone or head-mounted camera. Blind users 

responded positively to the system, although more detailed identification of colors (e.g., 

“rose red”) and additional clothing patterns were desired. The interaction was also 

inefficient, requiring the user to hold out the clothing in front of them and use speech 

input to individually capture each still image to be classified. 

In contrast, our finger-mounted camera approach allows users to move their 

finger across an article of clothing, combining tactile information with continuous 

audio description of the fabric’s appearance (Figure 8.1). Positioning the camera and 

light source on the user’s finger for touch-based interactions also mitigates issues with 

distance and lighting that can impact the accuracy of existing color and texture 

recognizers. Our approach is similar to Magic Finger [228], which was not intended 

specifically for visually impaired users but which similarly used a finger-mounted 

This chapter contains work published or scheduled to be published in the proceedings of the ACM 
SIGACCESS Conference on Computers and Accessibility (ASSETS 2017 [135], ASSETS 2018 [201]). 
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camera to classify touched surfaces including seven clothing textures. However, Magic 

Finger’s classification approach was simplistic and would not scale well to a large 

database of textures. In contrast, we adapt state-of-the-art object classifiers for 

recognizing clothing fabric patterns using a combination of transfer learning and fine-

tuning methods. Transfer learning is a machine learning technique used to adapt 

knowledge learned for one problem domain to another related domain [160], while 

fine-tuning is a process of refining a classifier’s performance as additional data is 

gathered. To explore the feasibility of our approach and to test how reliably colors and 

visual patterns can be identified using close-up images from a finger-mounted camera, 

we collected two sets of fabric images and conducted offline experiments to assess 

performance. We achieve high accuracy at classifying fabric patterns (> 92%), and our 

findings suggest that HandSight could allow users to reliably identify unfamiliar 

patterns while shopping or train a specialized classifier for the articles of clothing in 

their closet. This chapter describes preliminary algorithmic work to assess feasibility, 

which has not yet been tested by visually impaired users; we close with a discussion of 

ongoing and future work toward implementing and evaluating a realtime interactive 

color and pattern recognition system.  

8.1 Prototype System 
To collect clothing images, we developed a simplified version of the HandSight 

hardware that included only the camera, LED, and a custom 3D-printed mount with 

Velcro straps (Figure 8.1). This is the same design used in Chapter 5 for supporting AR 
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  Audio description: “Checkered white, red, and blue” 

(a) Close-up view of system (b) Identifying an article of clothing 

Figure 8.1: Simplified prototype system for identifying colors and visual patterns 

magnification. As shown in Figure 8.1, the system could be worn either on the index 

finger or thumb, and the position of the camera could be adjusted to allow us to test 

robustness and explore how much contextual information is necessary to reliably 

identify clothing patterns. 

8.2 Initial Exploration: Visual Texture Classification 
As an initial exploration, we tested an algorithmic approach based on the one described 

by Cimpoi et al. [32], which combines two complementary features commonly used 

for object recognition to achieve state-of-the-art texture classification performance. To 

examine how well this approach would extend to clothing images from a finger-

mounted camera, we conducted a classification experiment on a small custom dataset. 

8.2.1 Data Collection and Dataset 

The results reported in [32] were promising but did not focus on clothing textures and 

used images from online sources that differed greatly from our target domain. To test 

how well the approach would extend to close-up images captured by a finger-mounted 
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Checkered (88) Denim (40) Floral (88) Knitted (32) Lacelike (48) Polka-dotted Striped (64) Zigzagged (64) None (64) 

Figure 8.2: Examples of the 9 clothing textures included in our dataset. The numbers in 
parentheses indicate the quantity captured for each class. The full dataset can be downloaded 
at https://github.com/lstearns86/clothing-pattern-dataset. 

camera, we collected a dataset of 520 images across 29 articles of clothing, which 

spanned 9 clothing texture categories (Figure 8.2). These categories are a subset of the 

47 included in [32]; we eliminated categories that rarely describe clothing (e.g., 

bubbly), combined those that are visually similar (e.g., striped, banded), and added two 

new categories: denim and none. We controlled for and varied the distance (5cm vs. 

12cm), rotation (0° vs. 45°), and perspective of the camera (90° vs. 45°), as well as the 

tension of the fabric (taut vs. hanging naturally); see Figure 8.3. The dataset was 

collected intermittently across controlled conditions by one person over three months.  

8.2.2 Algorithms and Validation 

To identify textures, we first compute deep convolutional activation features (DeCAF) 

using a pre-trained network. Our algorithms and experimental methods closely follow 

Figure 8.3: We systematically varied distance, rotation, perspective, and fabric tension for 
each fabric sample collected using HandSight. 
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those used by Cimpoi et al. [32]. As in [32], we repurpose the AlexNet [105] image 

classifier for identifying textures by removing the last two softmax and fully connected 

layers and extracting the values in the exposed hidden layer as a feature vector. Second, 

we use scale-invariant feature transform (SIFT [122]) descriptors extracted densely at 

multiple scales. The SIFT descriptors are combined into a single feature vector based 

on their statistical distribution using the Improved Fisher Vector (IFV [164]) 

formulation. The result is two vectors of length 4,096 and 40,960 for DeCAF and IFV 

respectively, which are used as inputs (separately or concatenated together) to an SVM 

for classification. 

To assess performance, we conducted a classification experiment computing 

accuracy as the number of test samples classified correctly. We also explored the effect 

of training set size to determine if a small user-gathered training set would be sufficient. 

Average Classification Accuracies 
100 
90 DeCAF 
80 

IFV 
70 
60 IVF+DeCAF 
50 

20% 40% 60% 80% 
Percent of Each Class Used for Training *Error bars are standard error. 

Figure 8.4: Accuracies using individual and combined features. 

Figure 8.4 shows classification accuracy using DeCAF and IFV features 

separately and together as the percentage of data used for the training set increases from 

20% to 80%, averaged across 40 random samples to reduce the effect of outliers. As 

with [32], in each case the combined result—that is, classification using a combined 
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vector of both DeCAF and IFV features concatenated together—is best, demonstrating 

the advantage of using complementary texture features. However, unlike [32], our 

DeCAF results are significantly lower than IFV. This is likely because DeCAF requires 

a large amount of training data to perform well while IFV does well even with the small 

amount that we provided. 

8.3 An End-to-End Deep Learning Approach 
While our initial exploration demonstrated the feasibility of our approach, the dataset 

was highly controlled, which risks overfitting, and the training process was not easily 

scalable. Additionally, the complementary feature approach was computationally 

demanding and did not take full advantage of modern deep learning techniques. To 

expand on that work, we built a larger and more varied dataset of images from online 

sources (Figure 8.5), which should allow our system to identify previously unseen 

fabrics—for example, to support shopping for new clothes. Unlike previous work using 

online images, we focused specifically on fabric images, and fine-tuned classifiers 

trained on the data with images collected using HandSight to improve performance in 

our target domain. To assess whether this Internet-based dataset can be used to identify 

patterns in images collected with our finger-mounted system, we adapted and fine-

tuned a state-of-the-art deep neural network from an object classification problem and 

tested with the previously collected finger-mounted camera images. 
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Solid (5568) Striped (6144) Checkered (6060) Dotted (3504) Zigzag (6384) Floral (6876) 

Figure 8.5: Examples of the six classes in our fabric pattern dataset. The numbers in 
parentheses indicate the number of samples in each class (including augmentations). The full 
dataset can be downloaded at https://github.com/lstearns86/clothing-pattern-dataset. 

8.3.1 Data Collection and Dataset 

Existing texture datasets include textures that can easily be distinguished by touch or 

that are not relevant to clothing. For example, the Describable Textures Dataset [32] 

includes braided and frilly, and our initial dataset includes denim, knitted, and 

lacelike—which have unique textural patterns discoverable by touch. While automatic 

identification of these textures may be useful to avoid misclassifications, in general 

they are not necessary to assist blind users. Instead, we selected six common visual 

patterns that are difficult or impossible to distinguish by touch alone: solid, striped, 

checkered, dotted, zigzag, and floral (Figure 8.5). 

To create our dataset, we added the word “fabric” after each class name and 

downloaded the top 1000 search results from Google Images using an open source 

utility37. After one person manually removed erroneous results and duplicates and 

37 Google Images Downloader, https://github.com/hardikvasa/google-images-download 
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cropped others as necessary (e.g., to remove logos or background imagery), the dataset 

contained between 317 and 584 images per class (2764 images total). We augmented 

this data using a standard image synthesis process to increase the training set size and 

improve robustness [193], rotating each image in 30-degree increments and cropping 

the center at multiple scales (1–4 depending on the resolution of the original image), 

which resulted in 8232–17,304 samples per class or 77,052 images total.  

8.3.2 Algorithms and Validation 

To identify textures, we repurposed a state-of-the-art convolutional neural network 

model (ResNet-101 [73]) that was pre-trained on the ImageNet object dataset [180]. 

Using a standard transfer learning approach to avoid overfitting when insufficient data 

is available [41], we fixed all layers except for the final densely connected classification 

layer, and trained the weights for that layer using our dataset.  

To ensure that each class was equally likely when training, we randomly 

sampled 6400 images from each class in the dataset for training and 1600 images for 

testing, discarding the rest. Classification accuracy on the test set was 91.7%, 

suggesting that this approach should work well in general. On our smaller finger-

mounted camera clothing texture dataset (Section 8.2.1), which contained 400 images 

across the six classes, accuracy was 72.8%. Most errors were caused by confusion due 

to insufficient context or coarse threads (e.g., Figure 8.6). For example, zigzag was the 

worst performing class, likely because the camera’s proximity to the fabric obscured 

much of the pattern. Roughly 14.5% of images were also misclassified as checkered or 
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Zigzag → Floral Zigzag → Checkered Striped → Checkered Striped → Solid 

Figure 8.6: Example misclassifications (actual class → predicted class). 

floral, most likely due to confusion from the coarse threads. Half of the images were 

captured with the finger-worn camera held 5cm from the fabric, while the other half 

were captured from a distance of 12cm; if only the latter images are considered 

(N=200), accuracy rises to 78.0%. Finally, fine-tuning the classifier using 

approximately half of the finger-camera images (N=36 per class) increases accuracy to 

96.5%, suggesting additional images from the target domain will boost performance.  

8.4 Discussion and Ongoing Work 
Our preliminary results demonstrate the feasibility of recognizing clothing textures 

using close-up images from a finger-mounted camera, but many open questions remain. 

Here, we discuss issues relating to scalability and robustness, ongoing work on color 

recognition and description, and plans for a realtime implementation and user interface. 

8.4.1 Scalability and Robustness of Pattern Recognition 

Even with a small amount of training data across a variety of variables we achieve high 

classification accuracy (Section 8.2), suggesting that users could train a reliable 

personalized classifier by, for example, capturing images of the items in their closet. In 

our follow-up experiments with a larger dataset of Internet fabric images (Section 8.3), 
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pattern classification accuracy is similarly high when fine-tuned with images from a 

finger-mounted camera (97% vs 99%), but our end-to-end deep learning approach 

reduces training overhead and should be much more generalizable and robust. Still, 

open work remains to further improve robustness. 

First, to mitigate errors caused by lack of context or distracting details (e.g., 

coarse threads), the camera should likely be positioned farther back on the user’s finger 

or wrist. This change would still allow users to easily query multiple locations and 

combine automated feedback with their own sense of touch. Second, as another avenue 

to improve robustness, future work should gather additional high-resolution images 

that show coarse fabric details, either using additional online sources (e.g., querying 

“coarse fabric”) or by collecting the images manually. This additional data could be 

used to teach the classifier to ignore details in the images that are unimportant for 

identifying the broader pattern. 

8.4.2 Color Identification and Description 

We focus primarily on visual texture classification since few researchers have 

attempted to make this information accessible for visually impaired users. However, 

our color recognition approach, described below, also has some advantages over 

existing solutions. For example, our wearable system uses touch-based interactions to 

constrain the camera’s distance from the target surface and includes a bright LED to 

overpower the effects of ambient light, allowing for more consistent performance 

compared to existing color recognizers. Furthermore, we have explored two color 
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detection approaches that allow multiple colors to be detected simultaneously, and as 

mentioned previously our touch-based approach allows users to efficiently and 

interactively query multiple locations to build a mental model of how an article of 

clothing appears. 

One common approach to identify the dominant colors in an image is k-means 

clustering. To allow for a variable number of colors, we use the “jump method” [205], 

which searches for the point at which adding additional clusters stops greatly reducing 

error. The k-means approach is straightforward and efficient, and preliminary tests on 

our datasets were promising. However, we also explored another approach based on 

superpixel segmentation [2], which groups neighboring pixels with similar colors 

together. Superpixel segmentation preserves spatial information, which could enable 

more reliable determination of which detected colors are salient when combined with 

the texture classification results (e.g., omitting shadows and gaps between threads). To 

convey color information to users, we name each cluster center (or superpixel) using 

the XKCD color survey results [144] to provide commonly accepted names for 48 RGB 

color values. The level of detail is user-configurable, including the number and 

complexity of the names (e.g., "green, purple, brown", or "lime green, lilac, beige"). 

Users can also identify multiple colors by moving their finger across the fabric. We did 

not evaluate accuracy, but if properly calibrated our finger-worn approach should 

mitigate issues with lighting and distance that impact existing color identifiers. 
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8.4.3 Realtime Implementation and User Interface 

The color and pattern classification system runs at approximately four frames per 

second on a desktop computer38 . Our current implementation tracks classification 

results for the most recent two seconds. To reduce noise from misclassifications, 

patterns are reported by majority vote, with unclear results labeled “unknown”. Colors 

are only reported if they are named consistently across frames—for example, results of 

“blue and light blue” and “blue and gray” would be reported simply as “blue”. Users 

can press a button to hear the most recent result via text to speech or hold for continuous 

updates. However, how best to convey complex color and pattern information to users 

is still an open question. Future work will also need to investigate performance and 

usability with visually impaired users and assess the potential benefits of our approach 

compared to existing aids. 

8.5 Summary 
We extend our finger-mounted camera system to recognize colors and visual patterns, 

which could allow visually impaired users to combine tactile information with a 

continuous audio description of a surface’s appearance to, for example, obtain a better 

understanding of how an article of clothing appears. This work is preliminary and 

primarily algorithmic, but our results are promising: 99.1% accuracy when trained and 

tested on a small dataset (e.g., as a personal classifier for the articles of clothing in a 

38 Dell Precision Workstation, dual Intel Xeon CPU @ 2.1 GHz, NVIDIA GeForce GTX 1080 
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user’s closet, and 97.0% when trained on a much larger dataset of images from online 

sources, then fine-tuned and tested using images from a finger-mounted camera (e.g., 

as a robust fabric pattern classifier that can identify previously unseen articles of 

clothing when shopping). We also discuss ongoing and future work on a complete 

system that can describe colors as well as patterns in realtime as users move their finger 

across a surface. 
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Chapter 9:  Conclusion and Future Research Directions 

The overarching goals of this dissertation were to improve information accessibility for 

people with visual impairments and to explore how touch-based access to non-tactile 

information can help users understand 2D surface content and appearance (e.g., text, 

images, colors and patterns). To achieve these goals, we created the HandSight system, 

which augments the user’s finger with interactive, real-time computer vision via a small 

wearable camera. Our work spanned two key application areas: (1) touch-based access 

to visual information in the physical world and (2) access to the digital information 

provided by computer and mobile devices through touch-based gestures. In this 

chapter, we summarize our high-level contributions before discussing broader 

implications and directions for future research. 

9.1 Summary of Contributions 
In this section, we restate the contributions listed in Chapter 1 and summarize how we 

achieved them. Our high-level contributions relate to the design, implementation, and 

evaluation of the HandSight system. We also summarize specific technical and design 

contributions across the three application areas for HandSight that we investigated. 

9.1.1 The HandSight System 

Our primary contribution is the development and iterative refinement of HandSight, a 

novel wearable system to assist people with visual impairments in their daily lives. 

Creating HandSight involved: (i) designing and implementing the physical hardware, 
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(ii) developing signal processing and computer vision algorithms, (iii) designing real-

time auditory, haptic, and visual feedback that enables users with vision impairments 

to interpret surface content, and (iv) evaluating prototypes with visually impaired users 

to assess usability. We evaluated HandSight across a diverse set of tasks, providing 

both empirical evidence and qualitative user feedback that highlight tradeoffs when 

using finger-worn sensors to detect and recognize touched content or touch-based 

gestures in terms of the physical design, algorithmic complexity, and usability. 

Physical design. A finger-worn design must by necessity use smaller 

components than designs worn on other body locations, restricting sensing fidelity, 

processing power, and battery life. For example, while HandSight was limited to 

640×640 RGB images with a manual-focus lens due to size limitations, a larger camera 

could provide higher resolution and better image quality, autofocus capabilities, and 

new imaging features such as depth (e.g., Omnitouch [67]) or hyperspectral imaging 

(e.g., HyperCam [53]). Positioning the system on the finger also risks interfering with 

the user’s freedom of movement and touch sensitivity. Because of these restrictions on 

physical size, weight, and positioning, additional care must be taken when designing 

the system to ensure durability, robustness, and social acceptability during daily use. 

Algorithmic complexity. In terms of algorithmic complexity, a system using a 

finger-worn camera benefits from simplified processing when recognizing content at 

the tip of the user’s finger and can use the full resolution of the camera for 

identification. Finger-worn sensors can also easily and directly detect touch events 

because of the sensors’ proximity to the touched surface and can track relative motion 
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to recognize gestures—features we exploited to support flexible on-body input 

(Chapter 7). In contrast, to support touch-based interactions systems using cameras 

worn on the upper body or external to the user, the system must first locate the user’s 

finger—which could be outside of the camera’s field of view—and then determine if 

the user is touching a surface and identify the content that is beneath their finger using 

a small percentage of the camera’s available resolution. However, a camera that is 

positioned farther away from the touch surface can capture additional contextual 

information for the system to use when interpreting content; a finger-worn camera has 

a more limited field of view and therefore the system must build up an internal 

representation of broader context as the user moves their finger across the surface. For 

example, HandSight can only capture a few words in each image when reading printed 

materials—a limitation shared with FingerReader [188–190] and other finger-

wearables—while body-worn systems like OrCam [159] or handheld smartphone apps 

like KNFB Reader [98] can view and read full pages at once. Furthermore, performing 

global localization and motion tracking is much easier with an external view than with 

finger-based sensors, allowing systems using a more distant camera to, for example, 

more easily support location specific gestures on the user’s palm or other input surface. 

Usability implications. In terms of usability, finger-based sensing allows 

greater flexibility and a larger interaction space than other sensing approaches for 

touch-based interactions. Compared to non-wearables (e.g., [91,184]), our approach is 

more portable and can support interactions on any surface by augmenting the user 

rather than the target content or input surface. Compared to a handheld smartphone or 
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dedicated device (e.g., [99,243]), finger-worn sensors are more lightweight and hands-

free, providing improved ergonomics and easier multitasking. And compared to 

cameras worn on the upper body (e.g., [70,159]), our approach mitigates issues with 

framing the target content or gestures within the camera’s field of view and allows 

interactions in a much wider area. When reading, our approach allows users to find a 

more comfortable position without needing to turn their head or body toward the target 

content. When performing gestural input, users do not need to perform the gestures 

directly in front of their body, allowing for more ergonomic and discrete input. A 

finger-worn approach also allows greater flexibility of input location for locations that 

upper-body cameras may not be able to sense (e.g., the ear or thigh). 

9.1.2 Technical and Design Contributions for Specific Applications 

Here, we summarize the technical and design contributions that this dissertation makes 

across four specific application areas: helping blind users to read and explore printed 

materials, supporting augmented reality magnification for low vision users, 

recognizing location-specific on-body gestures to control computers and mobile 

devices, and identifying and describing clothing colors and visual patterns. 

Reading and Exploring Printed Text. We first applied HandSight to helping 

blind users explore and read printed text materials. To assess how well users could trace 

and sequentially read lines of text by touch, we implemented haptic and auditory cues 

to guide the user’s finger and systematically evaluated them across three user studies. 

We identified tradeoffs in terms of accuracy and user preference: audio may offer a 
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slight advantage to line-tracing accuracy and be more familiar to users but could also 

distract from the synthesized speech content; haptic uses a different sensory channel 

and potentially offers a clearer indication of direction but is less precise and may cause 

desensitization over time. Additionally, some participants in our studies appreciated 

the additional control over reading pace and the information about the positions of text 

blocks and images enabled by our design, which existing document scanner and screen 

reader approaches cannot easily provide. However, for common reading tasks 

participants preferred the experience provided by smartphone text recognition 

applications which, despite some difficulty aligning a document for capture, provided 

a faster and simpler reading experience. 

Augmented Reality Magnification and Enhancement. Building on our work 

in helping blind users to read, we also applied HandSight’s finger-worn camera to assist 

low vision users with the addition of a visual augmented reality display. In particular, 

we investigated the assistive potential of 3D virtual content registered in the physical 

environment, which previous vision enhancement systems (e.g., ForeSee [235], eSight 

[237,238]) had not yet explored. We developed proof-of-concept AR designs that we 

evaluated and refined through design sessions with low vision users. Our findings were 

mixed; some participants were unable to use our prototype to read due to the nature of 

their visual impairment, while others appreciated the improved portability, privacy, and 

ready availability compared to their existing aids. Participants also identified 

advantages to our 3D AR approach compared to handheld magnification tools, 

including a more natural reading experience and the ability to more easily multitask, 
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but also some disadvantages such as a steeper learning curve and limitations of the 

particular hardware we used. Based on our observations and participants’ feedback and 

open-ended ideas during design sessions, we proposed recommendations for the design 

of future AR vision enhancement aids. 

Recognizing Location-Specific On-Body Gestures. Next, we extended our 

finger-worn sensing platform with additional optical and inertial sensors and 

implemented algorithms to recognize and localize touch gestures that users perform on 

their own body. On-body input offers efficient, accurate, and always-available control 

of mobile devices to access digital information [64,154] and could be beneficial both 

for visually impaired users and for eyes-free input by sighted users (e.g., 

[40,119,131,218]). Offline evaluations demonstrated the feasibility of localizing 

images of small skin patches from a finger-mounted camera, and we built upon these 

findings to construct and evaluate a realtime on-body input system.  

Findings from a user study with visually impaired participants highlighted 

tradeoffs in robustness and usability between different types of on-body input. Fine-

grained input is efficient and discrete but challenging to classify reliably, while coarse-

grained locations are easier to recognize but may also be less efficient for a new user 

and potentially socially unacceptable. Location-specific gestures have the potential to 

support efficient interaction for expert users, flexible input locations depending on user 

preference or situation, task-based interactions tied to intuitive locations, and relatively 

fine-grained input for body areas that have distinctive visual features (e.g., fingertips 

and palm). Based on these findings, we discussed implications for the design of on-
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body interfaces both in terms of usability and in which locations and gestures can be 

most reliably recognized across users. 

Recognizing Clothing Colors and Patterns. Lastly, we applied HandSight to 

identifying clothing colors and visual patterns. We contributed two novel fabric texture 

datasets, one collected systematically using a finger-mounted camera and the other 

assembled from online sources. We applied transfer learning to adapt and fine-tune 

state-of-the-art image classifiers, demonstrating both that users could potentially train 

a highly accurate personalized fabric pattern classifier for the items in their own closet 

and that a robust generalized classifier could help to describe unfamiliar patterns while 

shopping. Errors were mostly attributable to the camera’s proximity to the fabric, 

suggesting that for robust identification of patterns the camera should be positioned 

farther away from the surface to capture more contextual information. We implemented 

an interactive prototype that identifies fabric patterns and dominant colors (e.g., 

“striped blue and white”).  

While preliminary, this work demonstrates feasibility and highlights the 

flexibility of a finger-based wearable device. Positioning the camera on the user’s 

finger helps mitigate issues with inconsistent lighting and distance that can impact the 

accuracy of existing color and texture recognizers (e.g., [59,227,242]) and allows for 

touch-based interactions with an article of clothing to better understand its appearance. 

Our approach should allow users to quickly explore a surface and combine their sense 

of touch with visual texture and color information to make informed decisions about 

what to wear or buy. 
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9.2 Limitations and Future Research Directions 
This section discusses the limitations of this dissertation, both to better frame and scope 

our contributions and to highlight opportunities for future research. We discuss our 

finger-worn camera approach and potential alternatives, open questions relating to 

spatial exploration, more application areas for touch-based information access, 

alternative feedback methods, and possible extensions to other user populations. 

9.2.1 Alternative or Supplementary Camera Locations 

Our research focused solely on recognizing touched content and touch-based gestures 

using a finger-worn camera and other co-located sensors, aside from a limited 

qualitative comparison with a handheld smartphone camera in Chapters 4 and 5. 

However, as discussed in Section 9.1.1, finger-worn sensors present tradeoffs in 

accuracy and usability compared to other sensing approaches. 

Future work should explore alternative camera locations, which may mitigate 

some of the limitations encountered in our research, such as insufficient contextual 

information and restrictive physical design options, while still supporting the positive 

aspects of touch-based interactions with the physical world, such as the ability to 

combine feedback from the system with tactile sensory information to better understand 

surface appearance and spatial layouts. For example, the camera could instead be 

positioned on the user’s wrist (e.g., integrated into a smartwatch, as in [195]) to reduce 

interference with finger movements, capture additional context around the user’s touch 

208 



 

 
 

 
 

   

    

  

  

 

   

   

  

  

   

  

  

   

 

  

   

 

  

  

location, and more readily support larger and more capable components, while 

remaining near the interaction space for simplified sensing and flexibility. 

Alternatively, combining a finger-mounted approach with a secondary camera 

worn on the head or upper body could balance the advantages and disadvantages of 

each, providing a close-up view for flexibility and robust identification of touched 

content and a wider view for additional contextual information and global localization 

and motion tracking. Upper-body cameras can use larger and higher-quality sensors 

(e.g., depth camera, optical zoom) and could be integrated with visual or audio output 

(e.g., built into a pair of glasses). 

Another option would be to use finger-worn cameras on multiple fingers, 

potentially providing a wider field of view to capture additional content, supporting 

multitouch gestures, and enabling localized haptic feedback to enhance users’ spatial 

exploration capabilities. Reliably integrating the information from multiple disparate 

sensors would likely present additional technical and reliability challenges, however, 

and such a system would need to be carefully designed for usability and robustness. 

Future work should explore the feasibility and usability of these alternatives in greater 

detail, and systematically compare the advantages and disadvantages of each. 

9.2.2 Spatial Exploration of Documents and Other Surfaces 

We conducted a preliminary investigation into touch-based exploration of document 

layouts (e.g., the locations of paragraphs and images) in Chapter 4. Participants in our 

user studies successfully used HandSight to identify the locations of images in sample 
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magazine-style documents, trace document margins, and locate the start of paragraphs 

to read. Some participants found the audio cues intuitive and were able to easily locate 

the boundaries between columns and paragraphs, but others struggled. The ability to 

interpret the spatial layout of blocks of text and read sequentially line-by-line is not 

necessary for every document, and for simple documents it may distract from the 

content of the text. However, for documents with more complex layouts, such as 

newspapers, menus, and tables, details about the relative positions of text, images, and 

other document elements often contains information that is crucial for understanding 

the content—for example, captions beneath an image or categories and prices next to 

the items on a menu. Existing reading aids (e.g., KNFB Reader [98]) do not provide 

this information, and automated methods to interpret and accurately convey complex 

content in an appropriate reading order are complicated and frequently inaccurate even 

for digital content [14,111]. 

Future work should investigate what types of information to convey when 

exploring a document. For example, beyond the simple identification of text and 

images that we explored, users could benefit from additional information about the 

purpose of a document element (e.g., heading, body, caption, list) and a brief summary 

of its contents (e.g., paragraph synopsis, image description). Future work should also 

investigate how best to convey spatial information, combining the user’s own tactile 

awareness with haptic, audio, and speech cues to help users better understand a 

document’s content. 
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9.2.3 Additional Applications 

Our research explored three specific application areas: reading, controlling mobile 

devices, and identifying colors and patterns; however, HandSight has numerous 

additional potential applications such as exploring and interpreting inherently spatial 

information (e.g., maps, graphs, or tables) and extending common digital interactions 

(e.g., copy and paste, annotate, search) into the physical world. And as discussed in 

Section 9.2.2, additional spatial cues and information about high-level content could 

help when exploring printed documents. 

Other researchers have begun to explore these ideas for accessing digital 

information using touchscreens. For example, Guidice et al. [52] evaluated a 

touchscreen vibro-audio interface to help users explore and identify non-visual 

information such as a bar graph, letters, or geometric shapes. User studies with their 

mixed-modal interface showed promising results for providing access to dynamic 

visual information and supporting accurate spatial learning and the development of 

mental representations of graphical material. A finger-worn system like HandSight 

with co-located sensing and feedback would be ideally suited to extend this interface 

into the physical world.  

Similarly, several researchers (e.g., [22,57,107,166,208]) have explored ways 

to improve the accessibility of 2D maps or art in museums by developing 3D tactile 

representations, refreshable tactile displays, and interactive audiovisual displays. 

However, these methods generally require expensive dedicated hardware or single-
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purpose 3D models, limiting portability and scalability. Future work should extend our 

research to explore the usability and utility of touch-based access to this information. 

9.2.4 Alternative Feedback Methods 

We only explored limited feedback options, primarily conveying information via 

synthesized speech except for the simple audio and haptic cues used to guide the user’s 

finger or identify text and images when exploring a document (Chapters 3 and 4). 

Alternative feedback methods could convey surface content more efficiently or 

intuitively. Our research covered basic auditory and haptic vibration cues to convey 

non-tactile information to users, but many other options exist in the fields of 

sonification or haptics. As discussed in Section 9.2.3, researchers have explored vibro-

audio interfaces to convey graphical information on a touchscreen [52,210]. Others 

have explored the use of sonification and tactile displays to enable blind users to access 

digital map data [161,166]. To intuitively convey information about lines and shapes, 

future research should explore ways to seamlessly augment users’ existing sense of 

touch with additional tactile cues. For example, researchers have explored finger-worn 

tactile displays to convey braille characters or other shape information [101,214]. These 

displays are not yet viable for end-users due to their slow response speed, expense, and 

power requirements, and they by necessity block the user’s existing sense of touch. 

However, future research should explore ways to apply these and similar techniques to 

convey visual or digital information as tactile. 
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9.2.5 Extension to Other User Populations 

This dissertation focused solely on visually impaired users, as they benefit most from 

touch-based access to non-tactile information. However, our research could also extend 

to other populations as well. First and most obviously, users with color vision 

deficiencies could benefit from a robust interactive color identifier, which our approach 

could readily support. While numerous smartphone color identification apps are 

available to assist with distant color identification, a wearable touch-based system 

would for example allow for quick spot checks when shopping, cooking, or attempting 

to interpret the colors used in images and graphs. Second, touch-based reading could 

be helpful as a teaching aid to support readers in early education, with dyslexia, or other 

users who cannot read unassisted. HandSight would directly allow users to associate 

spoken words with their visual appearance as they move their fingers across a page and 

could readily support users’ existing materials. Third, our work to support on-body 

interactions could also offer eyes-free input for any user, visually impaired or sighted. 

On-body gestures could provide an alternative to existing touchscreen and voice 

controls for efficient, accurate, and always available control of computers and mobile 

devices. Similarly to Magic Finger [228], our approach could potentially support touch-

based interactions on any surface. And fourth, touch-based interactions augmented with 

haptic and audio feedback could be useful for augmented and virtual reality as an input 

and feedback method in place of a controller. For example, a finger-worn camera could 

be used to identify real-world objects that the user is touching, providing tangible 

interactions with virtual augmentations. 
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9.3 Final Remarks 
This dissertation provides insights into issues relating to the design and implementation 

of a wearable system to support touch-based access to information. We constructed 

HandSight—which augments visually impaired users’ fingers with sensing and 

feedback capabilities—and explored its potential through three specific application 

areas: reading and exploring printed materials, controlling mobile devices to access 

digital information, and identifying clothing colors and patterns. Our research is an 

early exploration into finger-worn assistive cameras and many open questions and areas 

for future work remain; however, we have demonstrated the potential advantages of 

systems like HandSight, that include simplified sensing and processing, flexible input 

location and intuitive camera aiming, and integrated knowledge from the system’s 

feedback and the user’s own sense of touch. We believe that this dissertation achieves 

our goal of increasing the accessibility of information for people with visual 

impairments and that it serves as a first step toward a general system for supporting 

touch-based interactions and non-tactile information access on any surface— 

benefitting both visually impaired and sighted users. 
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Appendix A 

In this appendix we list the text of the documents used in Chapter 4 for Reading Studies 

I and II, along with associated comprehension questions. We adapted six test 

documents from a Grade 8 Iowa Test of Basic Skills practice book [167]. The original 

text was modified slightly for length and to ensure clarity with our speech synthesis 

engine (e.g., removing unnecessary proper nouns). We created three additional training 

documents of a similar length and reading level, as well as a two-column magazine 

document for testing KNFB Reader iOS, using documents adapted from articles in 

USA Today. 

Study I, Training Document (plain, both conditions): 

Scientists counting Antarctica’s emperor penguins from space have found 

twice as many of them as expected. Using high-resolution satellite images 

to study each of 44 colonies around the coastline of Antarctica, experts 

said Friday that they put the total emperor penguin population at 595 

thousand, or roughly double previous estimates of 270 thousand to 350 

thousand. Seven of the colonies had never been seen before. 

Satellite technology was a boon for researchers; visiting dozens of remote 

colonies in temperatures as low as minus 58 degrees is expensive, 

dangerous and time-consuming. With their distinctive black and white 

plumage, emperor penguins stand out against the snow, making them 

clearly visible on satellite images. 

215 



 

 
 

 
 

   

 

 

 

  

 

 

 

 

  

 

Study I, Test Document 1 (plain, first condition): 

People have used coins as a means of exchange for thousands of years. 

Valued for their craftsmanship and purchasing power, coins have been 

collected in great numbers throughout history and buried for safekeeping. 

Because stores of coins gathered and hidden in this manner lie untouched 

for many years, they can reveal a great deal about a given culture. 

Coins are useful in revealing many aspects of a culture. They can provide 

clues about when a given civilization was wealthy and when it was 

experiencing a depression. Wealthy nations tend to produce a greater 

number of coins made from richer materials. The distribution of coins can 

also reflect the boundaries of an empire and the trade relationships within 

it. Roman imperial gold coins found in India, for example, indicate the 

Romans purchased goods from the East.  

The way the coins themselves are decorated sometimes provides key 

information about a culture. Many coins are stamped with a wealth of 

useful historical evidence, including portraits of political leaders, 

important buildings and sculptures, mythological and religious figures, 

and useful dates. Some coins, such as many from ancient Greece, can be 

considered works of art themselves and reflect the artistic achievement of 

the civilization as a whole. 
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Information gathered from old coins by historians is most useful when 

placed alongside other historical documents, such as written accounts or 

data from archeological digs. Combined with these other pieces of 

information, coins can help historians reconstruct the details of lost 

civilizations. 

Comprehension Questions: 
1. Which of the following do coins reveal about a civilization? 

a. The average cost of clothing 

b. Information about its economy 

c. Its farming techniques 

2. What is the main idea of the passage? 

a. How difficult it is to find old coins 

b. How coins reflect the artistic achievements of a culture 

c. How coins can tell us about ancient civilizations 

Study I, Test Document 2 (magazine, first condition): 

Despite the stubborn, widespread opinion that animals don’t feel emotions 

in the same way that humans do, many animals have been observed to 

demonstrate a capacity for joy. People have often seen animals evincing 

behavior that can only be taken to mean they are pleased with what life 

has brought them in that particular moment. 
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A chimpanzee named Nim was raised by a human family for the first year 

and a half of his life. After that time, Nim was separated from them for two 

and a half years. On the day that Nim was reunited with his human family, 

he smiled, shrieked, pounded the ground, and looked from one member of 

the family to the next. Still smiling and shrieking, Nim went around 

hugging each member of the family. He played with and groomed each 

member of the family for almost an hour before the family had to leave. 

People who were familiar with Nim’s behavior said they had never seen 

him smile for such a long period of time. 

Comprehension Questions: 
1. What is the purpose of the second paragraph? 

a. To criticize Nim’s human family for abandoning him 

b. To show how well Nim’s human family treated him 

c. To demonstrate that animals have the ability to feel joy 

2. Why did Nim shriek and pound the ground? 

a. He was overjoyed to see the family again. 

b. He was hungry and wanted to be fed. 

c. He was angry with the family for leaving him. 

Study I, Test Document 3 (plain, second condition): 

Born in Spanish Harlem in the late 1950s, Raphael Sanchez learned at an 

early age to listen to the many voices of the city. It was as a boy in Harlem 

that he developed the powers of observation that would later make his 
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writing truly great. In the 1970s, Raphael went to Columbia University, 

where he was exposed to a literary tradition. While his university 

education gave his writing new depth, the raw energy of the streets has 

always served as the primary fuel for his writing. This is what gives his 

works passion and power. 

Raphael once told me that in order to escape from life he turns to books, 

and in order to escape from books he turns to life. It is this balance of the 

sights, sounds, and smells of the street with the perspective gained from 

his formal education that has made Raphael popular with both critics and 

regular readers alike. 

For those of us who have read and admired his work, it seems natural that 

Raphael has won so many awards. He deserves them, and his humility in 

accepting them has been refreshing. When he received the Writer’s Quill 

Award two weeks ago, for example, he told the audience, “This award is 

not really mine. It belongs to all the million things that have inspired me. 

”That is the kind of man I am introducing to you this evening. He is a man 

who has been inspired by a million things, and he is a man who has 

provided inspiration to a million people. Ladies and gentlemen, it is my 

great honor to present to you, Raphael Sanchez. 
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Comprehension Questions: 
1. Which of these best describes why Raphael Sanchez’s writing is so popular with 

critics and regular readers? 

a. It has won the Writer’s Quill Award. 

b. It reflects both scholarship and city experience. 

c. It is based on his experiences at Columbia University. 

2. What does Raphael Sanchez mean when he says, “This award is not really 

mine”? 

a. He owes everything to the people and things that inspired him. 

b. He does not believe in the value of awards. 

c. He feels Columbia University should be given an award too. 

Study I, Test Document 4 (magazine, second condition): 

In the 1800s, most geologists thought the sea floor was a lifeless expanse 

of mud, sediment, and the decaying remains of dead organisms. They 

thought that, with the exception of some volcanic islands, the bottom of the 

sea had no major geographic features, such as peaks or valleys. 

In the mid-nineteenth century, ships depth-sounding the ocean floor with 

sonar for a transatlantic telegraph cable made some interesting 

discoveries. To geologists’ surprise, the ocean floor was found to be made 

up of long mountain ranges and deep valleys and troughs. Another 

surprise finding in the Atlantic was the existence of basalt, a volcanic rock 

thought only to exist in the Pacific Ocean. The presence of basalt in the 
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Atlantic was a clue that volcanic activity occurs at the bottom of the sea. 

This and other discoveries, many of them accidental in the beginning, 

were signals to geologists that their knowledge of the sea floor was very 

limited. 

Comprehension Questions: 
1. The discovery of basalt in the Atlantic Ocean suggested that 

a. Iron, zinc, and gold would be found nearby. 

b. Geologists still had much to learn about the ocean floor. 

c. The Atlantic was deeper than previously believed. 

2. How did ships in the mid-nineteenth century measure the ocean’s depth? 

a. By sending down scuba divers 

b. By bouncing sound waves off the sea bottom 

c. By photographing the sea floor with special cameras 

Study II, Training Document 1 (plain, HandSight): 

When Mary Smallenburg opened a package from her mother to find cereal 

and ramen noodles, she burst into tears. Without it, she wouldn't be able 

to feed her four children. It got to the point where I opened my pantry and 

there was nothing. Nothing. What was I going to feed my kids? 

Smallenburg says, adjusting a bag of fresh groceries on her arm. 
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Smallenburg's family is one of 50 military families that regularly visit the 

Lorton Community Action Center food bank. Volunteers wave a familiar 

hello as she walks in the door. None of what we have been through has 

been expected, Smallenburg says. Three of her four children have special 

needs and her husband is deployed in Korea. The last few months actually, 

coming here has been a godsend. 

Nationwide, 25 percent of military families, 620,000 households, need 

help putting food on the table, according to a study by Feeding America, a 

network of 200 food banks. The results are alarming, says Bob Aiken, 

chief executive officer of Feeding America. It means that people in 

America have to make trade-offs. They have to pick between buying food 

for their children or paying for utilities, rent and medicine. 

One in seven Americans, 46 million people, rely on food pantries and meal 

service programs to feed themselves and their families, the study found. 

Study II, Test Document 1 (plain, HandSight): 

Henry Ford and his Model T automobile changed the face of America. His 

horseless carriage contributed to a movement from rural to urban and to 

the development of an industrial economy. 

In 1903, Ford Motor Company was officially formed, and in 1908, Ford 

announced the birth of the Model T. He told the nation, I will build a car 
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for the great multitude. This was a bold announcement, since most 

manufacturers planned to build only luxury cars for the very wealthy. 

His idea worked. Ford’s Model T was a hit with the American public, and 

demand grew with each passing year. In the course of nineteen years, 

around fifteen million Model T cars were sold in the United States, nearly 

one million in Canada, and another 250,000 in Great Britain. All told, 

these numbers equaled half the total number of automobiles manufactured 

in the world at that time. 

The methods of production Ford used were revolutionary. Ford’s 

assembly line could churn out the frame of a Model T in about six hours. 

This high rate of speed was made possible by the division of labor. Instead 

of one person controlling production from start to finish, the labor was 

divided into smaller and smaller tasks, with each person performing the 

same task all day long. 

By 1927 the era of the Model T was coming to a close. General Motors, a 

major competitor, was producing better cars for only slightly more money. 

Customers with an eye for new styles just didn’t see the appeal of the plain 

Model T. 

Comprehension Questions: 
1. According to the passage, why was the Model T more popular than other cars 

available at the same time? 
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a. It looked like a buggy. 

b. It was more spacious. 

c. It was less expensive. 

d. It was more stylish. 

2. Which of the following best describes Ford according to the article? 

a. A poor businessman 

b. A visionary 

c. A follower 

d. A great metal worker 

3. What led to the downfall of the Model T? 

a. It was not very well made. 

b. Its price went up. 

c. Other competition emerged. 

d. Many of Ford’s workers quit their jobs. 

Study II, Training Document 2 (plain, KNFB Reader iOS): 

Here's a tip. Don't stress over tipping. 

Restaurant tips are more modest in Europe than in America. In most 

places, 10 percent is a big tip. If your bucks talk at home, muzzle them on 

your travels. As a matter of principle, if not economy, the local price 
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should prevail. Please believe me, tipping 15 percent or 20 percent in 

Europe is unnecessary, if not culturally ignorant. 

Virtually anywhere in Europe, you can do as the Europeans do and, if 

you're pleased with the service, add a euro or two for each person in your 

party. In very touristy areas, some servers have noticed the American 

obsession with overtipping, and might hope for a Yankee-size tip. But the 

good news is that European servers and diners are far more laid-back 

about all this than we are. The stakes are low, and it's no big deal if you 

choose the wrong amount. And note that tipping is an issue only at 

restaurants that have waiters and waitresses. If you order your food at a 

counter, don't tip. 

At table-service restaurants, the tipping etiquette and procedure vary 

slightly from country to country. But in general, European servers are 

well paid, and tips are considered a small bonus, to reward great service 

or for simplicity in rounding the total bill to a convenient number. In many 

countries, 5 percent to 10 percent is sufficient. 

Study II, Test Document 2 (plain, KNFB Reader iOS): 

A clone is a life form engineered in a lab environment to be identical to 

another, through a process of asexual, or nonsexual, reproduction. This 

process of creating a new life form, called genetic engineering, can be 

useful in creating individuals of a given species that represent the best 
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possible genetic traits of that species. People who work with plants have 

long used cloning techniques to create better strains of trees, fruits, and 

vegetables. The Macintosh apple, for example, was created by cloning 

techniques, and it supposedly represents the best qualities of all apple 

types. 

In July of 1996, a group of Scottish scientists made a breakthrough by 

successfully cloning a sheep from the cells of another adult sheep. After 

scraping cells from the udder of one sheep, the scientists introduced the 

nucleus of one of these cells into the unfertilized eggs of a different sheep. 

Then, they placed the egg, which had begun to divide, into the uterus of a 

third sheep. The result was Dolly, a healthy sheep who was born in the 

natural way from the third sheep. Dolly was almost identical to the sheep 

from whose skin cells she had been formed. 

In 1997 Dolly’s story was widely publicized in the media, and her 

existence resparked a continuing debate about the use of cloning 

techniques on humans. Some people claim that genetic engineering should 

not be used on humans under any circumstances. Others urge slowness. 

They insist that if genetic engineering is to be used, there are many 

questions that need to be answered first. 

Comprehension Questions: 
1. What event revived the debate about cloning? 
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a. The cloning of plants 

b. The cloning of a sheep 

c. The cloning of amphibians 

d. The future plan to clone human organs 

2. According to the passage, how many sheep did it take to produce Dolly? 

a. One 

b. Two 

c. Three 

d. Four 

3. In paragraph 1, the author mentions the Macintosh apple as an example of 

a. a case when cloning produced an improved organism. 

b. a case when cloning failed. 

c. a case when cloning created a controversy. 

d. a case when cloning went too far. 

Study II, Test Document 3 (magazine, KNFB Reader iOS): 

Let them sleep! That's the message from the nation's largest pediatrician 

group, which, in a new policy statement, says delaying the start of high 

school and middle school classes to 8:30 a.m. or later is an effective 
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countermeasure to chronic sleep loss and the epidemic of delayed, 

insufficient, and erratic sleep patterns among the nation's teens. 

Multiple factors, including biological changes in sleep associated with 

puberty, lifestyle choices, and academic demands, negatively impact teens' 

ability to get enough sleep, and pushing back school start times is key to 

helping them achieve optimal levels of sleep, 8 and a half to 9 and a half 

hours a night, says the American Academy of Pediatrics statement, 

released Monday and published online in Pediatrics. 

Just 1 in 5 adolescents get nine hours of sleep on school nights, and 45 

percent sleep less than eight hours, according to a 2006 poll by the 

National Sleep Foundation (NSF). 

As adolescents go up in grade, they're less likely with each passing year to 

get anything resembling sufficient sleep, says Judith Owens, director of 

sleep medicine at Children's National Medical Center in Washington, 

D.C., and lead author of the AAP statement. By the time they're high 

school seniors, the NSF data showed they were getting less than seven 

hours of sleep on average. 

Chronic sleep loss in children and adolescents can, without hyperbole, 

really be called a public health crisis, Owens says. 
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Appendix B 

In this appendix we list the text of the subjective questionnaires administered in 

Reading Studies I and II (Chapter 4). For ease of use questions, the choices were (1) 

Very difficult, (2) Somewhat difficult, (3) Neutral, (4) Somewhat easy, or (5) Very 

easy. For comparison questions, the choices were (1) Much worse, (2) Somewhat 

worse, (3) About the same, (4) Somewhat better, or (5) Much better. 

Study I, after each directional guidance condition: 
1. How easy or difficult was it to follow a line of text with your finger? Why? 

2. How easy or difficult was it to read and understand the text given this feedback? 

Why? 

3. Do you feel like the feedback direction was correct, or did if feel backwards to 

you? 

4. Do you have any other comments about what was good or bad about this type 

of feedback? 

Study I, end of study: 
1. Overall, how easy or difficult was it to find the beginning of the text? 

2. How easy or difficult was it to find the beginning of each line? 

3. How easy or difficult was it to notice the end of a line? 

4. How easy or difficult was it to notice the end of a paragraph? 

5. How easy or difficult was it to find the beginning of the next column? 
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6. You have tried two different types of feedback. Which did you prefer more? 

Why? 

7. Overall, how was your experience of our system compared to how you would 

normally read braille? Why? 

8. Overall, how was your experience of our system compared to how you would 

normally use a screen reader? Why? 

9. Overall, how was your experience of our system compared to how you would 

normally read printed documents? Why? 

10. Do you have any questions, suggestions for improvement, or other comments? 

Study II, after HandSight tasks: 
1. How easy or difficult was it to find the beginning of the text? 

2. How easy or difficult was it to find the beginning of each line? 

3. How easy or difficult was it to notice the end of a line? 

4. How easy or difficult was it to notice the end of a paragraph? 

5. How easy or difficult was it to follow a line of text with your finger? 

6. How easy or difficult was it to understand the feedback? 

7. Overall, how easy or difficult was it to read and understand the text given this 

feedback? 

8. Overall, how was your experience with the app compared to how you would 

normally read braille? 
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9. Overall, how was your experience with the app compared to how you would 

normally read printed documents? 

10. Do you have any other comments about what was good or bad about this type 

of feedback? 

Study II, after KNFB Reader iOS tasks: 
1. Overall, how easy or difficult was it to read and understand the text using the 

app? 

2. What, if anything, did you like about using the app? 

3. What, if anything, did you dislike about using the app? 

4. Overall, how was your experience with the app compared to how you would 

normally read braille documents? 

5. Overall, how was your experience with the app compared to how you would 

normally read printed documents? 

6. Overall, how was your experience with the app compared to reading with 

HandSight? 

7. Do you have any questions, suggestions for improvement, or other comments 

about the KNFB Reader app? 
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Appendix C 

This appendix includes additional information about the features used for TouchCam 

Offline in Chapter 7, and a table summarizing statistically significant comparisons 

between combinations of sensors. 

Localization Features Motion Features 
70 features: 50 resampled points + 5 summary statistics × 4 IR 2 raw IR sensor readings IR windows 

639 features: 3 sensors × [3 axes × (50 resampled points + 5 IMUs 4D orientation vector (quaternion) for each IMU IMUs summary statistics × 4 windows) + 3 correlation values] 

LBP texture histogram with 1792 bins (14 patterns x 16 variances x 8 scales) 140 features: 2 axes × (50 resampled points + 5 summary Camera Camera 2D Gabor keypoints, variable number per image statistics × 4 windows) 

Table C.1: Summary of localization and motion features extracted from each sensor for 
TouchCam Offline (Chapter 7, On-body Input Study I). 

Single Sensors 
IR vs. W 

t23 

-17.90 
p 

<0.001 
d 

-3.65 
Two Sensors 
IR+C vs. F+W 

t23 

-8.85 
p 

<0.001 
d 

-1.81 
Best Single (W) 
vs. Two Sensors t23 p d 

IR vs. F -17.16 <0.001 -3.50 IR+C vs. W+C -7.46 <0.001 -1.52 W vs. IR+C 5.73 <0.001 1.17 
IR vs. C -10.38 <0.001 -2.12 IR+W vs. IR+C 7.39 <0.001 1.51 W vs. W+C -4.81 <0.001 -0.98 
W vs. C 4.34 <0.001 0.89 IR+F vs. IR+C 6.72 <0.001 1.37 W vs. IR+W -4.81 <0.001 -0.98 
F vs. C 3.63 0.005 0.74 IR+C vs. F+C -6.59 <0.001 -1.35 W vs. F+W -4.75 <0.001 -0.97 

F+W vs. F+C 6.20 <0.001 1.27 

Three Sensors t23 p d 

IR+F vs. F+W 
F+W vs. W+C 
IR+W vs. F+W 

-4.67 
3.73 
-3.23 

<0.001 
0.008 
0.036 

-0.95 
0.76 
-0.66 

Best Two (F+W) 
vs. Three Sensors t23 p d 

IR+F+W vs. IR+F+C 6.46 <0.001 1.32 F+W vs. IR+F+C 4.17 <0.001 0.85 
IR+F+C vs. F+W+C -4.71 <0.001 -0.96 Best Three F+W vs. IR+F+W -2.99 0.020 -0.61 
IR+F+W vs. IR+W+C 3.64 0.003 0.74 (IR+F+W) t23 p d F+W vs. F+W+C -2.67 0.027 -0.55 
IR+F+W vs. F+W+C -3.17 0.016 -0.65 vs. All Four Sensors F+W vs. IR+W+C -2.67 0.026 0.49 

IR+F+W vs. All -2.13 0.044 -0.44 

Table C.2: Statistically significant comparisons between combinations of sensors used in 
On-body Input Study I (Chapter 7). 
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