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Figure 1. Nuvo is a technique for UV mapping geometry produced by state-of-the-art 3D reconstruction and generation models such
as Neural Radiance Fields (NeRFs) [18]. When applied to such geometry, existing UV mapping algorithms like xatlas [38] produce
fragmented texture atlases (as shown by the chart boundaries marked in orange) that are unusable for tasks like appearance editing. Nuvo
produces high-quality editable UV mappings for these 3D models, and is robust to challenging input geometry such as (a) meshes extracted
from trained NeRF models and (b) meshes generated by text-to-3D models such as DreamFusion [23]. Nuvo can even operate directly on
(c) NeRF volumetric density fields without requiring a triangulated mesh.

Abstract

Existing UV mapping algorithms are designed to oper-
ate on well-behaved meshes, instead of the geometry rep-
resentations produced by state-of-the-art 3D reconstruction
and generation techniques. As such, applying these meth-
ods to the volume densities recovered by neural radiance
fields and related techniques (or meshes triangulated from
such fields) results in texture atlases that are too fragmented
to be useful for tasks such as view synthesis or appearance
editing. We present a UV mapping method designed to op-
erate on geometry produced by 3D reconstruction and gen-
eration techniques. Instead of computing a mapping defined
on a mesh’s vertices, our method Nuvo uses a neural field to
represent a continuous UV mapping, and optimizes it to be
a valid and well-behaved mapping for just the set of visible

points, i.e. only points that affect the scene’s appearance.
We show that our model is robust to the challenges posed
by ill-behaved geometry, and that it produces editable UV
mappings that can represent detailed appearance.

1. Introduction
Surface parameterization (“UV mapping”) is the process of
flattening a 3D surface onto a plane, and it is a core compo-
nent of 3D content creation pipelines that enables represent-
ing and editing detailed appearance on surface geometry.
For complex, real-world meshes, this usually necessitates
finding a sequence of cuts such that distortion of the map-
ping can be minimal. If those cuts result in multiple discon-
nected components that get packaged into one texture, this
is commonly referred to as a “texture atlas”.
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Existing UV mapping algorithms are generally designed
to work with well-behaved meshes, such as those created
by specialized 3D artists. However, an increasing amount
of 3D content does not fall into this category: State-of-
the-art methods for reconstructing and generating 3D rep-
resentations from images or text are based on Neural Ra-
diance Fields (NeRFs), which represent geometry as volu-
metric fields instead of meshes [18]. Level sets of volume
density are generally not smooth, and triangulating these
level sets using techniques such as marching cubes [16] pro-
duces meshes with multiple connected components, holes
that connect to internal “hidden” geometry, and many small
“bumpy” triangles. More formally, such meshes are typi-
cally not manifold or locally smooth, and frequently con-
tain a large number of connected components. Existing
UV mapping methods either cannot operate on such meshes
or produce heavily fragmented UV atlases that complicate
downstream applications. For instance, appearance editing
in texture space becomes difficult, and optimization by dif-
ferentiable rendering is complicated by discontinuities in
the surface parameterization which could cause instabilities
or necessitate the use of very large textures representations.

We present an approach, which we call Nuvo, that ad-
dresses these issues by using neural fields to directly opti-
mize a UV mapping that satisfies the myriad requirements
of a well-behaved surface parameterization. Our method
simply requires a representation of scene geometry that al-
lows for sampling visible 3D points, and we optimize Nuvo
from scratch for each scene by minimizing a set of losses
that encourage Nuvo to represent a well-behaved mapping
for observed points. Because our method uses point sam-
pling on the surface as its fundamental operation, it can
be applied to any implicit surface representation, as well
as polygonal meshes, without strong limitations on mani-
foldness, connectivity, or smoothness. For instance, Nuvo
can generate texture atlases directly from NeRF’s volume
density representation of geometry and it can be applied to
extracted meshes while remaining agnostic to the connec-
tivity of the underlying mesh. Because Nuvo’s UV map-
ping representation is not tied to any underlying mesh, it
does not suffer from the chart fragmentation issues that can
arise when texturing non-smooth meshes with many small
triangles.

We test Nuvo on a variety of 3D geometry representa-
tions: well-behaved meshes, volume density fields recon-
structed by NeRF, meshes extracted from NeRF’s volume
density fields, and meshes produced by text-to-3D genera-
tive models. As illustrated in Figure 1, Nuvo produces tex-
ture atlases that are high-quality with low chart fragmen-
tation, and can therefore be be used to represent and edit
detailed surface appearance.

2. Related Work

Preliminaries Surfaces reconstructed by neural field rep-
resentations can have vastly different topology depending
on the scene. As such, triangulated meshes of these repre-
sentations do not have guarantees on manifoldness, unifor-
mity of triangle areas, smoothness, number of connected
components, or genus. Since only developable surfaces
(such as a cylinder) allow for isometric mappings to the
plane without cuts, our method is designed to optimise both
segmentation of the surface, i.e. cuts, and the UV mapping,
i.e. the parameterization, simultaneously.

A mapping is isometric if it preserves both lengths and
angles, and conformal if it only preserves angles. Con-
nected components in UV space are referred to as charts,
and their collective is called an atlas [17]. Packing charts
into an atlas is typically done as a post-processing step, but
because Nuvo produces square charts similar to Carr et al.
[3], which are trivial to pack, we will not discuss packing
in detail. Please refer to Sheffer et al. [29] and Floater and
Hormann [9] for further review of mesh parameterization.

Mesh Cutting & Parameterization Mesh parameteriza-
tion is a long-standing problem [4, 35]. However, only a few
existing methods address the same problem setting as we do
by simultaneously optimizing both cuts and UV mappings.

Many methods instead start with a user-specific bound-
ary and optimize a UV mapping for that specific cut. Least
Squares Conformal Mapping (LSCM) [14] is a widely-used
technique that produces conformal maps for a pre-cut mesh.
LSCM and related techniques construct and solve a system
of equations that is a function of the mesh and its connectiv-
ity. This strategy ties these methods to the given mesh topol-
ogy, and imposes strict requirements like manifoldness. In
contrast, Nuvo never explicitly builds and solves such sys-
tems and instead relies on sampling points on the surface.

Sorkine et al. [31] propose the first method to simultane-
ously optimize cuts and surface parameterization by starting
from from seed triangles and iteratively adding elements un-
til a distortion bound is reached.

Geometry Images [10] and Multi-Chart Geometry Im-
ages [27] encode a 3D triangle mesh on a regularly sampled
grid, which allows the geometry to be stored using image
compression techniques and facilitates surface re-meshing.
Rectangular Multi-Chart Geometry Images improves these
algorithms to ensure one-to-one texel assignment across
chart boundaries while forming rectangular charts that can
be packaged easily [3], like our method. Their cutting and
parameterization algorithm is similar to Sorkine et al. [31],
but with a different objective function. Unlike Nuvo, these
methods require manifold triangle meshes and were de-
veloped for well-behaved surfaces with significantly lower
complexity than those we address.

AutoCuts [24] and OptCuts [15] generate parameteriza-
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Figure 2. Overview of Nuvo. Our model uses a neural field to represent a given scene’s UV mapping. Our “chart assignment” MLP c(·)
outputs probabilities for a categorical distribution over charts for any surface point x, our “texture coordinate” MLPs ti(·) map from 3D
points x to 2D UV coordinates u, and our “surface coordinate” MLPs si(·) map from 2D UV coordinates to 3D points on the surface.
Here we visualize Nuvo’s learned mappings for charts i = 1 and i = 3 in an atlas consisting of n = 4 charts.

tions of 3D surfaces that have both minimal cut length and
low distortion by alternating the optimization of the map-
ping distortion (continuous) and cut locus (discrete). While
AutoCuts is designed for an interactive workflow, OptCuts
operates fully automatically. While OptCuts method can
produce mappings with low distortion and simple bound-
aries on simpler meshes, it is unable to run on high-
complexity meshes extracted from neural fields, even after
manual cleanup.

A related line of work focuses on improving existing UV
parameterizations. Smith and Schaefer [30] minimize sym-
metric Dirichlet energy to improve the distortion of an ex-
isting parameterization, which can be very efficient [25] and
is more robust than prior work such as Lévy et al. [14]. Sev-
eral recent methods optimize a pre-existing UV mapping to
minimise a reconstruction loss using differentiable render-
ing [13, 33]. However, these techniques must be provided
with an initial surface parameterization.

Neural 3D Representations & Parameterization State-
of-the-art methods for 3D reconstruction and generation
are based on neural fields, which typically represent 3D
geometry as some variation of a volumetric density field
[2, 22, 26, 37] parameterized by some combination of MLPs
with positional encoding [34] and feature grids [20, 28, 32].
Some recent works focus on finding 2D parameterizations
of 3D signals without using explicit triangle meshes. For
example, Kasten et al. [12] convert videos into a set of 2D
atlases where an MLP maps from a 3D coordinate in the
video to a 2D atlas containing color and transparency. Chen
et al. [5] and Chen et al. [6] learn UV mapping-based mod-

els of appearance for the specialized cases of dynamic hu-
man models and 3D human faces. Morreale et al. [19] use
MLPs to encode single-chart surface mappings for geom-
etry processing problems including establishing correspon-
dences between surfaces.

Our work builds upon NeuTex [36], which proposes a
joint optimization framework for appearance and surface
parameterization. Similar to Nuvo, NeuTex uses a cycle-
consistency loss to encourage invertible mappings from 3D
to 2D. However, NeuTex and related followups [8, 39] can-
not represent atlases with multiple charts, and are therefore
not suited to represent mappings for general scenes with
multiple connected components.

3. Method
Given a representation of scene geometry that allows for
sampling visible points in the scene (e.g. a NeRF or a mesh),
Nuvo generates a UV mapping that partitions the scene ge-
ometry into n charts using 2n+ 1 MLPs (see Figure 2):
1. One “chart assignment” MLP c : R3 → ∆n−1 assigns

points on the surface to charts by mapping from a 3D
point to a probability mass function (PMF) of a categor-
ical distribution over the n charts.

2. A set of n “texture coordinate” MLPs {ti : R3 →
[0, 1]2}, each of which describes chart i’s UV mapping
from a 3D point to the corresponding 2D “UV” texture
coordinate (bounded to lie between 0 and 1).

3. A set of n “surface coordinate” MLPs {si : [0, 1]2 →
R3}, each of which describes the inverse of each ti by
mapping from a 2D texture coordinate to a 3D point.
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Figure 3. Visualization of our bijectivity and chart assignment
entropy losses. These losses together encourage Nuvo to partition
the scene into a set of bijective chart mappings. Lentropy max-
imizes chart i’s probability for 3D points si(u) that are mapped
to from 2D points in chart i. L3 )2 )3 and L2 )3 )2 regularize each
chart’s mapping to be bijective by encouraging ti and si to be each
other’s inverse for all 3D surface points x and all 2D UV points u.

3.1. Losses

We optimize Nuvo by minimizing a weighted sum of losses
that encourage the recovery of a well-behaved mapping for
the scene. The losses are averaged over batches of either
random 3D points x ∈ G sampled from the input scene ge-
ometry, or random 2D points u ∈ T distributed uniformly
in texture space [0, 1]2.
Mapping bijectivity Each chart’s texture coordinate map-
ping from 3D points on the surface to 2D points on the
plane should be approximately bijective, i.e. both injective
(multiple 3D points should not map to the same texture co-
ordinate) and surjective (the entire texture space should be
“used” by the mapping). Injectivity is critical, as we require
the ability to make separate edits to the appearance of all
distinct surface points. Surjectivity is desirable but does not
need to strictly hold, as a small amount of unused texture
space is tolerable for our purposes. We encourage bijectiv-
ity by minimizing two cycle consistency losses. The first
loss minimizes the squared distance travelled by 3D points
x after being mapped to 2D and back:

L3 )2 )3 =
1

|G|
∑
x∈G

∑
i

c(x)[i] · ∥si(ti(x))− x∥22 . (1)

We weight the loss by chart probabilities c(·)[i] (the PMF
value corresponding to chart i predicted by the chart as-

signment MLP c(·)) such that the cycle consistency loss for
a given point x under chart i is proportional to the current
probability estimate that point x belongs to chart i. Our sec-
ond cycle consistency loss minimizes the squared distance
travelled by 2D points u after being mapped to 3D and back:

L2 )3 )2 =
1

|T |
∑∑

i

∥ti(si(u))− u∥22 . (2)

Note that both both cycle consistency losses are necessary
to encourage a bijective mapping: L3 )2 )3 encourages chart
mappings to be injective (one-to-one), but it does not penal-
ize mappings that only map to a subregion of texture space,
while L2 )3 )2 encourages the entirety of texture space to be
covered by an invertible mapping, but it does not penalize
mappings that are degenerate for parts of the 3D scene.

Chart assignment entropy Intuitively, if we sample a 2D
point u in chart i, the corresponding 3D point mapped to
by surface coordinate MLP si should have a chart assign-
ment PMF that is close to a one-hot distribution where the
value for chart i is 1 and the rest are 0. We can therefore en-
courage the chart assignment MLP to confidently partition
the 3D scene by minimizing the cross-entropy of the output
PMFs with these one-hot distributions:

Lentropy = − 1

|T |
∑
u∈T

∑
i

log c(si(u))[i] . (3)

Figure 3 illustrates how our bijective and chart assign-
ment losses together encourage Nuvo to represent a texture
atlas that confidently partitions the scene into a set of n bi-
jective charts.

Surface coordinate We encourage the surface coordinate
MLPs to approximate the input geometry by minimizing the
symmetric Chamfer distance between random 2D texture
points u mapped to 3D by surface coordinate networks and
random 3D points x sampled from scene geometry:

Lsurface =
1

|G|
∑
x∈G

min
x′∈

⋃
i si(T )

∥x′ − x∥22

+
1

|⋃i si(T )|
∑

x′∈
⋃

i si(T )

min
x

∥x′ − x∥22 ,
(4)

where
⋃

i si(T ) is the union of the 3D points mapped to
by all surface coordinate MLPs from random 2D UV points
u ∈ T . This loss is meant to encourage the entire UV do-
main to be mapped to by points on the 3D geometry. With-
out ensuring that all 2D texture points map back to the ac-
tual 3D surface, it is possible for the MLPs to only represent
injective mappings to a subregion of UV space and satisfy
L2 )3 )2 with injective mappings from 3D regions not on the
surface to the remainder of UV space.
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Dti(x)

Figure 4. Visualization of our distortion loss. The differential
of mapping ti, Dti(x), transforms tangent vectors on the surface
to vectors in UV space. Lconformal encourages the mappings to
preserve angles by penalizing the cosine between the differential
Dti(x) applied to orthogonal tangent vectors at x and Lstretch

encourages the mappings to have uniform stretch by penalizing
variation over the scene of the areas of parallelograms spanned by
the differentials of orthogonal tangent vectors.

Chart assignment clustering We penalize texture atlas
fragmentation using a clustering loss that minimizes the dis-
tance from each 3D point to the centroids of the points as-
signed to each chart. We weight the loss by the chart as-
signment probabilities such that distances from a point x
to the centroid of chart i is penalized proportionally to the
probability that point x belongs to chart i:

Lcluster =
1

|G|
∑
x∈G

∑
i

c(x)[i] ·
∥∥∥∥(∑

x′∈G c(x′)[i] · x′∑
x′∈G c(x′)[i]

− x

)∥∥∥∥2
2

,

(5)
Distortion To enable texture editing and to encourage an
even allocation of texture resolution over the scene, we want
our chart mappings to have low distortion. In particular,
we would like the chart mappings to be conformal (angle-
preserving), and we would like the amount of stretching or
shrinking in the mapping to be uniform, as satisfying these
properties ensures that a texture wrapped onto the surface
resembles the original texture image.

To this end we impose regularizers on the texture co-
ordinate mappings’ differentials, as illustrated in Figure 4.
The differential of mapping ti at point x, Dti(x), is a lin-
ear mapping of vectors in the 3D surface’s tangent space
at x to 2D UV vectors u. If a mapping is conformal, ap-
plying the differential to orthogonal tangent space vectors
should result in orthogonal vectors. If a mapping has uni-
form stretch, the degree to which Dti(x) stretches 3D tan-
gent vectors should be constant for all x.

We generate random orthogonal tangent space unit vec-
tors, rx and vx using the normal at each point x, and then
transform the endpoints of ϵpx and ϵqx (ϵ = 10−2 in all
experiments) to obtain UV vectors Dti(ϵpx) and Dti(ϵqx)
(note that we drop the dependence of the differential on
x for readability). These vectors approximate the map-
pings’ differentials and let us define a distortion loss that
is the sum of conformal and uniform stretch regularizers:
Ldistortion = Lconformal +Lstretch. Our conformal regular-
izer is the squared cosine between the transformed vectors,
weighted by the probability that x belongs to chart i:

Lconformal =
1

|G|
∑
x∈G

∑
i

c(x)[i] ·
(

Dti(ϵpx) ·Dti(ϵqx)

∥Dti(ϵpx)∥∥Dti(ϵqx)∥

)2

.

(6)
Our uniform stretch regularizer penalizes the squared differ-
ence between the mapping’s stretch (the area of the spanned
parallelogram) and a single scalar “average stretch” scalar
parameter σ that we optimize for in each scene:

Lstretch=
1

|G|
∑
x∈G

∑
i

c(x)[i]·
∥∥∥∥∥Dti(ϵpx)×Dti(ϵqx)

∥∥
2
− σ

∥∥∥2
2
.

(7)
This is functionally equivalent to simply minimizing the

variance of the stretch over the scene, but we found that al-
ternative to have the undesirable effect of collapsing the tex-
ture coordinate MLPs to map all points to the same texture
coordinate, while our loss results in stable optimization.
Texture optimization We find that optimizing Nuvo’s
mappings to be usable for representing surface normals
helps encourage injectivity. To this end we impose a penalty
on the difference between surface normals optimized in UV
space and the true surface normals:

Ltexture =
1

|G|
∑
x∈G

∑
i

c(x)[i]·
∥∥Ni(ti(x))−n(x)

∥∥2
2
, (8)

where Ni(u) is the value of a pixel grid for chart i at 2D
points u (using bilinear interpolation) and n(x) is the sur-
face normal at x. We jointly optimize pixel grid values in
Ni alongside the mapping MLPs to minimize this loss.

4. Experiments

Datasets We compare UV mappings across four datasets:
bunny (72K vertices) and lion (750K vertices) are well-
behaved meshes with a single connected component and
smooth manifold geometry. gardenvase (1.4M vertices)
and amigurumi (2.2M vertices) are meshes extracted by
marching cubes from Zip-NeRF [2] reconstructions. These
two scenes are captured in the “Mip-NeRF 360” style [1]
with roughly 185 images per dataset, where one eighth of
these are reserved for testing. The meshes of these two
scenes have non-smooth geometry, thousands of separate
connected components, and non-manifold edges.



Figure 5. UV mapping and appearance editing comparisons on the amigurumi mesh extracted from Zip-NeRF volume densities. (a)
Nuvo is able to recover a high-quality editable mapping that supports realistic appearance editing, while (b) NeuTex [36]’s mappings
exhibit significant distortion (red circles), and (c) xatlas’ [38] and (d) Blender’s [7] atlases are too fragmented for appearance editing. Chart
boundaries are marked in orange.

gardenvase amigurumi
PSNR Params PSNR Params

BakedSDF [37] 22.55 37.8M 28.63 59.4M
Ours, n = 2 23.11 9.1M 28.63 11.5M
Ours, n = 2 (b) 23.09 10.1M 28.47 14.1M
Ours, n = 8 23.48 9.1M 28.81 11.5M
Ours, n = 8 (b) 22.98 10.1M 28.42 14.1M
Ours, n = 32 23.72 9.1M 28.92 11.5M
Ours, n = 32 (b) 23.41 10.1M 28.67 14.1M

Table 1. View synthesis comparison. Nuvo’s UV mappings ef-
fectively represent detailed surface appearance for view synthe-
sis. We optimize the view-dependent appearance model used in
BakedSDF [37], but in UV atlas space instead of on mesh ver-
tices. We evaluate Nuvo’s view synthesis performance on two
scenes from the Mip-NeRF 360 dataset [1] using n = 2, 8, 32
charts, and fix memory usage by using a texture resolution of
256

√
2/n × 256

√
2/n for each chart. Additionally, we evaluate

“baked” versions of Nuvo (indicated with “b”) by precomputing
and storing the MLP-predicted UV coordinates on mesh vertices to
show that Nuvo’s MLPs do not need to be kept after optimization,
and that our UV maps can be used in standard graphics pipelines.

When optimizing UV mappings for well-behaved
meshes, we sample random 3D points x uniformly dis-
tributed on the surface. When optimizing UV mappings
for meshes extracted from NeRF reconstructions, we sam-
ple random camera rays that view the mesh, and use their
intersection points as x.

4.1. Nuvo Represents Detailed Appearance

We first validate Nuvo’s ability to produce UV mappings
that effectively represent detailed appearance for a given ge-
ometry. As our goal is to compute UV mappings for geome-

try produced by NeRF and other view synthesis approaches,
we evaluate the mappings produced by Nuvo and our base-
lines by measuring how useful they are for view synthesis.

We conduct this evaluation on the gardenvase and
amigurumi datasets. Starting with an optimized NeRF
(we use the state-of-the-art Zip-NeRF model [2]), we first
extract a mesh using marching cubes [16], and then com-
pute a UV mapping using our algorithm. Next, we define a
view-dependent appearance model consisting of a diffuse
color and three spherical Gaussian view-dependent color
lobes (the same appearance model used in BakedSDF [37])
on a 2D grid in UV space, and optimize this representation
to best reproduce the training images.

Table 1 compares Nuvo’s view synthesis results to those
of BakedSDF, which uses the same view-dependent appear-
ance model defined directly on the extracted mesh’s ver-
tices. We can see that optimizing our UV mappings for view
synthesis performs similarly or even better than optimizing
the same appearance model directly on mesh vertices, and
we are able to achieve this performance while using less
memory than BakedSDF as we do not allocate memory to
triangles that do not directly influence view synthesis.

To further demonstrate Nuvo’s usefulness in standard
graphics pipelines, we “bake” the optimized UV coordi-
nates onto the mesh as vertex attributes (we select the chart
with the maximum probability for each vertex). This can be
thought of as a piecewise linear approximation of the opti-
mized UV mappings. The “(b)” rows in Table 1 demon-
strate that even though our UV mappings are optimized
as continuous MLP-parameterized functions, baking them
onto a mesh incurs a minimal decrease in performance.



bunny lion gardenvase amigurumi
Boundary Editability Boundary Editability Boundary Editability Boundary Editability

Ours, n = 1 0.987 0.946 0.988 0.914 0.986 0.682 0.983 0.836
Ours, n = 2 0.982 0.937 0.977 0.890 0.974 0.859 0.983 0.813
Ours, n = 8 0.970 0.923 0.964 0.882 0.933 0.780 0.966 0.809
Ours, n = 32 0.924 0.860 0.903 0.811 0.823 0.704 0.927 0.784
NeuTex [36] 0.990 0.777 0.987 0.652 0.989 0.516 0.994 0.659
xatlas [38] 0.926 0.924 0.692 0.689 0.457 0.457 0.249 0.248
Blender Smart UV [7] 0.876 0.837 0.680 0.657 0.778 0.764 0.603 0.581
OptCuts [15] 0.987 0.954 0.970 0.939 — — — —

Table 2. Editability comparison. Nuvo is competitive with the state-of-the-art OptCuts method specifically designed for well-behaved
meshes (bunny and lion) and Nuvo significantly outperforms all baselines on the challenging meshes extracted from Zip-NeRF
(gardenvase and amigurumi), where OptCuts is unable to compute any UV mapping. The “Boundary” metric quantifies the tex-
ture atlas fragmentation (higher is better i.e. less fragmented), and the “Editability” metric quantifies a user’s ability to wrap arbitrary
new textures on the geometry (higher is better, best method is highlighted in red and second best method is highlighted in orange), which
requires that the mapping has both low fragmentation and low distortion.

Figure 6. UV mapping comparisons on the lion mesh. (a) Nuvo produces a mapping with a simple boundary and low overall distortion.
(b) NeuTex [36]’s mapping is distorted and therefore challenging to edit. (c) xatlas and (d) Blender produce atlases with significant
fragmentation that preclude appearance editing. (e) OptCuts [15] recovers a high-quality mapping for this well-behaved mesh, but is
unable to produce mappings for the more challenging meshes extracted from NeRF. Chart boundaries are marked in orange.

4.2. Nuvo Produces Editable Mappings

Baselines We compare UV mappings produced by our
model (using n = 1, 2, 8, and 32 charts) to:

NeuTex [36], which optimises a single-chart paramteri-
zation with a bijective consistency loss (L3 )2 )3) and no
penalty on distortion;
xatlas [38], an open-source library used throughout the
3D content creation industry based on work such as Lévy
et al. [14] and Sander et al. [27]. Xatlas has been used in
many recent reconstruction methods [11, 21];
Blender Smart UV [7], a robust industrial tool which we
found to behave similarly to “automatic UV” methods in
proprietary and commercial applications;
OptCuts [15], the most recent academic method we

found for obtaining a UV atlas. OptCuts uses alternating
optimization to minimize distortion and cut length.

We use the official implementations of xatlas, OptCuts, and
Blender 2.93, all with default settings. We were unable to
run OptCuts on our more complex scenes as it failed to find
a suitable initial UV embedding, even after manually sim-
plifying the meshes by removing non-manifold geometry
and multiple connected components.

Metrics We compare UV mappings using two metrics:
“Boundary” and “Editability” (higher is better for both),
computed over a test set of randomly-sampled camera view-
points for each dataset. “Boundary” quantifies texture atlas
fragmentation by measuring the fraction of rendered pixels
that do not lie on chart boundaries. “Editability” quantifies



Bound. Stretch Conf. UV Eff. Avg.

Ours, n = 4 0.976 0.976 0.940 0.846 0.935
w/o L3 )2 )3 0.973 0.974 0.898 0.617 0.865
w/o L2 )3 )2 0.974 0.990 0.914 0.247 0.782
w/o Lentropy 0.976 0.988 0.946 0.456 0.841
w/o Lsurface 0.982 0.987 0.948 0.381 0.824
w/o Lcluster 0.953 0.979 0.947 0.785 0.916
w/o Ldistortion 0.974 0.983 0.588 0.965 0.878
w/o Ltexture 0.968 0.981 0.937 0.848 0.933

Table 3. Loss ablations for bunny using n = 4. Removing
either of the bijectivity, chart assignment entropy, surface coordi-
nate, or chart assignment clustering losses results in mappings that
only use a subregion of UV space (low “UV Efficiency”). Ablat-
ing the distortion regularization results in a mapping with much
worse conformal distortion. Removing the texture optimization
loss does not significantly affect metrics, but can result in non-
invertible mappings, as shown in Figure 7.

a user’s ability to wrap arbitrary texture on the geometry.
First, we compute the UV coordinates for the vertices of the
triangle intersected by each camera ray (using the “baked”
versions of our MLP-parameterized mappings for fair com-
parison). Next, we measure each triangle’s editability as
the average of angular distortion and area distortion met-
rics of the linear mapping implied by the UV coordinates
of the three vertices. The image’s total editability score is
the average of each pixel’s triangle editability masked by
chart boundaries; pixels corresponding to chart boundaries
are not considered editable. Please refer to the supplemen-
tary materials for a full detailed definition of these metrics.

4.3. Ablation Studies

The loss ablations in Table 3 demonstrate that our full model
achieves the best tradeoff of minimizing texture fragmen-
tation (“Boundary”), minimizing distortion (“Stretch” and
“Conformal”), and utilizing all of UV space (“UV Effi-
ciency”). Figure 7 visualizes the effect of our texture op-
timization loss for encouraging mapping invertibility.

4.4. Discussion

Table 2 demonstrates that Nuvo’s UV mappings are compet-
itive with OptCuts’ on simpler well-behaved meshes, such
as lion shown in Figure 6, and significantly better than all
baselines for the more challenging cases of geometry ex-
tracted from NeRF models, such as amigurumi shown in
Figure 5. These results are in line with our expectations.
OptCuts effectively minimizes both boundary length and
distortion, but its optimization procedure is expensive and
does not apply to the unstructured non-manifold geometry
produced by NeRF. xatlas’ and Blender’s strategy of start-
ing with many cuts and attempting to merge mappings is not
able to produce simple boundaries for non-smooth surfaces,
resulting in heavily-fragmented atlases.

(a) With texture optimization loss

(b) Without texture optimization loss

Figure 7. Texture optimization loss Ltexture encourages the op-
timized mappings to be injective (one-to-one) by penalizing UV
mappings that cannot accurately represent surface normals. In-
specting the optimized mappings for the bunny’s left ear (grey box)
from either side, we see that an ablation trained without texture
optimization maps both sides of the ear to the same coordinates
in UV space; the “C7” and “D7” UV coordinates (red circles) are
visible from both sides of the ear. Our complete model trained
with texture optimization does not have this degeneracy.

Limitations One of Nuvo’s strengths is that it optimizes
a UV mapping with point samples instead of explicitly pa-
rameterizing the mapping over an entire mesh. However,
this makes it harder to absolutely guarantee that it is bi-
jective or that it globally minimizes distortion for a given
boundary. Finally, while Nuvo is able to automatically op-
timize editable UV mappings for challenging geometry, it
currently lacks interactive mapping capabilities such as al-
lowing users to specify cut locations or regions for which
they would particularly like to minimize distortion. We
think that extending Nuvo to address these deficiencies
would be fruitful directions for future work.

5. Conclusion

We have presented Nuvo, a method that produces editable
UV atlases without severe fragmentation and distortion,
even for challenging geometry created by 3D reconstruction
and generation techniques. By focusing on visible surfaces
and parameterizing mappings using neural fields instead of
directly on mesh vertices, Nuvo can handle scenes with
complexity far beyond the capability of prior approaches.
We believe that this work opens up numerous possibilities
for creative and artistic editing of reconstructed 3D content.
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6. Video
We strongly encourage the reader to watch the supplemental
video for additional results.

7. Experimental Details

MLP Architecture We use standard multilayer percep-
trons (MLPs) with positional encoding [18, 34] for our
chart assignment, texture coordinate, and surface coordinate
MLPs. Each MLP has 8 fully-connected layers, each with
256 channels and a ReLU activation function. The chart
assignment MLP uses a positional encoding degree of 1,
while the texture coordinate and surface coordinate MLPs
use a positional encoding degree of 4.

Point Sampling When optimizing UV mappings for well-
behaved meshes, we sample random 3D points x ∈ G uni-
formly distributed on the surface by first sampling random
triangles uniformly in area using inverse transform sam-
pling, and then sampling random points on those triangles.

When optimizing UV mappings for meshes extracted
from NeRF volume density fields (e.g. Zip-NeRF or Dream-
Fusion), we first sample random camera rays (from training
images for Zip-NeRF and from random images on a circle
for DreamFusion) and then use the intersection points of
these rays with the mesh.

When optimizing UV mappings directly on NeRF vol-
ume density fields, we first sample random camera rays
from the training images, evaluate the Zip-NeRF model
to compute a set of sampling points along each ray along
with corresponding volume rendering weights, and finally
resample a set of “surface” points using the normalized to-
tal volume rendering weight distribution over all rays.

Optimization We optimize Nuvo for each scene by mini-
mizing a weighted sum of the losses described in the main
paper, using the following weights: 1 for L3 )2 )3, 1 for
L2 )3 )2, 0.04 for Lentropy, 10 for Lsurface, 0.5 for Lcluster,
0.4 for Lconformal, and 0.1 for Lstretch. We optimize all
parameters using the Adam optimizer with a cosine decay
schedule, with starting learning rates of 10−4 for MLP pa-
rameters, 0.1 for the scalar value σ, and 0.04 for texture
grids {Ni(·)}.

Runtimes Optimizing Nuvo takes ∼20 minutes for run-
ning on meshes, and ∼40 for directly running on NeRF
volume density fields. OptCuts took over 2 hours to com-
pute a mapping for the bunny mesh (72K vertices) and
over 35 hours for the lion mesh (750K vertices). Since
the NeRF scenes are significantly more complex (1.4 mil-
lion vertices for gardenvase and 2.2 million vertices

for amigurumi), it is reasonable to believe that OptCuts
would not have been able to compute a result in a reason-
able time, even if the unruly nature of the NeRF geometry
did not cause the system to fail. The xatlas package took
∼2 minutes to run on the bunny mesh, and ∼40 minutes
to run on the lion mesh.

8. Metrics
As mentioned in the main paper, the “Boundary” metric
quantifies texture atlas fragmentation by measuring the frac-
tion of rendered pixels that do not lie on chart boundaries.
We consider any pixel in a rendering as a boundary pixel if
its UV coordinate is further than 0.1 from that of any adja-
cent pixel, and if it does not lie on a depth discontinuity.

The “Stretch” metric for each rendered image quanti-
fies the area distortion for the triangles intersected by each
pixel’s ray. We first compute the stretch of each triangle as
the 2D area of the triangle in UV space divided by the 3D
area of the triangle on the mesh. The stretch metric is de-
fined as 1 minus the median of the differences between each
triangle’s stretch and the median triangle stretch. Thus, UV
mappings that have uniform stretch over the entire scene
will have a score of 1.

The “Conformal” metric for each rendered image quan-
tifies the angular distortion for the triangles intersected by
each pixel’s ray. We compute tangent and bitangent vectors
for each triangle, which are simply the two vectors lying
on each triangle that correspond to the positive U and V di-
rections. The conformal metric is defined as 1 minus the
median cosine between these tangent vectors. Thus, UV
mappings that are conformal and do not introduce angular
distortion will have a score of 1.

As discussed in the main paper, the “Editability” metric
reported in Table 2 is the mean of the “Stretch” and “Con-
formal” metrics, each weighted by the “Boundary” metri:
Editability = Boundary · 1

2 (Stretch + Conformal). Thus,
“editable” UV mappings should have both low atlas frag-
mentation (a boundary metric close to 1) and low distortion
(stretch and conformal metrics close to 1).

9. Synthetic Data Sources
The lion mesh (downloaded from threedscans.com)
is a mesh created from a 3D scan of the “Bayon Lion”
statue in the Musée Guimet in Paris, France, taken from
the Preah Khan Kompong Svay temple complex in Preah
Vihear, Cambodia. The bunny mesh is the “Stanford
Bunny” mesh created from a 3D scan by the Stanford Uni-
versity Computer Graphics Laboratory, downloaded from

threedscans.com


(a) Complete model (b) Without distortion loss (c) Without clustering loss

Figure 8. Loss ablations. (a) Our complete model recovers a high-quality UV mapping for the bunny model. (b) Removing our distortion
loss Ldistortion results in a texture atlas with non-uniform warping that hinders editing in 2D texture space. (c) Removing our chart
assignment clustering loss Lcluster leads to fragmented and irregularly-shaped charts, which also makes appearance editing cumbersome.

Figure 9. UV mapping comparisons on the bunny mesh. (a) Nuvo produces a mapping with a simple boundary and low overall distortion.
(b) NeuTex [36]’s mapping is distorted and therefore challenging to edit. (c) xatlas and (d) Blender produce atlases with significant
fragmentation that preclude appearance editing. (e) OptCuts [15] recovers a high-quality mapping for this well-behaved mesh, but is
unable to produce mappings for the more challenging meshes extracted from NeRF. Chart boundaries are marked in orange.

github.com/alecjacobson/common-3d-test-
models. The statue mesh shown in Figure 4 of the main
paper is the “Bust of Queen Nefertiti” mesh (downloaded
from github.com/alecjacobson/common-3d-
test-models) created from a 3D scan in the Neues
Museum in Berlin of the statue created by Thutmose.
Our supplementary video additionally contains the “Hydria
Apothecary Vase” mesh (downloaded from sketchfab.
com/3d-models/hydria-apothecary-vase-
7d6938c0c0b54b06a0210a982a73023e) from the
Pharmacy Museum in the Jagiellonian University Med-
ical College of Kraków, Poland, digitized by the Re-
gional Digitalisation Lab of the Malopolska Institute of
Culture in Kraków, Poland. The tile texture used in Fig-

ure 5 of the main paper was downloaded from https:
//ambientcg.com/view?id=Tiles101.

10. Ablation Visualization

Figure 8 visualizes the effects of ablating our distortion or
clustering losses. Table 3 contains quantitative results for
all loss ablations.

11. Additional Qualitative Results

Figure 9 qualitatively compares UV mappings from our
method to baselines, and demonstrates that Nuvo produces
UV mappings that are better-suited for editing than those
produced by existing methods.

github.com/alecjacobson/common-3d-test-models
github.com/alecjacobson/common-3d-test-models
github.com/alecjacobson/common-3d-test-models
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bunny lion gardenvase amigurumi
Boundary Stretch Conf. Boundary Stretch Conf. Boundary Stretch Conf. Boundary Stretch Conf.

Ours, n = 1 0.987 0.968 0.948 0.988 0.949 0.901 0.986 0.467 0.916 0.983 0.803 0.897
Ours, n = 2 0.982 0.969 0.939 0.977 0.942 0.880 0.974 0.842 0.922 0.983 0.762 0.893
Ours, n = 8 0.970 0.981 0.923 0.964 0.969 0.860 0.933 0.812 0.860 0.966 0.836 0.940
Ours, n = 32 0.924 0.993 0.869 0.903 0.987 0.810 0.823 0.868 0.842 0.927 0.926 0.766
NeuTex [36] 0.990 0.983 0.587 0.987 0.972 0.348 0.989 0.530 0.513 0.994 0.777 0.550
xatlas [38] 0.926 0.997 0.998 0.692 0.995 0.997 0.457 0.998 0.999 0.249 0.991 0.998
Blender Smart UV [7] 0.876 0.995 0.915 0.680 0.993 0.938 0.778 0.994 0.970 0.603 0.985 0.941
OptCuts [15] 0.987 0.997 0.936 0.970 0.997 0.940 — — — — — —

Table 4. Expanded editability comparison with all metrics. This table contains the “Boundary”, “Area”, and “Angle” metrics (higher is
better for all three) that are used to compute the “Editability” metric in Table 2.

12. Expanded Editability Comparison
Table 4 contains the full set of metrics used to calculate
the “Boundary” and “Editability” metrics for Table 2 in the
main paper.
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