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Fig. 1. We present a fast and easy-to-use method for animating the types of abstract and varied human-like figures drawn by children.

Children’s drawings have a wonderful inventiveness, creativity, and vari-
ety to them. We present a system that automatically animates children’s
drawings of the human figure, is robust to the variance inherent in these
depictions, and is simple and straightforward enough for anyone to use. We
demonstrate the value and broad appeal of our approach by building and
releasing the Animated Drawings Demo, a freely available public website
that has been used by millions of people around the world. We present a
set of experiments exploring the amount of training data needed for fine-
tuning, as well as a perceptual study demonstrating the appeal of a novel
twisted perspective retargeting technique. Finally, we introduce the Amateur
Drawings Dataset, a first-of-its-kind annotated dataset, collected via the
public demo, containing over 178,000 amateur drawings and corresponding
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user-accepted character bounding boxes, segmentation masks, and joint
location annotations.
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1 INTRODUCTION
Children’s depictions of the human figure are highly expressive
and varied. As one of the very first subjects children attempt to
draw, these representations begin as an almost unintelligible cloud
of scribbles. As a child grows, their representation of the human
figure becomes more developed and is extended to graphically rep-
resent many different types of characters: people, animals, and even
personified objects (see Figure 1).
Who among us has not wished, either as a child or as an adult,

to see such figures come to life and move around on the page?
Sadly, while it is relatively fast to produce a single drawing, creating
the sequence of images necessary for animation is a much more
tedious endeavor, requiring discipline, skill, patience, and sometimes
complicated software. As a result, most of these figures remain static
upon the page.
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Inspired by the importance and appeal of the drawn human fig-
ure, we design and build a system to automatically animate it given
an in-the-wild photograph of a child’s drawing. Our system is fast,
intuitive, and robust to much of the variation present in these types
of drawings, making it well-suited to allow our target audience–
children–to see their own characters coming to life. The system is
comprised of four stages: figure detection, segmentation masking,
pose estimation/rigging, and animation. We describe each stage and
identify common causes of failure in each. For object detection and
pose estimation, we make use of existing computer vision models
designed to detect human figures and joints in photographs; we
fine-tune these models for use with children’s drawings. For seg-
mentation, we present a straightforward, image processing-based
method that, for animation purposes, is more useful and accurate
than segmentation masks obtained from a fine-tuned object detec-
tion model. During the animation step, we take advantage of the
twisted perspective commonly seen in children’s drawings to retarget
motion capture data onto the character in a novel and appealing
way.

While our system leverages existing models and techniques, most
are not directly applicable to the task due to the many differences
between photographic images and simple pen and paper representa-
tions. Therefore, we couple the presentation of our system with a set
of experiments exploring the relationship between fine-tuning train-
ing set size and success rates. We also include a perceptual study
validating viewer preference for incorporating twisted perspective
into the motion retargeting step.

We validate the desirability and appeal of our system by building
and publicly releasing a version of it as the Animated Drawings
Demo [Meta 2022]. Launched in December 2021, this demo has
been used by millions of people around the world to animate their
drawings. Inspired by this reception, our second contribution is the
Amateur Drawings Dataset: 178,166 drawings and user-accepted
annotations collected, with consent, through the demo. See Section
3.5 for a description of how the annotations were generated. We
believe this dataset will be a resource to researchers from various
fields seeking to better understand the space of amateur drawings,
evaluate new algorithms in this domain, or develop new drawing-
based tools in general.
To summarize, our contributions are as follows:

(1) We explore the problem of automatic sketch-to-animation for
children’s drawings of human figures and present a frame-
work that achieves this effect. We also present a set of experi-
ments determining the amount of training data necessary to
achieve high levels of success and a perceptual study validat-
ing the usefulness of our motion retargeting technique.

(2) To encourage additional research in the domain of amateur
drawings, we present a first-of-its-kind dataset of 178,166
user-submitted amateur drawings, along with user-accepted
bounding box, segmentation mask, and joint location annota-
tions.

In addition, we also provide the project’s animation code and the
fine-tuned model weights for drawn human figure detection and
pose estimation.

2 BACKGROUND
Our work builds on existing methods from several fields but is, to
our knowledge, the first work focused specifically on fully automatic
animation of children’s drawings of human figures. To ground the
work, we provide a summary of salient observations from the field of
children’s art analysis. In addition, we briefly review related work on
2D image-to-animation and object and pose estimation for abstract
images.

2.1 Analysis of Children’s Drawings
Children’s drawings have long been of interest to the scientific com-
munity. For well over a century, researchers from multiple fields
have collected [Geist and Carroll 2002; Kellogg 1967; Robert et al.
2016; Venable 2022] and analyzed them, seeking to understand and
measure children’s thought processes [Barnes 1892; Buhler 2013;
Clark 1897; Sully 2021], intellectual development [Goodenough 1926],
and perceptions [Chambers 1983; Cherney et al. 2006]. Particular
attention has been given to drawings of human figures, one of the
first and most frequently drawn subjects throughout childhood [Cox
2013].

As the child develops, the schemas they employ to represent the
human form become more complete (see Figure 2). Even within
these schemas, there is significant variation. In addition to asym-
metries and variation in color and proportion, many body parts
appear optional to include; a study of drawings by 4-6 year old
children showed that, while heads, legs, and eyes are almost uni-
versally present, other body parts (including torsos, arms, hands,
and feet) were frequently absent [Cox 2013]. Inversely, non-human
body parts are frequently added in order to represent other subject
classes [Kellogg 1969]. With the addition of large ears, the figure
may represent a cat or bear (Figures 4.m and 4.g); with the addition
of a crown, it can represent a pineapple (Figure 4.n). All of these
sources of character variation make automatic character animation
from drawings a non-trivial task.
Many researchers have focused closely on the unique style of

children’s drawings. The psychologist and artist JohnWillats argues
that, in order to understand the style of children’s drawings, one
must understand that the primary picture primitives employed by
children are regions, or 2D areas [Willats 2006]. A squat volume,
such as a head or torso, may be represented by a circular or ellipsoid
region, whereas an elongated volume, such as a leg, may be repre-
sented by a long, thin region or even a single line. These regions are
not depictions of the object from any particular point of view. Rather,
they are 3D volumetric object-centered descriptions [Marr 1982], 2D
areas with attributes perceptually similar to those of 3D object they
are meant to represent.

There are two stylistic outcomes of these object-centered descrip-
tions that bear mention. First, the use of foreshortening is very
rare in children’s drawings [Piaget 1956; Willats 1992]. This design
choice is understandable; foreshortening a long region, such as a
limb, results in a short region which does not adequately reflect the
longness of the object. Second, the human figure may appear to have
been drawn from many different perspectives, so as to make each
part of the character maximally recognizable. For example, the head
and torso may face forward while the legs and feet are pointed to

, Vol. 1, No. 1, Article . Publication date: April 2023.



A Method for Animating Children’s Drawings of the Human Figure • 3

Fig. 2. As children learn to draw the human figure, the morphologies of
the schemas they employ vary and evolve considerably [Cox and Cox 2014].
Children frequently begin by drawing a tadpole figure, a circular head region
from which arms and legs extend. Some will progress to a transitional figure,
dropping the arms down so they extend from the legs. When a line is drawn
between the legs, creating the separate torso region, the conventional figure is
formed. Though these are small changes from the perspective of the drawer,
they result in significantly different character morphologies when viewed
through the lens of character animation. A successful drawing-to-animation
system must be robust to these types of variations.

the side. This technique, often referred to as twisted perspective, is
frequently seen and well-documented [Dziurawiec and Deregowski
1992]. Both of these stylistic aspects are used to guide the design
decisions of our system when applying human motion capture data
onto the character.

2.2 2D Image to Animation
Previous researchers have proposed methods to animate drawings
or photographs, many of which rely upon additional modes of user
input. Hornung et al. present a method to animate a 2D character
in a photograph, given user-annotated joint locations [Hornung
et al. 2007]. Pan and Zhang demonstrate a method to animate 2D
characters with user-annotated joint locations via a variable-length
needle model [Pan and Zhang 2011]. Jain et al. present an integrated
approach to generate 3D proxies for animation given joint locations,
segmentation masks, and per-part bounding boxes [Jain et al. 2012].
Levi and Gotsman provide a method to create an articulated 3D
object from a set of annotated 2D images and an initial 3D skeletal
pose [Levi and Gotsman 2013]. Live Sketch [Su et al. 2018] tracks
control points from a video and applies theirmotion to user-specified
control points upon a character. Other approaches allow the user to
specify character motions through a puppeteer interface, using RGB
or RGB-D cameras [Barnes et al. 2008; Held et al. 2012]. ToonCap [Fan
et al. 2018] focuses on an inverse problem, capturing poses of a
known cartoon character, given a previous image of the character
annotated with layers, joints, and handles.

Toonsynth [Dvorožnák et al. 2018] and Neural Puppet [Poursaeed
et al. 2020] both present methods to synthesize animations of hand-
drawn characters given a small set of drawings of the character
in specified poses. Hinz et al. train a network to generate new
animation frames of a single character given 8-15 training images
with user-specified keypoint annotations [Hinz et al. 2022].

Monster Mash [Dvorožňák et al. 2020] presents an intuitive frame-
work for sketch-based modeling and animation, and 2.5D Cartoon
Models [Rivers et al. 2010] presents a novel method of constructing
3D-like characters from a small number of 2D representations. Both
of these are intuitive and well designed animation tools targeted
towards amateur users.

Some animation methods are specifically tailored toward particu-
lar forms, such as faces [Averbuch-Elor et al. 2017], coloring book
characters [Magnenat et al. 2015], or characters with human-like
proportions. One notable work that is focused on the human form
is Photo Wake Up [Weng et al. 2019]. The authors show a method
for creating a rigged and textured 3D mesh from a single image of a
human-like figure. Similar to us, their end goal is to allow users to
seamlessly bring 2D characters to life; their work does an impres-
sive job of accomplishing this. Our method differs in two significant
ways. First, while their work is focused on creating a 3D model for
a mixed reality use case, ours is specifically focused on animating
twisted perspective figures while staying within a 2D plane. Second,
children’s drawings are much more abstract, incorrectly propor-
tioned, and non human-like than the examples demonstrated in
the paper. We test our method upon the more abstract examples
demonstrated in their paper and, with minor segmentation cleaning,
they were successfully animated by our method.
While the approaches listed here are wonderful tools to ease

the burden of animation, none were perfectly suited to our use
case. Some require additional user input beyond the drawing itself,
making the animation process more complex. Others require the
user to consistently draw the same character in multiple poses,
which is beyond the skills of young children. Others are focused
on animating specific forms, precluding their use on children’s
drawings of the human figure.

2.3 Detection, Segmentation, and Pose Estimation on
Non-Photorealistic Images

Aided by the the existence of large annotated datasets [Andriluka
et al. 2014; Ionescu et al. 2014; Lin et al. 2014], researchers have
made considerable progress solving the problems of object detec-
tion, segmentation, and pose estimation from photographs. See,
for example [Cao et al. 2019; Fang et al. 2022; He et al. 2017; Rıza
Alp Güler 2018; Toshev and Szegedy 2014]. We explain the methods
in this area that we leverage in Sections 3.1 and 3.3.

While traditional methods for detection, segmentation, and pose
estimation of non-photorealistic images exist [Bregler et al. 2002;
Choi et al. 2012; Davis et al. 2006; Eitz et al. 2012], the lack of easily
available datasets has resulted in slower adoption of deep learning
models. Some researchers are addressing this problem by developing
methods and releasing datasets focused on the domain of anime
characters [Chen and Zwicker 2022; Khungurn and Chou 2016],
professional sketches [Brodt and Bessmeltsev 2022], and mouse
doodles [Ha and Eck 2017]. Other researchers have presented a non-
deep learning method for inferring character poses from gesture
drawings [Bessmeltsev et al. 2016]. Because the Amateur Drawings
Dataset is comprised of in-the-wild photographs of drawings created
by the general public, we believe it will complement the value of
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existing datasets and allow for new dimensions of exploration and
analysis.

3 METHOD
Our goal is a system that generates an animation from a single
drawing of a human figure. To make the experience as simple and
accessible as possible, we take the input to be a single in-the-wild
photograph of a drawing, as might be captured with a mobile phone
camera. While vector drawings from tablet-based interfaces can
provide stroke-level information, previous in-classroom research
has found tablet-based drawing interfaces to be more fatiguing and
difficult to use than their analog counterparts [Picard et al. 2014]; we
therefore assume the input to be a raster image that is a photograph
of a child’s drawing with pen, crayon, paint, or other common art
material.

Starting with the single image, we structure the task as a series of
sub-tasks: human figure detection, segmentation, pose estimation,
and animation (Figure 3). The first step is to identify the human
figure within the drawing and predict a bounding box that tightly
encompasses it. Second, we use the contents of the bounding box
to obtain a segmentation mask, separating pixels belonging to the
human figure from those belonging to the background. Third, we use
the contents of the bounding box to perform pose estimation on the
figure, identifying a series of skeletal joints. With the original image,
segmentation mask, and joint locations, we generate a character
rig suitable for animation. Finally, we animate the character rig by
retargeting motion capture data onto it.
In the following sections, we describe the steps in more detail

and provide examples of common failures that can occur. We end by
describing how the system is framed within the publicly released
Animated Drawings Demo and how the user interface is structured
to allow users to modify the model predictions as needed.

3.1 Figure Detection
We first detect a bounding box around the human figure within the
drawing. This step is necessary because many children’s drawings
portray human figures as part of a larger scene [Kellogg 1967] and
because the photograph may include background either drawn or
outside the bounds of the piece of paper such as a table surface.
We make use of a state-of-the-art object detection model, Mask

R-CNN [He et al. 2017], with a ResNet-50+FPN backbone. We utilize
pretrained weights derived from the MS-COCO dataset, one of the
largest publicly available semantic segmentation datasets [Lin et al.
2014]. However, MS-COCO is comprised primarily of photographs
of real-world objects, not artistic renderings, and does not contain a
category for drawings of human figures. Therefore, we fine-tune the
model. The model’s backbone weights are frozen and attached to a
head, which predicts a single class, human figure. The weights of
the head are then optimized using cross-entropy loss and stochastic
gradient descent with an initial learning rate of 0.02, momentum
of 0.9, weight decay of 1e-4, and minibatches of size 8. Training
was conducted using OpenMMLab Detection Toolbox [Chen et al.
2019]; all other hyperparameters were kept at the default values
provided by the toolbox. Each model was trained until convergence
on a server with eight Tesla V100-SXM2 GPUs.

In Figure 4, we show representative example predictions. See
supplemental material for additional examples. For an exploration
of the amount of training data necessary to achieve acceptable
results, see Section 4.2.

3.2 Figure Segmentation
With the bounding box identified, we next obtain a segmentation
mask, separating the figure from the background. This step is sur-
prisingly difficult; there is a great deal of variation in figure ap-
pearance and in photograph quality. Additionally, texture and color,
two attributes that are useful for segmentation in photographs, are
of limited value here: they are a function of the artist’s drawing
style and their available drawing tools. While Mask R-CNN does
predict a segmentation mask for each detection, we found them
to be inadequate in many cases. Because this mask will be used to
create a 2D textured mesh of the figure, it must be a single polygon
that tightly conforms to the edges of the figure, includes all body
parts, and excludes extraneous background elements.

We therefore use a classical, image processing-based approach for
extracting masks (see Figure 5). First, we resize the bounding box-
cropped image to a width of 400 pixels while preserving the aspect
ratio. Next, we convert the image to grayscale and perform adaptive
thresholding, where the threshold value is a Gaussian-weighted
sum of the neighborhood pixel values minus a constant C [Gonzalez
and Woods 2008]. Here, we use a distance of 8 pixels to define the
neighborhood and a value of 115 for C. To remove noise and connect
foreground pixels, we next perform morphological closing, followed
by dilating, using 3x3 rectangular kernels. We then flood fill from the
edges of the image, ensuring that any closed groups of foreground
pixels are solid and do not contain holes. Finally, we calculate the
area of each distinct foreground polygon and retain only the one
with the largest area.

While this method is straightforward, we nonetheless found it to
be an effective method for extracting useful and precise figure masks.
However, it will fail when body parts are drawn separated, limbs are
drawn touching at points other than the joints, the figure is not fully
contained by the bounding box, or the outline of the figure is not
completely connected. For examples comparing the Mask R-CNN
segmentation predictions to the image-based processing approach,
see Figure 6.

3.3 Pose Estimation
To allow the character to perform complex motions, we need an
understanding of its proportions and pose. However, a fine-grained
analysis of a figure’s body parts is tricky, due to the sparse and
abstract way in which they can be represented; a single line may be
the edge of an arm (Figure 7.l), an entire arm (Figure 7.k), a design
on the figure’s shirt (Figure 7.e), a background element (Figure 4.f),
or a preexisting print upon the page (Figure 4.l),

Discerning exactly what each stroke of a drawing is can be diffi-
cult, even for humans. To make this task more tractable, we instead
only seek to identify a small set of keypoints that can be used as
joints during the animation step. We assume the presence of the 17
keypoints used by MS-COCO [Lin et al. 2014] (see Figure 8) and use
a pose estimation model to predict their locations.
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Fig. 3. An overview of the drawing-to-animation pipeline. Given an input drawing, the human figure within it is identified and used to crop the image. From
the cropped image, the human figure segmentation mask and joint locations are obtained and used to create a character rig. Motion capture data is then
retargeted onto the character rig to produce animations.

Fig. 4. Row 1 shows representative detection failures from pretrained Mask R-CNN (left) that were corrected after model fine-tuning (right): excluding hollow
parts of a figure (a), false negatives (b), incorrectly detecting objects in the background (c), and detecting and incorrectly classifying parts of figures (c, d). Row
2 contains examples of successful detections from the fine-tuned model. Row 3 contains representative examples of failures: multiple detections of the same
figure (l), false negatives (m, n), false positives (o, q), and detections that cut off figure parts (p, r). Additional examples are shown in the supplemental material.

While there are many pose estimation models suitable for pho-
tographs of people, they do not perform well upon images of drawn

human figures, which are quite different in appearance.We therefore
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Fig. 5. We use an image processing-based approach to extract the figure mask. Beginning with the contents of the detected bounding box (a), we convert to
grayscale and apply adaptive thresholding (b), perform morphological closing (c) and dilating (d), flood filling (e), and retain only the largest polygon (f). Here
the resulting mask tightly conforms to the original figure (g).

Fig. 6. Given the input images cropped to the computed bounding boxes, shown in the top row, the image processing-based segmentation method computes
the masks shown in the middle row. The bottom row shows the masks predicted by the fine-tuned Mask R-CNN model. Often the image processing method
gives usable results while the Mask R-CNN model excludes or detaches body parts (a, b, g, h), improperly attaches limbs to the body or head (c, d, e, f,) or
includes non-figure elements (f, h). Columns i and j show examples in which the image processing method fails to extract a good mask, which can occur when
the limbs of the figure are not drawn attached to the body (i) or the strokes outlining the figure are not connected (j). Note that (j) is an example of a figure for
which the Mask R-CNN segmentation prediction is more suitable for animation than the mask obtained through our image processing-based segmentation
method.

train a custom pose estimation model utilizing a ResNet-50 back-
bone, pretrained on ImageNet, and a top-down heat map keypoint
head that predicts an individual heatmap for each joint location.
The cropped human figure bounding box is resized to 192x256 and
fed into the model, and the highest-valued pixel in each heatmap is
taken as the predicted joint location. Mean squared error is used for
joint loss, and optimization is performed using Adaptive Momen-
tum Estimation with learning rate of 5e-4 and minibatches of size
512. Training was conducted using the OpenMMLab Pose Toolbox

[Contributors 2020]; all other hyperparameters were kept at the
default values provided by this toolbox. The model was trained on
a server with eight Tesla V100-SXM2 GPUs until convergence.

We provide representative examples of successful and unsuccess-
ful pose estimation examples in Figure 7. See the supplemental
material for additional examples. As with detection, see Section
4.2 for an exploration of the amount of training data necessary to
achieve acceptable results.
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Fig. 7. Examples of successful and unsuccessful pose estimations. Frequent causes of failure include limb confusion caused by background elements (k), limb
confusion caused by other figure parts (h, m, n), and objects held by the figure (i, l). Human figures not drawn facing forward, while infrequent, also result in
failure (j). Additional examples are shown in the supplemental material.

Fig. 8. Left: Given the predicted joint keypoints (a), we create a skeletal rig used to animate the character (b). Right: In this example, we take the original pose
from a motion capture actor and project the torso and upper limb joint locations onto a frontal plane, while projecting the lower limb joint locations onto a
sagittal plane (c). We then find the global orientations of the bones within their respective planes and rotate the character’s joints to match, resulting in the
retargeted pose (d).

3.4 Animation
We next create a rigged character, suitable for animation, from
the mask and joint predictions. From the segmentation mask, we
use Delaunay triangulation to generate a 2D mesh and texture it
with the original drawing. Using the joint locations, we construct
a character skeleton. We use the predicted positions of the left
and right shoulders, elbows, wrists, hips, knees, ankles, and nose.
We average the position of the two hips to obtain a root joint and
average the position of the two shoulders to obtain the chest joint.
We connect these joints to create the skeletal rig as shown in Figure

8.b. Finally, we assign each mesh triangle to one of nine different
body part groups (left upper leg, left lower leg, right upper leg, right
lower leg, left upper arm, left lower arm, right upper arm, right
lower arm, and trunk) by finding the closest bone to each triangle’s
centroid. During the animation step, different body part groups can
be rendered in different orders, giving the illusion of limbs being in
front of or behind the body.

We animate the character rig by translating the joints and using as-
rigid-as-possible (ARAP) shape manipulation [Igarashi et al. 2005]
to repose the character mesh. To make the process simple for the
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user, we drive the character rig using a library of preselected motion
clips obtained from human performers. Because the human figures
are 2D and often have very different proportions and appearances
from those of real humans, care must be taken when deciding how
to best utilize the 3D motion data. We retarget the motion in the
following manner.
We initially preprocess a motion clip by subtracting, per frame,

the X and Z position of the root joint from the motion caption actor’s
skeleton, such that the skeleton’s root joint is always located above
the origin. We also rotate the skeleton about the vertical axis such
that its forward vector (defined as the vector perpendicular to the
average of the vector connecting the shoulder joints and the vector
connecting the hip joints) is facing along the positive X axis. We
then project the skeleton’s joint locations onto a 2D plane (shortly,
we will describe how to select the 2D plane).

Next, for the bones of the upper arms, lower arms, upper legs,
lower legs, neck, and spine, we compute the global orientation
of each bone within the 2D projection plane. We then rotate the
corresponding bones of the character rig so as to match these global
orientations. Using the new joint positions as ARAP handles, we
repose the mesh. When the character rig is reposed this way, the
lengths of the character’s bones are never foreshortened. This is an
intentional design decision; foreshortening is quite rare in children’s
drawings [Willats 2006], and we therefore opted for a method of
animation that does not introduce it.

To apply root motion, we compute the per-frame root offset of the
human actor and scale it by the constant ratio of the actor’s average
leg length to the character’s average leg length. The resulting offset
is applied to the character rig, moving it horizontally across the
screen.
When projecting the actor’s 3D joint locations onto a 2D plane,

there are multiple planes from which to choose. Which plane to
select depends upon the motion: jumping jacks will be most rec-
ognizable when projected onto a frontal plane, while the hip hop
dance running man will be most recognizable when projected onto
a sagittal plane. In order for the motion to remain recognizable, the
choice of projection plane should preserve as much joint position
variance as possible.

We automatically compute the plane as a function of the motion.
After preprocessing the motion data (as described above), we plot
the joint positions over the entire motion clip as a point cloud
and perform principal component analysis upon it. The first two
principal components define a 2D plane upon which joint position
maximally varies. The third principal component defines a vector
normal to this plane. We select as the 2D projection plane either the
skeleton’s frontal plane or sagittal plane, depending upon which has
a normal vector with a higher cosine similarity to the third principal
component.
This projection technique will work well when the source 3D

motion primarily occurs on a single plane (such as jumping jacks
or a cartwheel). However, some motions do not cleanly fall onto
a single plane, and are therefore more difficult to recognize after
being projected to 2D.
To increase the number of motions that remain recognizable,

we do not restrict ourselves to using the same 2D plane for the
entire skeleton. Rather, we independently create joint point clouds,

perform principal component analysis, and select the projection
plane for the upper limbs and the lower limbs (see Figure 8, right).
Mixing perspectives in this manner can result in unrealistic mo-

tions, but there can be artistic reasons to justify such deviations from
realism [Singh 2002]. Many children’s drawings already employ the
technique of twisted perspective, drawing different parts of a human
figure from different points of view [Dziurawiec and Deregowski
1992]. As a result, mixing perspectives when retargeting matches
the motion style to the drawing style, increasing the appeal of the
final animation as we demonstrate with a user study (see Section
4.3).

3.5 User Interface
The purpose of the system is to empower users to create appealing
animations from their children’s drawings. To increase the chance of
a successful outcome, we make certain assumptions about the input
image and expose a simple user interface that allows for step-by-step
corrections, if needed.
For the detection step, we assume a single human figure to be

present within the scene. If multiple human figures are detected
by the model, we return a single bounding box encompassing all
detected bounding boxes. If no human figures are detected, we
return a single bounding box containing the entire image. Users
are prompted to drag the edges of the bounding box to fit to their
human figure as needed before continuing to the segmentation step
(Figure 9.b).

In the segmentation step, users are presented with a visualization
of the segmentation mask overlaid on the original image. Users can
use a pencil and eraser tool to add and subtract pixels from the mask
(Figure 9.c). After the user has modified the mask, it is again flood
filled and the largest polygon is retained to ensure the mask is a
single, solid region (steps e and f in Figure 5).
In the pose detection step, users are shown the predicted joint

locations overlaid upon their drawing. If a joint is incorrectly posi-
tioned, the user can drag it to a more appropriate location (Figure
9.d). Users cannot add or delete joints, but are instructed to drag
joints far away from the human figure to avoid using them for
animation.
Finally, users are shown a gallery of preselected motions per-

formed by an example character; clicking on a motion applies it
to the user’s character rig (Figure 9.e). The gallery of preselected
motions is static and does not vary depending upon the uploaded
image or annotations.
The demo is deployed on Amazon Web Services using a combi-

nation of g4dn.2xlarge and c5.4xlarge servers. If the user makes no
annotation modifications, the entire image-to-animation user flow
takes less than 10 seconds.

4 EVALUATION AND ANALYSIS
We evaluate our system in three ways. First, we briefly describe
the public reception of the demo. Second, we present a set of ex-
periments exploring the effect of training data size on the system’s
success rate. Third, we perform a user study to validate the appeal
and desirability of twisted perspective motion retargeting.
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Fig. 9. User interface within the Animated Drawings Demo. After uploading a drawing (a), users can observe and optionally modify the predicted bounding
box (b), modify the segmentation mask (c), and reposition joints (d) prior to selecting a motion to apply to the character rig (e).

4.1 Public Reception
OnDecember 16, 2021, a version of the proposed systemwas publicly
released as the Animated Drawings Demo [Meta 2022]. The launch
was accompanied by several high-profile social media posts and
a blog post; however, all subsequent online promotion came from
users organically sharing the demo within their networks.

Over the next nine months, over 3.2 million unique users visited
the site and spent, on average, over five minutes using the demo.
They uploaded 6.7 million images and, on average, generated four
animations per image. Based upon a subset of highly visible so-
cial media posts, the demo is especially popular among parents,
elementary school teachers, technology enthusiasts, and artists.

4.2 Effect of Training Sample Size
Our system incorporates repurposed computer visionmodels trained
on photographs of real-world objects. Because the domain of chil-
dren’s drawings is significantly different in appearance, these mod-
els must be fine-tuned prior to use. However, given the abstract and
varied nature of the drawings, it is not obvious how many drawings
must be collected and annotated for training. Therefore, we present
a set of experiments exploring the relationship between training
dataset size and model prediction success.
We report the performance of the models in two ways. Because

the models employed have pre-established accuracy metrics, we
first report the achieved mean average precision (mAP) [.5:.95] for
each model. However, our goal–animation–is a somewhat distinct
downstream use of these predictions, and the mAP may not fully
reflect the rate of success. For example, a predicted bounding box
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that overlaps ground truth by 90% would contribute to a very high
mAP; however, if the prediction excluded a figure’s foot or cut off
half of its head, the resulting animation would be considered a
failure. Therefore, we also report the percent of predictions that
result in successful animations, as determined by visual inspection.

We compare the performance of several different fine-tuned ver-
sions of our models. First, we fine-tune using 177,666 images from
the Amateur Drawings Dataset; we excluded 500 images to use for
validation (as described below). However, some of the user-accepted
annotations are noisy and inaccurate; therefore, we also fine-tune
models using ‘clean’ training datasets of multiple sizes. To obtain
these, we randomly selected and manually reviewed images and an-
notations from within the Amateur Drawings Dataset. Images that
had clearly incorrect annotations were rejected. Common reasons
for rejection included: segmentation masks that did not contain
the entire figure or included background elements, limbs that were
fused together, joints that did not lie on the figure. In this way, we
identified 2,500 images with suitable user-accepted annotations to
serve as our training and validation data.
We randomly selected 500 images to serve as the validation set

across all training runs, while the remaining 2,000 served as the
training sample pool. We created eight different training sets, vary-
ing in size from 10 through 2,000. For each training set, we randomly
selected data samples from the training sample pool of 2,000 until
we obtained the appropriately sized set.

We used the model architecture and training parameters specified
in Sections 3.1 (for both detection and segmentation predictions)
and 3.3. Because our goal is to show the effect of training sample
size, rather than optimize absolute accuracy, we restrict ourselves to
a single model architecture and keep all hyperparameters constant.

To evaluate the percent of predictions suitable for animation, we
used the same training sets as described above, but also included
the additional set of all 2,500 images. For evaluation, we randomly
selected an additional 571 images that were uploaded to the Ani-
mated Drawings Demo. While we reviewed these images to ensure
that their contents were suitable for animation, we did not review,
nor do we make use of, their user-approved annotations. Instead,
model predictions were visually inspected to determine whether
they would result in a successful animation.
This evaluation was meant to give an assessment of the models’

in-the-wild success rates, and not have it be biased towards sim-
pler drawings that our system could already predict perfectly, or
those that took little effort to manually correct. A detection was
classified as failure if it did not detect the human figure, detected
it multiple times, falsely detected non-human figures in the scene,
had a bounding box that cut off a portion of the figure necessary
for animation (such as an arm or foot), or had a bounding box ex-
tending to include other markings that were not a part of the figure.
A segmentation was classified as failure if it included background
elements that were not part of the figure, did not tightly confirm to
the bounds of the figure, contained holes in the interior of the figure,
was more than one distinct polygon, or connected figure limbs at
locations without a joint. A pose estimation was classified as failure
if the nose, shoulders, hips, elbows, knees, wrists, or ankles were
not located on or in close proximity to the correct body part.

4.2.1 Results. Validation set mAP as a function of fine-tuning train-
ing set size is shown in Table 1. Using a Linux server with two
NVIDIA Quadro GP100 graphics cards, models trained with 177,666
samples converged in 20 hours, whereas the smaller training sets
all converged in under 5 hours. For comparison, we also show the
mAP obtained when using pretrained model weights (essentially,
a fine-tuning training set size of zero) and considering the drawn
human figures to be instances of the person object class.

Fine-Tuning Bounding Box Segmentation Pose Estimation
Training Set Size mAP mAP mAP
(no fine-tuning) 0 0.06 0.04 0.09

10 0.27 0.30 0.34
100 0.51 0.51 0.76
250 0.58 0.57 0.80
500 0.69 0.63 0.82
1000 0.77 0.68 0.84
1500 0.80 0.70 0.85
2000 0.81 0.71 0.85

(noisy) 177,666 0.82 0.49 0.90
Table 1. Per stage final mAP obtained on validation set as a function of
fine-tuning training set size.

The percentage of successful, animation-ready model predictions
on the random 571 test images are given in Table 2. We report
the percentage of predictions that were successful in each stage,
as well as the percentage of images for which predictions in all
three stages were successful. Because our system uses the image
processing-based approach described in Section 3.2, we also eval-
uate this technique’s performance using the same segmentation
success-failure criteria; 42.4% of segmentation masks obtained this
way were successful. In parentheses in the rightmost column of
Table 2, we report the percentage of images for which predictions in
all three stages were successful when the image processing-based
segmentation algorithm is used instead of a fine-tuned model pre-
diction.

4.2.2 Discussion. As Table 1 shows, directly using model weights
trained on real-world images results in very low mAP scores for
bounding box, segmentation masks, and pose estimation predictions
upon children’s drawings. However, fine-tuning results in a large
gain in accuracy across all steps. Continuing to increase the number
of fine-tuning training samples results in continuing, yet slowing,
improvements in mAP; increasing training set size from 1,500 to
2,000 increases performance by a single percentage point for bound-
ing box and segmentation predictions and does not measurably
improve pose estimation.

Interestingly, using the dataset of 177,666 images with noisy anno-
tations results in a minor improvement in bounding box predictions,
a significant improvement in pose estimation predictions, and a
significant deterioration in segmentation predictions. Fixing seg-
mentation masks within the Animated Drawings Demo is more
tedious than fixing bounding box or joint locations. Therefore, it
is likely that more users skipped the segmentation clean-up step,
resulting in more noisy segmentation masks within the Amateur
Drawings dataset, which in turn lowered the performance of the
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Fine-Tuning Bounding Box Segmentation Segmentation Pose Estimation All Stages All Stages
Training Set Size Success Rate Success Rate Success Rate Success Rate Success Rate Success Rate

(Mask R-CNN) (Image Process) (Mask R-CNN Seg.) (Image Process Seg.)
(no fine-tuning) 0 0.4 0.0 | 0.6 0.0 0.0

10 27.1 0.4 | 2.1 0.0 0.9
100 60.9 6.4 | 54.1 4.9 19.4
250 62.2 8.2 | 69.5 6.4 24.0
500 74.4 14.5 42.4 77.4 12.8 30.5
1000 83.0 19.4 | 83.0 17.7 34.7
1500 89.8 20.3 | 87.4 19.1 37.7
2000 91.8 22.7 | 89.5 21.2 38.9
2500 92.5 24.7 | 90.2 23.3 39.4

(noisy) 177,666 92.5 16.1 | 94.6 16.1 40.6
Table 2. Percentage of model predictions that can successfully be used for animation, as a function of model fine-tuning training set size. We report the
successes per stage for the bounding box, segmentation mask (both Mask R-CNN and image processing-based), and pose estimation predictions. In the two
right-most columns, we report the percentage of images for which the bounding box, segmentation mask, and pose estimation model predictions were all
successful.

Fig. 10. Left: Achieved mean average precision of bounding box, segmentation, and pose estimation predictions as a function of fine-tuning dataset size.
Middle: Percentage of bounding box, segmentation mask, and pose estimation predictions that could be used for animation without manual correction,
respectively. Right: Percentage of images for which bounding box, segmentation mask, and pose estimation predictions could all be used for animation without
manual correction. We show the percentages when using both the Mask R-CNN segmentation predictions and the image processing-based segmentation
technique described in Section 3.2.

fine-tuned models. This insight suggests that, depending upon the
complexity of the prediction clean-up tasks offloaded onto the user
during data collection, it may or may not be worthwhile to perform
additional processing and refinement upon the collected annota-
tions.

Table 2 shows the percentage of model predictions that could suc-
cessfully be used for animation. Similarly, without fine-tuning only
a very small percentage of bounding box and pose estimation pre-
dictions are usable; none of the segmentation predictions are usable.
When fine-tuning with 2,500 ‘clean’ samples, the percentages of
usable bounding boxes, segmentation masks, and pose estimations
increase to 92.5%, 24.7%, and 90.2%, respectively. When using the
noisy training set of 177,666 images, the pose estimation success
rate increased to 94.6%, while the bounding box success rate was
unchanged and the segmentation success rate dropped substantially.

In the supplemental materials, we present many examples of suc-
cessful and unsuccessful detection and pose predictions from the
models trained with 2,500 samples.

Segmentation mask predictions, by contrast, require many more
training samples to obtain comparable rates of success; by a large
margin, this step is the most difficult and failure-prone. With even
2,500 training samples, fewer than one quarter of predictions from
Mask R-CNN are suitable for animationwithout some sort of manual
clean-up. In part, this can be attributed to the presence of many
‘hollow’ or ‘outline’ figures within the dataset, for which the texture
of the figure and the texture of background are identical. A hollow
character’s predicted segmentationmask often contains holes within
the sparse, non-detailed parts of the figure, and includes connections
between non-attached body parts that are drawn close together.
Model predictions also often fail on stick legs and stick arms, which
are often missed, especially when other parts of the figure are 2D
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regions with area. We present examples of all of these types of
failures in the supplemental material.
In comparison, our image processing-based segmentation ap-

proach results in a 42.4% success rate. While this approach does a
better job of following the outline of the figure, it frequently fails
on images with hard shadows introduced during the photograph-
ing of the drawing, drawings on lined paper, and figures that are
not watertight or have limbs that do not connect. With the image
processing-based segmentation approach, 39.4% of figures could
be fully automatically animated without any manual intervention.
Clearly, further work on robustly segmenting hand drawn figures,
or automatically refining the segmentation masks, would be useful
in improving the overall success rate.

4.3 Twisted Perspective Animation Retargeting
We evaluate our use of twisted perspective retargeting through a
perceptual user study on Amazon Mechanical Turk with 66 sub-
jects. Subjects were shown a set of 20 videos: four figures that were
successfully detected, segmented, and rigged by our system, each
performing five different motions (see top of Table 3). Within each
video were two side-by-side animations: one animation had been
created with twisted perspective, by projecting the lower body and
upper body onto different planes, while the other animation used
only a single plane of projection. The side upon which the twisted
perspective condition appeared was randomized. Both animations
played simultaneously, and viewers were asked to select, in a forced-
choice manner, the animation whose character motion was ‘more
appealing.’ To ensure subjects paid attention, four ‘filter’ questions
were embedded in the stimuli, in which workers were explicitly
directed to select either the left or the right animation.
We present the results in Table 3. For each character and each

motion type, we report the percentage of viewers who preferred the
animation with twisted perspective motion retargeting over a single
perspective. In parentheses we report significance as the result of
a binomial test comparing the distribution of responses to random
chance.
In 16 of the 20 videos, a significant preference for twisted per-

spective was observed. In the remaining four videos, there was no
significant preference for either type. Taken together, this result
shows that, for these character and motion combinations, twisted
perspective retargeting often results in more preferable animation.
Interestingly, three of the four videos in which users had no sig-
nificant preference depicted figures performing the ‘Wave Hello’
motion. As can been in the supplemental video, there is significantly
less bending of the legs in the ‘Wave Hello’ motion relative to the
other motions tested; as a result, twisted perspective retargeting and
single perspective retargeting result in more similar character poses.
This observation suggests that twisted perspective retargeting may
not be necessary in all situations; rather it is more useful when both
the arms and the legs have substantial motion in different planes.

5 AMATEUR DRAWING DATASET
As part of the Animated Drawing Demo, users were asked to con-
sent to a data usage agreement, allowing their uploaded image and
annotations to be used for research purposes, including release as

Table 3. The results of our perceptual study on the use of twisted perspective
when retargeting motion. For each character and motion type, we show the
percentage of viewers who preferred twisted perspective retargeting and
the p-value indicating difference from random chance.

part of a public dataset. Consenting was optional, and refusal to do
so did not restrict the experience in any way. Images collected prior
to April 20th, 2022 were considered for inclusion into the Amateur
Drawings Dataset. By that date, site users had uploaded over 3.5
million images and consented to the data usage agreement for 1.7
million images.

5.1 Refinement
Many of the images uploaded to the site were photographs of actual
people, pets, anime characters, brand logos, and other out-of-domain
content. Therefore, submitted images needed to be filtered to ensure
they contained amateur drawings. This refinement was performed
in two steps. First, a self-supervised clustering approach was used
to identify and filter out-of-domain images. Second, the remaining
images were manually reviewed to ensure their suitability.

5.1.1 Cluster-based Filtering. A self-supervised approach [Chen
et al. 2020] was used to train a ResNet-50 feature extractor specific
to the consent images. The feature extractor took the image contents
of the figure bounding box and projected it onto a 2048-dimensional
embedding space. Within this space, k-means was used to cluster
the embeddings into 100 separate clusters. From visual inspection,
68 clusters contained out-of-domain subjects, while the remaining
32 clusters primarily contained images of amateur, hand-drawn
characters, suitable for inclusion (see Figure 11).
Within those 32 clusters were many near-duplicates, images of

the same drawing taken from slightly different angles or under
slightly different lighting conditions. Such near-duplicates are close
together in the learned embedding space (see Figure 12).We detected
near-duplicates by computing the Euclidean distance between each
pair of images in the embedding space, and removing one of the
images if this distance was less than 0.5, a value empirically selected
by the authors. After filtering out-of-domain clusters and removing
duplicates, 471,405 images remained.

5.1.2 Manual Review. An agency was contracted to review 283,146
of the remaining images. Reviewers were instructed to ensure im-
ages were free-hand, physical drawings containing at least one full-
bodied human figure, did not contain characters that are protected
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Fig. 11. Example images from the clusters obtained via cluster-based filter-
ing. Certain clusters contained similarly depicted characters, such as stick
figures, hollow characters, and solid marker characters (retained clusters
1, 2, and 3, respectively). Other clusters contained out-of-domain images,
such as anime faces or anime full-body characters (discarded clusters 4, 5
respectively).

Fig. 12. Two input images and their six nearest neighbors within the learned
embedding space. As these examples show, duplicates or near-duplicates
are quite close within the space, which is useful for filtering them. Similar
but distinct figures are also close together within the embedding space; the
top figure is close to others with long hair and dresses, while the bottom
figure is close to other heart-shaped tadpole figures.

intellectual property (such as Mickey MouseTM), and contained
no personally identifiable information or vulgar content. Because
the reviewers were primarily English speakers, images that con-
tained non-English words were excluded on the basis they might
contain inappropriate content. After manual review, 178,166 images
remained.
Of the images that were excluded, 30% were not freehand draw-

ings, 24% did not contain full-bodied human figures, 20% contained
personally identifiable information, 15% contained protected intel-
lectual property, 4% were uploaded and annotated with an incorrect

orientation, 4% had out of domain content, and 3% contained vulgar
content.

5.2 Release
We are pleased to provide the retained images, along with their
annotations, for use by the research community.While the Animated
Drawings Demo was specifically designed for use with children’s
drawings, the artists’ ages were not recorded. We therefore refer to
the dataset as the Amateur Drawings Dataset.
While the dataset includes the user-accepted character bound-

ing boxes, segmentation masks, and joint positions, we have not
attempted to guarantee the accuracy of these annotations. From
a random sampling of 5,000 dataset images and annotations, we
observed that 35% of bounding box detections were modified, 20% of
masks were modified, and 29% of joint skeletons were modified. By
visual spot check, we confirmed that, in the vast majority of cases,
these modifications improved the quality of the annotations.

6 CONCLUSION
In this paper, we present a method to automatically animate the
types of drawings created by children and amateur drawers. We also
present a first-of-its-kind dataset of 178,166 in-the-wild drawings
by children and amateurs, annotated with user-accepted bounding
boxes, segmentation masks, and joint locations.

We demonstrate the value of our method in several ways. First, we
explore the accuracy and success from each stage of our system as
a function of training dataset size. Second, we perform a perceptual
study to show the appeal of twisted-perspective retargeting when
animating these characters. Third, we built and publicly released a
usable version of the system which, within its first nine months, has
been used to generate over 24 million animations from 6.7 million
images uploaded by over 3.2 million users.
Prior to deciding to create a public-facing data collection tool,

we unsuccessfully attempted to generate useful synthetic training
data using generative adversarial networks [Isola et al. 2017; Zhu
et al. 2017a,b]. We believe our initial collection of less than 1,000
real children’s drawings did not contain enough variation to cover
the long-tail distribution of the domain. In addition, there were
many sources of unanticipated nuisance variation that were not
in our initial collection, yet present within in-the-wild drawings
(e.g., messy backgrounds, lined paper, blurry shots, bad lighting,
erased lines). It is possible that synthetic data approaches utilizing
the entirety of the Amateur Drawing Dataset, which includes these
variations, may have more success.

Ultimately, we pivoted to a bootstrapping approach to collect the
data necessary to fine-tune our models. We manually annotated the
images we had and trained initial models, then iteratively released
closed beta versions of the demo, collected additional training data,
and retrained the models. By thoughtfully crafting the user experi-
ence, keeping prediction and render times short, and providing the
user something of value (a downloadable animation of the drawing)
in exchange for their efforts, we were able to collect enough real
data from our target domain and no longer needed synthetic data.
We would encourage other researchers focused on user-generated
content domains, for which there are not yet any suitable datasets,
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to likewise consider how they might invite their target audience
into the dataset creation process, lowering the need to rely upon
synthetic data.

We believe this work is but a first step towards a robust and com-
prehensive drawing-to-animation storytelling system, and there are
many ways our work could be improved. One step that can clearly
be improved is segmentation. Extracting a usable and accurate mask
can be quite difficult and, because it is used to create the charac-
ter mesh, even small errors can result in bad animations. There are
many reasons why segmentation is hard to do accurately. The photo-
graph of the drawing can be out of focus or distorted due to lighting
glare or hard shadows. Color and texture cues are not guaranteed to
be helpful, as in the case of hollow characters. A line can represent
the edge of a body part region, or a line can represent the entire
body part, such as with stick figures. Often, characters are drawn on
lined paper, the paper contains eraser marks, or background objects
that touch the character are drawn with the same pencil or marker.
If the character is drawn with limbs touching in places other than
joints (as hands touch hips in the arms akimbo pose, for example),
there is no predicted segmentation mask that will result in a quality
animation unless it is possible to add a segmentation differentiating
between the two body parts.
Given the importance and difficulty of the segmentation task,

methods that improve the robustness of the masking step would
greatly increase the success of our pipeline. A useful next step could
be a principled method for choosing between the image processing
and Mask R-CNN segmentation masks on a per image basis, as each
method can fail for different reasons. Ideally, such a method could
leverage the bounding box and joint location predictions from the
other stages of the pipeline.
In addition to improving the robustness of the current pipeline,

future work should focus on extracting additional information about
the drawing prior to animation. A natural next step would be to infer
the sub-type of the human figure (e.g., robot, monster, snowman,
princess). Such analysis could be used to modify the pose estimation
skeleton (e.g., removing the legs when a snowman has been iden-
tified) or determine the types of animation to apply (e.g., making
monsters stomp, princesses dance, or superheroes fly). It could also
be used to infer what different character regions represent. For ex-
ample, triangles on a cat’s head are ears, while triangles on a devil’s
head are horns; these insights could affect how the characters are
ultimately animated.
Many users of the Animated Drawings Demo requested, via a

feedback form, additional features. Many wanted support for addi-
tional types of motions, or the ability to specify custom motions.
Several requested facial features, such as smiling, blinking, and gaze
cues. Others requested extending the work to handle quadrupeds,
multiple characters in a drawing, or to take the context and back-
ground of the scene into account when creating the animation.

While our animation method is an appealing way to breathe life
into children’s drawings, it has two broad limitations. First, only
certain motions can be appealingly retargeted in this manner. Not all
limb motions can be well represented on a 2D plane. Spoke-like and
arc-like motions, which primarily vary in one or two dimensions,
are well handled while carving motions, which vary in all three

spatial dimensions, are less recognizable when flattened. In addition,
we always move the character from left-to-right across the page.
If the character is facing right, this should be reversed. Robustly
determining which direction the character is facing is difficult, as
the cues may be subtle; for example, the orientation of the nose may
be the only cue as to whether the character is facing left or right
(see Figure 6.h).

Second, our animation method is also limited by the style of the
drawing. We designed the retargeting technique to take advantage
of the style of amateur drawings, which lack foreshortening and
mix perspective. If the figure is drawn with foreshortening and
proper perspective, the character-motion stylistic mismatch may be
undesirable. In such cases, constructing a proper 3D model of the
figure and using a different retargeting technique, such as [Weng
et al. 2019], would be preferable.
It is our hope that the released dataset will encourage other re-

searchers to focus on methods to analyze and augment amateur
drawings. This domain is a natural form of creativity and expres-
sion available to much of the world’s population. And, given the
reception of the Animated Drawings Demo, there appears to be
widespread appetite for animation and storytelling tools that build
upon user-created drawings.
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