
Feature Based Object Tracking:

A Probabilistic Approach

by

Kaleb Smith

Bachelor of Science
Electrical and Computer Engineering

College of Engineering
2016

A thesis
submitted to Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Engineering

Melbourne, Florida
December, 2016

c© Copyright 2016 Kaleb Smith

All Rights Reserved

The author grants permission to make single copies.

We the undersigned committee
hereby approve the attached thesis

Feature Based Object Tracking:
A Probabilistic Approach by Kaleb Smith

Dr. Anthony O. Smith
Assistant Professor
Electrical and Computer Engineering
Committee Chair

Dr. Adrian M. Peter / Outside Committee
Member
Associate Professor
Engineering Systems
Outside Committee Member

Dr. Gerogios Anagnostopoulos
Associate Professor
Electrical and Computer Engineering
Committee Member

Dr. Samuel P. Kozaitis
Professor and Department Head
Electrical & Computer Engineering

ABSTRACT

Title:

Feature Based Object Tracking:

A Probabilistic Approach

Author:

Kaleb Smith

Major Advisor:

Dr. Anthony O. Smith

Video analysis is a rich research topic, due to the wide spectrum of applications

such as surveillance, activity recognition, security, and event detection. One of the

important challenges in video analysis is object tracking, which provides the ability

to determine the exact location of an object of interest within each frame. Many

challenges affect the efficiency of a tracking algorithm such as scene illumination

change, occlusion, scaling change and determining a search window from which

to track object(s). We present an integrated probabilistic model for object track-

ing, that combines implicit dynamic shape representations and probabilistic object

modeling. We demonstrate the proposed tracking algorithm on a benchmark video

tracking data set, and achieve state-of-the art results in both overlap-accuracy and

speed.

iii

Table of Contents

Abstract iii

List of Figures vi

List of Tables viii

Acknowledgments ix

Dedication xi

1 Introduction 1

2 Literature Review 4

3 Overview of Tracking Framework 10

3.1 Initial Processing . 10

3.2 Probabilistic Framework . 15

3.3 Video Sequence Processing . 17

4 A Probability Feature Tracker 21

4.1 Covariance Feature Tracking . 21

4.2 Performance Improvement Implementation 24

iv

5 Experiments and Results 26

5.1 Video Data Set . 26

5.2 Testing Procedure . 29

5.3 Experiments . 30

5.3.1 Initial Experiments . 30

5.3.2 VOT 2015 Competition Experiment 34

5.4 Results . 37

5.4.1 Individual Video Comparison 37

5.4.2 Discussion . 45

6 Conclusion 49

References 51

v

List of Figures

3.1 Geometric figure of how α is added to the initial target to get the

ROIinit [56]. 11

3.2 Initial target, and target after the background is removed. 12

3.3 Illustration of “GrabCut” algorithm 13

3.4 Initial process of ROI . 17

3.5 Left: 10× 10 ROI, Right: quantized new 10× 10 ROI 18

3.6 Left: P (Mband) , Right: Back projection from P (Mband) to ROI . . . 19

3.7 Real time video process . 20

4.1 Covariance Feature depiction for feature image creation. Starts in

top left and works clockwise per pixel 23

4.2 Mapping a RGB image to a D dimensional feature image 23

5.1 Overlap Accuracy . 29

5.2 Experimental results of back projections on covariance features only 31

5.3 Experimental results on RGB, covariance features, RGB-Cov pair-

wise combinations, and total back projections. 32

5.4 Tracking results for VOT’s Fish2. Ground truth in black box, track-

ing ROI in red box . 37

5.5 Accuracy vs Robustness Plot of Fish2 38

vi

5.6 Visual tracking results on videos from VOT data set 39

5.7 Accuracy versus robustness plots for videos shown above 40

vii

List of Tables

3.1 The eight neighbor directions for pixel calculation. 15

5.1 VOT 2015 experiment results: 4 bins, 8 bins, 16 bins, 32 bins . . . 33

5.2 VOT 2015 Individual video results, seq (sequence), ac(accuracy),

f(failures), and sp(speed). 41

5.3 First half of VOT 2015 Results with proposed tracker (red). M =

Matlab, C=C/C++, G=GPU . 43

5.4 Second half of VOT 2015 Results with proposed tracker (red). M =

Matlab, C=C/C++, G=GPU . 44

viii

Acknowledgements

This work was partially supported by the National Science Foundation under Grant

1560345 and Grant 1263011. This work was also supported by graduate student

research assistantship under Harris Corporation. Any opinions, findings, and con-

clusions or recommendations expressed in this work are those of the authors and do

not necessarily reflect the views of the National Science Foundation or the Harris

Corporation.

I would like to first and foremost thank my advisor, Dr. Anthony O’Neil Smith,

who through this process has been a colossal help to my success thus far in my

higher education experience. Through example and mentoring you have shown me

what it takes to be an impact in our community. To Dr. Adrian Peter, thank you

for always pushing me to know more than I already know and never settling for

average. To Dr. Georgios Anagnostopoulos, thank you for your constant humor

and expectations beyond our lab; it has driven me to look outside the box when

solutions are not apparent. To the members of the ICE lab, thank you for putting

up with my extensive social behavior and for giving me your time when I feel like

acting out on it. Specifically, to Mark Moyou; you are a great example of what

it takes to get through a Ph.D, through your actions you have helped me greatly

through these past years, and for that I thank you.

ix

I would like to also thank Cheryl Mitravich and Tania Watkins of the ECE

department. You two have made my life as a graduate student as easy and painless

as possible. I owe you both dearly for all your time and effort, thank you.

To all my friends, thank you all for always asking how I’m doing, for smiling

and saying hello when you see me, and for being part of my life. To my best friend

Jimmy Brennan, thank you for believing, for being interested in my work, and for

your engineering attitude to help solve a problem whenever there is one. To my

dear friend Kaylen Bryan, thank you for pushing me in the gym, in the class, and

in life. To my brother, Elliott Bennett, thank you for your support and your drive

even if you are a thousand miles way.

To my mother and father, Diana and Bill, thank you for believing in me even

when you have no clue what I’m doing. Your love and support has always shown

its way through my work ethic and the way I carry myself through life. To Merri

and Duke, you both have excelled in what it means to be ”man’s best friend. You

two help ease any stress or frustration I have felt throughout this process, I am

incredibly in your debt and I hope your lives show how much I truly love you two.

Last, but not least my beautiful fiance Julie, thank you for putting up with me,

for your constant love, your constant care, and your constant support. I would not

be where I am today without you. With this we are one step closer to the end goal

and I know you’ll be right there smiling beside me throughout the way. I love you

dearly, and can not thank you enough for all you do.

x

Dedication

I would like to dedicate this master thesis to my late grandfather, William Earl

Wilson. I’ve been told I look like you, I talk like you, and apparently I think like

you. I wish I could share this with you and see you ponder the high points and

flaws in my work. Thank you.

xi

Chapter 1

Introduction

Tracking is a fundamental task in video sequence analysis. The resulting tracks

can be used to analyze behaviors or predict the trajectories of objects in the scene,

similar to work in [17]. The goal of visual tracking is to locate, track, and analyze

one or more objects of interest in a video. Many important applications today are

based on visual tracking such as human-computer interaction [42, 3], surveillance

[26, 28], video editing [34, 13], vehicle navigation [5, 59], etc. In these applications,

tracking algorithms are used to analyze video frames and extract object(s) of in-

terest throughout the continuous sequence. Many challenges affect the efficiency

of a tracking algorithm such as the change in background light, the presence of

occlusions, scaling, and determining the search window for the tracked object(s).

We present a method to track the shape of a dynamic object in video. We

construct a joint 2D density function that encapsulates both dynamic shape and

appearance models, in which a contour of the object is used to identify precise lo-

cation. This is accomplished by constructing a cooccurrence probabilistic model of

the object to be tracked. Using cooccurrence was introduced by [29] as a method of

1

texture analysis to extract meaningful features for image classification. The image

cooccurrence work was extended by [2] for color image classification, where the

authors computed pairwise within and between color band joint density functions.

In previous work [47] developed a generalization for visual object tracking using a

multi-dimensional probabilistic model in a CAMSHIFT framework [9] which was

derived from the earlier Mean Shift algorithm[14]. The approach demonstrated a

robust algorithm with the capability to accurately track in complex environments,

but the method has its drawbacks with respect to performance and only using red

(R), green (G), blue (B) features. Computing per frame pair-wise joint probability

models for the color band combinations, creating a combined probability image,

along with the CAMSHIFT framework, is computationally expensive for a prac-

tical tracker. Another limiting factor in previous work is the background noise

encountered when attempting to model the object given a specific search region.

During this process, image noise contributes to the total probability image, mak-

ing it difficult at times to find the object’s accurate position and pose. Finally, in

utilizing the CAMSHIFT framework, the authors were limited to only providing a

rectangular bounding box for the object position. However, for many applications,

such as activity recognition and object identification, it is important to have the

ability to provide high fidelity object contours.

Our contribution overcomes the computational task by developing a tracker

that takes advantage of general purpose graphics processing unit (GPGPU) accel-

erator hardware to provide real-time tracking capability. Also, by deploying an

object foreground extraction technique, we mitigate image noise interference. In

cases of complex object motion, relative viewpoint change, and object occlusions,

our method demonstrates comparable tracking accuracy results while maintaining

2

real-time processing capability. We demonstrate results on the visual object track-

ing (VOT) standard data set. The remainder of this paper is organized as follows:

Chapter 2 will provide a summary of state-of-the-art single object tracking algo-

rithms, Chapter 3 will provide the probabilistic tracking framework, Chapter 4 will

detail our research contribution, Chapter 5 will provide a snapshot of significant

results, and Chapter 6 will outline some discussion points and future work.

3

Chapter 2

Literature Review

Video object tracking is a major field in computer and machine vision. This area

of research consists of single object tracking and multiple object tracking as well as

object detection and recognition. Single object tracking identifies only one object

within a video frame, while multiple object tracking identifies several objects in

a frame. This is best explained by example of a football game on television; you

could track the football throughout the entire game (single object tracking) or track

all the wide receivers on the field at once (multiple object tracking). Typically,

multiple object tracking requires the object to be detected when it enters a video

frame. This requires an algorithm to recognize (or classify) a new object once it

enters the frame, then determine if this is the object of interest [6]. This is not the

case for single object tracking, which is restricted to one.The focus of this thesis is

accurate and efficient single object tracking throughout a video sequence.

The popularity of video tracking in computer vision, has led to countless at-

tempts to overcome obstacles that affect tracking accuracy. These attempts have

scattered the proposed methodologies into a few common categories. One such cat-

4

egory is a type of neural network and classification tracker [49, 23]. Their approach

is to learn possible regions of interest (ROI), and rank them as contenders for the

possible object of interest (OOI). The subset of objects, is then classified based

on extracted features in order determine which ROI for the selected OOI is most

prevalent [31, 1]. This category of trackers, consistently produces high overlap ac-

curacy which is a statistical measure of how well the predicted ROI coincides with

the ground truth ROI. They also achieve low miss rates, that indicates a count of

how many times the predicted track completely misses the OOI [39].

A second category of tracking algorithms includes per frame motion and ge-

ometry feature extraction [32, 4, 51]. This class of trackers has low computational

cost, but does not perform well in terms of accuracy and miss rate. The fundamen-

tal idea of motion based trackers, is to estimate the directional motion of an OOI

from frame to frame. This method is extremely successful when the capture device

is a static camera, however when the camera platform is dynamic it introduces an

challenging component.The moving object can seem to have zero motion if moving

with the same relative velocity as the camera [66].

Geometric trackers extract contours that define the shape of the OOI. This

category of trackers, makes an attempt to separate foreground from background

in order to isolate the OOI from noise [16]. Foreground is not always partitioned

correctly and the result is that concluded contours are not always indicative of the

OOI. Typically, motion and geometric based trackers are not standalone due to

their poor tracking. In most cases they are utilized to enhance other algorithms.

Due to the amount of unique information that can be extracted from a video

frame, feature tracking has become the most popular approach for single object

tracking. A similar set of features are extracted are calculated across different

5

regions. A similarity metric like Euclidean distance (linear feature space), is used

to compare regions with the OOI and identify the closest match. Some common

features that have shown success under various conditions are: textures, corners,

edges, energy, SIFT (scale invariant feature transform), SURF (speed up robust

features), or ORB (oriented fast and rotated binary robust independent elementary

features) [67, 58, 43, 30, 11, 64, 15]. Some features have the additional property

of being invariant to particular fluctuations in the scene. This makes them more

robust to obstacles during tracking. For instance, SIFT, SURF, and ORB are scale

invariant features, meaning they are not impacted by a change in camera zoom.

These robust features are typically used in combination to create high dimensional

feature vectors that describe the OOI. The drawback that these approaches present

is the high computational cost and memory utilization to store all the features per

pixel. To combat this, we propose to compute a covariance matrix from features

associated with the OOI [55]. The covariance matrix framework allows different

features to be fused into one matrix descriptor that is dependent on dimensionality

of the feature vector. This covariance matrix can represent the features used to

describe an OOI/ROI, and has demonstrated to be as effective in tracking accuracy

and miss rate as pixel wise feature vectors [60]. Where the covariance matrix

framework excels, is in its ability to be the blender, so to speak, which combines

multiple robust features.

In this thesis we focus on a class of single object probabilistic trackers that

is different from those previously mentioned. To be more specific they rely on

statistical probability values which are obtained about the object/region of interest

and then used to track throughout the video sequence. Just as the other classes,

there are many probabilistic tracking algorithms in the field today. Kalman Filter

6

tracking [25, 10, 46] assumes the video model is Gauss-Linear and is able to predict

where the object will be in the next frame using a Gaussian distribution. However,

most video tracking problems are not Gauss-Linear and have non-Gaussian noise,

non-linear observations, and non-linear dynamic movement causing Kalman Filter

tracking to be inapplicable in these situations. Several attempts were made to

make Kalman Filtering more practical for video tracking. The authors of [36] used

local linearization of dynamics to approximate the non-linear dynamics that is

present due to motion in video typically. In their Extended Kalman Filter (EKF),

the authors of [63] drew a number of samples to simulate motion dynamics and

then compute a mean and covariance of new points in their Unscented Kalman

Filter (UKF) [8]. Even these attempts cannot solve the underlying issue that the

probability posteriors for video tracking are never Gaussian or unimodal.

Particle filter tracking is another probabilistic tracking method where the algo-

rithm infers information by approximating distributions of different sets of points

(particles), and does this without making irrational assumptions of the video model

[33]. There are some disadvantages for this method as well. For instance, the ideal

number of particles for a good distribution is dependent on how much computation

is acceptable. Another option is to change the video motion model and take ad-

vantage of more domain knowledge in order to produce better distributions. Other

extensions to particle filtering include the Rao-Blackwellized Particle Filter, which

attempts to reduce the posterior entropy by adjusting state variables [38] and the

Auxiliary Particle Filter which tries to look ahead at observations to continuously

build a better distribution. There has also been some research done for tracking

body motion on camera using an annealed particle filter [24].

In the computer vision and machine learning community, cooccurrence his-

7

togram tracking has gained momentum. This method consists of computing neigh-

borhood relations between pairs of pixels within a predefined radial distance. These

pairs of occurrences are summed and stored in a two dimensional histogram [30]

that is then used to form a probability density function [18]. The probabilities from

the cooccurrence matrix are then back projected in a way that enables the ability

to track an object of interest. The question here is that once you have obtained the

back projection of probabilities to represent your object, how do you maintain a

track on the object, and what color space is ideal to develop the most accurate back

projection? To answer the first of these, there are several methods of tracking on

a probability back projection. The most well known is the Mean Shift algorithm

by [27]. Mean Shift is a mode seeking algorithm that is searching for the peak

in the probability density function. This mode seeking algorithm helps to track

non-rigid objects that can occasionally be modeled with cooccurrence histograms.

Mean Shift process begins at an initial location, computes the mean within a radial

distance, and then moves to the new mean before starting the computation again.

The process repeats until the mean does not move within a convergence criteria,

which indicates you have reached a maxima. That location is then used as centroid

of your updated ROI [14, 20]. The initially formulation of this algorithm was slow

due to its mode seeking nature, which checks different mean points as centroids

for convergence. However, because it has been adapted to real time processing

[21], it is still being used to support tracking needs [67, 19, 65, 35]. However, this

algorithm does not, adapt to different bounding box search window sizes, which

could affect tracking when there is video zoom in the scene.

The gaps in the Mean Shift algorithm led to one of the most popular probabilis-

tic tracking algorithms to date: Continuously Adaptive Mean Shift (CAMSHIFT)

8

by the authors of [9]. This algorithm takes the same approach as Mean Shift, how-

ever, when the centroid is found, the search window or bounding box is calculated

with respect to the zeroth moment [7] of the image. This allows the search window

to adapt and compensate for scale changing objects of interest due to zoom or

camera motion.

Originally, CAMSHIFT was made to track human faces, leading to the dis-

cussion of our second question mentioned above - what is the best color space

on which to calculate cooccurrence histograms? For human faces and flesh, the

HSV (hue-saturation-and value) color space performs best [67, 22]; however, for

other objects the HSV color space performs poorly in tracking applications. The

authors of [12] found that using the red-green-blue(RGB) color space performed

well on objects with drastic color difference, however, the cooccurrence was per-

calculated using several different aspects of the object of interest and combining

them in order to compute a more robust cooccurrence matrix. This methodology

is impractical to video tracking since real time applications are desired, but even

in forensic video tracking there are instances where no information is available for

the object of interest. It was in [48] that the authors produced a new method

of color histogram tracking, where they formed tuple pairs of independent RGB

color space bands and fused into an estimated total probability density function.

This algorithm is the foundation of our proposed approach. As apposed to RGB,

we discuss the use of different features to build a feature image, for which we will

create a back projection that is then feed into CAMSHIFT.

9

Chapter 3

Overview of Tracking Framework

In our research, our goal is to develop a real time single object tracker. As described

in the previous sections, most approaches utilize either geometry, classification, or

a single set of derived features. We propose a framework that will allow us to define

a dynamic pool of per frame features that will track our object of interest. We

also implement our solution in real time by taking advantage of the latest GPGPU

high performance computing technology.

3.1 Initial Processing

We begin by defining some notation in order to describe the framework for the

system. Let Tk be the target information estimated by the tracker at frame Ik and

defined as

Tk =
(

xu
k,, y

u
k , x

l
k,, y

l
k, ROIk

)

10

Figure 3.2: Initial target, and target after the background is removed.

In the second stage of pre-processing we perform foreground estimation and

isolate Tinit by removing background pixels that do not contribute to the target

region. Figure (3.2) illustrates our use of the GrabCut algorithm by [57]. The al-

gorithm employed to perform foreground extraction with minimal user interaction

and a single video frame.

The GrabCut algorithm works by initializing a bounding rectangle around the

foreground region. A Gaussian Mixture Model (GMM) is used to model the fore-

ground and the background independently. The algorithm interactively segments

12

Figure 3.3: Illustration of “GrabCut” algorithm

the region to achieve the desired results. In Figure (3.3) we show what occurs

during each iteration, where the GMM learns and creates a new pixel distribution.

An unlabeled pixel is labeled either foreground or background depending on its re-

lationship with neighboring labeled pixels in terms of color statistics, similar to a

traditional clustering algorithm. A graph G, where the vertices V in the graph are

pixels, and edges E , is built from the pixel distribution. Additionally, a Source

node and a Sink node are added to the graph. Every foreground pixel is con-

nected to the Source node, and every background pixel is connected to the Sink

node. The edge weights of pixels connected to the source/sink node are defined

by the probability of a pixel being foreground/background respectively. The edge

weights that connect two pixels are defined by the edge information or pixel color

similarity. If there is a large difference in pixel color, the edge between them is

assigned a low weight.

Once all edges are weighted, a min-cut algorithm similar to the work described

13

in [37] is used to segment the graph. Traditionally, the min-cut problem can be

stated as follows: Given a graph G = (V,E) and weights we for each edge e ∈ E,

compute a minimum cut in G defined as the cut of least weight in the graph. In

our case this means that the algorithm cuts the graph into two, separating source

node and sink node with minimum cost. The cost is the sum of all weights of the

edges that are cut. Ideally, after the cut, all pixels connected to the Source node

become foreground and all pixels connected to the Sink node are background.

In our final pre-processing stage we generate a binary map of Tinit by a process of

intensity level slicing. In a number of applications binary images can be used as the

input to algorithms that perform useful tasks. A binary image B will be obtained

from the bounding box region of the color video frame Tinit . The operation selects

a subset of the frame as pixels of interest (intensity=1) in an image analysis task,

while leaving the remaining as background pixels (intensity=0) to be ignored. The

initial region from the color video frame is first converted to gray scale (intensity

level 0-255). The selection operation can be as simple as the thresholding operator

that chooses pixels in a certain subspace of gray scale levels.

The pixels of the binary image B are 0′s and 1′s; the 1′s will be used to denote

foreground pixels and the 0′s background pixels. The term B [x, y] denotes the

value of the pixel located at row x, column y of the image.

This binary map B [x, y] will be used as a mask and enable the algorithm to

calculate the cooccurrence matrix with only foreground pixels from the object of

interest. This will greatly eliminate background noise that would contribute to the

probability required for our tracking algorithm.

14

Table 3.1: The eight neighbor directions for pixel calculation.

(x-1,y+1) (x,y+1) (x+1,y+1)
(x-1,y) (x,y) (x+1,y)
(x-1,y-1) (x,y-1) (x+1,y-1)

3.2 Probabilistic Framework

Our study of using the cooccurrence framework for tracking is not unique. In fact,

cooccurrence texture analysis is a branch of image processing that has been studied

for more than 40 years. For a review of fundamental work, see [30] and [61]. The

original work was later generalized for color images by [2], and then applied to

video tracking in [48]. Our goal in this research is to explore a generalization of

the framework in order to utilize a dynamic set of features.

We use the classic gray scale image cooccurrence matrix formation to describe

the formulation. Let Ik be a gray scale video frame of L gray levels. Let s = (x, y)

be the position of a pixel in Ik and t = (∆x,∆y) be a translation vector. The

cooccurrence matrix Mt is a L × L matrix whose (i, j)th element is the number

of pixel pairs separated by t that are equal to the gray levels Ik (s) = i, and

Ik (s+ t) = j. The choice of the translation vector t is the distance of one pixel

in eight neighbor directions for each pixel.

The eight matrices are summed to obtain a rotation-invariant symmetric matrix

M where Mt (i, j) = M−t (j, i). More formally written every Mt element is defined

by

Mt (i, j) = card
{

(s, s+ t) ∈ R2| I [s] = i, I [s+ t] = j
}

. (3.1)

From the basic gray scale single band example, we wish to describe how to

extend the method of cooccurrence to a multi-band image, i.e. images encoded

15

with n bands. Let bi be defined as a single band of the kth frame, where there are

n possible coded bands in a video sequence and i = 1, 2, u, v, . . . , n. B = (bu → bv)

and, B−1 = (bv → bu) are the coupling of bands bu and bv, and similarly, t =

(∆x,∆y) is a translation vector. B indicates that in the coupling pixels defined by

t , the first belongs to band bu and the second to bv. The generalized cooccurrence

matrices are

Mt,B (i, j) = card
{

(s, s+ t) ∈ R2| bu [s] = i, bv [s+ t] = j
}

(3.2)

with one matrix per B coupling of bands. Again, the translation of t = 1 pixel

in the eight neighboring directions to obtain MB, the summation of the eight

matrices. The symmetric property remains true, so MB = MB−1 .

Once we apply the eight neighbor scheme, this encodes the pixel texture in-

formation. Executed on a standard 3-band (bn) where n = 3, that are typically

represented as the Red(R), Green(G), Blue(B) color bands, it produces equal size

d × d cooccurrence matrices, that contain rotation invariant features. So, to gen-

erate more robust feature information several same band, and cross band pairwise

combinations are used to yield cooccurrence matrices. Using the same RGB color

band example, this would be equivalent to cooccurrence matrices for (R,R), (G,G),

(B,B), (R,B), (R,G), and (G,B).

The strength of the cooccurrence matrix formulation is that after being normal-

ized, they can be interpreted as independent joint density functions for each band

combination. For a given pixel intensity value, we can lookup the correspond-

ing probability from the joint density function, then back project to obtain the

probability image. The probability density function of each cooccurrence matrix

16

0 0 1 6 3 8 4 4 4 0
0 2 3 3 3 3 1 1 1 0
0 2 3 3 3 3 8 8 8 0
0 2 4 5 5 5 5 8 8 0
0 7 4 5 5 5 5 5 0 0
0 7 8 5 5 5 5 3 1 0
0 4 4 5 5 5 5 3 4 0
0 4 4 4 4 8 4 4 1 0
0 4 8 8 8 8 2 3 1 0
0 0 0 0 0 0 0 0 0 0

→

0 0 0 2 1 2 1 1 1 0
0 0 1 1 1 1 0 0 0 0
0 0 1 1 1 1 2 2 2 0
0 0 1 1 1 1 1 2 2 0
0 2 1 1 1 1 1 1 0 0
0 2 2 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0
0 1 1 1 1 2 1 1 0 0
0 1 2 2 2 2 0 1 0 0
0 0 0 0 0 0 0 0 0 0

Figure 3.5: Left: 10× 10 ROI, Right: quantized new 10× 10 ROI

interest, the real time tracking is null and ineffective. However, the algorithm does

not know this and will continue to perform its tasks on the ROI that is reported.

The first step is similar to that in pre-processing. Continuing the multi-band

image example where frame k is composed of bn bands, and in our case n = 3 which

is the standard RGB image. The ROI must be split into independent color band

channels and also, converted to gray scale. These channels are then quantized so

each pixel’s value falls in the interval [0, d − 1]. This binning technique makes

calculations more efficient, as well as polls like pixel intensities.

Since our cooccurrence matrix stores the values in a d × d matrix depicting

the bins’ occurrences in the ROI, when converted to P (Mband) we now have a

probability of the specific bins’ occurrence happening in the ROI. This concept is

what will be used during each frame to look up the pixel’s bin occurrence. For

example, say we have an ROI that is 10× 10× 3 and we only want to look at one

band of this ROI. Let d = 3, now quantize the ROI to fall in between [0, 2] seen in

Figure (3.5).

P (Mband) is the total probability density at the locations of bin occurrences

calculated from our initial processing from the first frame. This total probability

18

0.15 0.05 0.05
0.05 0.3 0.15
0.05 0.15 0.05

⇒

0.1 0.1 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.1
0.1 0.15 0.2 0.3 0.15 0.3 0.15 0.1 0.1 0.1
0.1 0.15 0.2 0.5 0.5 0.3 0.3 0.15 0.15 0.1
0.1 0.2 0.3 0.5 0.5 0.5 0.5 0.2 0.15 0.1
0.1 0.05 0.05 0.5 0.5 0.5 0.5 0.3 0.15 0.1
0.1 0.05 0.3 0.5 0.5 0.5 0.5 0.3 0.1 0.1
0.1 0.05 0.3 0.5 0.5 0.5 0.5 0.3 0.2 0.1
0.1 0.05 0.3 0.3 0.3 0.5 0.3 0.2 0.2 0.1
0.1 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15

Figure 3.6: Left: P (Mband) , Right: Back projection from P (Mband) to ROI

will not change per frame, therefore it shows the importance of collecting the

cooccurrence of the actual OOI. The total probability is a look up, that is then

back projection and the pixel location is filled in with the associated value. The

back projection process is described in detail in [48], intuitively for every pixel

(x, y), the probability of the intensity value Ik (x, y) existing in the ROI is

P
(

(x, y) |I (xc, yc) , IN
1:8

)

=
T
∏

t=1

Pt

(

(x, y) |I (xc, yc) , IN
1:8

)

(3.4)

where t is the index of the cooccurrence matrix, I (xc, yc) is the center pixel, and

IN
1:8

(x, y) is the eight neighbor directions. This can be seen in Figure (3.6).

The process described in the example is performed for all same band and cross

band pairwise combinations; tor this example, this would be done for (Gr,Gr),

(R,R), (G,G), (B,B), (R,B), (R,G), and (G,B) and captured in a probability back

projection for that particular pairwise combination. As seen in Figure (3.6) there

is a high concentration of high probability in the middle of our ROI. This emphasis

occurs in all band combination back projections, then once fused will highlight our

object of interest. It is important to note that the back projection will not sum

19

Chapter 4

A Probability Feature Tracker

4.1 Covariance Feature Tracking

Within the process of probabilistic tracking, an occurrence matrix (or two-dimensional

histogram) is formed from pixel intensities and the neighboring pixels. The clas-

sic approach performs this method with either of two different three-dimensional

color spaces, Red-Green-Blue (RGB) or Hue-Saturation-Value (HSV). The method

we propose overcomes the obstacles of processing with a single one of these color

spaces.

Intuitively, probability tracking can involve processing with more than just

pixel intensities and its relative relation to its neighbors. Instead we propose using

extracted features to define a feature space as the primary attribute for processing.

The algorithm will adhere to the framework that was described in Section (3.2).

In this case instead of RGB pixel intensities for the cooccurrence calculation, we

employ extracted vectorized features per pixel location. This method will greatly

increase a track on an object, and is invariant to size, shape, color, or change in

21

lighting conditions.

The per pixel covariance matrix [60] encapsulates the variation of dimension

to dimensions relationship. For example, a three dimensional R3 data set would

produce a 3 × 3 covariance matrix. Along the diagonal is a variance which is a

measure of variation within the first dimension and the off diagonal terms are the

covariances that measure across dimension variation. A positive an element in

the covariance matrix, implies that the dimensions compared decrease or increase

together, alternatively a negative element means the opposite. A zero element

indicates that the two dimensions are completely independent of each other.

Cov(X, Y) =

∑n

i=1
(Xi − X̄)(Yi − Ȳ)

n− 1
(4.1)

To compute our local covariance matrix we use the eight neighborhood scheme

seen in Table (3.1). The value at the center pixel locations will denote as [C1C2C3]

for the three channel example, we calculate the covariance matrix about the eight

neighbors of the center location. The next step is to produce a feature vector that is

the result of a vectorized covariance matrix. This becomes the new representation

for the center pixel Figure (4.1).

For our example, there are only three channels used to compose a single covari-

ance matrix. In reality, the feature vector can be extended to some RD dimensions.

This allows us to generalize each pixel location with more than just RGB color pixel

values, but extend to a concatenated HSV, HLS, Luv color spaces, SIFT, SURF,

ORB features, texture and any number of features. By localizing the covariance

matrix, we can fuse all of these D dimensional features per pixel in a more robust

manner. This inevitably creates a more dynamic, robust tracker when performing

a back projection for the OOI.

22

The generalization seen in Figure (4.2) is an extension to the algorithm frame-

work presented in Section (3) for calculating cooccurrence matrices to produce

back projections for histogram tracking. The feature cooccurrence matrices should

develop a rigorous more robust tracking model that is invariant to many of the

obstacles apparent to video tracking. Using the local per pixel covariance matrix

assist in fusing different features of our OOI and enable us to better characterize

the object of interest.

4.2 Performance Improvement Implementation

Performing these task on each frame, makes it apparent that this approach is com-

putationally expensive. All the calculations performed on a frame are per pixel.

Then with any increase in the ROI size the cost for calculating cooccurrence ma-

trices, probability densities, and back projections become even greater. Not to

mention that these calculations per pixel are done for seven pairwise combinations

in order to compute the total probability back projection. If implemented in a

traditional serial framework, this would not practical for real time applications for

video streams or even playback video. Due to the advancement in high perfor-

mance scientific computing hardware like the GPGPU, we were able implement

the algorithm, deeming it capable of real time tracking.

Each pixel wise calculation (cooccurrence, probability density, and back pro-

jection) has been parallelized in order to perform thousands of pixel calculations

simultaneously. This performance implementation is done for our initial processing,

however this did not provide the most speedup. Our implementation performance

benefited the most from parallelizing the frame pixel processing. This where the

24

look up for each pixel pairwise probability density takes place. The algorithm per-

forms this action for all pixels at once. Furthermore, since there are seven different

combinations, this per pixel parallelization is done for each combination.

With our D dimensional feature vector, there is an associated number of cal-

culations that need to be computed on the initial ROI. Also, there are D(D − 1)

different combinations of cooccurrence matrices that are computed in the initial

processing. Part of our contribution is algorithm processing performance improve-

ment. The speed up is achieved in the per pixel calculations. Utilizing NVIDIA

GPU’s [50], we reached near real time speeds.

Resulting GPU implementations have performance gains that are staggering

when compared to serial processing. If the proposed framework were implemented

in serial, times of approximately < 1 frame per second (fps) have been measured.

Contrary to this our GPU implementation achieves measured gains of approxi-

mately > 40fps. The speed up is a result of parallelization to eliminate known

bottlenecks.

25

Chapter 5

Experiments and Results

Our algorithm was tested on various videos for single object tracking. The videos

present several challenging scenes for single object tracking with obstacles that

cause difficulties for tracking algorithms in the machine learning community.

5.1 Video Data Set

The data set that was used for our experiments was the Visual Object Tracking

(VOT) 2016 video data set. VOT 2016 consist of sixty short video sequences which

are used as a benchmark in single object tracking. The challenges in the data set

include: are:

• Illumination change looks at the object’s pixel color intensity and de-

scribes how it varies from the first frame. This obstacle is sensitive to changes

in light. In a video this can make a dark colored object appear bright and

vibrant, which causes it to lose color feature properties.

26

• Object size change is the sum of average local size changes. Here, local

size is the mean difference between bounding box in frame k and the past

fifteen frames. The size change is typically the result of camera zoom or the

object moving away/towards the camera. Size change is a tracking challenge

due to the object’s color and size features changing rapidly and usually it is

too much or too little information for the tracker to hold.

• Object motion is the mean difference between the centroid of the OOI

between consecutive frames. This task is simple when an object moves in a

constant linear matter; however, this isn’t always the case.

• Clutter is looking at the background of the ROI and a larger region enclosing

the ROI. If the compared backgrounds are similar, then the clutter is said

to be high, if dissimilar then there is little clutter. Clutter can exhaust a

tracker’s ability to keep a track from the amount of noise caused by the

similar backgrounds.

• Camera motion is similar to object motion, but focuses on the mean focal

point of the camera throughout consecutive frames. This can give the illusion

of movement in the scene, then if the object is actually moving the motion

is enhanced and becomes chaotic that tracking is virtually impossible.

• Blur is measured by Bayes-spectral-entropy camera focus measure [40] and

tries to describe videos which are low resolution or videos with blurred imag-

ing. This can make objects appear nothing like they really look, or completely

blend into the background.

• Aspect-ratio change defines the average per-frame aspect ratio changes.

27

It changes at frame k and is calculated as the ratio of width and height in

frame k divided by the ratio of the bounding aspect ratio of frame k = 1.

This challenge makes objects of interest seem to be changing size in the video

and causes features (color and object) to change with it.

• Object color change is similar to illumination change, however the focus

in only on hue of the bounding box region. The hue consists of no illumina-

tion changes, just raw color of the object. Color changes in a video change

everything for trackers which rely heavily on color and texture features.

• Deformation partitions images into smaller grids (8×8) and then computes

the sum of square differences of the mean pixel intensities over the grids in

frame k and the first frame. Deformation is similar to aspect-ratio change

and produces similar challenges to trackers.

• Scene complexity takes into account the amount of statistical entropy in

the frames and is calculated as e =
∑

255

i=0
bilog(bi) where bi is the number of

pixels equal to i. The complexity of a scene is taken into account how much

action occurs in the scene, the “busier” the scene, as in the motion, objects,

and background, the more complex it is. Complexity is an issue to trackers

because the more complex the scene, the more information the tracker must

be able to differentiate from the object of interest.

• Absolute motion looks at the centroid of the ROI between frames. This is

similar to the object motion except using the entire bounding box instead of

the object of interest. This attribute will consider the object motion obstacle

as well as the camera motion obstacle.

28

on a frame, the ROI is reinitialized as the ground truth and the track restarts.

The ideal track results is to achieve a zero failure rate, meaning the predicted ROI

stayed on the ground truth OOI the duration of the video sequence.

VOT 2015’s toolkit has sixty video sequences which it runs for three-fifteen

repetitions per video during the experimental procedure. The total output is given

in an average accuracy per video, average number of frames failed per video, and

the average speed at which the algorithm performed [39].

5.3 Experiments

5.3.1 Initial Experiments

Before the algorithm was placed into competition with other state of the art track-

ers, fine tuning needed to be done to evaluate the performance. A few experiments

needed to be done to fine tune parameters. For instance, the number of bins needed

for the algorithm to cluster the ROI is critical and impacts the results dramati-

cally. This gave us an opportunity to test our covariance features in our framework

with actual images. We looked at several different ROIs from the VOT data set,

and compared them to the computed back projection sent to CAMSHIFT. The

experimental results can be seen in Figure (5.2).

An analysis of the results, revealed we had some instabilities with our covariance

features as our only producer of back projections. We can see from the ROIs

that have large contrast in color variation, our algorithm using covariance features

produces complete and clean back projections in each of the three bin quantities

chosen. However, in scenes where the ROI is similar in color to the background,

the covariance feature back projections are insufficient. While we hope to see a

30

Table 5.1: VOT 2015 experiment results: 4 bins, 8 bins, 16 bins, 32 bins

of bins Avg Accuracy (%) Avg Failures (frames)
4 32.6 11.24
8 30.4 8.69
16 34 6.04
32 27.5 7.56

shows strong performance. The pairwise combinations take a covariance feature

channel, and calculates cooccurrence matrices with RGB channels. This back

projection performs better than singular combinations. The total back projection

is a linear combination between the three independent back projections. Visually,

this looks to be the strongest method, and it not only produces clean projections

with less noise than the others, but it also produces strong contours around the

OOI.

The total back projection is the method used to compare against competition

trackers. The smaller number of bins is optimal for better back projections. This

can be seen for the basketball ROI in Figure (5.3) the whole player is highlighted

in the four bin selection, but there is some noise surrounding the OOI. In the fish

image, the same is apparent, leading to the conclusion that if back projections

visually look better then they could produce better accuracy results.

Using the total back projection explained in our earlier experiment, we ran

each bin number in the VOT experiments. Table (5.1) shows the results of the

experiment. The accuracy and failure rates were both more ideal with the bin

number of 16. With the trend of the failures decreasing with higher number of

bins, testing 32 bins was a must. This did not prove to be better, however , and the

optimum for failure misses and accuracy was 16 bins. The lower number of bins

created more background noise throughout the video and was the reason failure

33

rates were higher. Then, looking at 32 bins, it shows that not enough information

can be gathered about the ROI when having too high a bin number to compress

the channel values down.

Therefore, going into the evaluation part of our experiments we used 16 bins

and our total probability back projection in conjunction with CAMSHIFT.

5.3.2 VOT 2015 Competition Experiment

Using the testing procedure described in Section (5.2) we ran our proposed algo-

rithm through the VOT 2015 experiments and compared it to eight state of the

art trackers that follow different classes of tracking techniques. These trackers had

entered the VOT 2015 challenge and their results are available for comparison in

the VOT toolkit used for ranking and comparison. These trackers include:

• Multi-Domain Convolutional Neural Network Tracker (MDNet)

falls into the neural network and classification tracker class. MDNet pre-

trains the tracker using a convolutional neural network (CNN) on the OOI

surrounded by the ground truth provided by the data set. These stored

features representing the OOI are then stored to in the CNN. Then the

tracker evaluates the candidate ROIs in the scene surrounding where the

initial ROI was in order to produce a maximum score for the candidate ROI

closest to the original ground truth [49].

• Structure Tracker with the Robust Kalman Filter (RobStruck)

another type of classification tracker, where features are not learned on a

neural network but used in deciding the best candidate region for the ROI.

Based on the Struck tracker [31] but more robust from track frame failures

34

from the use of the Robust Kalman filter to relocate the ROI if the track is

lost [8].

• Matrioska Best Displacement Flow (MatFlow) is a type of motion

tracker which is based off of the original Matrioska tracker [44]. It issues the

Matrioska tracker in combination with the Best Displacement Flow (BDF)

tracker [45]. MatFlow uses the object path given directly by the Matrioska

tracker, and since the Matrioska tracker often fails, it is corrected in a low

confidence situation with the BDF tracker which tracks the best displacement

vector of flow after a clustering of key points is done on the OOI. This tracker

is not yet published, but its components have been.

• Flock of Trackers (FoT) is another type of motion based tracker. FoT

estimates the object’s trajectory by looking at the estimates given from a

number of local trackers that are not robust. These local trackers cover

certain specified regions in the frame and then perform their tracking inde-

pendently. FoT then transforms their displacements and fuses together their

estimates to create one [62].

• ZHANG Tracker (zhang) is a type of feature based tracker. Zhang is

a two phase tracker where extracting features and matching them is done.

The Zhang tracker uses a dictionary which is built from small overlapping

patches from the OOI. This dictionary is then stored and used to compare

in the matching phase. The matching phase exposes the same dense patches

on each frame and a similarity measure is used to gather a best match in

several patches to combine to the ROI. Zhang tracker is not published yet

and has only been entered in the VOT challenge to date.

35

• Likelihood of Features Tracking-Lit (loft lit) is another feature based

tracker. It extracts image based features and correlation map features and

fuses them together in a target appearance model within a search region. It

then uses Bayesian maps to estimate the likelihood that each pixel in the

search region is part of the OOI. To keep failure rates down, a Kalman filter

is used to find the new search region from frame to frame [52, 53, 54]

• SumShift (sumshift) is a type of probabilistic tracker, furthermore a his-

togram based tracker. It is an improvement of the mean-shift tracker [14].

It finds histograms on multiple patches of the object model which helps to

preserve the geometric structure of the object. It then computes the object

likelihood by pooling the probabilities of each path, which increases robust-

ness and accuracy in tracking [41]

• Normalized Cross Correlation(NCC) is VOT’s implemented tracker

used to be a baseline to the competition. It uses a simple technique of

matching a gray scale template to the new frames in the video sequence

using normalized cross-correlation [39].

There were 62 trackers submitted to the VOT 2015 challenge, but we focus on

only these eight for our experiments to see how our tracker compares on single

video sequences. Then we look where we would place in the entire competition if

entered.

36

Table 5.2: VOT 2015 Individual video results, seq (sequence), ac(accuracy),
f(failures), and sp(speed).

Seq Ac F Sp Seq Ac F Sp

bag 0.32 1 159.35 handball1 0.46 16 118.7
ball1 0.18 9 36.16 handball2 0.36 17 88.98
ball2 0.00 5 28.71 helicopter 0.20 2 110.69

basketball 0.58 0 219.66 iceskater1 0.48 1 201.52
birds1 0.21 20 50.34 iceskater2 0.40 1 163.75
birds2 0.32 0 166.34 leaves 0.01 7 32.03
blanket 0.41 1 217.85 marching 0.29 7 60.67
bmx 0.23 1 61.74 matrix 0.25 4 81.41
bolt1 0.41 6 139.59 motocross1 0.16 8 80.45
bolt2 0.51 1 226.47 motocross2 0.41 1 42.76
book 0.15 12 71.95 nature 0.29 2 121.28

butterfly 0.27 3 110.96 octopus 0.30 0 119.46
car1 0.27 19 109.39 pedestrian1 0.46 7 97.89
car2 0.27 3 214.34 pedestrian2 0.35 24 112.49

crossing 0.29 5 66.61 rabbit 0.43 5 105.94
dinosaur 0.31 2 171.59 racing 0.42 1 151.09
fernando 0.26 4 116.85 road 0.35 9 107.48

fish1 0.34 4 167.77 shaking 0.49 2 170.74
fish2 0.26 4 163.14 sheep 0.31 2 203.99
fish3 0.29 5 183.02 singer1 0.30 0 133.29
fish4 0.33 5 214.73 singer2 0.46 2 147.56
girl 0.41 6 35.72 singer3 0.31 34 13.90
glove 0.20 7 73.26 soccer1 0.33 7 148.82

godfather 0.36 3 200.75 soccer2 0.21 15 31.89
graduate 0.31 10 37.24 soldier 0.29 2 75.22

gymnastics1 0.26 5 36.69 sphere 0.20 3 118.87
gymnastics2 0.39 5 68.50 tiger 0.33 10 88.17
gymnastics3 0.16 3 49.87 traffic 0.30 1 133.03
gymnastics4 0.25 4 125.37 tunnel 0.49 1 217.72

hand 0.26 13 106.81 wiper 0.41 3 185.48
Average 0.34 6.04 158.65

41

As seen in Table (5.2) our tracker excelled past our expectations in terms of

speed. The VOT toolkit plays each video as a loop of images, therefore it does not

need to be completed in the time it takes to show a video. Meaning, these speed

numbers above are the frames per seconds at which our algorithm could perform

if a video was not shot with a limited frames per second (fps). For instance, Bag

is shot at 20 fps, however, since we do not have to wait for the video to run at

20 fps, we can pull frames out as we are ready to perform calculations, therefore

our algorithm performs at 159.3 fps on that particular video. It is important to

note, the high definition videos (birds2, gymnastics2, and motorcross2) of the data

set were also accomplished with speeds over 20 fps. Our tracker averages 158.65

fps which are speeds beyond real time. This leads us to the assumption that our

tracker can perform real time video tracking on ultra high definition video as well

as live streaming video. The high speed is due to the GPU implementations made

in the algorithm in order to mass calculate per pixel calculations which is the

foundation of our tracker.

Now that we have shown our tracker and how well it performs, it is time to

show how it would have placed in the VOT 2015 open tracking challenge against

62 other tracking algorithms. The results from VOT 2015 have been shown in

Table (??).

The trackers in the dataset were ranked based on a new metric, expected overlap

accuracy Φ̂ which is a single metric which takes into consideration the accuracy

overlap and failures of each tracker. It is important to note, speed is not considered

in this expected overlap accuracy. Out of the trackers listed above, MDNet which

we compared results to in several videos finished the competition first with Φ̂ =

0.38. The baseline tracker, NCC, finished the contest in 62nd place. This is with an

42

Table 5.3: First half of VOT 2015 Results with proposed tracker (red). M =
Matlab, C=C/C++, G=GPU

Rank Tracker Accuracy Failures Φ Speed Framework
1 MDNet 0.60 0.69 0.38 0.87 M C G
2 DeepSRDCF 0.56 1.05 0.32 0.38 M C
3 EBT 0.47 1.02 0.31 1.76 M C
4 SRDCF 0.56 1.24 0.29 1.99 M C
5 LDP 0.51 1.84 0.28 4.36 M C
6 sPST 0.55 1.48 0.28 1.01 M C
7 SC-EBT 0.55 1.86 0.25 0.80 M C
8 NSAMF 0.53 1.29 0.25 5.47 M
9 Struck 0.47 1.61 0.25 2.44 C
10 RAJSSC 0.57 1.63 0.24 2.12 M
1 S3Tracker 0.52 1.77 0.24 14.27 C
12 SumShift 0.52 1.68 0.23 16.78 C
13 SODLT 0.56 1.78 0.23 0.83 M C G
14 DAT 0.49 2.26 0.22 9.61 M
15 MEEM 0.50 1.85 0.22 2.70 M
16 RobStruck 0.48 1.47 0.22 1.89 C
17 OACF 0.58 1.81 0.22 2.00 M C
18 MCT 0.47 1.76 0.22 2.77 C
19 HMMTxD 0.53 2.48 0.22 1.57 C
20 ASMS 0.51 1.85 0.21 115.09 C
21 MKCF+ 0.52 1.83 0.21 1.23 M C
22 TRIC-track 0.46 2.34 0.21 0.03 M C
23 AOG 0.51 1.67 0.21 0.97 binary
24 SME 0.55 1.98 0.21 4.09 M C
25 MvCFT 0.52 1.72 0.21 2.24 binary
26 SRAT 0.47 2.13 0.20 15.23 M C
27 Dtracker 0.50 2.08 0.20 10.43 C
28 SAMF 0.53 1.94 0.20 2.25 M
29 G2T 0.45 2.13 0.20 0.43 M C
30 MUSTer 0.52 2.00 0.19 0.52 M C
31 TGPR 0.48 2.31 0.19 0.35 M C
32 HRP 0.48 2.39 0.19 1.01 M C

43

Table 5.4: Second half of VOT 2015 Results with proposed tracker (red). M =
Matlab, C=C/C++, G=GPU

Rank Tracker Accuracy Failures Φ Speed Framework
33 KCFv2 0.48 1.95 0.19 10.90 M
34 CMIL 0.43 2.47 0.19 5.14 C
35 ACT 0.46 2.05 0.19 9.84 M
36 MTSA-KCF 0.49 2.29 0.18 2.83 M
37 LGT 0.42 2.21 0.17 4.12 M C
38 DSST 0.54 2.56 0.17 3.29 M C
39 MIL 0.42 3.11 0.17 5.99 C
40 KCF2 0.48 2.17 0.17 4.60 M
41 sKCF 0.48 2.68 0.16 66.22 C
42 BDF 0.40 3.11 0.15 200.24 C
43 KCFDP 0.49 2.34 0.15 4.80 M
44 PKLTF 0.45 2.72 0.15 29.93 C
45 HoughTrack 0.42 3.61 0.15 0.87 C
46 FCT 0.43 3.34 0.15 83.37 C
47 MatFlow 0.42 3.12 0.15 81.34 C
48 SCBT 0.43 2.56 0.15 2.68 C
49 DFT 0.46 4.32 0.14 3.33 M
50 FoT 0.43 4.36 0.14 143.62 C
51 LT-FLO 0.44 4.44 0.13 1.83 M C
52 L1APG 0.47 4.65 0.13 1.51 M C
53 OAB 0.45 4.19 0.13 8.00 C
54 IVT 0.44 4.33 0.12 8.38 M
55 STC 0.40 3.75 0.12 16.00 M
56 CMT 0.40 4.09 0.12 6.72 C
57 CT 0.39 4.09 0.11 12.90 M
58 FragTrack 0.43 4.85 0.11 2.08 C
59 ZHANG 0.33 3.59 0.10 0.21 M
60 Hulkling 0.34 6.04 0.08 158.65 C G
61 LOFT-Lite 0.34 6.35 0.08 0.75 M
62 NCC 0.50 11.34 0.08 154.98 C
63 PTZ-MOSSE 0.20 7.27 0.03 18.73 C

44

expected overlap accuracy of 0.08. Our tracker, based on the accuracy and failures

shown in Table (5.2) would give us an expected overlap accuracy Φ̂= 0.08 which

puts us in competition with NCC and LOFT lite. Since our accuracy was the

same but our failures were less than LOFT lite, it is safe to say our tracker would

have placed in 60th place out of 63. These results are not expected considering

how well the tracker did in the above experiments, however there are some things

which hinder our tracker in competition with other trackers which will be discussed

later. Our tracker is still one of the fastest performing trackers in the challenge

and still one of the more practical trackers to use for real time applications.

5.4.2 Discussion

Using HSV color space works well when looking at humans and trying to track a

human object. The hue channel of the HSV color space is the main focus when

tracking humans using HSV. This is mostly because the hue channel seems to

delineate the human skin color better than just RGB color space. Where HSV

histogram tracking breaks down is any other object that isn’t human skin. Even

with tracking a human, the hue of an image does not vary greatly and a lot of

noise is brought into the back projection and the track is lost quickly. It does not

do well with occlusion, scaling, lighting, or video resolution quality.

RGB color space gives a more robust back projection with cleaner results than

just hue. When looking at the above algorithm, we now have seven back projection

probability matrices that are used in creating one to use CAMSHIFT. This brings

in more localized information to each pixel, rather than just using hue alone. Also,

since hue does a great job in delineating a human face alone, this addition of the

red-green, red-blue, and blue-green back projections generates more information

45

allowing a human face to stand out more. The amount of information gathered by

the seven different probability matrices really helps the RGB cooccurrence tracking

method when other objects are in question, not necessarily humans. Though RGB

tracking seems to perform better on any object and is more robust to occlusion, it

does have its downfalls as well. Lighting is a huge issue with the RGB tracking,

though the RGB color space has three separate channels with 256 different pixel

value intensities to make some linear combination of those three to make one color

seems to makes sense to track distinct colors. However, with lighting issues a

bright pink shirt on a human or a brown horse running on the beach will all be

mixed up by lighting and the algorithm will only see almost white objects and

the track will be lost. The same is true with scaling; if the object zooms away

from the camera like a red helicopter flying away from an airshow The helicopter’s

bright red color will become closer to the background due to focal blurring and

all apparent robustness it had originally will be gone. Lastly, the resolution of the

video plays another role in defeating the RGB method. If our object of interest

is blurred due to poor quality video, then we have the same effect as the above

scaling and the color distinctiveness is lost to the background or other objects

surrounding the object of interest.

Both of the color space probability tracking methods do not show enough char-

acteristics of an object independent of color, like the objects shape or texture. This

means the methods described above do not know the difference between an orange

cat and an orange, or an orange cat walking the streets and an orange cat in a still

picture frame on a wall in a house. This makes tracking even more a challenge to

the algorithm.

With the use of our covariance features and the pairwise combinations of RGB

46

features our tracker was able to overcome some robustness issues faced to the color

space histogram tracker outperforms the original tracker. More information about

the OOI was gathered and when used in conjunction with the RGB information,

our tracker This extra feature in terms of probabilistic histogram tracking really

gave our tracker a better chance to fully encapsulate the OOI in the back projection.

The added covariance features added a degree of robustness in terms of rotation,

camera motion, and occlusion.

Occlusion is where our tracker seems to shine. In many of the videos in the

dataset where occlusion is the prominent obstacle, our tracker performed the best

compared to the competition. We also fared well with video sequences on humans

where motion change in both object and camera were the biggest concern in the

video. Our tracker overcoming these obstacles gives promising results for future

work in the field.

Where our tracker faulted using our covariance features and RGB color features

is when illumination change and object size change was the most prominent ob-

stacles in the video. Our covariance features were not a fusion of multiple features

giving information about the objects shape, texture, size, etc so when looking at

covariance features of just RGB pixel intensities it is obvious that illumination

would be a hindrance. To overcome this, a new color space could have been used,

one such as a normalized monochromatic color space or even looking at HSV color

spaces in conjunction to our RGB in developing the covariance features. If we were

to use features that are scale invariant such as SIFT, SURF, or ORB could help

us overcome the object size change issues when tracking.

A point to be made that was eluded to earlier is the fact that our tracker is

model free. There is no need to pre-train our tracker on learned features or char-

47

acteristics of the OOI before we begin a tracking. The case of the top contenders

in the VOT challenge were not model free and had ground truth data of the actual

video sequences to pre-train their tracker. This pre-training could come into use

if you knew, for example, that you wanted to track a red car and only a red car

during a high speed chase for use of law enforcement. But to say that law en-

forcement only wants to track a red car is unrealistic. What if the culprit escapes

the car and begins fleeing on foot. Our tracker would be able to track the car

during the chase and then the human as soon as they flee the vehicle and be able

to do it all real time. When looking at this, it is easy to say this is an unfair

advantage to the competition. However, since our tracker did outperform some of

these top trackers in a few video sequences helps solidify our proposed algorithm

as a strong probabilistic tracker in the community. Also to note on these top per-

forming trackers, the speed in which they execute is impractical for any real time

use. As a matter of fact, most of the trackers performed in times slower than real

time, and some slower than a frame per second. This can’t be used in any real

life applications where tracking real time is needed. These trackers are great for a

static competition, but that is as far as they go in terms of usefulness. Our tracker

however could be used for real time surveillance and tracking and has shown to be

competitive with new state of the art trackers.

48

Chapter 6

Conclusion

In this thesis we presented an integrated approach for probabilistic tracking that

combines appearance, shape models, topology constraints, and efficient sampling.

The integrated approach will extracts features per pixel using a neighborhood

scheme. The concatenation of the dynamic feature pool into a single feature de-

scriptor is the strength of our approach. The novel approach fits into an established

tracking algorithm which we generalized to D dimensions in order to create a more

robust tracker.

This algorithm was implemented on a GPU utilizing high performance comput-

ing to achieve real time video tracking. We tested our algorithm on a benchmark

data set to illustrates that our proposed solution is competitive when compared to

other state-of-the-art trackers. Even though our proposed algorithm did not out-

perform the winning algorithms in the benchmark competition in expected overlap

accuracy, it did exceed the state-of-the-art trackers in speed.

In future work there are several gaps that need to be addressed. We will inves-

tigate additional features to improve the accuracy and failure rate results. Another

49

improvement would to add more consistent method for keeping a track on the ob-

ject. This could entail a closed contour, or rotating bounding box. The continued

effort is to improve the speed performance. Regardless of the algorithm complex-

ity, maintain real time capability. Therefore, deploying GPU implementations for

all feature extractions is important and under continuous development.

50

Bibliography

[1] Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based track-

ing using the integral histogram. In 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages

798–805. IEEE, 2006.

[2] Vincent Arvis, Christophe Debain, Michel Berducat, and Albert Benassi. Gen-

eralization of the cooccurrence matrix for colour images: application to colour

texture classification. Image Analysis & Stereology, 23(1):63–72, 2011.

[3] Garvit Arya, Manisha Singh, and Mayank Gupta. Human-computer interaction

based on real-time motion gesture recognition. Human-Computer Interaction,

4(3), 2016.

[4] Shai Avidan. Support vector tracking. IEEE transactions on pattern analysis

and machine intelligence, 26(8):1064–1072, 2004.

[5] Florian Bartels. Vehicle navigation system, February 11 2016. US Patent

20,160,040,994.

[6] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking

performance: the clear mot metrics. EURASIP Journal on Image and Video

Processing, 2008(1):1–10, 2008.

51

[7] Horn BKP. Robot vision, 1986.

[8] Ivan Bogun. Robust Structured Tracking. PhD thesis, Florida Institute of

Technology, 2016.

[9] Gary R Bradski. Computer vision face tracking for use in a perceptual user

interface. Intel Technology Journal, 1998.

[10] Ted J Broida, S Chandrashekhar, and Rama Chellappa. Recursive 3-d motion

estimation from a monocular image sequence. IEEE Transactions on Aerospace

and Electronic Systems, 26(4):639–656, 1990.

[11] Kevin Cannons and Richard Wildes. Spatiotemporal oriented energy features

for visual tracking. In Asian Conference on Computer Vision, pages 532–543.

Springer, 2007.

[12] Peng Chang and John Krumm. Object recognition with color cooccurrence

histograms. In Computer Vision and Pattern Recognition, 1999. IEEE Com-

puter Society Conference on., volume 2. IEEE, 1999.

[13] Meng Chee, Paul Dixon, Florian Dusch, Hyung Keun Kim, Luyza Viana

Pereira, Bartley H Calder, Scott Barrow, Sudhir Kumar Misra, and Gabriel

Nicolae. Video editing using contextual data and content discovery using clus-

ters, April 14 2016. US Patent 20,160,104,508.

[14] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE transactions

on pattern analysis and machine intelligence, 17(8):790–799, 1995.

[15] Changhyun Choi and Henrik I Christensen. Real-time 3d model-based track-

ing using edge and keypoint features for robotic manipulation. In Robotics and

52

Automation (ICRA), 2010 IEEE International Conference on, pages 4048–

4055. IEEE, 2010.

[16] Jin Woo Choi, Taeg Keun Whangbo, and Cheong Ghil Kim. A contour track-

ing method of large motion object using optical flow and active contour model.

Multimedia Tools and Applications, 74(1):199–210, 2015.

[17] Patrick Pakyan Choi and Martial Hebert. Learning and predicting moving

object trajectory: a piecewise trajectory segment approach. Robotics Institute,

page 337, 2006.

[18] David A Clausi. An analysis of co-occurrence texture statistics as a function

of grey level quantization. Canadian Journal of remote sensing, 28(1):45–62,

2002.

[19] Robert T Collins. Mean-shift blob tracking through scale space. In Computer

Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer So-

ciety Conference on, volume 2, pages II–234. IEEE, 2003.

[20] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on pattern analysis and machine

intelligence, 24(5):603–619, 2002.

[21] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking

of non-rigid objects using mean shift. In Computer Vision and Pattern Recogni-

tion, 2000. Proceedings. IEEE Conference on, volume 2, pages 142–149. IEEE,

2000.

53

[22] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[23] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and Michael Fels-

berg. Learning spatially regularized correlation filters for visual tracking. In

Proceedings of the IEEE International Conference on Computer Vision, pages

4310–4318, 2015.

[24] Jonathan Deutscher, Andrew Blake, and Ian Reid. Articulated body mo-

tion capture by annealed particle filtering. In Computer Vision and Pattern

Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 126–133.

IEEE, 2000.

[25] Ernst Dieter Dickmanns and Volker Graefe. Dynamic monocular machine

vision. Machine vision and applications, 1(4):223–240, 1988.

[26] Ruofei Du, Sujal Bista, and Amitabh Varshney. Video fields: fusing multiple

surveillance videos into a dynamic virtual environment. In Proceedings of the

21st International Conference on Web3D Technology, pages 165–172. ACM,

2016.

[27] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Computer

science and scientific computing. Academic Press, Boston, 1990.

[28] Ryan A Gill, W Andrew Cox, and Frank R Thompson III. Timing of song-

bird nest predation as revealed by video surveillance. The Wilson Journal of

Ornithology, 128(1):200–203, 2016.

54

[29] Robert M Haralick, Karthikeyan Shanmugam, and Its’ Hak Dinstein. Tex-

tural features for image classification. Systems, Man and Cybernetics, IEEE

Transactions on, (6):610–621, 1973.

[30] Robert M Haralick, Karthikeyan Shanmugam, et al. Textural features for

image classification. IEEE Transactions on systems, man, and cybernetics,

3(6):610–621, 1973.

[31] Sam Hare, Amir Saffari, and Philip HS Torr. Struck: Structured output

tracking with kernels. In 2011 International Conference on Computer Vision,

pages 263–270. IEEE, 2011.

[32] Berthold KP Horn and Brian G Schunck. Determining optical flow. Artificial

intelligence, 17(1-3):185–203, 1981.

[33] Michael Isard and Andrew Blake. Condensation conditional density propaga-

tion for visual tracking. International journal of computer vision, 29(1):5–28,

1998.

[34] Wallace Jackson. The automation of digital video: Programming. In Digital

Video Editing Fundamentals, pages 153–166. Springer, 2016.

[35] Yong-Hyun Jang, Jung-Keun Suh, Ku-Jin Kim, and Yoo-Joo Choi. Robust

target model update for mean-shift tracking with background weighted his-

togram. KSII Transactions on Internet & Information Systems, 10(3), 2016.

[36] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to

nonlinear systems. In AeroSense’97, pages 182–193. International Society for

Optics and Photonics, 1997.

55

[37] David R Karger. Global min-cuts in rnc, and other ramifications of a simple

min-cut algorithm. In SODA, volume 93, pages 21–30, 1993.

[38] Zia Khan, Tucker Balch, and Frank Dellaert. A rao-blackwellized particle

filter for eigentracking. In Computer Vision and Pattern Recognition, 2004.

CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,

volume 2, pages II–980. IEEE, 2004.

[39] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg, Luka Cehovin,

Gustavo Fernandez, Tomas Vojir, Gustav Hager, Georg Nebehay, and Roman

Pflugfelder. The visual object tracking vot2015 challenge results. In Proceedings

of the IEEE International Conference on Computer Vision Workshops, pages

1–23, 2015.

[40] Matej Kristan, Janez Perš, Matej Perše, and Stanislav Kovačič. A bayes-

spectral-entropy-based measure of camera focus using a discrete cosine trans-

form. Pattern Recognition Letters, 27(13):1431–1439, 2006.

[41] Jae-Yeong Lee and Wonpil Yu. Visual tracking by partition-based histogram

backprojection and maximum support criteria. In Robotics and Biomimetics

(ROBIO), 2011 IEEE International Conference on, pages 2860–2865. IEEE,

2011.

[42] Sukwon Lee. Human computer interaction using eye-tracking data. Human

Computer Interaction, 2016.

[43] David G Lowe. Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110, 2004.

56

[44] Mario Edoardo Maresca and Alfredo Petrosino. Matrioska: A multi-level

approach to fast tracking by learning. In International Conference on Image

Analysis and Processing, pages 419–428. Springer, 2013.

[45] Mario Edoardo Maresca and Alfredo Petrosino. Clustering local motion es-

timates for robust and efficient object tracking. In European Conference on

Computer Vision, pages 244–253. Springer, 2014.

[46] Peter S. Maybeck. Stochastic models, estimation, and control, volume 141 of

Mathematics in Science and Engineering. 1979.

[47] Mark Moyou, Koffi Eddy Ihou, Rana Haber, Anthony Smith, Adrian M Peter,

Kevin Fox, and Ronda Henning. Bayesian fusion of back projected probabilities

(bfbp): Co-occurrence descriptors for tracking in complex environments. In

Advanced Concepts for Intelligent Vision Systems, pages 167–180. Springer,

2015.

[48] Mark Moyou, Koffi Eddy Ihou, Rana Haber, Anthony Smith, Adrian M Peter,

Kevin Fox, and Ronda Henning. Bayesian fusion of back projected probabilities

(bfbp): Co-occurrence descriptors for tracking in complex environments. In

International Conference on Advanced Concepts for Intelligent Vision Systems,

pages 167–180. Springer, 2015.

[49] Hyeonseob Nam and Bohyung Han. Learning multi-domain convolutional

neural networks for visual tracking. arXiv preprint arXiv:1510.07945, 2015.

[50] CUDA Nvidia. Programming guide, 2008.

[51] PR Ouyang, Truong Dam, J Huang, and WJ Zhang. Contour tracking control

in position domain. Mechatronics, 22(7):934–944, 2012.

57

[52] Kannappan Palaniappan, Filiz Bunyak, Praveen Kumar, Ilker Ersoy, Stefan

Jaeger, Koyeli Ganguli, Anoop Haridas, Joshua Fraser, Raghuveer M Rao, and

Guna Seetharaman. Efficient feature extraction and likelihood fusion for vehicle

tracking in low frame rate airborne video. In Information fusion (FUSION),

2010 13th Conference on, pages 1–8. IEEE, 2010.

[53] Rengarajan Pelapur, Sema Candemir, Filiz Bunyak, Mahdieh Poostchi, Guna

Seetharaman, and Kannappan Palaniappan. Persistent target tracking using

likelihood fusion in wide-area and full motion video sequences. In Information

Fusion (FUSION), 2012 15th International Conference on, pages 2420–2427.

IEEE, 2012.

[54] Rengarajan Pelapur, Kannappan Palaniappan, and Gunasekaran Seethara-

man. Robust orientation and appearance adaptation for wide-area large for-

mat video object tracking. In Advanced Video and Signal-Based Surveillance

(AVSS), 2012 IEEE Ninth International Conference on, pages 337–342. IEEE,

2012.

[55] Fatih Porikli, Oncel Tuzel, and Peter Meer. Covariance tracking using model

update based on lie algebra. In 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06), volume 1, pages 728–

735. IEEE, 2006.

[56] via Wikimedia Commons Ricardo Cancho Niemietz [Public domain]. Rgb

24bits palette sample image, 2008. https://commons.wikimedia.org/wiki/File

58

[57] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. In ACM transactions

on graphics (TOG), volume 23, pages 309–314. ACM, 2004.

[58] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An

efficient alternative to sift or surf. In 2011 International conference on computer

vision, pages 2564–2571. IEEE, 2011.

[59] David Sharp, Craig Stoneking, and Kingsley Fregene. Micro air vehicle based

navigation aiding in degraded environments. In 2016 IEEE/ION Position,

Location and Navigation Symposium (PLANS), pages 305–312. IEEE, 2016.

[60] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast de-

scriptor for detection and classification. In European conference on computer

vision, pages 589–600. Springer, 2006.

[61] Luc Van Gool, Piet Dewaele, and André Oosterlinck. Texture analysis anno

1983. Computer vision, graphics, and image processing, 29(3):336–357, 1985.

[62] Tomáš Voj́ı̌r and Jǐŕı Matas. The enhanced flock of trackers. In Registration

and Recognition in Images and Videos, pages 113–136. Springer, 2014.

[63] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for

nonlinear estimation. In Adaptive Systems for Signal Processing, Communica-

tions, and Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–

158. Ieee, 2000.

[64] Junqiu Wang and Yasushi Yagi. Integrating color and shape-texture features

for adaptive real-time object tracking. IEEE Transactions on Image Processing,

17(2):235–240, 2008.

59

[65] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient mean-shift

tracking via a new similarity measure. In 2005 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR’05), volume 1,

pages 176–183. IEEE, 2005.

[66] Ju Hong Yoon, Ming-Hsuan Yang, Jongwoo Lim, and Kuk-Jin Yoon. Bayesian

multi-object tracking using motion context from multiple objects. In 2015 IEEE

Winter Conference on Applications of Computer Vision, pages 33–40. IEEE,

2015.

[67] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using sift features

and mean shift. Computer vision and image understanding, 113(3):345–352,

2009.

60

	Abstract
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	1 Introduction
	2 Literature Review
	3 Overview of Tracking Framework
	3.1 Initial Processing
	3.2 Probabilistic Framework
	3.3 Video Sequence Processing

	4 A Probability Feature Tracker
	4.1 Covariance Feature Tracking
	4.2 Performance Improvement Implementation

	5 Experiments and Results
	5.1 Video Data Set
	5.2 Testing Procedure
	5.3 Experiments
	5.3.1 Initial Experiments
	5.3.2 VOT 2015 Competition Experiment

	5.4 Results
	5.4.1 Individual Video Comparison
	5.4.2 Discussion

	6 Conclusion
	References

