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Abstract. We present a dataset of 371 3D models of everyday table-
top objects along with their 320,000 real world RGB and depth images.
Accurate annotation of camera pose and object pose for each image is
performed in a semi-automated fashion to facilitate the use of the dataset
in myriad 3D applications like shape reconstruction, object pose estima-
tion, shape retrieval etc. We primarily focus on learned multi-view 3D
reconstruction due to the lack of appropriate real world benchmark for
the task and demonstrate that our dataset can fill that gap. The entire
annotated dataset along with the source code for the annotation tools
and evaluation baselines will be made publicly available.
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1 Introduction

Deep learning has shown immense potential in the field of 3D vision in recent
years, advancing challenging tasks such as 3D object reconstruction, pose esti-
mation, shape retrieval, robotic grasping etc. But unlike for 2D tasks [10,26,21],
large scale real world datasets for 3D object understanding is scarce. Hence, to
allow for further advancement of state-of-the-art in 3D object understanding we
introduce our dataset which consists of 371 high resolution, textured 3D models
of everyday tabletop objects along with their 320K real world RGB-D images.
Accurate annotation of camera pose and object pose is performed for each image.
Figure 1 shows some sample data from our dataset.

We primarily focus on learned multi-view 3D reconstruction due to the lack
of real world datasets for the task. 3D reconstruction methods [14,43,33,38,44]
learn to predict 3D model of an object from its color images with known camera
and object poses. They requires large amount of training examples to be able to
generalize to unseen images. While datasets like Pix3D [39], PASCAL3D+[46]
and ObjectNet3D [45] provide 3D models and real world images, they are mostly
limited to single-view image per model.

Existing multi-view 3D reconstruction methods [8,19,33,38,44] rely heavily
on synthetic datasets, especially ShapeNet [6], for training and evaluation. Few
work [23,33] that utilize real world datasets [7] do so only for qualitative eval-
uation purpose, not for training or quantitative evaluation. To remedy this, we
present our dataset and validate its usefulness by performing training as well as
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Fig. 1. Sample data from our dataset. From left to right: 3D model, 3 multi-view
images with wireframe object model superimposed based on annotated camera and
object pose.

qualitative/quantitative evaluation solely on our dataset using various state-of-
the-art multi-view 3D reconstruction baselines.

The contributions of our work are as follows:

1. To the best our knowledge, our dataset is the first real world dataset that
can be used for training and quantitative evaluation of supervised multi-view
3D reconstruction algorithms.

2. We present two novel methods for automatic/semi-automatic data annota-
tion. We will make the annotation tools publicly available to allow future
extensions to the dataset.

2 Related Work

3D Shapes Dataset: Datasets like Princeton shape benchmark [37], FAUST [2],
ShapeNet [6] provide a large collection of 3D CAD models of diverse objects,
but without associated real world RGB images. PASCAL3D+[46] and Object-
Net3D [45] performed rough alignment between images from existing datasets
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and 3D models from online shape repositories. IKEA [25] also performed 2D-3D
alignment between existing datasets but with finer alignment results on a smaller
set of images and shapes (759 images and 90 shapes). Pix3D [39] extended IKEA
to 10K images and 395 shapes through crowdsourcing and scanning some ob-
jects manually. These datasets mostly have single-view images associated with
the shapes.

Datasets like [22,4,18] have utilized RGB-D sensors to capture relatively
small number of objects and are mostly geared towards robot manipulation tasks
rather than 3D reconstruction. Knapitsch et al . [20] provided a small number
of large scale scenes which are suitable for benchmarking traditional Structure-
from-Motion (SfM) and Multi-view Stereo (MVS) algorithms rather than learned
3D reconstruction.

The dataset that is closest to ours is Redwood-OS [7]. It provides RGB-
D videos of 398 objects and their 3D scene reconstructions. There are several
crucial limitations that has prevented widespread adoption of this dataset for
multi-view 3D reconstruction though. Firstly, the dataset is not annotated with
camera and object pose information. While the camera pose can be obtained us-
ing Simultaneous Localization and Mapping (SLAM) or Structure-from-Motion
(SfM) techniques [3,11,29,35,36], obtaining accurate object poses is relatively
harder. Also, the 3D reconstructions were performed on scene level rather than
object level, making it difficult to directly use it for supervision of object recon-
struction.

More recently, Objectron [1] has provided large scale video sequences of real
world objects along with sparse point cloud and object pose but without dense
3D models. We aim to tackle the shortcomings of the existing datasets and create
a dataset that can effectively serve as a real world benchmark for supervised
learned multi-view 3D reconstruction models. Table 1 shows the comparison
between the relevant datasets.

Ours Objectron Redwood-OS Pix3D IKEA PASCAL3D+ ObjectNet3D

Multi-view images ✓ ✓ ✓ ✗ ✗ ✗ ✗

Dense 3D models ✓ ✗ ✓ ✓ ✓ ✓ ✓

Scanned 3D models ✓ ✓ ✓ ✱ ✗ ✗ ✗

Object pose annotation ✓ ✓ ✗ ✓ ✓ ✱ ✱

Textured 3D models ✓ ✗ ✗ ✗ ✗ ✗ ✗

Table 1. Comparison between different datasets. Objectron only provides sparse point
cloud models of the objects. Pix3D contains a mixture of scanned and CAD 3D models.
PASCAL3D+ and ObjectNet3D only have rough object pose annotation while the
annotation is not provided in Redwood-OS. Only our dataset provides textured 3D
models that correspond to the RGB images.

3D Reconstruction: [14,15,30,40,43,47] predict 3D models from single-view
color images. Since a single-view image can only provide a limited coverage of
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a target object, multi-view input is preferred in many applications. SLAM and
Structure-from-Motion [3,11,29,35,36] are popular ways of performing 3D recon-
struction but they struggle with poorly textured and non-Lambertian surfaces
and require careful input view selection. Deep learning has emerged as a potential
solution to tackle these issues. Early works like [8,16,19] used Recurrent Neural
Networks (RNN) to perform multi-view 3D reconstruction. Pixel2Mesh++ [44]
introduced cross-view perceptual feature pooling and multi-view deformation
reasoning to refine an initial shape. MeshMVS [38] predicted a coarse volume
from Multi-view Stereo depths first and then applied deformations on it to get
a finer shape. All of these works were trained and evaluated exclusively on syn-
thetic datasets due to the lack of proper real world datasets.

3 Data Acquisition

Our data acquisition takes place in two steps. First, a detailed and textured
3D model of an object is generated using Shining3D® EinScan-SE 3D scanner.
The scanner uses a calibrated turntable, 1.3 Megapixel camera and visible light
source to obtain 3D model of an object. Then, Intel® RealSense™ LiDAR Camera
L515 is used to record RGB-D video sequence of the object on a round ottoman
chair, capturing 360° view around the object. The video is recorded at 30 frames
per second in HD resolution (1280×720). Figure 1 shows a number of 3D models
and color images from our dataset.

Datasets like [7,22] perform 3D model generation and video recording in
one step by reconstructing the 3D scene captured by the images. The quality
of the 3D models generated this way depends heavily on the trajectory of the
camera and requires some level of expertise for data collection. Furthermore,
these datasets use consumer grade cameras which cannot reconstruct fine details
in the 3D geometry. We therefore use specialized hardware designed for high
quality 3D scanning.

Another approach is to utilize 3D CAD models from online repositories and
match them with real world 2D images, which are also mostly collected on-
line [9,25,45,46]. The downside of this approach is that it is difficult to ensure
exact instance-level match between 3D models and 2D images. According to a
survey conducted by Sun et al . [39], test subjects reported that only a small
fraction of the images matched the corresponding shapes in datasets [45,46].

4 Data Annotation

The most challenging aspect of creating a large scale real world dataset for
object reconstruction is generating ground truth annotations. Most learned 3D
reconstruction methods require accurate camera poses as well as multi-view con-
sistent object pose in the same world coordinate frame as the cameras. While
it is fairly easy to obtain the camera poses, obtaining accurate object poses is
more challenging.
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[39,46] perform object pose estimation by manually annotating correspond-
ing keypoints in the 3D models and 2D images, and then performing 2D-3D
alignment with techniques like Perspective-n-Point (PnP) [13,24] and Levenberg-
Marquardt algorithm [28]. Note that these datasets mostly contain single-view
image for each 3D model making this kind of annotation feasible while we aim
to do this for video sequences with up to 1000 images. Additionally, estimat-
ing object pose that is consistent over multi-view images will require sub-pixel
accurate keypoint matches which is not possible to do using manual keypoint
annotation.

[9,45] on the other hand manually annotate the object pose directly by either
trying to align the 3D model with the scene reconstruction [9] or the re-projected
3D model with 2D image[45]. We found these techniques to be inadequate for
producing multi-view consistent object poses and therefore develop our own
annotation systems.

4.1 Notations

We represent our pose by ξ ∈ SE (3) where SE (3) is the 3D Special Euclidean
Lie group [42] of 4×4 rigid body transformation matrix:

ξ =

[
R t
0 1

]
(1)

where R is the 3×3 rotation matrix and t is the 3D translation vector.
We define object pose wξobj as the transformation from canonical object

frame (obj) to world frame (w). Similarly, the pose of the ith camera wξcami

represents the transformation from camera to world frame. The canonical object
frame is centered at the object with z-axis pointing upwards along the gravity
direction while the world frame is arbitrary (e.g . pose of the first camera).

We use pinhole camera model with camera intrinsics matrix K:

K =

fx 0 cx
0 fy cy
0 0 1

 (2)

where fx and fy are focal lengths and cx and cy principal points. These param-
eters are provided by the camera manufacturers.

A 3D point Pw in homogeneous world coordinate frame can be projected to
cami image coordinates p:

p = K
[
RT

i −RT
i ti

]
Pw (3)

where Ri and ti are the rotation and translation components of the camera pose.
The images taken from our RGB-D camera suffer from radial and tangential

distortion. But for the purpose of annotation, we undistort the images so that
the pinhole camera model holds.
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Fig. 2. Texture-rich Object Annotation. Step 1 : Synthetic views of the 3D model
are rendered. Step 2 : Feature matching is performed between/across real and synthetic
images. Step 3 : Pose of the real and virtual cameras are estimated. Step 4 : Object pose
is estimated by 7-DOF alignment between estimated and ground truth virtual camera
poses.

We now present two methods for annotating our dataset depending on the
texture-richness of the object being scanned: Texture-rich Object Annota-
tion and Poorly Textured Object Annotation.

4.2 Texture-rich Object Annotation

Since we get high-fidelity textures in our 3D models from our 3D scanner, we can
utilize it annotate the object pose in the recorded video sequence. We perform
joint camera and object pose estimation by matching keypoints between images
and 3D model to ensure camera and object pose consistency over multiple view.
Figure 2 illustrates the annotation process. Following are the steps involved:

i. Rendering synthetic views of a 3D model: Instead of directly matching
keypoints between a 3D model and 2D images, we instead render synthetic views
of the 3D model and perform 2D keypoint matching. This allows us to utilize
robust keypoint matching algorithms developed for RGB images. The virtual
camera poses for rendering are randomly sampled around the object by varying
the camera distance, and azimuth/elevation angles with respect to the object.
We verify the quality of each rendered image by checking if there are sufficient
keypoint matches against the real images. 150 images are rendered for each
object model.
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ii. Feature matching: We perform exhaustive feature matching across as well
as within the real and synthetic images using Scale-Invariant Feature Transform
(SIFT) [27] to generate corresponding 2D keypoints. We also tested our system
with more recent feature matching technique, SuperGlue [34], but it was con-
siderably slower than SIFT and did not lead to any visible improvement in the
annotation quality.

iii. Camera pose estimation: Given the keypoint matches, we estimate the
camera poses of both the real and virtual cameras in the same world coordinate
frame using the SfM tool COLMAP [35,36].

iv. Object pose estimation: Let {ξ̂i | i = 1, ..., 150} be the ground truth poses
of the virtual cameras in object frame (we keep track of the ground truth poses
during the rendering step). {ξi | i = 1, ..., 150} be the corresponding poses esti-

mated by COLMAP in world frame. By aligning {ξi} and {ξ̂i} we can estimate
the object pose. We use Kabsch-Umeyama algorithm [41] under Random Sample
Consensus (RANSAC) [5] scheme to perform a 7-DOF (pose + scale) alignment.
Since COLMAP only uses 2D image information, its poses have arbitrary scale;
hence we perform a 7-DOF alignment instead of 6-DOF to obtain metric scale.
After applying Kabsch-Umeyama algorithm we get 7-DOF transformation S in
Sim(3) Lie Group parameterized as:

S =

[
sRs ts
0 1

]
(4)

The camera poses from COLMAP can then be transformed to metric scale
pose:

wξcami =

[
RsRi sRsti + ts
0 1

]
(5)

where Ri and ti are the rotation and translation component of the camera poses
from COLMAP.

Since the ground truth virtual camera poses {ξ̂i|i = 1, ..., 150} are in object
frame, the transformation in Equation (5) will lead to camera poses in object
frame i.e. wξobj = I where I is the 4×4 identity matrix.

4.3 Poorly Textured Object Annotation

While the pipeline outlined in Sub-section 4.2 can accurately annotate texture-
rich objects, it will fail for poorly textured objects since correct feature matches
among the images cannot be established. To tackle this problem we develop
another annotation system shown in Figure 3 that can handle objects lacking
good textures which consists of following steps:

i. Camera pose estimation: Even when the object being scanned is devoid
of textures, our background has sufficient textures to allow successful camera
pose estimation. We therefore utilize the RGB-D version of ORB-SLAM2 [29]
to obtain the camera poses {wξcami

}. Since it uses depth information alongside
RGB, the poses are in metric scale.
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Fig. 3. Poorly Textured Object Annotation. Step 1 : Camera pose annotation
(+ dense scene reconstruction). Step 2 : Manual annotation of rough object pose where
a transparent projection of object model is superimposed over RGB image in 2D vi-
sualization (top) and 3D object is placed alongside dense scene reconstruction in 3D
visualization (bottom). Step 3 : Object pose is refined such that the object projection
overlaps with the ground truth mask (green).

.

ii. Manual annotation of rough object pose: We create an annotation
interface as shown in Step 2 of Figure 3 to estimate the rough object pose. To
facilitate the annotation, we reconstruct the 3D scene using the RGB-D images
and camera poses estimated in the previous step by employing Truncated Signed
Distance Function (TSDF) fusion [48]. The object pose wξobj is initialized to be
a fixed distance in front of the first camera and the z-axis is aligned with the
principle axis of the 3D scene found using Principal Component Analysis (PCA).
An annotator can then update the 3 translation and 3 Euler angle (roll-pitch-
yaw) components of the 6D object pose using keyboard to align the object model
with the scene. In addition to the 3D scene, we also show the projection of the
object model over an RGB image. The RGB image can be changed to verify the
consistency of the object pose over multiple views.

iii. Object pose refinement: We find that obtaining accurate object pose
through manual annotation is difficult, so we refine it further by aligning the
projection of the 3D object model with ground truth object masks in different
images. The ground truth object masks are obtained from Mask R-CNN [17].

Let wξobj be the rough object pose from manual annotation and wξcami
be

the pose of the ith camera. The camera-centric object pose is represented as
follows:

ξ = cami
ξobj = (wξcami

)−1 × wξobj (6)
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The transformation ξ ∈ SE (3) is used to differentiably render [32] the ob-
ject model onto the image of camera i to obtain the rendered object mask by
applying the projection model of Equation (3). Since direct optimization in the
manifold space SE (3) is not possible, we instead optimize the linearized incre-
ment of the manifold around ξ. This is a common technique in SLAM and Visual
Odometry [11,29].

Let δξ ∈ se(3) represent the linearized increment of ξ belonging to the Lie
algebra se(3) corresponding to Lie Group SE(3) [42]. The updated object pose
is given by:

ξ′ = ξ × exp(δξ) (7)

Here, exp represents the exponential map that transforms se(3) to SE(3). The
object pose w.r.t. world frame can also be updated by right multiplication of the
initial pose with exp(δξ).

We can optimize δξ in order to increase the overlap between the rendered
mask M at ξ′ and ground truth mask M̂ using least-squares minimization of the
mask loss:

Lmask = mean(∥M ⊖ M̂∥2) (8)

where ⊖ represents element-wise subtraction.

The optimization is performed using stochastic gradient descent for each
camera for 30 iterations in PyTorch [31] library. Since δξ ∈ se(3) cannot repre-
sent large changes in pose, we update the pose ξ ← ξ′ every 30 iterations and
relinearize δξ around the new ξ.

5 Dataset Statistics

Table 2 shows the category distribution of objects in our dataset along with the
method use to annotate the object (texture-rich vs poorly textured). Each cate-
gory in our dataset contains 32-40 objects, with average 37 objects per category.
A majority of the objects (∼71%) were annotated using texture-rich pipeline
which requires no user input. Table 3 shows the distribution of images over the
categories. We have on average 32K images for each category.

6 Evaluation

To verify the usefulness of our dataset, we train and evaluate state-of-the-art
multi-view 3D reconstruction baselines exclusively on our dataset. From each
object’s scene, 250 3-view tuple of images are randomly selected as multi-view
inputs. To ensure fair evaluation and avoid overfitting we split our dataset into
training, testing and validation sets in approximately 80%-10%-10% ratio. The
train-test-validation split is performed such that the distribution in each object
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Category Bottle Bowl Cleanser Cup
Eating

Box Plate
Toy Toy Toy

Total
Utensils Animal Car Fruit

Texture-rich
40 28 38 28 20 40 30 0 39 0 263

Annotation

Poorly Textured
0 11 0 12 14 0 6 32 0 33 108

Annotation

Total 40 39 38 40 34 40 36 32 39 33 371

Table 2. Annotation statistics.

Bottle Bowl Cleanser Cup
Eating

Box Plate
Toy Toy Toy

Total
Utensils Animal Car Fruit

37K 35K 32K 35K 27K 33K 32K 24K 37K 28K 319,966

Table 3. Image distribution over the categories. Number of images in each category
has been rounded to nearest 1000.

category is also 80%-10%-10%. Only the data in training set is used to fit the
baseline models while validation set is used to decide when to save the model
parameters during training (known as checkpointing). All the evaluation results
presented here are on the test set entirely held out during the training process.

6.1 Experiments

We evaluate our datasets on the multi-view 3D reconstruction baselines: Multi-
view Pixel2Mesh (MVP2M) [44], Pixel2Mesh++ (P2M++) [44], Multi-view
extension of Mesh R-CNN [14] (MV M-RCNN) provided by [38] and Mesh-
MVS [38]. We use the ‘Sphere-Init’ version of Mesh R-CNN and ‘Back-projected
depth’ version of MeshMVS.

MVP2M pools multi-view image features and uses it to deform an initial
ellipsoid to the desired shape. Pixel2Mesh++ deforms the mesh predicted by
MVP2M by taking the weighted sum of deformation hypothesis sampled near
the MVP2M mesh vertices. MV M-RCNN improves on MVP2M with a deeper
backbone, better training recipe and higher resolution initial shape.

MeshMVS first predicts depth images using Multi-view Stereo and uses the
depths to obtain a coarse shape which is deformed using similar techniques as
MVP2M and MV MR-CNN. To train the depth prediction network of Mesh-
MVS, we use depths rendered from the 3D object models since the recorded
depth can be inaccurate or altogether missing at close distances. We also eval-
uate the baseline MeshMVS (RGB-D) which uses ground truth depths instead
of predicted depths to obtain the coarse shape, essentially performing shape
completion instead of prediction.

All of the baselines require the object in the images to be segmented out
of the background. We do this by rendering the 2D image masks of 3D object
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Category F1@0.2 ↑ F1@0.3 ↑

MVP2M P2M++
MV

MeshMVS
MeshMVS

MVP2M P2M++
MV

MeshMVS
MeshMVS

M-RCNN (RGB-D) M-RCNN (RGB-D)

Bottle 63.14 72.49 60.74 57.29 95.05 79.66 85.50 75.34 67.36 98.57
Bowl 55.76 64.67 52.32 51.44 86.17 71.94 79.55 67.05 66.14 95.11
Box 42.70 48.79 45.83 56.23 81.17 60.44 65.53 63.24 70.89 89.46

Cleanser 47.15 57.82 48.10 46.59 91.48 63.17 73.32 61.10 56.34 96.26
Cup 48.80 54.49 49.93 61.47 84.49 63.03 67.05 65.46 72.66 93.74

Eating utensils 60.17 71.44 71.46 70.88 98.85 72.80 81.41 80.48 80.09 99.84
Plate 80.44 85.14 71.64 84.09 98.15 90.74 93.40 84.91 93.06 99.72

Toy Animals 36.89 46.49 49.76 49.84 89.17 52.10 61.27 64.38 62.62 96.31
Toy Car 38.90 48.06 43.00 32.02 66.58 56.77 66.34 60.86 45.37 84.80
Toy Fruit 27.26 38.61 43.89 40.48 74.01 44.88 57.20 63.25 53.36 88.83

All 51.94 60.42 54.48 56.63 87.65 67.34 74.41 69.25 68.29 94.69

Table 4. Quantitative comparison of state-of-the-art multi-view shape generation
methods on our dataset. We report F1-score at two thresholds on each semantic cate-
gory as well as over all categories. The baseline MeshMVS (RGB-D) is not considered
for highlighting the best performance since it uses ground truth depth as additional
input.

models using the annotated camera/object pose. Also, we transform the im-
ages to the size and intrinsics (Equation (2)) required by the baselines before
training/testing.

Metrics: We follow recent works [14,38,44] and choose F1-score (harmonic mean
of precision and recall) at different thresholds τ as our evaluation metric. Preci-
sion in this context is defined as the fraction of points in predicted model within
τ distance from the ground truth points while recall is the fraction of point in
ground truth model within τ distance from the predicted points.

We also report Chamfer Distance between a predicted model P and ground
truth model Q which measures the mean distance between the closest pairs of
points ΛP,Q = {(p, arg minq∥p− q∥) : p ∈ P, q ∈ Q} in the two models:

Lchamfer(P,Q) = |P |−1
∑

(p,q)∈ΛP,Q

||p− q||2 + |Q|−1
∑

(q,p)∈ΛQ,P

||q − p||2 (9)

Furthermore, we evaluate Normal Consistency (cosine similarity) between
the predicted and ground truth models:

Lnormal(P,Q) = |P |−1
∑

(p,q)∈ΛP,Q

|up · uq|+ |Q|−1
∑

(q,p)∈ΛQ,P

|uq · up|, (10)

where up and uq represent the unit normals of points p and q respectively.
10k points are uniformly sampled from predicted and ground truth meshes

for evaluation of these metrics. Following [12,14], we rescale the 3D models so
that the longest edge of the ground truth mesh bounding box has length 10.

Results: The quantitative comparison results of different baselines on our
dataset is presented in Table 4 and Table 5. Note that both training and testing
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Category Chamfer ↓ Normal ↑

MVP2M P2M++
MV

MeshMVS
MeshMVS

MVP2M P2M++
MV

MeshMVS
MeshMVS

M-RCNN (RGB-D) M-RCNN (RGB-D)

Bottle 0.17 0.14 0.57 3.21 0.03 0.92 0.93 0.87 0.83 0.95
Bowl 0.36 0.30 3.79 6.77 0.05 0.91 0.92 0.86 0.83 0.94
Box 0.36 0.32 0.52 0.75 0.12 0.89 0.90 0.87 0.87 0.93

Cleanser 0.34 0.24 3.33 14.06 0.04 0.88 0.91 0.80 0.75 0.95
Cup 0.58 0.54 3.42 4.22 0.06 0.85 0.86 0.83 0.84 0.93

Eating utensils 0.38 0.29 4.79 1.29 0.01 0.77 0.81 0.72 0.74 0.89
Plate 0.12 0.11 0.16 0.09 0.02 0.95 0.95 0.91 0.92 0.96

Toy Animals 0.57 0.46 0.62 4.29 0.04 0.61 0.62 0.61 0.62 0.77
Toy Car 0.41 0.32 15.17 40.82 0.11 0.71 0.74 0.69 0.63 0.76
Toy Fruit 0.82 0.72 8.44 8.45 0.10 0.94 0.94 0.89 0.82 0.97

All 0.38 0.32 3.43 6.97 0.06 0.86 0.87 0.82 0.80 0.91

Table 5. Quantitative comparison of state-of-the-art multi-view shape generation
methods on our dataset. We report Chamfer Distance and Normal Consistency on each
semantic category as well as over all categories. The baseline MeshMVS (RGB-D) is
not considered for highlighting the best performance since it uses ground truth depth
as additional input.

set contains objects from all categories, but test F1-score on individual categories
as well as over all categories are reported here. Figure 4 visualizes the shapes
generated by different methods for qualitative evaluation.

We can see that overall Pixel2Mesh++ performs the best (barring MeshMVS
RGB-D). This is contrary to the results on ShapeNet reported in [38] where
MeshMVS performs the best. This can be attributed to the high depth prediction
error of MeshMVS (average depth error is ∼6% of the total depth range). When
predicted depth is replaced with ground truth depth, we indeed see a significant
improvement in the performance of MeshMVS indicating that depth prediction
is the main bottleneck in its performance.

Single category training: We compare the difference in the performance when
each category is trained and evaluated separately. In this case, there will be a
different set of model parameters for each category. For these experiments we
sample 500 3-view images as inputs from each scene instead of 250. Table 6 shows
the results for MV M-RCNN baseline when each category is trained separately
versus when all are trained together. We see that on average the performance
is very similar, showing that 3D reconstruction models can learn to generalize
over multiple categories in our dataset.

7 Discussion

The results presented in Tables 4, 5 and 6 as well as the qualitative evaluation
of Figure 4 show that the problem of multi-view 3D reconstruction is far from
solved. While works like Pixel2Mesh++, Mesh R-CNN and MeshMVS have of-
fered promising avenues for advancement of the state-of-the-art, more research
is still needed in this direction. We hope that our dataset can serve as a challeng-
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Fig. 4. Qualitative Evaluation. Left to right: An input image, ground truth,
MVP2M, P2M++, MV M-RCNN, MeshMVS, MeshMVS (RGB-D)

.

ing benchmark for this problem; aiding and inspiring future work in 3D shape
generation.

8 Conclusion

We present a large scale dataset of 3D models and their real world multi-view
images. Two methods were developed for annotation of the dataset which can
provide high accuracy camera and object poses. Experiments show that our
dataset can be used for training and evaluating multi-view 3D reconstruction
methods, something that has been lacking in existing real world datasets.
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Category F1@0.2 ↑ F1@0.3 ↑ Chamfer ↓ Normal ↑
Single All Single All Single All Single All

Bottle 51.45 60.74 68.03 75.34 1.59 0.57 0.88 0.87
Bowl 51.33 52.32 66.88 67.05 0.76 3.79 0.88 0.86
Box 55.95 45.83 71.95 63.24 0.79 0.52 0.87 0.87

Cleanser 56.89 48.10 75.03 61.10 0.49 3.33 0.88 0.80
Cup 54.23 49.93 68.24 65.46 0.59 3.42 0.86 0.83

Eating utensils 69.08 71.46 77.43 80.48 1.19 4.79 0.77 0.72
Plate 68.11 71.64 82.18 84.91 0.77 0.16 0.92 0.91

Toy Animals 54.40 49.76 66.25 64.38 1.62 0.62 0.67 0.61
Toy Car 33.08 43.00 47.83 60.86 3.85 15.17 0.69 0.69
Toy Fruit 38.68 43.89 52.46 63.25 29.84 8.44 0.77 0.89

Mean 53.32 53.67 67.63 68.61 4.15 4.08 0.81 0.80

Table 6. Single Vs All Category Training evaluation on MV M-RCNN baseline.
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