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(a) SteReFo [2019] (b) BokehMe [2022a] (c) MPIB [2022b] (d) Dr.Bokeh (ours)

Fig. 1. By being occlusion-aware, Dr.Bokeh renders realistic bokeh effects directly from the bokeh rendering process without any post-processing. Compared
with the scattering/gathering-based method SteReFo or learning-based method BokehMe, Dr.Bokeh renders natural partial occlusion (see red parts). MPIB
learns to render a partial occlusion effect but breaks on unseen data (see blue parts). Dr.Bokeh is more robust than learning-based methods given the same
inputs because the rendering process is not learned. Best viewed by zooming in.

Bokeh is widely used in photography to draw attention to the subject while
effectively isolating distractions in the background. Computational methods
simulate bokeh effects without relying on a physical camera lens. However,
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in the realm of digital bokeh synthesis, the two main challenges for bokeh
synthesis are color bleeding and partial occlusion at object boundaries. Our
primary goal is to overcome these two major challenges using physics prin-
ciples that define bokeh formation. To achieve this, we propose a novel and
accurate filtering-based bokeh rendering equation and a physically-based
occlusion-aware bokeh renderer, dubbed Dr.Bokeh, which addresses the
aforementioned challenges during the rendering stage without the need of
post-processing or data-driven approaches. Our rendering algorithm first pre-
processes the input RGBD to obtain a layered scene representation. Dr.Bokeh
then takes the layered representation and user-defined lens parameters to
render photo-realistic lens blur. By softening non-differentiable operations,
we make Dr.Bokeh differentiable such that it can be plugged into a machine-
learning framework. We perform quantitative and qualitative evaluations on
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synthetic and real-world images to validate the effectiveness of the render-
ing quality and the differentiability of our method. We show Dr.Bokeh not
only outperforms state-of-the-art bokeh rendering algorithms in terms of
photo-realism but also improves the depth quality from depth-from-defocus.

CCS Concepts: • Computing methodologies→ Computational photog-
raphy; Image-based rendering.

Additional Key Words and Phrases: Computational photography, Depth-of-
field, Differentiable rendering

ACM Reference Format:
Yichen Sheng, Zixun Yu, Lu Ling, Zhiwen Cao, Cecilia Zhang, Xin Lu,
Ke Xian, Haiting Lin, and Bedrich Benes. 2023. Dr.Bokeh: DiffeRentiable
Occlusion-aware Bokeh Rendering. In . ACM, New York, NY, USA, 14 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Bokeh is a physical effect produced by a camera lens, and it usually
refers to the shape and quality of out-of-focus areas in an image.
Such an effect can highlight the in-focus subject and enhance the
aesthetic quality of the image. Various computational methods have
been developed to create the bokeh effect from an all-in-focus photo,
and they can be divided into classical and learning-based methods.
Classical bokeh rendering methods take the all-in-focus RGB image
and its depth map as inputs. Image filtering methods, like scatter-
ing and gathering operations, are commonly used to synthesize the
bokeh effect. However, they often lead to the color bleeding problem
(see Fig. 2 (a)) on object boundaries because the filtering-based meth-
ods fail to handle the boundary correctly. Other methods [Kraus
and Strengert 2007; Wadhwa et al. 2018; Zhang et al. 2019a] split
the image into layers based on depth discontinuity, render bokeh
effects on each layer and carefully blend the rendered layers to fix
the color bleeding problem. Still, they cannot represent continuous
lens blur effects due to the discretization of layers. The learning-
based methods [Peng et al. 2022a; Wang et al. 2018; Xiao et al. 2018]
compute bokeh by training on artifact-free data. However, all the
aforementioned methods fail to render the partial occlusion effects
naturally (see Fig. 2 (c)) when the background is in-focus as the
occluded background geometries contribute to the boundary partial
occlusion regions.

As bokeh is a physical phenomenon, we aim to fundamentally ad-
dress the color bleeding and rendering partial occlusion challenges
from the rendering process. We observe that the image filtering-
based methods do not strictly follow the physics law, which leads
to color bleeding and unnatural partial occlusion. First, from the
light transportation perspective, the radiance from the background
should be fully occluded by the foreground object when the fore-
ground object is in focus (see Sec. 3.2). Failure to model this in
rendering leads to the color-bleeding artifact. Second, in the back-
ground in-focus case, the foreground object only partially occludes
the radiance behind the boundaries. Missing this modeling leads
to the unnatural partial occlusion problem. The first case shows
the boundary occlusion "hard" occlude the radiance behind, while
the second case shows the boundary occlusion "soft" occlude the
radiance behind. No matter which case, we find that the occlusion
is the critical factor not addressed by image filtering methods. How-
ever, it is crucial in addressing color bleeding and rendering partial
occlusion effects for realistic bokeh rendering.

We introduce Dr.Bokeh, a novel differentiable (Dr.) bokeh ren-
dering algorithm that correctly handles boundary occlusion in the
image-based filtering-based rendering process, is free of the color
bleeding artifacts, and renders natural partial occlusion effects (see
Fig. 2 (b) and (d)). Dr.Bokeh does not need to be trained and can
directly replace existing bokeh renderer in existing pipelines. Al-
though the rendering process is not learning-based, the input in-
formation for Dr.Bokeh, e.g., depth and inpainted background, is
needed and commonly acquired by learning-based methods. To sup-
port the data-driven framework, we soften the non-differentiable
operations in Dr.Bokeh and make it fully differentiable so that
Dr.Bokeh can be directly used in data-driven pipelines for end-to-
end training. We validate the rendering quality and differentiability
of Dr.Bokeh by extensive quantitative and qualitative evaluations
on synthetic and real-world datasets. An example in Fig. 2 shows
how Dr.Bokeh correctly handles the color bleeding problem and
renders boundary partial occlusion effects. By correctly handling
the boundary occlusion, Dr.Bokeh can help the depth-from-defocus
community by improving the depth quality as Dr.Bokeh follows the
physics law.
The main contributions of this work can be summarized as fol-

lows: (1) Dr.Bokeh, a novel occlusion-aware filtering-based bokeh
renderer by introducing geometric occlusion terms. It addresses the
color bleeding problem and renders the natural partial-occlusion
effects directly in the rendering stage without training. (2) A differen-
tiable implementation allows plug-and-play bokeh rendering in data-
driven pipelines. A carefully designed loss that helps the Dr.Bokeh
address the depth ambiguity problem in depth-from-defocus prob-
lem.

2 RELATED WORK
Our work is closely related to lens blur rendering, differentiable
rendering, and image inpainting.

2.1 Lens blur
Existing methods of modeling lens blur can be classified into 3D
rendering and image space rendering.
Lens blur in 3D: Classical graphics rendering [Pharr et al. 2016;

Potmesil and Chakravarty 1981; Rokita 1996] creates the optical
lens blur through ray tracing of the 3D scene from a configured
camera setting with a lens (e.g., a thin lens model). The rendered
images naturally contain optical bokeh that is physically accurate
to how the camera lens is modeled. Real-time methods [Franke
et al. 2018; Göransson and Karlsson 2007; Kass et al. 2006; Scheuer-
mann et al. 2004] for efficient DOF rendering have been explored.
Different point spread functions [Lee et al. 2009, 2010, 2008; Lei
and Hughes 2013; Wu et al. 2013; Xu et al. 2014; Yan et al. 2015]
on layered representations are proposed to render the lens blur in
hardware rendering pipelines efficiently. Detailed effects, like lens
blur on view-dependent surfaces [Lee et al. 2009] or lens aberration
effects [Lee et al. 2010; Wu et al. 2013], or challenging dynamic
scenes [Jeong et al. 2020] can also be efficiently synthesized. Light
field [Vaidyanathan et al. 2015] or multiview images [Liu and Rokne
2016] render natural partial occlusion effects.
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(a). Scattering/Gathering (b). Dr.Bokeh (c). Scattering/Gathering (d). Dr.Bokeh

Fig. 2. Color bleeding and partial occlusion: Color bleeding is a common artifact meaning the pixels in the out-of-focus scatter to in-focus regions. Partial
occlusion is a semi-transparent effect on the out-of-focus boundary regions, mostly in the background in-focus case. (a). naïve scattering/gathering suffers
from the color bleeding problem. (b). Dr.Bokeh solves this issue directly in the rendering process via correctly handling on-focal occlusion. (c). Existing
scattering/gathering method does not consider occluded pixels, leading to an unnatural partial occlusion effect. (d). Dr.Bokeh addresses this challenge via
inpainting occluded pixels and correctly handling non-focal occlusion. Best viewed by zoom-in.

However, a 3D scene is not always available, and it is compu-
tationally expensive to render a fully-converged rendering as the
camera sampling space increases.

Image-space lens blur: Recently, lens blur has been more efficiently
rendered in the image space by applying a depth-dependent blur
to in-focus pixels. Classical methods [Kraus and Strengert 2007;
Wadhwa et al. 2018; Yang et al. 2016; Zhang et al. 2019a] use an
RGBD image and create shallow depth-of-field effects using kernel
scattering or gathering operations. Naïve scattering or gathering-
based methods result in color bleed artifacts due to inadequate
occlusion handling. Wadhwa et al.[2018], Busam et al.[2019] and
Zhang et al.[2019b] propose a fix to the boundary errors by carefully
blending the blurred layers. Approached from a different angle,
our method delves into the fundamentals of the light propagation
process. It proposes a better light transport simulation that naturally
avoids color bleeding and produces realistic partial occlusion effects.
Existing learning-based methods primarily leverage light field

rendering and neural rendering. Light-field based lens blur render-
ing [Kalantari et al. 2016; Srinivasan et al. 2018] predicts scene depth
and constructs the 4D light field by warping the all-in-focus image
using the depth. The shallow depth-of-field image can be approxi-
mated by aggregating the light-field images. However, this approach
is memory intensive as a high-quality lens blur effect requires a
large set of light field images. Another class of methods leverages
the differentiability of the gathering operation to learn a layered
representation and render defocus blur [Busam et al. 2019; Luo et al.
2020; Srinivasan et al. 2018]. These approaches assume each layer
has a single depth value and apply a fixed blur kernel per layer.
Other learning-based methods [Ignatov et al. 2020a; Nalbach et al.
2017; Peng et al. 2022b; Wang et al. 2018; Xiao et al. 2018] directly
produce a defocused image using deep neural networks. Recent
work of Peng et al. [2022a] first uses a classical method to render
lens blur and then a neural network to fix the artifacts. Although
the neural network corrects color bleeding, the artifacts and cor-
rections are bounded by the training data. Our physically-based

occlusion-aware rendering method can directly render realistically
defocused images without any post-processing fix (see Fig. 1).
Although these methods provide background-focused lens blur

rendering, the lack of explicit prediction of the occluded back-
grounds leads to unnatural partial occlusion effects (Fig. 1). A recent
work of Peng et al. [2022b] proposes to explicitly inpaint the oc-
cluded background and apply adaptive gathering operations on the
multiplane image (MPI) [Tucker and Snavely 2020] layers to make
the network learn shallow depth-of-field rendering on multiple focal
planes. Due to the generalization limitation of the learning process
and the discretization of layered depth, small inconsistent artifacts
between two depth layers lead to a noticeable “leaky” artifact (see
Fig. 1). Our method simulates smooth lens blur based on continuous
depth. Our blur rendering process does not need to be trained, which
makes Dr.Bokeh more robust than learning-based methods. Also,
Dr.Bokeh is differentiable and can be directly plugged into classical
lens blur or data-driven pipelines.

2.2 Differentiable Rendering
Differentiable rendering makes the rendering process suitable for
inverse problems [Jakob et al. 2022; Li et al. 2018; Liu et al. 2019;
Zhang et al. 2020, 2019c; Zhao et al. 2020]. Instead of handcrafting
the rendering equations, others [Eslami et al. 2018; Lombardi et al.
2019; Sheng et al. 2022, 2021, 2023] propose to leverage the neural
renderer directly. We refer readers for more details to [Kato et al.
2020; Tewari et al. 2020].
Existing methods for lens blur rendering [Busam et al. 2019;

Kaneko 2021; Peng et al. 2022b; Srinivasan et al. 2018] rely on the
light field or adaptive gathering operators on discrete depth layers
to render blur results. As the process is fully differentiable, depth
maps can be obtained via blur supervision. The estimated depth
is derived from discrete layers, leading to quantization errors and
consequently lacking sufficient depth details.
Our method can directly replace the blur rendering modules in

those methods and output continuous depth. Gur and Wolf [2019]
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Fig. 3. Occlusion-based bokeh rendering: The left image shows that
the red and blue objects are projected to the image plane for a pinhole
camera. Each pixel in the image space has a corresponding 3D point under
the pinhole camera assumption. The right image shows that the point
𝑥 + Δ𝑥 (originally occluded by 𝑥 in pinhole camera view) will be visible
and contributes to the pixel where 𝑥 was projected from the scattering
perspective. The cone regions of all the colors visualize the regions that
𝑥 + Δ𝑥 can cover. 𝑤 is the percentage of energy for 𝑥 + Δ𝑥 to be scattered
to pixel 𝑥 .𝑂 is the percentage of energy for 𝑥 + Δ𝑥 to be scattered to pixel
𝑥 considering the occlusion by the front red object.

propose a differentiable scattering-based bokeh rendering layer with
a Gaussian blur kernel to learn continuous depth estimation. The
Gaussian blur kernel is not physically accurate and does not consider
the geometry occlusion, leading to inaccurate depth and artifacts
on boundaries. Dr.Bokeh follows physics laws and achieves better
depth estimation results.

2.3 Image Inpainting
Our work is related to image inpainting in terms of how occluded
pixels are handled. Compared with traditional methods [Criminisi
et al. 2003; Hays and Efros 2007], CNN-based methods [Iizuka et al.
2017; Pathak et al. 2016; Yang et al. 2017] supervised by a GAN
loss [Goodfellow et al. 2020] generate plausible contents using the
spatial context. Conventional convolution and different network
architectures [Liu et al. 2020; Nazeri et al. 2019; Zhu et al. 2021] have
been extended by different convolutions [Liu et al. 2018; Suvorov
et al. 2022; Yu et al. 2019] to deal with free-form inpainting mask.

We directly utilize the off-the-shelf inpainting method [Suvorov
et al. 2022] to fill in occluded contents.

3 IMAGE SPACE BOKEH RENDERING
We introduce an occlusion-aware filtering-based bokeh rendering
method, taking into account of occlusion that is missing in point
splatting-based methods (scattering or gathering) (Sec. 3.1). An
accurate occlusion calculation requires a full 3D scene, either given
or reconstructed, which is rarely available in consumer photography.
Instead, we approach the occlusion term from a 2D image space,
specifically targeting bokeh rendering. We base our modeling on
different types of occlusions (Sec. 3.2). Then we propose our layered
bokeh rendering equation by exactly modeling the in-focal occlusion
and approximating the non-focal occlusion, which is fundamentally
difficult to retrieve (Sec. 3.3).

풙

Image plane Focal plane

Occlusion region

풙 풙

Image plane Focal plane

푰(풙 + ∆풙)

푰(풙 + ∆풙)

Objects

Fig. 4. Two types of occlusion: In the occlusion by the focal point (left),
the parts behind the red visible object (although as small as a pixel) should
not scatter to the position 𝑥 in the image plane during the bokeh rendering
process. In the occlusion by non-focal objects (right) like the green stick,
some objects originally occluded by the green objects under the pinhole
camera view can contribute to the position 𝑥 in the image plane.

3.1 Occlusion-aware Bokeh Rendering
The filtering-based bokeh rendering method with the occlusion term
(see Fig. 3) has the form:

𝐵(𝑥) =
∑︁

𝑦∈Ω (𝑥 )
𝐼 (𝑦)𝑤 (𝑦, 𝑥)𝑂 (𝑦, 𝑥), (1)

where 𝐵(𝑥) is the pixel value for rendered bokeh image, Ω(𝑥) is the
set of all neighborhood pixels of 𝑥 contributing to the defocus blur,
𝐼 (𝑦) denotes the in-focus pixel values of 𝑦, 𝑤 (𝑦, 𝑥) is the energy
weight term for pixel 𝑦 to scatter to 𝑥 , and 𝑂 (𝑦, 𝑥) is the geometry
occlusion term for pixel 𝑦 to scatter to 𝑥 .

Existing methods [Busam et al. 2019; Peng et al. 2022a; Yang et al.
2016] often denote 𝐼 as the all-in-focus image. In the generalized
rendering equation that we propose, 𝐼 (𝑦) includes not only the visi-
ble neighborhood pixels but also the occluded pixels that contribute
to 𝐵(𝑥) (see Fig. 3).

The energy term 0 ≤ 𝑤 ≤ 1 is a unitless value that represents the
fraction of energy 𝐼 (𝑦) scattered to 𝐵(𝑥). The𝑤 term is determined
jointly by the energy distribution of the scattering region 𝑆 and the
lens shape𝐾 as described below. To compute the energy distribution
of the scattering region 𝑆 , we first calculate the blur kernel radius 𝑘
at depth 𝑧𝑝 using Lensmaker’s formula:

𝑘 = 𝛼 𝐿 𝑓

����� 1𝑧𝑝 − 1
𝑧𝑓

����� , (2)

where 𝛼 is a configurable scaling factor, 𝐿 is the lens size, 𝑓 is the
focal length, and 𝑧𝑓 is the scene depth at focal length. Existing
gathering-based methods [Busam et al. 2019; Wadhwa et al. 2018]
often discretize the scene into layers and apply convolution with
blur kernels whose radius is computed with Eqn. (2). If | |𝑥 −𝑦 | | ≥ 𝑘 ,
𝑤 (𝑦) = 0, meaning there is no contribution from the pixel 𝐼 (𝑦).
These methods make different assumptions on the distribution
for pixels with | |𝑥 − 𝑦 | | ≤ 𝑘 : uniform distribution [Wadhwa et al.
2018; Yang et al. 2016], distance-based [Wadhwa et al. 2018], radial-
based [Busam et al. 2019] have been used to compute the energy
term 𝑤 . The lens shape is another factor that affects 𝑤 . Instead
of using a circular disk kernel [Wadhwa et al. 2018], stylized lens
shapes like a star-, heart-, or triangular-shaped kernels have been
used for this term [Yang et al. 2016].
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𝒙
𝑪𝒐𝑪(𝒙)

Image plane Image plane

𝒙

Fig. 5. Non-focal occlusion: Given an image plane, a thin lens and a
rectangular-shaped pink object in the scene, the left image shows its side
view. The right image is the local region for the projected pixel position for 𝑥
in the image plane. The region covered by the blue circle visualizes the CoC
region. The pink regions are the rectangular-shaped object. The inter-layer
occlusion is computed by integrating the occluders over the CoC regions
for pixel 𝑥 and is used to occlude the contributions of layers behind.

Finally, the newly introduced occlusion term 0 ≤ 𝑂 (𝑥,𝑦) ≤ 1
describes whether 𝐼 (𝑦) is occludedwhen it scatters to pixel 𝑥 . The oc-
clusion term is critical in bokeh rendering, especially when handling
boundary regions, which are sensitive to color bleeding artifacts
caused by blending pixels from incorrect depth layers. As shown
in Fig. 4, ignoring the occlusion term leads to boundary artifacts
when focusing on the foreground. It also leads to unnatural par-
tial occlusion artifacts when focusing on the background. Existing
methods [Busam et al. 2019; Wadhwa et al. 2018] address the color
bleeding problem by pasting back the segmented in-focus object to
the final rendered image to override the error regions or using a neu-
ral network [Peng et al. 2022a] to correct the errors. These methods,
however, still fail to model natural partial occlusion effects in the
challenging cases of focusing on the background. Peng et al. [2022b]
uses a data-driven method to learn to render realistic partial oc-
clusion. Similar to any deep learning methods, Peng et al. [2022b]
is not robust on unseen data and may break due to generalization
issues. We propose to address both challenges fundamentally from
the rendering process without any post-processing or training of a
neural network.

3.2 Occlusion Types
We classify the occlusion into two types (see Fig. 4): (1) on-focal
occlusion: the occluder is on the focal plane when it blocks all
the contributions from behind, and (2) non-focal occlusion: the
occluder is not on the focal plane, and only block a portion of rays.
Note that the objects invisible to the camera in the all-in-focus
image may still contribute to the final lens blur result (Fig. 4 in
the thin-lens camera cases). As shown in Fig. 2, correctly handling
on-focal occlusionmakes Dr.Bokeh free of color bleeding artifacts,
and correctly handling the non-focal occlusion helps Dr.Bokeh
render natural partial occlusion effects.
The first type of occlusion is straightforward and explains why

some pixels within the scattering region should not scatter to the
foreground when the foreground is in-focus. The second type of
occlusion needs to be modeled with more care. When the occluder
is not at the focal plane (Fig. 4), the occluded points, which are
invisible in the all-in-focus image, become partially visible, while the

occluder becomes semitransparent around its blurry boundary. This
type of occlusion requires correctly modeling the scene geometries,
the lens parameters, and the relative distances between two pixels
in the image plane, which is a complex function to model in the
image space. However, under the planar surface assumption, we
can approximate the occlusion in the way shown in Fig. 5. If we
assume the scene is composed of planes aligned with the camera
view, similar to the pink rectangle in Fig. 5, all the points on the
pink rectangle are on the same focal plane. They block the rays
coming from behind. In this special case, the percentage of blocked
rays by point 𝑥 and its neighbors equals the percentage of pixels
the object covers in the CoC region, as shown in Fig. 5. Therefore,
by searching around the circle of confusion (CoC) region of 𝑥 , we
can approximate the percentage of rays coming from behind that
will be occluded by the pink object. In practice, Dr.Bokeh applies
the aforementioned method to approximate non-focal occlusion
computation for non-planar layers. Experiments show that our non-
focal occlusion approximation still renders realistic bokeh effects.

3.3 Layered Occlusion-aware Bokeh Rendering Equation
Given the observations in Sec. 3.2, we propose a layered occlusion-
aware bokeh rendering equation:

𝐵𝑙 (𝑥) =
𝑛∑︁
𝑙=1

𝑉𝑙 (𝑥)Π𝑙−1
𝑘=1 (1−𝑉𝑘 (𝑥))

∑
𝑦∈Ω 𝐼𝑙 (𝑦)𝑤𝑙 (𝑦, 𝑥)𝑂𝑙 (𝑦, 𝑥)∑

𝑦∈Ω𝑤𝑙 (𝑦, 𝑥)𝑂𝑙 (𝑦, 𝑥)
, (3)

where 𝑂𝑙 (𝑦) and 𝑉𝑙 (𝑥) are the in-layer occlusion and inter-layer
occlusion, 𝑛 is the total amount of layers. The layered occlusion-
aware bokeh rendering equation Eqn. (3) computes the scattering
results with in-layer occlusion for each layer, then blends the layers
with inter-layer occlusion terms from front to back according to the
inter-layer occlusion. All the blending weights sum up to one to en-
sure energy conservation. This new rendering method corrects the
classical scattering-/gathering-based methods by enabling spatially
varying defocus blur with continuous change of blur radius and
handles correctly both in-layer occlusion and inter-layer occlusion
at the discontinuity boundaries.
Without entire 3D scene geometries, it is challenging to recon-

struct all occluded layers given only single image input. We propose
to approximate the layer representation by peeling the scene at an
object level, i.e., one layer is defined by pixels that belong to the
same object.
The in-layer occlusion term 𝑂𝑙 (𝑦) ensures each layer has the

correct on-focal occlusion to avoid any color bleeding problem. The
inter-layer occlusion term 𝑉𝑙 (𝑥) ensures the correct handling of
non-focal occlusion and blending of different layers, resulting in
natural partial occlusion effects. In detail, the𝑉𝑙 (𝑥) term decides the
occlusion percentage of the radiance behind and also the amount of
energy coming from layer 𝑙 . In Fig. 5, 𝑉𝑙 (𝑥) for the pink rectangle
layer reweights the energy from the rectangle layer scattering and
the energy coming from layers behind such that their coefficients
sum up to be one, which ensures energy conservation.
The on-focal occlusion is denoted by 𝑂𝑙 (𝑦, 𝑥) ∈ {0, 1}, a unit-

less binary value that describes the in-layer occlusion between the
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neighborhood pixels 𝑦 and 𝑥 :

𝑂𝑙 (𝑦, 𝑥) =
{
0, if 𝑑𝑥 = 0 and 𝑑𝑥 > 𝑑𝑦

1, otherwise
(4)

where𝑑𝑥 is the relative disparity (inverse of depth):𝑑𝑥 = 1/𝑧𝑥−1/𝑧𝑓 .
As shown in Sec. 3.2, the in-layer occlusion only happens when the
point corresponding to pixel 𝑥 in 3D is on the focal plane and the
corresponding 3D point of neighborhood pixel 𝑥 + 𝑑𝑥 is behind
the 3D point of the pixel 𝑥 . In practice, we model 𝑂𝑙 (𝑦, 𝑥) as a
probability instead of a binary value. There are several advantages:
1) The continuous value 𝑂𝑙 (𝑦, 𝑥) better models the real physics
as points not exactly on the focal plane but near the focal plane
should partially occlude some amount of radiance from behind; 2)
The probability is a "soft" value that models a smooth boundary
occlusion. 3) the softened 𝑂𝑙 (𝑦, 𝑥) is differentiable. The equation
details are discussed in Sec. 4.1

Thenon-focal occlusion is denoted by𝑉𝑙 (𝑥) ∈ [0, 1] is a unitless
value that describes the inter-layer visibility between layer 𝑙 and all
the layers behind:

𝑉𝑙 (𝑥) =
1
𝐴Ω′

∑︁
𝑦∈Ω′

𝑎𝑙 (𝑦), (5)

where Ω′ is the set of all the in-layer neighborhood pixels within the
circle of confusion (CoC) region for 𝑥 , 𝐴Ω′ is the area of Ω′ and 𝑎𝑙
is the alpha value for the layer 𝑙 . The CoC region can be computed
by Eqn. (2).
The energy term𝑤𝑙 (𝑦, 𝑥) for the pixel 𝑦 in layer 𝑙 is:

𝑤𝑙 (𝑦, 𝑥) =
𝑆𝑙 (𝑦, 𝑥)𝐾 (𝑦)𝑎(𝑦)

𝐴𝑙 (𝑦)
=
1(∥𝑦 − 𝑥 ∥ < 𝑟 )1(∥𝑦 − 𝑥 ∥ < 𝑘)𝑎(𝑦)

𝜋𝑟2
,

(6)
where 𝑎(𝑦) is the alpha value of 𝑦, 𝑟 is the scatter radius, 𝑘 is the
lens size, and𝐴𝑙 (𝑦) is the area of the CoC of𝑦. The norm is L2-norm
measuring the Euclidean distance, and 𝑤 is similar to [Lee et al.
2008] as it considers the energy attenuation for different scatter
radius 𝑟 . But we further model the lens shape term 𝐾 to support
stylized lens shape. By default, 𝐾 is a perfect circle as described in
Eqn. (6).

4 DIFFERENTIABLE BOKEH RENDERING
Differentiability would allow the bokeh renderer to fit into any
neural network for end-to-end training. However, the occlusion-
aware bokeh rendering method in Sec. 3.3 is not differentiable. We
introduce a fully differentiable bokeh rendering method in Sec. 4.1,
discuss the derivative details in Sec. 4.2 and show an application
that benefits from it: depth from defocus cues in Sec. 4.3.

4.1 Soften the Non-differentiable Operations
The occlusion-aware bokeh equation Eqn. (1) includes two non-
differentiable terms: the occlusion term𝑂 and the scattering term 𝑆𝑙 .
The terms are non-differentiable as it involves non-differentiable
operations similar to step function or Dirac delta function as shown
in Fig. 6. We approximate those non-differentiable terms with dif-
ferentiable operations, e.g., a step function can be approximated
with a soft-step function. The occlusion term 𝑂 is the Dirac delta

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

0.00
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soft step

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
0.00

0.25
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0.75

1.00

Dirac delta

soft delta

Fig. 6. Softening of the two non-differentiable operations: Softening
of the non-differentiable step function (left). Note we shift the soft-step
function to the right to make sure that for 𝑥 = 0, 𝑦 is close to zero. The right
image shows softening of the non-differentiable delta function.

function 𝛿𝑥 with a value infinity at zero and zero everywhere else.
We replace the 𝑂𝑙 by:

𝑂𝑙 (𝑦, 𝑥) = 1 − 𝑒𝑥𝑝 (−3𝑑2𝑥 )
(
1
2
tanh(10(𝑑𝑦 − 𝑑𝑥 − 0.1)) − 1

2

)
. (7)

The scattering term 𝑆𝑙 is a step function(if the neighborhood 𝑥 +Δ𝑥
can scatter to 𝑥 then is one, otherwise zero) we replace it by a
differentiable function:

𝑆𝑙 (𝑦, 𝑥) = 1/
(
1 + 10 exp

(
−3(𝛼 |𝑑𝑦 | + 1 − ∥𝑑𝑦 − 𝑑𝑥 ∥22)

))
, (8)

where 𝛼 is a camera parameter controlling the blur radius. The
coefficients in Eqns. (4.1, 4.1) are empirically selected to fit the
original function and are reasonable to the bokeh rendering process.

4.2 Derivatives of the Bokeh Rendering Method
The current machine learning frameworks like Pytorch [Paszke et al.
2019] provide automatic differentiation mechanisms for basic mathe-
matical operations. Dr.Bokeh cannot directly be implemented using
provided auto-differentiable layers and need custom forward/back-
ward calculation in the CUDA layer. Also, the derivatives, especially
w.r.t. disparity, are complicated as most of the terms in the 𝐵(𝑥)
involve disparity. So we derive the derivatives in this section.
For simplicity, we only derive the partial derivative for a single

layer, which is enough for the implementation. Multiple layers can
be easily derived based on the per-layer partial derivatives. The
partial derivatives of each RGB channel are similar. We use 𝐼 to
denote the three channels. According to the chain rule, the partial
derivatives with respect to RGB 𝐼 , depth 𝑑 , and alpha 𝑎 are:

𝜕𝐿

𝜕𝐵(𝑥)
𝜕𝐵(𝑥)
𝜕𝐼 (𝑥) = 𝑎(𝑥)

∑︁
𝑦∈Ω (𝑥 )

𝜕𝐿
𝜕𝐵 (𝑦)𝑤 (𝑥,𝑦)𝑂 (𝑥,𝑦)∑
𝑦′∈Ω (𝑦)𝑤 (𝑦′,𝑦)𝑂 (𝑦′,𝑦)

. (9)

The partial derivative for 𝑑 is:

𝜕𝐿

𝜕𝐵(𝑥)
𝜕𝐵(𝑥)
𝜕𝑑 (𝑥) =

∑︁
𝑦∈Ω

𝜕𝐿

𝜕𝐵(𝑦)
𝐼 (𝑦) (𝑊 (𝑦, 𝑥) −𝑤 (𝑦, 𝑥)𝑂 (𝑦, 𝑥))

𝑊 (𝑦, 𝑥)2

·
(
𝜕𝑤 (𝑦, 𝑥)
𝜕𝑑 (𝑥) 𝑂 (𝑦, 𝑥) + 𝜕𝑂 (𝑦, 𝑥)

𝜕𝑑 (𝑥) 𝑤 (𝑦, 𝑥)
)
. (10)

The partial derivative for 𝑎 is:
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푰 풙 + ∆풙 풘 풙 + ∆풙 푶 풙 + ∆풙
흏푳

흏푩(풙)

풙 풙

Fig. 7. Per-pixel loss is not enough: In the left image, neighborhood pixels
jointly contribute to 𝑥 . There exists a case that the 𝑥 is correct, i.e. the sum
of the contributions is correct, but all the neighborhood values are totally
wrong, e.g., neighborhood values are shuffled. In this case, there is no loss for
pixel 𝑥 . Then there is no backward gradient for the neighborhood pixels as
shown in the right image, even though the neighborhood pixels are wrong.

𝜕𝐿

𝜕𝐵(𝑥)
𝜕𝐵(𝑥)
𝜕𝑎(𝑥) =

∑︁
𝑦∈Ω (𝑥 )

𝜕𝐿

𝜕𝐵(𝑦) 𝐼 (𝑦)𝑂 (𝑥,𝑦) 𝜕𝑤 (𝑥,𝑦)
𝜕𝑎(𝑥)

· 𝑊 (𝑦) −𝑤 (𝑥,𝑦)𝑂 (𝑥,𝑦)
𝑊 (𝑦)2

, (11)

where the𝑊 (𝑦) is:

𝑊 (𝑦) =
∑︁

𝑦′∈Ω (𝑦)
𝑤 (𝑦′, 𝑦)𝑂 (𝑦′, 𝑦) . (12)

Note that𝑤 (𝑦, 𝑥) is the energy term for pixel 𝑦 to scatter to 𝑥 , and
𝑤 (𝑥,𝑦) is the energy term for 𝑥 to scatter to 𝑦. So 𝑤 (𝑦, 𝑥) is not
equivalent to𝑤 (𝑥,𝑦).𝑂 is similar to𝑤 that𝑂 (𝑦, 𝑥) is not equivalent
to 𝑂 (𝑥,𝑦). More details of related terms can be found in Appendix.

4.3 Depth from Defocus
Depth from defocus is a depth estimation method that utilizes the
correlation between depth and defocuses blur to train a neural net-
work to estimate depth supervised by blur data [Gur and Wolf 2019;
Srinivasan et al. 2018]. Dr.Bokeh can replace the bokeh rendering
module in the previous depth from defocus methods and achieves
better depth quality than the state-of-the-art methods.

Depth from defocus needs a special loss function design, and we
propose the loss in the following form:

𝐿(𝑦,𝑦) = 𝜆1𝐿1 (𝑦,𝑦) + 𝜆2𝐺 (𝑦) + 𝜆3𝐻𝑆𝑆𝐼𝑀 (𝑦,𝑦), (13)

where 𝜆𝑖 are coefficients, 𝐿1 is the norm, 𝐺 is a regularization term
in gradient space for smoothness, and 𝐻𝑆𝑆𝐼𝑀 is the hierarchy SSIM
loss to supervise Dr.Bokeh to learn a better depth. We follow exist-
ing works [Gur and Wolf 2019; Srinivasan et al. 2018] to have the
regularization term 𝐺 as:

𝐺 =
1
𝑁

𝑁∑︁
𝑖=1

|𝜕𝑥𝐷𝑖 |𝑒−|𝜕𝑥 𝐼𝑖 | + |𝜕𝑦𝐷𝑖 |𝑒−|𝜕𝑦𝐼𝑖 | , (14)

where 𝑁 is the 𝑁 layers of the pyramid of the image, and 𝐺 is a
smooth and regularization term in monocular-depth estimation.

Salient 
Detection
Module

Inpainting
Module

Dr.Bokeh

Fig. 8. Dr.Bokeh rendering pipeline: The rendering pipeline takes the
RGBD as input. A salient object detection module extracts the salient ob-
ject. Then the pipeline computes the occluded RGBD values behind the
salient objects. Then given the foreground RGBAD and background RGBD,
Dr.Bokeh renders a realistic bokeh image.

Except for the gradient loss, we noticed that per-pixel loss, such
as 𝐿1 or 𝐿2 norm cannot supervise the neural network efficiently
due to the ambiguity introduced by the bokeh computation process.
As the example shown in Fig. 7, the per-pixel loss fails to supervise
the network to optimize the neighborhood values. The reason is
that pixel scattering or gathering is a patch-level operation, which
means that the per-pixel loss signal is not enough in describing the
patch-level error. To guide the network not only care about per-
pixel results but also regional results, we propose adding a hierarchy
SSIM term to learn a better depth. The default SSIM has a patch size
of 11. As the maximum scattering range is highly likely to be larger
than 11, we propose to use a hierarchy SSIM loss: a set of SSIM loss
with different patch sizes to give the pixel the regional feedback
instead of per-pixel feedback.

5 IMPLEMENTATION AND RESULTS
Since implementing the backward differential computation is non-
trivial, we will release our code to allow for the reproducibility of
our work. Here we introduce our forward bokeh rendering pipeline
and relevant implementation details in Sec. 5.1. Quantitative and
qualitative evaluations of bokeh rendering and differentiability are
discussed in Sec. 5.2 and 5.3.

5.1 Implementation
Forward-Bokeh Rendering: For a𝑊 ×𝐻 pixel image with 𝐿 layers
and searching neighborhood range 𝑅, the computation complexity
for Dr.Bokeh is O(𝑊 × 𝐻 × 𝐿 × 𝑅2). We implement Dr.Bokeh with
CUDA acceleration and integrate it in Pytorch as a new computation
layer. In practice, for a 256×256 image with 𝐿 = 2 and𝑅 = 21, it takes
19 ms on average. A larger 𝐿 improves the bokeh rendering quality,
but qualitative results in Sec. 5.2.2 and supplementary materials
show that two layers are enough for many real-world cases. Our
bokeh rendering pipeline (Fig. 8) includes a salient object detection
module, an inpainting module, and the Dr.Bokeh renderer. An off-
the-shelf salient object detectionmodel [Wei et al. 2020] provides the
layered scene representation for all examples in this paper. Please
note the salient object detection module can be replaced with any
other segmentation or matting network depending on the input
category for good performance, e.g., an image matting network that
predicts a detailed matting layer for portrait images. The salient
object mask is then used to guide background RGBD inpainting, and
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we use LaMa [Suvorov et al. 2022] for high-resolution inpainting
to generate all the results. Dr.Bokeh takes user-defined camera
parameters, including the focal plane distance, blur radius, and lens
shape, to synthesize the bokeh image.
Backward-Derivatives: To make Dr.Bokeh fit into data-driven

pipelines, we implement the differentiable operation in Pytorch [Paszke
et al. 2019]. Although Pytorch is auto-differentiable, the computa-
tion in Dr.Bokeh involves many operations not supported by the
auto-differentiable computation layers in Pytorch. We implement
the derivative computation from scratch in CUDA and integrate the
computation layer as a new layer in Pytorch.
The vanilla implementation suffers from the vanishing gradient

problem for large depth inputs as the two sides of the soft-step
function in Fig. 6 are flat. The optimization results heavily depend
on the initialization and may stay at the local minimum without
further improvement. To address this issue, we adaptively “leak” the
gradient of two sides of the soft step functions similar to leaky ReLU.
In practice, we notice this slight change significantly improves the
optimization results. As shown in Fig. 12, there are two large blob-
like areas in the second-row example for GaussPSF [Gur and Wolf
2019] because GaussPSF applies a Gaussian kernel for blur compu-
tation. Although it provides easy gradient computations, GaussPSF
also suffers from the vanishing gradient problem. Using our “leaky”
soft step, Dr.Bokeh can be robust to bad network initializations and
learn a better depth.
Depth-From-Defocus Implementation: Following the Aper-

ture [Srinivasan et al. 2018] and GaussPSF [Gur and Wolf 2019], we
train a CNN to predict the depth. The only difference is that we
replace the bokeh rendering module with Dr.Bokeh.

5.2 Lens Blur Rendering Evaluation
Quantitatively evaluating lens blur quality is still challenging given
a single RGB or RGBD image as input and no benchmark exists yet.
So we follow existing works [Peng et al. 2022a,b; Wang et al. 2018]
to create a synthetic benchmark (Sec. 5.2.1) except that we render
high-quality lens blur results by ray tracing through a real thin-lens.
In addition, quantitative evaluations on lens blur are not always
reliable [Ignatov et al. 2020b; Peng et al. 2022b], so we collected
real-world images and applied a user study to evaluate our method
qualitatively (Sec. 5.2.2). We also provide more qualitative results in
supplementary materials.

5.2.1 Synthetic Benchmark for Quantitative Evaluation.

Dataset: Existing works [Peng et al. 2022b;Wang et al. 2018] setup
the scene by compositing multiple layered images and utilizing an
approximated pseudo ray tracer to render the lens blur ground truth.
Instead, we implemented a renderer that ray traces through a real
thin lens to generate the lens blur ground truth in order to evaluate
the effectiveness of Dr.Bokeh (see Fig. 9). The lens is modeled as
the intersection of two identical spheres of radius 𝑅𝑐 , such that the
radius of the intersection circle is the aperture radius 𝑅𝑎 = 𝐿/2. The
thickness of the lens is computed as 𝑑 = 2

√︃
𝑅2𝑐 − 𝑅2𝑎 , which gives

the lens’ focal length 𝑓 together with the lens’ refractive index 𝜂,

Fig. 9. We simulate bokeh by computing how rays scatter and focus through
a spherical lens system. (a) Side-view of how rays get refracted into and
out of the lens. Rays hitting somewhere near the center of the lens are
barely distorted (blue), while the ones hitting the peripheral get distorted
more (brown). (b) Setup of the rendering scene. The billboards are resized
to cover the exact FOV of the camera sensor. A point on the image plane
shoots many rays that go through the lens aperture and get refracted. As
a result, in-focus billboards will be rendered sharply, while ones that are
closer/farther will be blurry.

using the lensmaker’s equation [Greivenkamp 2004]:

1
𝑓
= (𝜂 − 1)

(
2
𝑅𝑐

+ (𝜂 − 1)𝑑
𝜂𝑅2𝑐

)
.

The camera is set forth with a chosen FOV, and the image plane
is placed at distance 𝐷𝐼 > 𝑓 . The color of a pixel is computed by
tracing rays from the pixel through various random points on the
lens. More details can be found in the appendix.
The scene (5-layer billboards) setup is similar to the dataset by

DeepLens [Wang et al. 2018] and MPIB [Peng et al. 2022b]. The
foreground objects are randomly sampled from Adobe Matting
Dataset [Xu et al. 2017] and AIM-500 [Li et al. 2021]. The background
scenes are randomly sampled from the landmark dataset [Weyand
et al. 2020]. The benchmark includes 100 scenes with different blur
radiuses and focal planes. Each scene has an all-in-focus image, a
ground truth depth, a layered ground truth scene representation,
and a bokeh ground truth.
Metric:We apply the RMSE metric and a scale-invariant RMSE

(RMSE-s) [Sun et al. 2019] as we noticed that different methods have
different gamma correction implementations. We also apply the
SSIM and ZNCC for perception evaluation.

Comparison to relatedwork:We compareDr.Bokeh to a gathering-
based method SteReFo [Busam et al. 2019], a fully learning-based
method DeepLens [Wang et al. 2018] and a hybrid of classical and
learning-basedmethod BokehMe [Peng et al. 2022a] andMPIB [Peng
et al. 2022b]. Different methods take different kernel parameters.
So we search all the blur kernels and pick the best result from each
method. All methods take the same depth as input.

Each step in the lens blur rendering pipeline affects the rendering
quality. But different methods have different pipelines, which makes
the quantitative evaluation easy to be unfair. For example, DeepLens
predicts its own depth and then predicts the lens blur. MPIB and
Dr.Bokeh involves background inpainting, which looks reasonable
perceptually but is easy to have large quantitative errors. To be fair
to all the methods, the quantitative evaluation only measures the
rendering step quality in all the pipelines instead of measuring the
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Table 1. Result on the synthetic benchmark. Comparing with SteReFo [Busam et al. 2019], DeepLens [Wang et al. 2018], BokehMe [Peng et al. 2022a], and
MPIB [Peng et al. 2022b]. Dr.Bokeh outperforms state-of-the-art methods in all the metrics.

Method RMSE ↓ RMSE-s ↓ SSIM ↑ PSNR ↑ ZNCC ↑
SteroFo 0.0179 ± 0.0092 0.0178 ± 0.0092 0.9753 ± 0.0168 35.9201 ± 4.2145 0.9966 ± 0.0028
DeepLens 0.0461 ± 0.0188 0.0403 ± 0.0147 0.9476 ± 0.0263 27.3505 ± 3.6262 0.9827 ± 0.0125
BokehMe 0.0144 ± 0.0077 0.0143 ± 0.0077 0.9708 ± 0.0248 37.7721 ± 4.1209 0.9976 ± 0.0027
MPIB 0.0152 ± 0.0075 0.0151 ± 0.0074 0.9702 ± 0.0256 37.2024 ± 3.8708 0.9974 ± 0.0027
Dr.Bokeh 0.0133 ± 0.0077 0.0133 ± 0.0076 0.9757 ± 0.0211 38.7288 ± 4.7439 0.9979 ± 0.0024

(a) SteReFo (b) DeepLens (c) BokehMe (d) MPIB (e) Dr.Bokeh (ours) (f) Ground Truth

Fig. 10. Qualitative Comparison of Depth of Field (DoF) Results on Synthetic Benchmarks: The scattering/gathering-based method (SteRoFo) exhibits
unnatural partial occlusion. Learning-based methods (DeepLens and BokehMe) struggle to render natural partial occlusion in the absence of explicit modeling.
Although the state-of-the-art method MPIB was trained to address the partial occlusion challenge, our method Dr.Bokeh achieves the best DoF quality
without necessitating training. Best viewed by zooming in.

whole pipeline. We use the ground truth depth for all the methods.
For DeepLens, we replace the predicted depth with the ground truth
depth. For fairness, we replace the predicted occluded pixels with
the ground truth pixels for MPIB and Dr.Bokeh.

We show quantitative and qualitative results in Tab. 1 and Fig. 10.
Although the gathering-based method SteroFo achieves a high SSIM
value, it is easy to observe its unnature partial occlusion results in
Fig. 10 (a). DeepLens does not perform well in metrics. The potential
reason is that the synthesized training data for DeepLens fails to
have realistic foreground blurs. Although MPIB was designed to
learn better partial occlusion effects, BokehMe still performs slightly
better than MPIB in the metrics. The reason may be that MPIB
is a fully learning-based method and does not generalize well to
unseen datasets compared to the hybrid method BokehMe. However,
MPIB qualitatively renders more natural partial occlusion effects,
as shown in Fig. 10 (d). Our method Dr.Bokeh performs the best in
the quantitative metrics and can render realistic partial occlusion
effects.

5.2.2 Real-data for Qualitative Evaluation.

Dataset: Existing works [Ignatov et al. 2020b; Peng et al. 2022b]
suggest that the numerical metric for evaluating lens blur is unreli-
able, which also shows up in our quantitative evaluations. Thus, we
further apply a qualitative evaluation to evaluate ourmethod.We col-
lect real-world images with different subjects, background scenarios,
and lighting as testing data for the user study. The user study con-
tained 40 questions of two-alternative forced-choice (2AFC). Each

question is a pair of lens blur results generated by Dr.Bokeh and a
comparison method (SteReFo, DeepLens, BokehMe, and MPIB).

Comparison to related works: The metric and the comparing
works are the same as the quantitative evaluation: 41 people (75%
male, 25% female, 46% no photography experience, 26% some experi-
ence, 28% experienced) participated in our user study. We discard all
replies that were too short (under three minutes) or always clicked
on the same side. Our results show that 81%, 74%, 68%, 61% of par-
ticipants support that the image generated by Dr.Bokeh is more
realistic than SteReFo, DeepLens, BokehMe, and MPIB. In particular,
the T-test value in the more realistic lens blur effect for an image
generated by Dr.Bokeh and BokehMe, DeepLens, and SteReFo are
5.75, 8.12, and 11.63 and are significant at 0.001 levels, which in-
dicates the Dr.Bokeh is significantly better than those reference
methods from a user perception perspective.
Fig. 11 demonstrates the qualitative comparisons with all the

previous works. For foreground in-focus cases, Dr.Bokeh can pre-
serve the sharp boundary consistently, while the learning-based
methods still have generalization issues such as unnatural partial
occlusion effects and leaky background artifacts (see Fig. 11 the sec-
ond and third examples). For background in-focus cases, Dr.Bokeh
has natural partial occlusion effects and is more robust than SOTA
learning-based method MPIB. More qualitative comparison results
can be found in the supplementary materials.
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(a) SteReFo [2019] (b) DeepLens [2018] (c) BokehMe [2022a] (d) MPIB [2022b] (e) Dr.Bokeh (ours)

Fig. 11. Qualitative comparisons on real-world images: Classical methods (SteReFo) are competitive for foreground in-focus but fail to render natural
boundary partial occlusion. Learning-based methods (DeepLens and BokehMe) suffer from unnatural partial occlusion effects. MPIB learns to render the
partial occlusion effect but has leaking artifacts due to generalization issues (see the second and the third-row examples). Dr.Bokeh renders natural partial
occlusion effects and is more robust for either foreground or background in-focus cases given the same inputs.

5.3 Differentiable Evaluation
Comparison to Related Work:We relate our differentiable lens
blur rendering to two previous works: Aperture Supervision (Aper-
ture) [Srinivasan et al. 2018] andGuassian-based PSF (GaussPSF)[Gur
and Wolf 2019]. Aperture trains a neural network to predict depth
layers by blur image supervision. GaussPSF replaces the bokeh ren-
dering module in Aperture with differentiable Gaussian kernels

and trains the neural network in a similar routine. Compared to
GaussPSF, our occlusion-aware Dr.Bokeh is a more accurate differ-
entiable bokeh rendering module in terms of lens blur physics. For
a fair comparison in the following benchmarks, we use the same
depth estimation network [Xian et al. 2020] for all the comparison
methods and the same loss functions Eqn. (13) for all methods.

Benchmark:We evaluate the differentiability of Dr.Bokeh on the
real-world benchmark: Light Field Dataset [Srinivasan et al. 2017].
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Input Aperture GaussPSF Dr.Bokeh

Fig. 12. Depth optimization for one pair data: The first column is the all-
in-focus input image. The second column shows results by Aperture [2018];
the third column by GaussPSF [2019], and the last column results by
Dr.Bokeh. The depth map optimized by Dr.Bokeh has more details and
is more accurate.

There is no depth ground truth for the real datasets, so we only
quantitatively evaluate the final rendered bokeh images and qualita-
tively show depth qualities from all the methods. The bokeh images
rendered from the light-field camera are good bokeh approxima-
tions. There are 3,343 images. Similar to previous works, we split
the dataset into 3,006 training images and 337 testing images.

Table 2. Result on the light field benchmark. Comparing with aperture
supervision [Srinivasan et al. 2018] and GaussPSF [Gur and Wolf 2019].
Note the metrics are measured on the DoF image due to the lack of depth
ground truth.

Method RMSE ↓ SSIM ↑ PSNR ↑
Aperture 0.0133 ± 0.0038 0.9774 ± 0.0104 37.8396 ± 2.2216
GaussPSF 0.0132 ± 0.0032 0.9767 ± 0.0101 37.8391 ± 1.9961
Dr.Bokeh 0.0123 ± 0.0029 0.9807 ± 0.0086 38.4422 ± 1.9447

Depth Quality: Tab. 2 shows the quantitative evaluation results.
Dr.Bokeh outperforms all the previous works in all metrics, which
shows that the more accurate blur renderer improves the learning
process. The quantitative evaluation is measured on bokeh images
and we show the qualitative results of the generated depth map
in Fig. 12 and 13. The depth map can either be obtained by direct
optimization over an all-in-focus image and a bokeh image pair or
by training a neural network to predict the depth based on a large-
scale defocus dataset. The direct optimization over one-pair data
can clearly show the depth quality supervised by the differentiable
rendering layer, while the depth predicted by the trained neural
network can illustrate the overall performance of the differentiable
layer in the data-driven pipeline.
As shown in Fig. 12, Dr.Bokeh can obtain the best quality depth

image supervised by the defocus image as Dr.Bokeh is more accurate

Input Aperture GaussPSF Dr.Bokeh

Fig. 13. Depth from defocus dataset. The first column is the all-in-focus
input image. The second column shows results by Aperture [2018]; the third
column by GaussPSF [2019], and the last column by Dr.Bokeh. The depth
map by Aperture is noisy. GaussPSF predicts smoother depth.Dr.Bokeh
predicts smoother depth and keeps more boundary details.

Table 3. Ablation study. Correct handling of boundary occlusion improves
the existing gathering-based depth form defocus performance. The proposed
hierarchy SSIM loss further helps Dr.Bokeh learns better depth.

Method RMSE ↓ SSIM ↑ PSNR ↑
w.o. occlusion 0.0139 ± 0.0034 0.9729 ± 0.0115 37.4016 ± 2.0212
w. occlusion 0.0136 ± 0.0033 0.9740 ± 0.0113 37.5888 ± 2.0473
L1 + Grad 0.0146 ± 0.0036 0.9673 ± 0.0136 36.9398 ± 2.0497
L1 + Grad+ SSIM 0.0136 ± 0.0033 0.9740 ± 0.0113 37.5888 ± 2.0473
L1 + Grad+ HSSIM 0.0123 ± 0.0031 0.9770 ± 0.0107 38.4487 ± 2.0902

Fig. 14. Qualitative comparisons of different loss: The first image is
the RGB input. The second image is the result of L1 + Grad loss. The third
image is the result of L1 + Grad + SSIM loss. The last image is the result of
L1 + Grad + HSSIM loss.

in terms of the lens blur physics. Fig. 13 further shows that Dr.Bokeh
helps the neural networks learn to predict the best quality depth
compared with related works.

Ablation Study:We conduct two experiments to understand the
contribution of the occlusion term and the proposed hierarchy SSIM
(HSSIM) loss (Sec. 4.2). We first compare Dr.Bokeh with a similar
differentiable rendering layer but without the occlusion term by
training on the light field benchmark. Evaluations (see Tab. 3) on the
benchmark show that the occlusion term helps the neural network
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Fig. 15. Failure cases: the salient object detection cannot find a good target
for complex scenes, which leads to unnatural partial occlusions.

training. Second, in the loss function experiment, we compare our
loss function (Eqn. 13) with two similar versions: one is just a 𝐿1 loss
with the gradient loss, and the other is the 𝐿1 loss with the gradient
loss and the SSIM loss. Note the gradient loss is a regularization
loss. Tab. 3 shows our loss function outperforms other baselines. As
shown in Fig. 14, the L1 + Grad loss makes the depth map relatively
noisy. The L1 + Grad + SSIM makes the results smoother but loses
some details. Our L1 + Grad + HSSIM gets a smooth depth map
while preserving the boundary details.

6 CONCLUSIONS
We have introduced Dr.Bokeh, a novel physically-based differen-
tiable and occlusion-aware DoF rendering algorithm. Dr.Bokeh ad-
dresses the color bleeding problem and renders realistic partial occlu-
sion for DoF effect synthesis directly in the rendering stage without
any training on the rendering. Moreover, Dr.Bokeh is a fully differ-
entiable DoF rendering module that allows it to be plug-and-play
in data-driven pipelines. Qualitative and quantitative comparisons
validate that Dr.Bokeh achieves the state-of-the-art lens blur quality
in different focus settings and the state-of-the-art depth quality in
the depth-from-defocus community.
Limitation and Future Work: Our method has several limitations.

First, Dr.Bokeh relies on the layered image inputs generated by other
methods. Therefore, the layered image quality affects the final bokeh
quality, as shown in Fig. 15. Second, although the two-layer scene
approximation works well in many cases shown in the qualitative
evaluations, it fails when the two layers are not enough to represent
a complex scene, as shown in Fig. 15. Third, lack of the synthesis
of noise, which can often be observed in images captured by real-
world devices like DSLR, the depth quality learned by Dr.Bokeh
may be affected. Therefore, one of the future works is to propose a
better scene understanding and robust layered scene representation.
The differentiability of Dr.Bokeh may help this process. In addition,
extending Dr.Bokehwith noise synthesis may further help the depth-
from-defocus task.
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7 APPENDIX

7.1 Differentiabiliy
Here are all the terms related to the derivatives in the Eqns. 9, 10
and 11.
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𝜕𝑤 (𝑥,𝑦)
𝜕𝑑 (𝑥) =

𝐴(𝑥,𝑦)𝐾 (𝑥)𝑎(𝑥) 𝜕𝑆 (𝑥,𝑦)
𝜕𝑑 (𝑥 ) − 𝑆 (𝑥,𝑦)𝐾 (𝑥)𝑎(𝑥) 𝜕𝐴(𝑥 )

𝜕𝑑

𝐴(𝑥,𝑦)2
(15)

where 𝜕𝑆 (𝑥,𝑦)
𝜕𝑑 (𝑥 ) and 𝜕𝑆 (𝑥,𝑦)

𝜕𝑑 (𝑥 ) are the following in practice:

𝜕𝑆 (𝑥,𝑦)
𝜕𝑑 (𝑥) =

0.3𝑒3(−(𝑑 (𝑥 )−𝑑 (𝑦) ) )

(𝑒3(−(𝑑 (𝑥 )−𝑑 (𝑦) ) ) + 0.1)2
(16)

𝜕𝑂 (𝑥,𝑦)
𝜕𝑑 (𝑥) = 𝑒−3𝑑 (𝑥 )

2 −20
(10(𝑑 (𝑦) − 𝑑 (𝑥) − 0.1))2

+

(−0.5−tanh(10(𝑑 (𝑦)−𝑑 (𝑥)−0.1))) (−𝑒−3𝑑 (𝑥 )
2
(−6|𝑑 (𝑥) |sign(𝑦)))

(17)

𝜕𝑤 (𝑥,𝑦)
𝜕𝑎(𝑥) =

𝑆 (𝑦, 𝑥)𝐾 (𝑦)
𝐴(𝑦) (18)

As mentioned in the paper, directly deriving and implementing
the backward computation of Dr.Bokeh is complicated so we will
release our code for reproducibility.

7.2 Ray Tracing for Synthetic Benchmark
Different rays hitting different points and collecting different colors
is the main mechanism creating blurriness. The thin lens approxima-
tion equation (1/𝑓 = 1/𝐷𝐵 + 1/𝐷𝐼 ) gives the recipe for computing
the distance of an image 𝐷𝐵 to be in focus when the image plane 𝐷𝐼

is fixed. Furthermore, suppose an image was placed at a different
distance 𝐷′

𝐵
(requiring a different image plane 𝐷′

𝐼
to focus). In that

case, the following equation gives the radius of circle-of-confusion
(𝑟𝑐 ) on the image plane:

𝑟𝑐 = 𝑅𝑎
|𝐷𝐼 − 𝐷′

𝐼
|

𝐷′
𝐼

This equation can also compute the distance 𝐷′
𝐵
required for a blur

of radius 𝑟𝑐 . When the image billboards 𝐼1, 𝐼2, . . . 𝐼𝑛 are added to the
scene to render, each image 𝐼𝑖 is associated with a distance 𝐷𝑖 to the
lens according to the amount of desired blurriness. Each image is
then texture mapped to a rectangle that covers exactly the camera
field of view when placed at distance 𝐷𝑖 (see Fig 9). The vertices of
the image billboards are therefore aligned on the sides of a pyramid
in the scene. If the aperture is small enough, the rendered image
would be sharp as the camera is close to a pinhole camera. When the
lens has some size, the circle of confusion enlarges, which renders
out-of-focus image billboards blurry.
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