
Key Technologies for Networked Virtual Environments

Juan González Salinas1 & Fernando Boronat Seguí1 & Almanzor Sapena Piera1 &

Francisco Javier Pastor Castillo1

Received: 9 September 2021 /Revised: 18 May 2022 /Accepted: 14 March 2023
The Author(s) 2023

Abstract
Thanks to the improvements experienced in technology during the last few years, most
especially in virtual reality systems, the number and potential of networked virtual
environments or NVEs and their users have been increasing. NVEs aim to give distrib-
uted users a feeling of immersion in a virtual world and the possibility of interacting with
other users or with virtual objects inside it, just like when they interact in the real world.
Being able to provide that feeling and natural interactions when the users are geographi-
cally separated is one of the goals of these systems. Nevertheless, this goal is especially
sensitive to different issues, such as different connections with heterogeneous throughput
or particular network latencies, which can lead to consistency and synchronization
problems and, thus, to a worsening of the users’ quality of experience or QoE. With
the purpose of solving these issues, researchers have proposed and evaluated numerous
technical solutions, in fields like network architectures, data distribution and filtering,
resource balancing, computing models, predictive modeling and synchronization in
NVEs. This paper gathers and classifies them, summarizing their advantages and disad-
vantages, using a new way of classification. With the current increase in the number of
NVEs and the multiple solutions proposed so far, this paper aims to become a useful tool
and a starting point not only for future researchers in this field but also for those who are
new to NVEs development, in which guaranteeing a good users’ QoE is essential.

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-15160-z

* Juan González Salinas
juagons4@epsg.upv.es

Fernando Boronat Seguí
fboronat@dcom.upv.es

Almanzor Sapena Piera
alsapie@mat.upv.es

Francisco Javier Pastor Castillo
fjpastor@dib.upv.es

1 Immersive Interactive Media (IIM) R&D Group, Universitat Politècnica de València (UPV), Campus
de Gandia, Valencia, Spain

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Keywords Computingmodels .Datadistribution .Data filtering .Networkedvirtual environment
. Predictive modeling . Resource balancing . Synchronization

1 Introduction

A Networked Virtual Environment (NVE) is a distributed computer-based system simulating a
virtual environment (VE), which supports multiple interconnected remote users who can
interact in real time within it in the following ways: with the virtual objects within it (e.g.,
grabbing them) and with the other users in the NVE [18] (e.g., speaking or chatting with them).
This type of system serves as a medium to abstract information and communication for the
users. So, with these environments, users can perceive an enriched and immersive experience,
while interacting with people even located in different geographic places. Therefore, NVE
designers and developers must make them interactive, offering a proper quality of experience
(QoE) to the users, based on the desired purpose or application of the NVE.

The distinct kinds of environments and contents make NVEs suitable for multiple
applications. While the main application of NVEs has been in entertainment (e.g., video
games), NVEs have shown a clear potential for other areas as well, such as remote virtual
meetings, collaboration, or teaching/learning. There are five main scenarios of NVEs
depending on their purpose [5, 20, 29, 33, 41, 123, 143, 157]: Multiplayer online games
(MOGs), educational or training NVEs, NVEs for collaborative work, commercially
oriented NVEs, and NVEs for social interaction.

MOGs consist of computer-based games where several remote users play, at the same time,
in the same virtual environment. These games can have a real-time play or a turn-based one,
which might influence the networking requirements [128]. Some examples are City of Heroes
(CoH) [34], Kingspray [85], and World of Warcraft (WoW) [175].

Some NVEs can be also used for teaching/learning purposes in different fields, such as in
military or medical applications [115, 155, 180]. They can take the trainees away from hazards
of real-world training, help with motor learning or enable e-learning. Some examples are Future
Visual [61], vFireVI [91], FishWorld [172], CoMove [181], Virtway [166], and Acadicus [2].

NVEs for collaborative work are virtual environments where remote users communi-
cate, interact, and work together to accomplish a mission or a task [116]. NPSNET-V
[172], DIVE [25], CAVRNUS [26], Spatial [146], The Wild [153], and COLLAVIZ [50]
are some examples.

Commercially oriented NVEs are used by companies for marketing goals, like researching,
designing, testing, or advertising products [144]. Some solutions are found in Spinview [147],
Trezi [156], Vizible [168], and Theia Interactive [154].

NVEs for social interaction offer a new way of communication and social interaction for
relatives, friends, and strangers to connect from anywhere in the world and engage socially
[125]. Second Life [134], IMVU [78], Virtual Real Meeting [165], Mozilla Hubs [105],
CAVRN [69], Decentraland [42], VRChat [169], and Bigscreen [14] are a few examples.
Furthermore, the application of NVEs for social interaction has been evolving dramatically
recently, having a significant impact on the NVE sector thanks to the metaverse. The
metaverse would be an advancement of NVEs that allows users to not only socialize, but also
to play, build, communicate, and work, much as we do in real life. This could include the
economy, like cryptocurrencies, which mimic real-life aspects of our lives [87].

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

To interact in an immersive way within the NVEs, users usually employ an avatar,1 which
is a virtual representation of themselves inside the VE, controlled by one or more input devices
(e.g., a mouse, keyboard, joystick, gamepad or haptic) connected to their computers [8, 18].
Furthermore, by giving feedback on the events within the virtual world, for instance through
sensorial effects, such as sounds, vibration, pressure, wind, or aromas, the users’ feeling of
immersion is highly improved. Moreover, for visualizing the 3D environments, traditional
screens, and Cave Assisted Virtual Environments (CAVEs) [39] can be employed. However
nowadays, head-mounted displays (HMDs) are gaining momentum, as they are becoming
more affordable and are the ones which really provide users with a complete feeling of
immersion. Figure 1 shows an overview of the involved structure of a simple NVE with
two remote users (A and B) controlling their avatars that can interact with the objects in the VE
and between them.

Before exploring NVEs in depth, it is important to know the base elements that define a VE
and how they work. Thereafter, the paper will focus on Networked VEs.

In general, VEs comprise of both hardware (HW) and software (SW) parts. The former part
usually includes computers (with processing units, storage mediums…), displays (normal
displays or embedded in HMD), and input/output devices; while the latter mainly consists
of digital databases (DBs), media data, operating systems (OS), file systems, and application
programs.

On the one hand, some elements in the HW part (e.g., computers) allow the SW of the VE
to run and to interact with other HW elements (e.g., input/output devices). The required
elements depend on the purpose and complexity of each VE. For instance, a simple 2D
computer-based game would just need a computer, a screen, and a keyboard, while an
immersive one like a VR game may additionally involve a head-mounted display (HMD)
and a joystick controller or a haptic device. The input peripherals, which include mouse,
keyboard or joystick and output peripherals screens, speakers, or sensorial effects generators,
allow the users to interact with the VE and to receive feedback from it, respectively.

On the other hand, the SW part contributes to simulating the VE. It provides, the structure
and logic for running the VE, taking advantage of the HW part for generating and managing it.
So, HW and SW parts work together to create a VE and enable users to interact with it.

As HW and SW technology improve, the power, availability, and performance of com-
puters and other devices will also increase.

Traditional HW devices (PCs, screens, joysticks) have been used with VEs for a long time
and are well known and have been explored in this field. Nonetheless, there is also a recent
interest regarding multisensory media (mulsemedia) [33], which initiated the research regard-
ing new devices that allow more senses than just the typical vision and hearing to be
stimulated. With the inclusion of HMDs, haptic devices, scent generators, wind generators,
and flavor dispensers, the feeling of immersion can be greatly improved [35]. However, less
research has been made about mulsemedia in VEs, and, therefore, there is a need to adapt the
new HW and SW to the VEs, so the immersion is enhanced [130]. For example, HMDs, in
comparison to screens, offer unseen ways of viewing and interacting with the VE, whereas
olfaction and taction can vastly improve the users’ QoE, even compensating audiovisual
quality or artifacts, such as synchronization errors, jitter, etc. [151]. As a downside,

1 Currently, there is a research effort about using Holograms (e.g., in H2020 EU project VR Together, https://
vrtogether.eu) and it is expected that very soon the avatars will be replaced by holograms in some types of NVEs,
e.g., in virtual meetings.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

multisensory components could have a distracting effect and reduce the user’s QoE [108, 186],
so there should be caution when implementing them in NVEs. Currently, much of the research
that has been carried out on mulsemedia in VEs. have only studied medical and educational
applications, but further efforts are still required to improve the impact of mulsemedia [33,
119].

As the NVEs become more complex, there is a growing need for specialized software
(called engines), such as Unreal Engine [160], Unity [159], Godot [65] or Worldviz Vizard
[167], that help developers to effortlessly create those 3D words with high requirements. These
engines allow the design of 3D environments, include virtual elements, integrate devices like
haptics and HMDs, and use programming languages to create the logic of the VE and the
communication between multiple users.

These technological advancements in HW and SW lead to VEs with higher quality and
realism than long before. Moreover, advanced VEs include 3D-rendered virtual worlds and
may require the use of VR equipment, like HMDs and haptic devices, which bring
telepresence, or virtual presence to a new level [179]. Consequently, the most advanced
VEs need high-performance HW and SW and their development bears greater challenges.

When considering the contents that a VE emulates, there exist four classes of virtual
elements: zones, entities, states, and behaviors. Zones, also called regions or areas, are virtual
geographic areas that divide the virtual environment. Entities are the virtual objects, situated
inside the VE. For example, two different cars in a driving simulation are two different entities.
Avatars are also a specific kind of entity, representing a user. Users can interact with all the
entities in the VE by controlling their avatars. The States of an NVE are determined by the
values of variables/parameters (or combinations of them) that define the features of the entities
or the environment in a specific instant of time. Examples of states would be the position,
speed, color, and size of the entities in the VE. Behaviors are the actions, events, or conducts

Fig. 1 Overview of an NVE with two users (A and B) interacting with objects in the VE and between them

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

that can take place in the NVE (i.e., included in the programmed logic of the NVE). Behaviors
allow the logic of the NVE to take course. For example, a virtual car will suddenly slow down
when hitting the brakes.

Regarding the user distribution and communication issues, VEs can allow either one user or
multiple ones to interact within it, being single-user or multi-user VEs, respectively. In the
latter case, the users can either be in the same place (e.g., PC games allowing two local players,
using control devices connected to the same computer) or in separate locations. This latter case
of VEs is referred to as Networked Virtual Environment (NVE), which allows multiple users
simultaneously to share the VE, even from geographically separate locations, through com-
munication networks. Suitable communication (wired or wireless) networks are needed to
enable multiple users to seamlessly interact within the same VE. However, the use of
communication networks adds another layer of complexity when designing NVEs, as will
be explained later.

As NVEs combine HW and SW parts for diverse networking tasks, it is of importance to
emphasize how those elements intervene.

SW elements in computers and other HW devices, process the interchanged messages
through the communications network. Databases manage the data and interchanged messages
by storing, changing, or removing them, thus allowing their storage and access by multiple
distributed users over the network. Other SW elements, in turn, execute the algorithms that
process the data, manage the interactions (e.g., a user pressing a button), and provide feedback
(e.g., transmitting a message through the network). The network connections allow the
distributed computers or HW devices to interchange messages through wired or wireless links,
enabling interaction between separated users.

Considering the relevance of elements of an NVE in tasks associated with networking
aspects, the following ones can be emphasized: Nodes (Servers, Clients, or Peers), transport or
delivery protocols, and NVE update messages interchanged between them [20]. Nodes are
computers or other HW devices connected to a network, enabling communication, or using it.
A node could be an individual HW device (e.g., a router) or a group of HW devices (e.g., a
datacenter acting as a server). Servers are the nodes that distribute resources and information to
the clients of an NVE. Clients are the nodes that allow users to take part in NVEs (e.g., a
computer, game console or a smartphone). Servers connect the users’ clients so they can
mutually interact. Peers are nodes that work as both servers and clients. Peers are used in
(serverless) decentralized networks, when there is no central authority or servers, so the server
role lies on the clients (peers). Update messages (also referred to as updates) contain infor-
mation about events happening in the NVE, such as changes of elements in the VE (e.g.,
change of position of an entity or avatar) due to users’ interactions. The update messages also
depend on the transport protocols employed by the NVE for different media delivery, which
may affect its performance (the relevance of such protocols is explained further in Section 3).

Figure 2 shows an example of the architecture of a client/server-based NVE including some
of the elements mentioned above with their relationships. Notice that it is only an example and
some of the elements could not be present in an NVE, such as NVEs with clients without local
DBs, which share the Server DB, or NVEs without server nodes (only peers).

It is important to note that, as NVEs are complex, developers must delve into the different
fields they involve (e.g., networking, computing, database management or 3D modeling)
[162]. This often requires a diverse team (e.g., network engineers, programmers, or database
administrators), and multiple tools (e.g., computer graphics software or database management
systems). Hence, the design, development, and implementation of NVEs ends up being a

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

laborious task. Additionally, the more fields NVEs encompass, the more opportunities for
problems and errors to arise. Two examples are the network-related problems (like network
delay) due to the usage of networks, and data inconsistency as a result of the concurrent access
to databases.

In this study, an NVE is considered as a combination of several components and subcom-
ponents: Network Architecture, Information Management (including Data Filtering and Dis-
tribution), Resource Balancing, Time Management (including Predictive Modeling and
Synchronization), and Computing Models. The NVE Network Architecture specifies how
the nodes or physical devices that form part of the NVE are interconnected. Data Filtering
subcomponent refers to the filtering of unnecessary (or less important) stored or interchanged
information. The data Distribution subcomponent handles the distribution of the data between
the NVE nodes. The resource Balancing component manages the assignment of tasks, roles
(e.g., Server, Client or Peer) and data management among the nodes. Predictive Modeling and
Synchronization subcomponents refer to the time management (i.e., when the data is trans-
mitted and processed, and when the behaviors are executed). Finally, the Computing Models
component manages the distribution of the computing and processing load among the nodes.
The rationale for dividing an NVE into these components, a more detailed description of them
and their relevance in NVEs is explained later.

Currently, in the creation and implementation of NVEs, developers and researchers have
been designing and implementing a great number of techniques to solve problems that may
arise in each of those components. They include methods, technologies, procedures, and other
technical solutions that manage the components, dealing with the problems in each of them,
making the NVE development easier, and also contributing to the improvement of the NVE
users’ QoE. As the ecosystem of those existing techniques continues to grow, it is challenging
to study all of them and decide which ones to select when improving an existing NVE or
designing a new one [126].

The main goal of this paper is to review, classify and briefly summarize the existing
techniques so far, comparing their advantages and disadvantages, as well as grouping them
depending on the NVE component they are included in. The motivation of this work is to
provide an updated and useful survey and a new classification scheme of the existing
techniques for new NVE developers and researchers. Due to the ever-changing state of and
the development of new NVE-related technologies, previous reviewed works on the subject
missed the most modern technologies. Moreover, new NVE components have been devised in
the last decade, needing new techniques that have not been considered in those previous

Fig. 2 Example of NVE client/server-based architecture

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

works. In this paper, an updated and more complete list of NVE components, along with a
comparison and classification of the techniques aimed to solve problems in each of them is
provided. Additionally, some subfields that are less (or not yet) explored have also been
identified as potential areas of interest for future research related to NVEs.

As far as the authors know, this is the most complete survey compiling the existing key
technologies in each field, regarding the development of NVEs. As a summary, the main aims
of this work are the following:

& To review the up-to-date technologies needed for designing NVEs and compare their
advantages and disadvantages.

& To provide a novel taxonomy, grouping the technologies for solving the problems found in
each component of an NVE.

& To identify the different subfields that are less (or not yet) explored as potential areas of
interest for future research.

& To provide NVE developers and researchers with a useful baseline for developing new
NVEs or improving the current ones.

With the increase of the number of NVEs and the multiple solutions proposed so far, the
presented survey aims to become a useful tool and a starting point not only for future
researchers in NVE design but also for those who are novice in this field.

In order to provide a background knowledge about NVEs to the readers, and to help them to
better understand the rest of the paper, before presenting the survey of techniques and their
classification, some NVE fundamentals and the different aspects and factors that have an
influence in the correct performing of an NVE, affecting the end-users’ QoE, are briefly
presented.

The rest of the paper is structured as follows. In the next subsection, the fundamentals of
NVEs are described and the main NVE-related problems are introduced. In Section 2, a
compilation of other surveys related to the classification of techniques for solving those
problems is presented. In Section 3, the proposed classification is summarized. In the
following sections, different network architectures (Section 4), filtering techniques and data
distribution models (Section 5), resource balancing techniques (Section 6), prediction and
synchronization techniques (Section 7), and computing models (Section 8) for NVEs are
described and compared, providing highlights on fields that deserve further exploration.
Conclusions and insights into future work are summarized in Section 9. Finally, as many
acronyms are used throughout the paper, in Appendix I, a full list of explained terms is
provided.

1.1 NVE fundamentals

To help the reader better understand the contents of the rest of the paper, the main fundamen-
tals of NVEs are explained in this section. Firstly, the features along with some useful
definitions are provided, and, secondly, the relevant challenges in NVE development are
described.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.1.1 Main features of the NVEs

Even though NVEs can vary significantly depending on their purposes, most of them must
provide the distributed users with the following primary features:

& A shared sense of space (awareness). The distributed users should have a common feeling
of being in the same space [75].

& A shared sense of presence (presence): Users should feel they are part of the VE and are
sharing the space with other users (i.e., they should feel they are physically there) [114].

& A shared sense of time (causality/eventuality) [18]. Users should feel they are experiencing
the same events at the same moment, with the same duration, and in the same order of
occurrence.

& Fidelity: In realistic NVEs, the environment and its contents should be convincing (i.e., as
realistic as possible). For example, the virtual objects should have the same visual details
as if they were authentic and behave realistically. This feature would not be considered in
NVEs with imaginary VEs [18].

& Interactivity. Users should be able to interact with other users (or their representations) and
with objects in the virtual world, if possible, in a way that is as natural as possible. Users
not only watch but intervene, actively taking part in the NVE [122].

These features define what is known as immersiveness, which refers to the user’s feeling of
immersion inside the VE. In this sense, the quality of the realistic interactions within the VE
need to be realistic, rather than simply the accurate appearance of the virtual environment
[119]. For example, with HMDs, information can be represented inside the VE, instead of
using a head-up display (HUD) that reminds users of being in a simulation [130]. The
immersiveness is important because it improves the effectiveness of the NVE applications.
For example, in learning [119] and tourism [98], immersive VEs have shown higher usefulness
than VEs without the inclusion of components that increase the immersiveness. Hence, recent
research focuses more on the interactivity feature than on the fidelity of the VE systems [33],
so, it is of interest to make interactions more realistic, instead of just increasing graphical
quality.

These features affect the users’ QoE, and thus, are of vital importance when designing
NVEs (the focus of NVE development should be put on the users’ requirements). However,
due to the infeasibility of emulating reality at an exact level, NVE developers try to create an
illusion of immersion in the environment. Being able to reproduce a feeling of immersion and
natural interactions when users are geographically separated is one of the main goals of NVEs.
Nevertheless, this goal is especially sensitive to different issues that will be explained later in
this section.

Additionally, there are other features of NVEs that are also important for guaranteeing an
acceptable level of users’ QoE, such as:

& Concurrency: In a concurrent NVE, users should be able to interact within the VE at the
same time (i.e., in parallel) without affecting the final result (i.e., the new NVE state) [58].

& Scalability: It is the property of the NVE to handle the growing number of users and its
workload [102].

& Flexibility, or Robustness: It is the property of adaptation when (internal or external)
changes occur in any component of the NVE. The NVE should cope with errors or

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

unexpected changes or events, affecting its performance as little as possible (e.g., data
recovery solutions should be used when some data have been lost) [44].

& Consistency: This property refers to the requirement that any user’s action in the NVE
must change the affected entities only in the allowed ways and without any conflict with
other users’ actions. The actions of all users should not create conflicts and, after the
actions take place, every user should perceive the same state of the VE (i.e., there is no
discrepancy from what different users see). For example, when a user sees a door open,
while another user sees it closed is an inconsistent state [45].

& Responsiveness: This property refers to the specific ability of the NVE to complete users’
actions within a given time. The NVE should understand and carry out those actions in a
timely fashion. The NVE should deliver the new data (e.g., update messages) to all
participants as soon as possible. So, users get fluid interactions [185].

When creating an NVE, depending on its goal, some of the aforementioned features may be
more important than the others. For instance, a fast-paced multiplayer videogame with few
players may require high responsiveness while scalability is not crucial. Additionally, an NVE
including multisensory effects would offer more immersiveness than another not including
any. Therefore, different NVEs may provide different degrees of immersiveness and of the
other features. Some examples are an NVE for collaborative work used for designing
buildings, which provides a 3D design VE with high fidelity, which needs high consistency
and responsiveness. Furthermore, an NVE for social interaction, which does not need a VE
with high fidelity and may focus on offering high responsiveness and scalability; or a MOG,
which may need good robustness and scalability to deal with a high number of simultaneous
users.

To ensure the above-mentioned features and the goals of the distinct types of NVEs,
developers need to apply computing-based and communication-based solutions to tackle the
related technical problems (explained in the following section) and, thus, guarantee a desired
level of users’ QoE. Computing-based solutions are the ones that deal with calculating and
processing data (e.g., the rendering of the tridimensional world), while communication-based
ones deal with the networking aspect, for instance, the transmission of information between
nodes. Although the latter also depends on the former (i.e., the application of algorithms and
data processing), the difference is that the latter focuses on solving the problems that arise from
using networked systems. Hence, computing-based solutions can be used in both VE and
NVEs, while communication-based ones only in NVEs.

When several users share the VE, they need concurrency control [89], which requires the
communication-based techniques managing the consistency and responsiveness to not impair
the users’ QoE [138].

In some NVEs, there is a trade-off between the consistency and responsiveness features
[64]. When developers improve one of both features, the other can worsen. So, they should
find a balance between them depending on the needs of the NVE. In certain cases, they may
want to prioritize one over the other depending on the requirements of the NVE. For example,
making the interactions sequential, instead of concurrent, to avoid conflicts between the
actions of multiple users (high consistency) leads to low responsiveness because users must
wait for the actions of others before interacting with the VE. In order to tackle the consistency
and responsiveness trade-off problem, the existing consistency maintenance techniques, deal-
ing with the interactions of users in the concurrent environment, may try to balance consis-
tency and responsiveness in separate ways. Based on how the users’ actions are managed, the

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

following approaches can be followed: optimistic, pessimistic, predictive and hybrid ap-
proaches [44, 58]. Firstly, in an optimistic (or aggressive) approach, actions can be executed
without previously checking whether they affect consistency. Each user’s local copy (i.e., the
data and software representing the environment to the user) of the VE does not wait for his/her
interactions to be validated and communicated to the other users but executes them and goes
on. In the case that the processed actions cause inconsistencies, rollbacks (the reversal of the
NVE state to a previously known consistent one) must be applied to recover the lost
consistency. This approach is useful for high latency networks, improving responsiveness,
but only when interactions have a low chance to produce inconsistencies, as too many
rollbacks will produce the opposite effect, worsening the responsiveness. Secondly, the
pessimistic (or conservative) approach is, basically, the opposite of the optimistic one. With
this approach, each user’s local copy of the VE must validate every action, ensuring consis-
tency is maintained, and communicate the new state to the rest of users before allowing further
interactions. This effectively limits the responsiveness, but ensures consistency without the
need of rollbacks, being a good option when low latency networks are used or when
responsiveness is not necessary. This approach is best suited for turn-based games (e.g., an
online chess game) or NVEs with a low number of users who are geographically close to each
other. Thirdly, the predictive approach comes between the optimistic and pessimistic ones. In
it, interactions are predicted, when they will happen or what their effects will be for instance
before they occur. So, the user’s local copy of the NVE does not need to stop to check the
consistency (as it can be done in advance) while also reducing the number of rollbacks. Only
when wrong predictions are made, rollbacks are needed. This approach is very important, as
the previous two are not highly scalable. Lastly, a hybrid approach combines some of the
previous approaches, employing them at different intervals in the NVE life cycle, by, for
example, switching from one approach to another when network conditions change, or using
different approaches depending on the types of entities (e.g., a vehicle that moves fast may
require a higher update rate).

1.1.2 Problems to tackle in an NVE

In order to provide the NVE with the explained features in the previous subsection, designers
have to face many problems that are briefly explained in this one. Since the NVEs encompass
so many components, elements, and fields of study, designers should tackle the specific
problems that can arise in each part of the NVEs separately (e.g., from hardware devices,
software applications, database systems, networks, and timing systems, among many others).

Hardware problems include ensuring the involved devices are fast enough to process the
information and are optimized to render the VE with the needed speed depending on the type
of NVE. When NVEs are designed for (or also for) wireless devices (e.g., smartphones),
contrasting with computers, the designers must deal with their reduced energy capacity,
storage, and processing power [109, 124, 163]. Additionally, those devices can face high
communication latency, limited available network throughput, and the absence of a shared
memory or global clock. Software and, in general, algorithms should be programmed to enable
the features of the NVE, like processing the interchanged update messages so that the
interactions are synchronized, and to provide feedback at the right moment. Additionally,
software is also dependent on hardware, and an NVE that was programmed for a specific
hardware may not correctly work with another. For example, an NVE application implemented
to run on a desktop computer may not be compatible with mobile devices like smartphones or

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

tablets. Moreover, the database systems face the problems of ensuring fast, secure, and reliable
data access, as well as of ensuring the integrity and consistency of the stored data. To
overcome the problems of limited database storage, reduced computing resources of low-
end devices, and software compatibility, nodes can take advantage of the performance of other
high-end devices by delegating the storage and computing requirements to other nodes (this
refers to the Computing Models component of an NVE).

The networking part includes problems related with communication networks and access
devices, which, among others, include latency (delay of update messages), jitter (variability of
latency), throughput and loss, affecting mainly the interactivity and the update messages
transmission rate [3, 7, 129, 135]. Different connections with heterogeneous throughput or
users experiencing different network latencies can lead to consistency and synchronization
problems and, thus, to a worsening of the users’ QoE. For example, users with higher network
delays will probably interact in an unfair way within the VE since some update messages or
events may take more time to reach them. To increase the data transmission rate and reduce the
delay and the access time to remote databases, developers would be advised to optimize the
node connections (Network Architecture component of an NVE), reducing bottlenecks in the
network; filter unnecessary information out (Data Filtering component of an NVE), which
decreases the network usage; distribute de NVE database between nodes (Data Distribution
component of an NVE), so NVE data is closer to the clients; and prevent waiting for update
messages by predicting future events and states (Predictive Modelling component of an NVE)
of the NVE. Even though NVE providers could avoid those network-related problems in other
more straightforward ways (e.g., increasing the available network throughput), in most
common circumstances, NVE developers may be unable to control the network (e.g., when
connections through the Internet are used).

Another key attribute considered when designing NVEs is time. Even though the meaning
of time can vary from one NVE application to another, there are two different concepts of time
to be considered: Absolute Time (a.k.a. Wall Clock Time) and Virtual Time (a.k.a. Causal
Time or Simulation Time) [44, 94]. The former is based on the concept of a periodic clock,
usually synchronized to the Coordinated Universal Time (UTC). The latter is based on a
logical, loosely synchronized clock, as a sequence of ordered events, which halts if no new
events occur. Time is relevant to consistency and responsiveness maintenance because both
depend on it: responsiveness-related problems can cause increased waiting times between
interactions, and consistency problems happen when multiple users interact with the same
entities during the same time. To help solve these problems, the transmission of update
messages should be synchronized (Synchronization component of an NVE), so events are
processed at the same time by the clients and in the right order, and inconsistencies are
reduced. Additionally, NVEs can also predict future changes (Predictive Modelling component
of an NVE) and organize node connections (Network Architecture component of an NVE) to
improve the responsiveness as well.

Furthermore, due to the unpredictability of networked systems, their usage may cause errors
(e.g., network throughput can fluctuate, and programs or servers can fail), impairing the QoE,
and therefore, the impact of system errors in NVE should be minimized. So, databases can be
distributed between nodes (Data Distribution component of an NVE) to prevent data loss when
a node fails; and the required tasks or roles of nodes can also be distributed (Resource
Balancing component of an NVE) to manage the computing tasks with higher reliability.
Resulting in fewer errors in the system.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Users are another essential element of the NVEs, as they are the ones experiencing the VE.
NVEs should support the number of simultaneously permitted users to be connected, that they
were designed for. If the NVE is not scalable enough, the number of maximum users
interacting at the same time is limited, and the system will fail when more users try to access
it (e.g., a MOG server crashing due to too many requests, making the service unavailable). For
this reason, the organization of node connections (Network Architecture component of an
NVE) should be paramount, so the system is able to accept the required number of users,
keeping a good level of performance. Moreover, by distributing the management of certain
tasks and roles (Resource Balancing component of an NVE) between nodes the NVE
scalability also improves. For example, when more peers connect, they can control the
synchronization of update messages for their closest zones, improving the NVE management
as the number of connected peers grows.

It has been previously described how the improved and new computing technologies allow
for better quality and performance, which also impacts on the rendering of the environment
and the communication between users. Furthermore, the faster the communications, the higher
interaction capacity of the NVE, which in turn enhances the sense of presence, immersion and
the sense of time as well. Besides this, the shared sense of presence highly depends on the
degree of immersion provided by the VE, while the shared sense of time highly depends on the
synchronization of the interactions. Finally, the interactions are the base of NVEs, and are very
important for communicating with the VE and with other users.

Therefore, the different techniques implemented in the development of NVEs should
address all the above problems from all the possible perspectives, with the final aim of
providing the users with the best experience possible. Table 1 summarizes some examples
of problems to tackle in an NVEs, indicating their causes, possible solutions and the compo-
nents these solutions rely on.

In this paper a compilation and a novel classification of the different techniques proposed in
previous works so far for NVEs, according to the identified components of an NVE (third
column of Table 1), is provided. In sections 4 to 8, concrete techniques are briefly explained
and compared.

2 Comparison with related surveys

In the past, some studies have made a variety of efforts in classifying the vast set of existing
solutions and techniques designed for, or used in, NVEs, as well as to classify the different
components that NVEs comprise of. In [95] some components of an NVE are identified, but
only a few related techniques are classified (e.g., network protocols or data distribution
models). Four components are described: Communication, Views, Data, and Processes. The
Communication component is related to network issues (bandwidth, latency, and reliability)
and the geographic distribution of the users. The Views component is related to the user’s
viewports of the NVE. The Data component is related to the models of data distribution
between nodes. The Processes component is related to the execution of the NVE, including the
involved servers and clients, computing requirements, and software.

In [44] and [45] the potential problems of consistency and responsiveness in NVEs are
studied, dividing the mechanisms to solve them into three main components: Time manage-
ment, Information management and System Architectural management. The Time Manage-
ment component includes synchronization, time prediction and concurrency control

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

techniques. The Information Management component includes techniques dealing with net-
work latency, and with data filtering and management methods; and finally, the System
Architecture Management component includes network and software architecture, communi-
cation protocols, and QoS constraints.

In [58] several techniques for maintaining the consistency and responsiveness in NVEs are
classified. A main division between the system architecture and consistency maintenance
components is proposed. The system architecture component is divided into the network
architecture, data distribution, and communication subcomponents. The consistency mainte-
nance component is mostly presented as a catch-all group containing the synchronization,
prediction, interactivity approaches, and concurrency mechanisms.

Finally, in [18], the following basic components of NVEs are defined: Graphic Engine and
Displays to visualize the environment, Communication and Control Devices, Processing
Systems for the computing and transmission of events, and Data Networks for communication
and information sharing. Related techniques/solutions are classified in two groups: Architec-
tures, and Technologies and Protocols. While the Architectures group only includes the basic
network architectures (Client/Server, P2P and Hybrid), the Technologies and Protocols one
includes 3D Technologies (software, programming languages, frameworks, and interfaces)
and several Communication Protocols.

Table 1 Challenges faced in NVE development

Cause Problem to tackle Related NVE
Components

Solutions

High network
latency

Reduced data transmission and access time
to remote databases

Network
Architecture

Using different network
architectures

Predictive
Modeling

Predicting events before
being notified

Data Distribution Distributing NVE data
among nodes

Reduced network
throughput

Limited amount of data being transmitted
simultaneously

Network
Architecture

Using different network
architectures

Data Distribution Distributing NVE data
among nodes

Data Filtering Filtering unnecessary
information

Low consistency Inconsistent states lead to a bad QoE for
users

Synchronization Synchronizing event
transmission

Predictive
Modeling

Predicting events before
being notified

Low responsiveness Low interactivity as waiting times increase Network
Architecture

Using different network
architectures

Predictive
Modeling

Predicting events before
being notified

Limited robustness Failures worsen the user’s QoE Data Distribution Distributing NVE data
among nodes

Resource
Balancing

Balancing the resources
among nodes

Reduced scalability Limited maximum number of users
simultaneously interacting

Network
Architecture

Using different network
architectures

Resource
Balancing

Balancing the resources
among nodes

Limited storage and
computing

Low-end devices perform worse Computing
Models

Managing the
computing processes

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

These studies have shown their classification of techniques, including the benefits and
drawbacks. However, their focus solely explored certain cases of use. They are quite infor-
mative and descriptive, but leave other important fields unexplored, such as, computing
models, or prediction techniques, which are included in the taxonomy presented in the review
of this paper. Moreover, in this review, more modern techniques appeared in the last decade,
mostly thanks to cloud technologies. These have also been surveyed and a more updated and
complete classification is provided.

In this review, the components described in the previous studies are also considered,
together with new ones that have gained special attention in the last years. For example,
Cloud Computing has recently become more relevant, allowing for newer techniques (like
remote rendering), a fact that adds a new component for NVE development and new
techniques to study, not considered in previous studies. Furthermore, this review is also
centered on the components that are intrinsic to NVEs in contrast to non-networked VEs, so
the presented taxonomy is more NVE specific.

Table 2 summarizes the relation between the NVE components defined in this review with
the taxonomies of the aforementioned studies, comparing the number of techniques for each
component that each study classifies.

3 Proposed taxonomy

In this paper, a novel taxonomy, more NVE-based and suited for NVE design than the works
summarized in the previous section, is presented (shown in Fig. 3). It includes most of the
techniques used to design NVEs, classified into the following components of an NVE:
Network, Information Management, Resource Balancing, Time Management and Computing
Models. Each of these identified components is clearly separated from the other components,
making it easier to classify the existing techniques included in them. In this section, these
components are described, while all the involved techniques in each one of them will be briefly
explained in the following sections.

Table 2 Comparison with previous related works. An ‘X’ indicates the study takes the component into
consideration and the number inside the parentheses indicates the number of techniques classified by that study
in that component. The number ‘0’ indicates the study identifies the NVE component but does not classify any
technique for that component

Taxonomies Network
architectures

Information
management

Resource
balancing

Time management Computing
Models

Data
filtering

Data
distribution

Predictive
modeling

Synchronization

Macedonia
et al. [95]

X (3) X (2) X (3) – X (1) X (0) –

Delaney et al.
[44, 45]

X (3) X (3) X (0) X (1) X (2) X (7) –

Fleury et al.
[58]

X (3) – X (3) – X (1) X (4) –

Bouras et al.
[18]

X (3) – – X (0) – X (0) –

This paper X (5) X (5) X (4) X (9) X (5) X (12) X (5)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

With this new taxonomy, a clearer and more intuitive classification than that of the previous
works is provided, making it easier to identify the different components of an NVE, as well as
navigating through all the included techniques in them, and quickly finding all their relation-
ships. Moreover, the different identified components and subcomponents of an NVE also point
to the main research fields related to NVEs (e.g., networking, data distribution models,
computing, etc.).

The Network component of NVEs is related to the structure that enables communication
between the involved nodes in an NVE, as in [18, 44, 58]. This component consists of two
subcomponents: Network Architecture, which defines the connections between nodes; and
Communication Protocols, which establish the protocols that the network nodes employ in the
communications. In this paper, only the network architecture subcomponent is considered, and
a classification of the existing solutions so far is provided. As far as authors know, the only
existing communications protocols designed specifically for NVEs, are DIS and HLA proto-
cols [127]. The DIS protocol was used in NPSNET [172], while the HLA protocol was created
to outperform DIS and replace it. The latter is often used for Military applications in private
networks. In the rest of NVEs, general purpose and widely supported transmission protocols
can be employed, such as TCP, UDP, or RTP/RTCP. It is important to remark that the
protocols on the different layers (application, network, transport…) of the NVE system have
an impact on the performance and may be suited to different applications. For example, UDP

Fig. 3 NVE Taxonomy. Components of an NVE and techniques included in them

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

and RTP do not protect against packet loss by themselves, so they may be suited for responsive
NVEs, but at the risk of inconsistencies. However, if consistency is a requirement, then the
NVE designers should switch to a different protocol which protects against data loss (like
TCP) or add extra logic to the NVE to recover its state in case of packet loss. Therefore, NVE
creators should consider the protocols thoroughly, based on their needs. Protocols used in
NVEs pose a potential area of study for new NVE-centered research, but their review and
classification are out of the scope of this paper, and, therefore, the Communication Protocol
subcomponent of the Network component of NVEs is not considered.

Regarding the Information Management component of an NVE, it includes all the tech-
niques that directly manage the NVE’s data (reading, modifying, copying, or deleting them).
Data is one of the more important parts of NVEs [45, 58, 59, 95]. At the same time, this
component contains techniques for data filtering and data distribution. Additionally, it can also
include the data compression and file systems control techniques [81] as well, but they will not
be considered in the classification either, as no solutions specifically designed and applied to
NVEs have been found.

The division of the distinct responsibilities that nodes can have on an NVE is to ensure the
correct operation of the NVE, which is another pillar of NVE development. Different NVEs
could identify different resources that must be managed by one or several nodes. For example,
one NVE could only require multiple zones to be controlled by the same server and another
NVE could allow the same zone to be managed by multiple peers. The techniques that
orchestrate the roles between the available nodes are also classified in the Resource Balancing
component of the NVE in the presented taxonomy. In previous works, this component is also
referred to as Interest Management, Resource Management, or Load Balancing [20, 97, 178].

The Time Management component of an NVE deals with the execution (or simulation) of
the involved processes, with the events and other messages generated and transmitted between
nodes, so that actions take place in a causal, coherent, and consistent manner [50]. As NVEs
are programs that execute orders over time, and the passage of time is required for users to
perceive movement and progress, this component constitutes another pillar of NVE design.
Many techniques already exist for time management in NVEs, which can be divided into two
groups: Predictive Modeling and Synchronization techniques, this will be explained later.

Finally, the Computing Models component [137, 140], includes the techniques that deal
with the computation tasks in an NVEs (e.g., rendering a frame), which are important for
bringing enhanced functionalities to the distributed users. Previous works on NVEs have
barely delved into this subject, and most solutions exist only for MOG applications. In this
research, this component is considered as relevant, due to the recent improvements in
computation technologies (e.g., faster processors and networks) that go hand in hand with
the increase in computation requirements (e.g., more quality and data).

In the following sections, an up-to-date and more complete classification of many tech-
niques for each component of the NVE is provided. Unlike previous studies, several compar-
ison tables are included showing their advantages and disadvantages. It should be noted that
some of the presented techniques may seem old, however, some were applied later to their
design in the field of NVEs. Additionally, future research directions are commented on for
each component to show their potential, which also justify the relevance of the components
that have not seen new techniques recently. This way, the work also motivates researchers to
develop and implement techniques, by identifying those less explored NVE components.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

4 Network architectures

The layout of the network/s involved in NVEs is very important. A well-designed one will
perform better by optimizing the network usage and reducing packet transmission load and
delay, hence making the consistency easier to control without loss of responsiveness. In this
section, the main types of network architectures used in NVEs are described and compared:
Client/Server, Cloud-based, Edge-based, Peer-to-Peer (P2P), and Hybrid. Figure 4 shows these
architectures.

4.1 Client/server architecture

In a Client/Server architecture (Fig. 4a), a server stores all the virtual environment data and
manages the NVE state and communications between clients. The server acts as a central
authority to which all clients must connect and send updates [138]. To communicate or to
inform about an event, the clients must communicate it to the server and then it is forwarded to
the other clients [45, 58]. vFireVI [91], CAVRN [69], and TerraNet [83] are examples of
NVEs that follow this architecture.

On the one hand, the main advantages of this architecture are its easy implementation, and a
simple consistency, synchronization, and security control, as the server manages the whole
NVE. On the other hand, this architecture presents robustness and scalability problems. The
server is a weak point, but it can be overcome with the use of redundant or load balanced
servers. When the number of clients (i.e., users) increases, a bottleneck can occur on the server
or its network access links due to the rising number of communications, and, thus, consistency
maintenance can be affected. Finally, it can unnecessarily increase the latency between clients
since the communication goes through a server.

4.2 Cloud-based architecture

The Cloud-based architecture (Fig. 4b) is like Client/Server, but instead of having a single
Server, the workload is distributed among several computers with sufficient resources and
computing capabilities that manage the needs of the NVE [100, 138]. It is mostly used in

Fig. 4 Network architectures: a) Client/Server, b) Cloud-based, c) Edge-based, d) Peer-to-Peer, and d) Hybrid

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

massively multiplayer online (MMO) games to solve the scalability problem in the Client/
Server architecture. When following Client/Server architectures, game operators are forced to
adapt their resources to peaks in game loading with the consequent high economic cost and
expensive maintenance. Another possibility is to take advantage of the current Cloud Com-
puting business model, which is based on a pay-per-rent model, in which the customers only
need to pay for the resources they use. Thus, it is an elastic model that allows NVE operators to
adapt dynamically and rapidly to the resources used, depending on the game load. Some
examples of the use of this architecture can be found in WoW [175], in CloudyGame [13], and
in CollaboVR [68].

This architecture presents some advantages, such as the dynamic adjustment of the
resources, or the reduction in maintenance costs, and the ease of maintaining consistency.
The NVE application must include additional parts to give support to the dynamic provision-
ing of resources, such as a monitor and a provisioner. The monitor part must consider different
performance measures of parameters, such as the response time, the average system through-
put, the amount of consumed bandwidth or the use of the rented machines. The provisioner
part handles analytical load models and fast prediction algorithms to anticipate load peaks and
under-utilization of resources. As a drawback, the implementation of this architecture is more
complex, since it needs additional parts, and extra delays appear due to the use or access to
those parts.

4.3 Edge-based architecture

The Edge-based architecture (Fig. 4c) extends the Cloud concept, offering the data and the
processing resources in Servers closer to the clients (called Edge nodes), improving network
usage and responsiveness. In that sense, an Edge node is just a part of the Cloud that interacts
with it, doing tasks that benefit the clients close to them. Variations of this architecture can
bring to the Edge the parts of the Cloud partially (Fog [16]) or totally (Cloudlet [131]).
Examples of the use of this architecture can be found in MUVR [92] and in CloudyGame [13].

Due to the increasing problems of accessing the Cloud with higher amounts of data and
number of clients, which impair the quality of the service or content, this architecture offers a
specialized way of dealing with them and reducing the overhead of the centralized or the
Cloud-based infrastructures. The advantages of this architecture are a lower latency, reduced
costs, and optimized network bandwidth usage, while its disadvantages are less security and
robustness, compared to the Cloud-based one, as the edge nodes are more vulnerable to attacks
and failures.

4.4 P2P architecture

P2P (Peer-to-Peer) architecture (Fig. 4d) is a decentralized architecture with peers intercon-
nected without the need of a central authority or server. The peers supervise and distribute the
NVE load between them, all of them acting out similar roles at the same time, as clients and
servers [18, 58, 138]. Examples of the use of this architecture can be found in NPSNET-V
[172], DIVE [25], Phaneros [27], SimMud [86], and in Pithos [51].

In general, P2P architectures have some advantages: they provide high scalability (i.e.,
support a significant number of clients) and facilitate local consistency and responsiveness. By
contrast, as clients have local copies of the NVE, it is more difficult to keep the global
consistency compared to Client/Server architectures. Moreover, due to every client having

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

control of the NVE, security issues such as cheating may arise [55]. NVEs can tackle this
problem by including a node to monitor activity and validate clients’ identities.

4.5 Hybrid architecture

This kind of architecture mixes other architectures to solve common problems of P2P and
Client/Server ones, by combining the centralized and the decentralized schemes (Fig. 4e). In
hybrid architectures, on the one hand, multiple servers connect themselves using P2P, and, on
the other hand, one client connects to only one server in the same way as a traditional Client/
Server architecture [58]. To inform clients, servers coordinate themselves. Examples of this
architecture can be found in [10], in [23], and in [47].

The main advantages of the hybrid architectures are the ability to provide scalability (as the
number of clients increases, more servers can be easily added) and redundancy (i.e., duplica-
tion of the NVE data). On the other hand, servers communicate with clients and with other
servers, thus, each server must process more data, in addition to the fact that multiple servers
can introduce more latency to the NVE.

4.6 Comparison

Table 3 presents a summary of the different network architectures employed in NVEs
described in this section, including their advantages and disadvantages, as well as some
examples of NVEs following each of them.

The way the nodes interconnect is highly related to the techniques that are needed to
guarantee and maintain consistency in the NVE. For example, when using a centralized
architecture like Client/Server, the techniques that require peers are discouraged, while a
Hybrid or P2P one will take advantage of those techniques. Additionally, networked systems
may also experience scalability, flexibility, or security issues, which should be balanced or
managed by those architectures (e.g., a Client/Server implementing an authentication system
on the server to improve security), or by other techniques explained in the following sections.

4.7 Future research directions

Network architectures can be centralized, distributed, or a combination of both (hybrid) and, in
this sense, the field of network architectures is already explored. Nonetheless, with the advent
of ubiquitous computing, thanks to Internet of Things (IoT) and Edge computing, new network
architectures can be devised and applied specifically to NVEs [36]. Moreover, communication
protocols and other network technologies could supply the NVE architectures with higher
throughput and scalability, helping to support the increasing requirements. For instance,
optical networks [177], grid computing [113], 6G [38], and software-defined networking
[90] are emerging technologies that can achieve faster and more reliable networks, which
could soon be applied to NVE applications as well.

5 Information management

One of the most important parts of NVEs is their data, how they are stored and how they are
transmitted between the partakers. In this section, Data Filtering and Data Distribution

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

techniques for optimizing the data of the NVE and for reducing the network usage in it,
respectively, are presented. Data filtering techniques are the ones that select the needed data to
be transmitted or processed, while data distribution techniques are the ones that manage the
replication of the database of the NVE (or specific parts of it) among the participant nodes.

5.1 Data filtering techniques

Filtering data at transmission, reception or in any of the intermediary nodes can reduce traffic
overload and increase scalability [45]. To do so, data filtering techniques can be used to set a
priority for the updates of the generated states and, if needed, to discard the transmission of
data that is deemed as less important. This way, when many events take place and not all the
data can be processed or transferred, the network overload does not increase. However, the
extra processing load required for filtering data increases latency and, hence, causes transmis-
sion delays that reduce responsiveness. So, the goal of the data filtering techniques is to reduce
network congestion and usage that could cause large delays, at the expense of some temporal
inconsistencies, given that those inconsistencies are barely perceived by the users. In this
subsection, some data filtering techniques are explained and compared, such as: Potentially
Visible Sets, Frontier Sets, Update-free Regions, Reachability Range and Local Perception.

Table 3 Network architectures used in NVEs

Network
Architectures

Advantages Disadvantages Examples

Client/Server • Easy implementation
• Easy consistency

control
• Easy synchronization

control
• Easy security control

• Robustness
problems

• Scalability
problems

• Adds latency

vFireVI [91]; CAVRN [69]; TerraNet [83]

Cloud • Easy consistency
control

• Easy robustness
control

• High scalability
• Reduced

maintenance cost

• Increased latency
• Complex

implementation

WoW [175]; CloudyGame [13]; CollaboVR
[68]

Edge • Reduced latency
• Reduced network

usage
• Reduced

maintenance cost

• Global consistency
problems

• Less secure than the
Cloud one

MUVR [92]; CloudyGame [13]

P2P • Easy local
consistency control

• Easy local
responsiveness
control

• High scalability

• Global consistency
problems

• Less secure than
centralized

NPSNET-V [172]; DIVE [25]; Phaneros [27];
SimMud [86]; Pithos [51]

Hybrid • High robustness
• High scalability

• Adds data usage
and latency

• Complex
implementation

Bamutange et al. [10]; Capece et al. [23]; Dias
et al. [47]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

5.1.1 Potentially visible sets (PVS)

PVS is built on the basis that an avatar can only see a set of the total entities in the virtual
world. So, only those ones in that set should be rendered [88]. The virtual world is divided into
zones and, for each one, all the entities that can be viewed from any point of that zone are
stored. Static entities can be used and stored beforehand, whereas dynamic ones (e.g., which
can change their position) must be re-processed when they change. Clients, instead of being
constantly (every frame) calculating visibility, only need to receive updates of the set of
entities visible from the zone in which their avatars are located. An example of the use of PVS
can be found in Phaneros [27]. Figure 5 shows an example of a world divided into 9 zones. As
the avatar moves from one zone (a) to another zone (b), its visible entities change.

PVS is simple to apply and can save data processing and network usage when there are few
visible entities. Nevertheless, it requires extra storage and, in open virtual spaces or with a lot
of dynamic entities displayed at the same time the data size increase can become
uncontrollable.

5.1.2 Frontier sets

Frontier Sets are based on PVS. The NVE is also divided into zones, but, in this case, the
clients look for other visible zones instead of visible entities, so that all the entities inside a
visible zone are considered, even if they are hidden. Frontier Sets consist of finding, for each
zone containing an avatar, a pair of groups of zones in which one group has no visibility in
common with the other [9]. A group of zones is called a Set, and a pair of sets, in which an
avatar located inside one set cannot see the contents or entities located in the other set, this is
called a Frontier. Ultimately, all existing frontiers are called the Frontier Set of the NVE. When
an avatar enters a zone in any set, the frontier sets including that set are calculated and the
corresponding client only receives update messages from the zones visible from that set. This
way, an avatar can move freely within a set, without the need of requesting information from
other non-visible sets. An example of the use of Frontier Sets can be found in [9]. As an

Fig. 5 Virtual world divided into 9 zones with PVS. The avatar moves from a) to b), changing the zone and, thus,
the visible entities

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

example, Fig. 6 shows a couple of frontiers. An avatar in zone 4 could combine frontiers a) and
b) to ignore zones 3, 5, and 9. If the avatar moves to zone 7, it will leave frontier a), being able
to view zone 9.

In Frontier Sets, each client checks all the frontiers of the zone in which its avatar is located
to know from which other zones the user does not need to receive updates, instead of
calculating the visibility for each entity (as in PVS). Thanks to this, the required memory
and processing resources of the NVE do not increase when the number of entities increases.
Nevertheless, if the number of entities is high inside one zone, the number of messages
transmitted could still be high and the zone should be further divided (increasing the storage
need) or the consistency should be ensured by other means.

5.1.3 Update-free regions (UFR)

In UFR, zones are called regions, and the NVE defines, for every possible pair of entities, a
pair of regions, so that the contents of one region are hidden for the other region in the pair
[96]. Both regions are considered update-free regions (UFR) in the pair since clients with
avatars in one region will not receive updates from the other region in the pair. While an avatar
stays inside a UFR pair, the associated client will not send update messages to the clients with
avatars in the other region of the pair. An example of the use of UFR can be found in [96].

Although UFR may be less robust than frontier sets, it does not require knowledge of the
whole contents of the NVE by each client, as they only keep track of the zones they have to
leave, instead of all the possible zones, or entities in sight [45]. This makes UFR suited for
distributed architectures like P2P.

Figure 7 shows an NVE with two avatars, each one in a different UFR (separated by a wall)
in the same pair of regions. The clients of each avatar will not receive updates from the other
while their avatars remain inside their respective regions. When the avatars leave their UFR,
they check whether they have become visible to each other, and a new pair of UFRs will be
generated for that pair of avatars so when the avatars enter and stay inside them, they will not
send update messages to each other.

Fig. 6 Frontier Sets. In a), the sets of 1–2-4 and 5–9 zones. In b), the sets of 3–5 and 4–7 zones

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

The main benefit of UFR is that the network usage is reduced by not sending unnecessary
updates, and without affecting the consistency perceived by the user. The UFRs are easy to
compute, but as the number of entities increases, the size of memory needed to store the data of
the generated UFRs increases, becoming hard to manage for all the possible pairs of entities.

5.1.4 Reachability range

In the Reachability Range, instead of dividing the virtual world into zones, a circular zone is
defined around each avatar and the associated client only accepts update states from entities
inside that zone (i.e., only entities inside are updated), as shown in Fig. 8. An example of the
use of Reachability Range can be found in Second Life [134], and in Pithos [51].

Reachability Range is easy to implement, but its performance depends on the number of
entities within the defined range, as too many could slow down the NVE or reduce the
consistency. In this case, no computation is required to determine pairs or zones, saving
memory as well.

5.1.5 Local perception

In Local Perception, messages are prioritized based on how close or far the entities are in the
virtual world from the avatar controlled by a client [136]. All the state changes will arrive to
the client but ordered depending on how close the entities are from the avatar. The farther the

Fig. 7 Example of Update-Free Regions

Fig. 8 Example of reachability range (nearby entities are still updated even if not visible)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

entity, the later the update will be received. Local Perception is like the Reachability Range,
but instead of discarding information of entities beyond a range, that information will be
received with delay, and therefore, the corresponding updates of those entities will be delayed.
Local Perception effectively distorts time, as the closest entities are quickly updated, while the
update of the ones far away is delayed. This can be perceived as a bad effect (e.g., as entities
move away from the avatar, the movement slows down), but it allows events to be received
from more distant entities in comparison to Reachability range. This way, if an entity is getting
closer, its state will be updated more frequently, so no jumpy movements are perceived.
Figure 9 shows, from a) to c), how an entity that is approaching the avatar is perceived by the
client, and its real position. The closer the entity, the sooner it is updated, closing the gap
between the real position and the received one. An example of the use of Local Perception can
be found in [136].

As an advantage, Local Perception supports a high number of entity updates without a high
loss of consistency and responsiveness. On the contrary, when there are a lot of entities, update
messages can be delayed more than expected, even causing network congestion.

5.1.6 Comparison

Table 4 presents a summary of the different data filtering techniques described in this section,
including their advantages and disadvantages, as well as examples of NVEs using each of
them.

5.1.7 Future research directions

It can be noticed that the found techniques are focused on data filtering based on position or
visibility. Filtering techniques yet to be developed could be based on the distinct types of
update messages that could be generated by, for example, different actions an avatar takes.
Moreover, filtering techniques could be adapted dynamically or even based on predictions. As
the data filtering techniques specify the condition from which to filter in or out the update
messages, dynamic filtering techniques could adapt these filtering conditions depending on the
requirements and the current state of the network. For example, if the network throughput is
reduced, more update messages should be filtered out, and when it is recovered, less messages
may be filtered out. Moreover, prediction techniques could also determine whether certain
update messages are more or less important than the rest at a certain time, so they could be
prioritized and the impact on consistency would be minimized. An existing filtering technique
based on prediction, not employed in NVEs whatsoever, would be the Historical Behavior

Fig. 9 Movement of an entity (dashed square) and the state received at the time (black square). The closer to the
avatar, the more accurate its position is

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Prediction [176], used to reduce redundancy when transmitting information within social
networks to different users by prioritizing which users prefer what information first.

5.2 Data distribution techniques

Choosing the location of the data is a critical decision when designing an NVE. Data are
usually collected in a DB containing all the information about the elements composing the
virtual world, the position of the avatars, the model geometry, textures, terrain, and their
behaviors (i.e., the way they react to an event). The locations where the data are stored and
how they are replicated among the participants can reduce network usage and network latency.
In this subsection, several methods to distribute and replicate the data among the NVE nodes
are explained and compared, such as: Shared Centralized World, Homogeneous Replicated
World, Shared Distributed World and Dynamically Changing Data Distribution.

5.2.1 Shared centralized world

In Shared Centralized World, a server stores the DB and shares the contents with the clients
(Fig. 10, with the different shapes inside the DB standing for different entities). Clients must
connect to the server to be able to interact within the NVE [95]. Every time the state of an
object is going to be modified, a request must be sent to the server. Then, the server performs
the changes in the DB and sends an update message to all the other clients to update the state of
that object (Fig. 10). Shared Centralized World is frequently used in Client/Server architec-
tures, and, as an example, is used in vFireVI [91].

The main advantages of Shared Centralized World are the ensured consistency, as only one
database is used, and the absence of data replication on several servers. On the other hand, in
addition to the well-known drawbacks that are present when using a Client/Server architecture
(e.g., robustness, scalability…) this mode presents two additional main drawbacks. Firstly,
possible high transmission delays between clients and the server, and the processing time in
the server can increase the latency, inducing a lack of responsiveness, worsening the

Table 4 Data filtering techniques used in NVEs

Data Filtering Advantages Disadvantages Examples

Potentially
visible sets

• Easy implementation
• Reduced network

usage

• Increased storage need
• Scalability problems

Phaneros [27]

Frontier sets • Reduced storage need
• Scalable for dispersed

entities

• Scalability problems for high number
of entities

Avni et al. [9]

Update-free
regions

• Reduced traffic
overload

• Reduced computation
needs

• Increased storage need Makbily et al. [96]

Reachability
range

• Easy implementation
• Reduced computation

needs
• Reduced storage need

• Scalability problems for high number
of entities

Second Life [134];
Pithos [51]

Local perception • High scalability
• Delayed consistency

• High traffic overload
• High network latency

Sharkey et al. [136]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

interaction and, therefore, becoming annoying for users. Secondly, a bottleneck might occur in
the server, as the higher the number of clients, the higher the number of messages to be
processed in it and therefore the higher the number of update messages to be sent by it.

5.2.2 Homogeneous replicated world

In Homogeneous Replicated World, each client stores a copy of the virtual world DB (which is
modified locally) and has the control of the object behaviors [18, 95] (Fig. 11). Only object
state changes or events (e.g., collisions) are interchanged between clients, to maintain consis-
tency. When a client changes an object behavior (e.g., opening a door or cutting down a tree),
synchronization techniques must replicate these behaviors in the rest of the clients (Fig. 11).
An example of a Homogeneous Replicated World can be found in SIMNET [22].

The use of Homogeneous Replicated World presents two main benefits: the sent messages
are simple updates, and their size and number are quite small; and the latency on the interactions
is very low. Furthermore, any modification to the objects in the virtual world is performed by
clients. On the contrary, it has a few drawbacks. First, some inconsistencies can occur between
the clients since message loss or network delays could prevent some clients from updating their
own copy of the DB on time. Moreover, additional mechanisms are needed on each client to
manage the concurrent access. Each user can locally modify the environment but only when this

Fig. 10 Shared Centralized World, with the steps of a modification

Fig. 11 Homogeneous Replicated World. All the clients store the same DB; and every time an event is triggered,
each DB is updated and synchronized

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

modification is transmitted, possible conflicts can be detected. Another flaw is the size of the
DB, since the bigger the NVE the bigger the amount of data to be stored. Finally, the lack of
flexibility is another important disadvantage. Adding new elements to the NVE can be a hard
task as they must be created and replicated into all the DB copies in each client.

5.2.3 Shared distributed world

Unlike in Homogeneous Replicated World, in Shared Distributed World, the clients do not
store a copy of the full database, but each one stores only a different part of it that is shared
with the rest of the clients [95] (Fig. 12). So, these clients act as the servers of their DB. An
example can be found in DIVE [25].

By using it, the data filtering process and the initial database download can be reduced,
saving time and network usage. Needed resources are more reduced and keeping consistency
in the NVE becomes an easier task than in Homogeneous Replicated World. The consistency
in the complete database, however, needs to be guaranteed by using other methods (e.g., by
using Dynamically Changing Data Distribution, presented in the next subsection, or a hybrid
network architecture).

5.2.4 Dynamically changing data distribution

This is a hybrid data distribution technique, which dynamically adapts the replication of data to
be either Shared Centralized or Shared Distributed, depending on the requirements of consis-
tency and responsiveness of the entities. In the same NVE, some entity manipulations require
good responsiveness (e.g., real-time movement) while others require strong consistency (e.g.,
turn-based event) [59]. Data distribution can also be changed depending on the capabilities of
the network or its nodes. This way, depending on the object the user is interacting with and the
current network latency, the data distribution can be dynamically changed to making a trade-
off between consistency and responsiveness. An example of the use of this data distribution
technique can be found in COLLAVIZ [50]. In it, clients have a replicated copy of the NVE
data. Nonetheless, each of the object behaviors will be executed in just one of the clients,
denominated controller of that object. In other words, each object is assigned to only one
controller. Two types of handles are used: reference object handle and mirror object handle.

Fig. 12 Shared distributed world (clients storing different parts of the DB and sharing them through the network)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Reference object handles are used by the controllers to identify simulated objects whose
behaviors they can execute or control (these objects are named referents). Mirror object
handles are used by the controllers to identify additional copies of their referent objects but
controlled by other clients (i.e., copies of the objects whose behaviors will be executed in a
different controller). Figure 13 depicts the process of altering an object. If the referent object to
be modified is in the user’s client, that object will be locally manipulated and then an update
message will be sent to the rest of the clients which have and control a copy of that object
(steps 1 and 2 of Fig. 13). On the other hand, if the object to be modified by the user is not a
referent object in the user’s client, a request will be sent to the remote client, which is the
controller for that (mirror) object (steps 3 to 6 of Fig. 13). In that remote client, the object will
be modified, and an update message will be sent to all the other clients controlling copies of
that object.

The advantages Dynamically Changing Data Distribution offers are a better scalability
compared to centralized solutions, and that the NVE can minimize the throughput require-
ments. On the other side, this technique is more complex to implement, and the interchange of
additional control messages can affect the network throughput.

5.2.5 Comparison

Table 5 presents a summary of the data distribution techniques presented in this section,
including their advantages, disadvantages, as well as examples of NVEs using them.

5.2.6 Future research directions

The explained data distribution techniques cover all the possibilities for the storage and
replication of the NVE data, from the most centralized database to the most distributed ones,
including hybrid solutions as well. Evidently, centralized data distribution techniques are more
suited for centralized network architectures, and distributed data distribution techniques are

Fig. 13 Dynamically Changing Data Distribution. A client modifies a local entity, while another modifies a
mirrored entity

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

better used with distributed network architectures. Furthermore, and like the network archi-
tectures, it is important that future research on the field of data distribution in NVEs focuses
more on the specific characteristics unique to NVEs (e.g., considering the entities and real-time
interactions). For instance, data could be replicated on different nodes based on the zones,
entities and avatars related to them (e.g., a group of entities contained in a zone are all copied
to the same nodes). Finally, hardware, software and networks can optimize the storage,
processing and delivery of the data, and although not related to NVEs, newer techniques
can improve the performance of these techniques and, therefore, the QoE.

6 Resource balancing

To address the scalability problems of certain techniques, the NVEs can distribute their
computation load and, hence, the tasks needed for running the NVE applications, among
several nodes, by using resource balancing techniques, depending on the architecture of the
NVE [20]. This is quite different from the information management techniques, which have
direct control of the data and not to the computing requirements. The resource balancing
techniques contribute to reducing the network usage and the end-to-end delay, making the
NVE more scalable, but may add problems related to security, robustness, or global consis-
tency maintenance. Moreover, they can be centralized, when controlled individually (by a
server or a sole peer), or distributed, when several peers manage the same processes.

6.1 Centralized balancing

Centralized techniques for resource balancing are mainly suited for centralized architectures
(Client/Server or Cloud-based ones) [20]. They grant authority to the same node or group of
nodes (e.g., multiple servers sharing workload and different tasks between them) for managing
a session for a group of clients that share the same interests (e.g., the players of the same
match, a group of clients with avatars in the same zone, or all the attendees of a virtual event).
Different centralized resource balancing techniques are described and compared in this
subsection, such as: Mirroring, Instancing and Zoning.

Table 5 Data Distribution in NVEs

Data Distribution Advantages Disadvantages Examples

Shared centralized world • Easy consistency control
• Reduced storage need

• Responsiveness problems
• Scalability problems

vFireVI [91]

Homogeneous replicated world • Easy responsiveness
control

• Reduced network usage
• Reduced network latency

• Consistency problems
• Concurrency problems
• Robustness problems
• Increased storage need

SIMNET [22]

Shared distributed world • Easy local consistency
control

• Easy responsiveness
control

• Reduced storage need

• Global consistency
problems

DIVE [25]

Dynamically changing data
distribution

• High scalability
• Reduced network usage

• Complex implementation
• Adds control messages

COLLAVIZ
[50]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

6.1.1 Mirroring

This consists of dividing the management of overloaded NVE zones into a set of servers. Each
one of these servers manages and processes the computing, states, and a part of the DB for
different subgroups of entities placed inside the overloaded zone (Fig. 14). The information
and updates of all the entities in that zone are then synchronized among the servers. Examples
of the use of Mirroring can be found in Rokkatan [107]. Figure 14 shows two servers, each
managing different entities (represented with different shapes inside the DBs) for the same
NVE that a client accesses by connecting to each of the servers, while the servers connect
between them for interchanging control messages.

Mirroring efficiently manages the network usage, adapting it to the overload of zones in the
virtual world. Nevertheless, it adds extra computing and design complexity requirements with
the need of synchronization when the number of users increases.

6.1.2 Instancing

It is a simplification of Mirroring, in which session load is distributed by starting multiple
independent instances of the same NVE zone [53]. These instances are independent of each
other, thus, players in different instances cannot interact and do not see each other even if their
avatars are closely placed in the virtual world (Fig. 15). Thanks to this, the NVE is easily
scalable. However, this solution cannot be used when it is needed that the users view and
interact with all the other users in the same virtual zone at the same instant.

Instancing is mostly applied in MMO games, such as, e.g., CoH [34] and WoW [175]. In
WoW, it is referred to as sharding. Different instances of a zone are generated and the players
within each zone are distributed between instances depending on different features of the
game, such as their level, progress, or party (grouped in-game players). In that game, a
technique called cross-region zoning is also employed to reduce the number of instances,
when needed. If the number of users inside some instances decreases, multiple instances can be
merged into one, balancing the number of players in them. This way, the number of users in
each instance is always balanced.

6.1.3 Zoning

In Zoning, the virtual world is divided into different zones that are handled independently by
separated servers [1, 178]. Clients then connect to the server that holds the zone where their
avatars are located and interact between them through the same server. When an avatar moves
to another zone, the server changes (Fig. 16). An example of the use of Zoning can be found in
[1], and [183].

Fig. 14 Mirroring. Two servers, each managing different parts of the NVE (represented with the different
shapes) for the same overloaded zone

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

The overload of the NVE is distributed, making it more manageable and easier to
implement. Nevertheless, controlling the zones can become a difficult task when the number
of clients fluctuates a lot.

6.2 Distributed balancing

Distributed resource balancing consists in changing the manager of the processes and re-
sources as avatars enter, move through, or leave the different zones of the NVE or the near
surroundings of other avatars. These techniques are based on distributed network architectures,
like P2P, and, therefore, cannot be applied in NVEs following centralized network architec-
tures [170]. The techniques that are explained and compared in this subsection are: Mutual
Notification, Neighbor List Exchange, Fully Connected, Multicast, Distributed Hash Tables,
and World Partitioning.

6.2.1 Mutual notification

With Mutual Notification, clients are directly connected only to those other clients (peers)
whose avatars are closely located in the virtual world (considered as neighbors). Only when a
peer’s avatar changes its position, interacts with the virtual world, or a new peer’s avatar enters
into the surroundings of another peer’s avatar, notifications between direct neighbors will be

Fig. 15 Instancing. Two instances of the same zone, with different entities

Fig. 16 Zoning. The client changes the server when its avatar moves from the left zone (controlled by Server 1)
to the right one (controlled by Server 2)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

sent, so they can achieve global connectivity and discovery of new neighbors. Thanks to that,
network usage is optimized, but at the expense of adding the overload of calculating the
neighborhood. Additionally, having a lot of close users in the virtual world can impair the
consistency or responsiveness. In Fig. 17, it can be seen how only peers with their avatars close
enough in the same zone of the virtual world get connected (3 groups of peers).

An example of the use of Mutual Notification can be found in pSense [132].

6.2.2 Neighbor list exchange

When using Neighbor List Exchange, peers retain knowledge regarding the existence of their
neighbors’ peers’ avatars (in the virtual world) and of the avatars of their neighbors by
interchanging messages continuously (Fig. 18). To get a better view of the virtual world and
to be better informed of the state changes and updates, a peer receives all the information from
its neighbors’ peers [101]. These neighbors’ peers not only send information about their own
avatar and its actions (e.g., updated states on entities modified by its own avatar) but also
retransmits the information received from their own neighbors’ peers (e.g., updated states on
entities modified by its neighbors’ peers’ avatars).

Figure 18 shows the peer number 4 sending update information to the rest of its neighbors’
peers. Peer number 1 retransmits the update information to its own neighbors’, the peer
number 2. Examples of NVEs can be found in [30].

Neighbor List Exchange can reduce the network usage, but the interchange of messages can
affect the NVE negatively, and the global consistency cannot be guaranteed.

6.2.3 Fully connected

This consists in connecting every peer to each one of the others, so they interchange the
updates directly. This way, delays between the participants are reduced. This has been done in
some systems intended to improve the performance of MOGs, such as Pithos [51].

When the number of connected peers increases, scalability problems arise. With the
purpose of having a more efficient NVE, data filtering techniques can be applied, limiting
message transmissions.

Fig. 17 Mutual Notification in a virtual world (10 peers) with 3 groups

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

6.2.4 Multicast-based technique

This takes advantages from IP multicast delivery, as well as application layer multicast (ALM).
A multicast group is created with peer clients that share an interest in common entities or zones
of the virtual world. Only members of that group will receive updates about state changes of
those entities or zones. Some examples of NVEs employing Multicast are NPSNET-V [172],
DIVE [25], TerraNet [83], and SimMud [86].

Multicast can scale well when the number of clients increases but can experience some
flexibility and fairness issues when peers connect through heterogeneous access networks,
with different bitrates and latencies.

6.2.5 Distributed hash tables (DHT)

This is an effective and fair way of balancing the system load among all the peers. In general,
the entities in the virtual world are divided into groups and each group is assigned to one peer
participating in the NVE. Each peer has an ID and manages a group of entities. To decide the
group of entities each peer manages, a hash function (to associate different variables with a
certain length value) is used (Fig. 19). This process has two steps. Firstly, a hash function is
used to convert data of variable length to fixed size data. The parameters used by the hash
function are usually the latency and the geographical location of the peer. Secondly, values
produced by the hash function that are similar are associated to the same peer. For instance, in
Fig. 19 it is shown how closer positions and latencies produce similar values. As an example,
SimMud [86] is an NVE system that uses DHT but combined with multicast. Another example
can be found in [170].

Fig. 18 Neighbor List Exchange with a peer sending an update message

Fig. 19 Distributed Hash Tables. Position and latency are passed through a hash function and entities are
assigned to peers based on the returned value

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DHT improves the NVE scalability and robustness and reduces network delays. Neverthe-
less, as it can be expected, it is more complex to implement than other simpler methods.

6.2.6 World partitioning

The virtual world is divided into zones, each assigned to a specific peer whose avatar is inside
the zone, with sufficient computing power, throughput, and storage capacity, known as Super
Peers (SP) [6] (Fig. 20).

The SPs act like servers and clients at the same time, controlling the zone management (i.e.,
data from entities in that zone are managed by the SP). However, an avatar’s information can
be managed by both the SP and the associated peer to which the avatar belongs. Pithos [51] is
an example of NVE with World Partitioning.

World Partitioning is like mutual notification in that both divide and group peers, based on
the zone their avatars are located, but, while with mutual notification the peers of the avatars in
the same zone get connected to each other, with world partitioning the peers get connected to
the same SP. This reduces computing needs for the group management, compared to mutual
notification, as the neighborhood calculation processes a lower number of connections with the
peers. Additionally, it also offers a good scalability, and the consistency is easy to maintain.
Nevertheless, it is not suited when clients with low capabilities are mostly used (e.g., mobile
phones), as it makes it harder to manage the NVE by few peers.

6.3 Comparison

Table 6 shows a summary of the explained centralized and distributed techniques for resource
balancing used in decentralized NVEs, their advantages and disadvantages, as well as exam-
ples of NVEs using them.

6.4 Future research directions

Resource Balancing techniques can be either centralized or distributed, being suited for
centralized or for distributed network architectures, respectively. In general, these tech-
niques already deal with all the kinds of applications and network architectures the NVEs
can have, but, like data filtering, newer techniques could be based on more parameters

Fig. 20 World Partitioning (zones and avatars assigned to an SP in each)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

than the position of avatars and node geographic locations. For instance, avatar mobility
patterns (i.e., how users move their avatars inside the NVE) could be considered for
deciding how the nodes will connect and when the connections should change [24, 173].
As an example, the size of the zones and the number of close entities may affect the way
the avatars move through zones, and hence, the avatars could be stopping on certain
spots, and moving faster on others. Additionally, artificial intelligence (AI) could be used
to improve the balancing performance by predicting the load and the communication
delay that each node may experience at any time [40]. In conclusion, this field could be
further explored by studying the distribution of entities inside the VE so new techniques
take that information into account in order to design new techniques.

7 Time management

NVE systems need to allow users in a concurrent environment to perceive and interact within
the virtual world despite them experiencing different network delays. In this sense, time
management solutions deal with the time instants or periods when messages are transmitted
and/or processed, to balance between consistency and responsiveness, and include Predictive

Table 6 Resource Balancing in NVEs

Technique Advantages Disadvantages Examples

Centralized Mirroring • Reduced
network
usage

• Synchronization
problems

• High computing needs

Rokkatan [107]

Instancing • High
scalability

• Limited number of users CoH [34]; WoW [175]

Zoning • Easy
implementa-
tion

• Scalability problems Abdulazeez et al. [1]; Zhang et al.
[183]

Distributed Mutual
notifica-
tion

• Reduced
network
usage

• Consistency problems
• Responsiveness problems

pSense [132]

Neighbor list
exchange

• Reduced
traffic
overload

• Consistency problems Chen et al. [30]

Fully
connected

• High
responsive-
ness

• Scalability problems Pithos [51]

Multicast • High
scalability

• Robustness problems
• Fairness problems

NPSNET [172]; DIVE [25];
TerraNet [83]; SimMud [86]

DHT • High
robustness

• High
scalability

• Reduced
network
delay

• Complex implementation SimMud [86]; Wang et al. [170]

World
partitionin-
g

• Easy
consistency
control

• High
scalability

• Robustness problems
• Bad when there are only

lightweight clients

Pithos [51]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Modelling and Synchronization techniques. Predictive modelling techniques employ informa-
tion from previous instants and manage the time in a predictive manner (e.g., predicting future
events), while synchronization techniques work in a more deterministic way and are used for
ensuring the causality or consistency of the events in the NVE.

7.1 Predictive modeling

Predictive modelling techniques try to predict the behaviors of users and entities, and their
consequences, reducing the need to send update messages or to optimize their delivery.
Consequently, the traffic overload and network usage are minimized, and end-to-end latency
is decreased, while keeping a certain degree of tolerable consistency. The prediction of events
can happen in the client originating the event or in the rest of clients that are supposed to
receive the associated update message. In this subsection, the following predictive modelling
techniques are explained and compared: Dead Reckoning, Position History-based Prediction,
Exponentially Weighted Moving Average and Kalman Predictor.

7.1.1 Dead reckoning

In Dead Reckoning, a client that is modifying the state of an entity (e.g., moving an avatar)
also runs a simulation, in background, of what the rest of users are perceiving based on the last
update message communicated to them until the user modifying a state notifies a new change
of the state to the rest of the users [45]. For example, when an entity is moving in a direction at
a certain speed according to the last update, it is supposed that it will keep that speed and
direction until a change is notified. If the actual state of the entity (e.g., speed, direction,
acceleration, position, etc.) exceeds a certain allowed threshold, or degree, of inconsistency
(divergence), compared to the simulation (e.g., the current velocity of an avatar is much lower
than before -i.e., when the last update message was sent-), a message is sent to update it, and
then the rest of users will change the state to the actual one, and the client modifying the state
of that entity will go on simulating what the others perceive, from that last update message.

With Dead Reckoning, a margin of consistency is ensured, but the complexity of the NVE
is increased. An example of the use of Dead Reckoning can be found in SIMNET [22],
TerraNet [83], and in [31].

Figure 21 shows Client 2 simulating the movement of Client 1’s avatar, from the last
known direction. Meanwhile, Client 1 is moving the avatar and running a simulation, at the
same time, of the movement that Client 2 should be viewing. At some point in time (t1, in
Fig. 21), Client 1 changes the direction of the avatar, so the movement is not the same as the
simulation of what Client 2 perceives. Nonetheless, Client 1 does not send any update message
until the actual movement and the simulated movement diverge, exceeding a threshold. This
way, when using the Dead Reckoning, a tolerable difference between any state of an entity and
its simulation reduces the need for updates.

The main benefit of Dead Reckoning is that update messages are only sent when the
consistency diverges, exceeding a threshold, and thus, network usage is reduced when
participants can estimate the states with a tolerable degree of consistency. Nevertheless, if
the states fluctuate a lot or are unpredictable (e.g., avatars making arbitrary movements or
entities with high speed), messages will be interchanged more often, and other techniques will
be required to handle the inconsistencies and reduce the number of updates needed.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

7.1.2 Position history-based prediction

Position History-based Prediction is used to anticipate the movement of entities in other clients
in a way that seems close to the real movement experienced by the client that originated that
movement, even with network delays. To do this, the other clients extrapolate future positions
using the previous directions and, when an update is received with the correct position, instead
of instantly moving to that position, the movement is changed so the entity converges to that
position. An example of the use of Position History-based Prediction can be found in [141].
Fig. 22 shows an example where an update message for a moving entity is received, the
received and the previous known directions are used to estimate the current direction (e.g., an
average direction) it is following until receiving the next update.

With Position History-based Prediction, users will still see a continuous movement, even
when no updates are received. Nonetheless, the memory and processing requirements of the
NVE are increased and, as it uses past movements to predict new ones, it may lose effective-
ness when arbitrary movements happen.

7.1.3 Exponentially weighted moving average (EWMA)

EWMA is inspired by the previous one, but it sets different weights to the previous directions,
so that the more recent ones are weighted higher [28]. Movements are a combination of
position, direction, and speed. The last known movements are used to estimate future
movements, favoring the recent ones in the prediction. Examples of this predictive model
can be found in [40], in [28], and in [133]. Figure 23 shows an example comparing Position
History-based Prediction in a), and EWMA in b), in which the movement of an entity is

Fig. 21 Dead Reckoning (predicted and real movements of an avatar with the diverged distance)

Fig. 22 Position history-based prediction (from two previous directions)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

approximated to a direction based on weighted previous directions, so the most recent ones
have greater influence.

EWMA provides a quick adaptation to the specific way entities move (e.g., if an entity has
been moving in circles recently, EWMA predicts it will keep moving in that circular course),
reducing the inconsistency without increasing the network usage. Nonetheless, as Position
History-based Prediction and EWMA use past movements to predict new ones, they may lose
effectiveness when arbitrary movements happen. Also, they increase the memory and com-
puting requirements, used to store previous directions, and calculate the predicted ones.

7.1.4 Kalman predictor

The Kalman Predictor is used for reducing the inconsistencies of the tracking prediction
between the original entity movement and the simulated one in the rest of the clients [28].
Kalman Predictor has two phases: in the first one, it makes a prediction based on the previous
states, while in the second phase, when receiving the actual state, it sets a weight on that
prediction depending on how accurate it was (the more accurate, the higher the weight). Then,
the process is repeated, using the previous weighted predictions for the next estimations. This
is represented in Fig. 24. In a), the Kalman Predictor is not employed, and therefore, the
system does not learn from previous inaccurate predictions. In b), a previous prediction with
high error is processed to set new weights, and a latter prediction is weighted according to that,
obtaining a more precise prediction.

The Kalman Predictor adapts easily, requiring less update messages and correcting errors.
Like Dead Reckoning, Kalman Predictor is also useful when the movements of the entities are
stable (i.e., with low variations). Nonetheless, when movements are fast and arbitrary, Kalman
Predictor loses accuracy.

An example of the use of this predictive model can be found in [158], where rather than
predicting current positions on the destination client, it is used for predicting future positions at
the time the update will be received due to network delays. For instance, if there is a 100 ms
delay, the sender will estimate the position at 100 ms later and transmit it. Another example
can be found in [67], where it is used to estimate the head motion of users’ HMDs.

7.1.5 Optimum-path Forest classifier

The Optimum-path Forest (OPF) classifier generates optimal decision trees based on given
input data and the desired behavior [60]. Decision trees are employed to model decision

Fig. 23 Comparison of Position History-based Prediction (a) and EWMA (b)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

making, turning it into a series of steps based on input parameters to reach a final decision [79],
as represented in Fig. 25. The goal of OPF technique is to make proper decisions based on
fluctuating data obtained at runtime. This way, the technique can adapt to the varying
conditions of the network and optimize the delivery of update messages. To do so, firstly,
the classifier is trained, receiving data, and associating them to a desired action to dynamically
adapt the system to problems. With that information, the classifier builds the decision trees that
give the best action to take, based on future input. Secondly, the decision trees are applied and
receive only the input data, from which to generate a new decision to take.

This technique is used in [60], where network data is used for pattern recognition. In that
work, delay, jitter, and packet loss are considered as the input data, and the decisions that the
NVE can take to solve the network problems are changing communication protocol, buffering
data (storing for latter transmission/processing), changing network packet size, and predicting
packets to compensate future delays with other techniques like Dead Reckoning. So, depend-
ing on the network conditions at a moment, the NVE dynamically changes the parameters to
values that have higher probability to solve the communication problems. As a drawback, OPF
requires a prior study of the NVE application to select which parameters to use and adjust them
to give better results, as not all parameter values will give the same outcomes on different
NVEs.

Fig. 24 Kalman Predictor improving predictions from previous errors

Fig. 25 Example of a Decision tree that, based on whether latency and packet loss are high or low, there are a
total of four decisions to take

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

7.1.6 Comparison

Table 7 presents a summary of the predictive modelling techniques used in NVEs described in
this section, including their advantages and disadvantages, as well as some examples of NVEs
following each of them.

7.1.7 Future research directions

On the one hand, Predictive Modelling techniques deal with the consistency in the NVE,
and, as it can be expected, their consistency management approach (conservative, aggres-
sive, etc.) enters in the group of prediction-based approaches. On the other hand, these
techniques have mostly been applied to predict movement of entities, but newer tech-
niques (e.g., using Artificial Intelligence-based approaches), yet to be developed or
applied in the field of NVEs, could be used to estimate other parameters like entity access
(i.e., if an entity is going to be interacted with by several clients), the user density of zones
(i.e., when a zone is going to be crowded, considering other techniques, like distribution),
future network conditions (so other techniques could be adapted), and other interactions
and events that could happen in an NVE system.

7.2 Synchronization

In NVEs, the synchronization (abbreviated as sync, hereinafter) techniques constitute
important mechanisms to maintain a satisfactory level of consistency and fairness, which
contributes to providing truly engaging and interactive experiences to users, despite the
existence of network issues. These techniques schedule the notification and execution of
events to be performed at specific times. Additionally, they may offer either a delayed
global consistency, when users perceive the same consistent world but at different times,
or an imposed global consistency, when the execution of events happens for all users at the
same instant. Moreover, sync techniques for NVE can be employed to either synchronize

Table 7 Predictive modelling techniques in NVEs

Technique Advantages Disadvantages Examples

Dead Reckoning • Reduces the
network usage

• Cannot handle high
divergences

SIMNET [22]; TerraNet [83]; Chen
et al. [31]

Position
History-based Pre-
diction

• Reduces the
network usage

• Can predict big
deviations

• Cannot estimate
arbitrary actions

• Increased computation
needs

Singhal et al. [141]

EWMA • Reduces the
network usage

• Adapts quickly to
changes

• Cannot estimate
arbitrary actions

• Increased computation
needs

De Grande et al. [40] Chan et al. [28];
Schuwerk et al. [133]

Kalman Predictor • Adapts quickly to
changes

• Reduces the
network usage

• Loses accuracy on
arbitrary actions

• Increased computation
needs

Tumanov et al. [158]; Gül et al. [67]

Optimum-path Forest • Adapts quickly to
changes

• Requires parameter
fine-tuning

Freitas et al. [60]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

the occurrence of events, when their temporal relationship should be maintained between
clients, or to synchronize media streams (composed of stream media units or MUs), which
can be continuous streams (e.g., audio or video streams) or data streams containing parts
or the totality of one or more events.

Well-known sync techniques in media communications usually deal with the sync of the
playout of media streams (i.e., stream MUs inside data packets) [72, 104]. These sync
techniques, at the same time, are divided into four types [76, 80]: intra-stream sync, inter-
stream sync, inter-destination media sync (IDMS), and inter-device sync (IDES) techniques.

Intra-stream sync handles and maintains the temporal relationship within each time-
dependent media stream (i.e., received stream MUs, are processed and presented in the correct
order and timing). Inter-stream sync handles and maintains the sync between the playout
processes of related (time-dependent or not) media streams (e.g., audio-to-video sync, or lip-
sync), i.e., those streams can be played out on the same device or on different devices, which,
in turn, can be either close-by (a.k.a. IDES) or far apart, in different locations (a.k.a. IDMS or
group sync).

On the one hand, in NVEs, IDES techniques handle the sync between different devices
used in one client, such as HMDs, haptic devices, smartphones, smart TVs, and computers, to
maintain interactivity and a good QoE when multi-device scenarios are required. Group of
devices synchronization techniques (IDES or IDMS) can be divided into three groups,
according to the sync control scheme followed by the sync solution [48, 73, 103]: Master-
Slave, Synchronization Maestro, and Distributed Control schemes.

Master-Slave scheme (M/S), which consists of selecting one device as the master device
while the other devices are considered as slave ones, and only the master device sends timing
information about its playout processes to the slave ones that take it as the sync timing
reference.

Synchronization Maestro Scheme (SMS), in which there is a sync maestro device, which
can even be an independent device, in charge of collecting timing playout information from all
the involved devices, processing it, and sending messages with a calculated sync timing
reference to all of them adjusting their playout processes to be in sync.

Distributed Control Scheme (DCS), in which all the devices interchange their timing
playout information and individually calculate asynchronies between them and adjust their
own playout process to be in sync.

In a previous authors’ work in [103], a qualitative comparison of the three schemes used for
IDMS is presented.

On the other hand, IDMS is the most important sync type in NVE deployment as it is
related to more parts of the NVE, which affect the consistency and responsiveness between the
partakers of the NVE. Such parts are the end-to-end network, clients, servers (if they exist),
and NVE data. Furthermore, these types of techniques are basically the ones in charge of
synchronizing the virtual world and the states of its entities between several distributed clients.
So, apart from the above group sync techniques (M/S, SMS and DCS), in this section other
group sync techniques used in the past for NVEs are considered and compared, such as Local
Lag, Dynamic Local Lag, Adaptive Δ-causality, Bucket Synchronization and Breathing Time
Buckets, Lockstep sync, Asynchronous sync, Adaptive Event sync, Time Warp sync, Breath-
ing Time Warp, Trailing State sync, Event Correlation sync and Optimistic Obsolescence-
based sync.

Another point to consider in NVEs is the users’ tolerable latency to the content, as that
would be the maximum end-to-end delay between users that the NVE could allow without

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

having an impact on their QoE. The end-to-end delay depends not only on the network but also
on the computation time in all the nodes and other devices [17]. So, if users do not perceive the
inherent end-to-end communication delay (i.e., because they are in separate geographic areas),
they will not get a worsened experience and the used sync techniques may suffice. In general,
the maximum latency values should be less than 100 ms [142], although it depends on the
application and, for example, in MOGs it varies from 80 ms to 160 ms (depending on whether
it is a fast-paced game or not) [121], although when using HMDs the maximum latency varies
from 20 ms to 50 ms [106].

Additionally, the different types of media to be synchronized in the NVE should be
considered as well. For instance, acceptable inter-stream sync between haptic and olfactory
media varies from 100 ms to 1500 ms [3, 71]. Also, desynchronized olfaction components
appearing before the corresponding audio or video are more permissible than those being
delayed after the audio or video [108] and could even prevent users to perceive delay between
other media streams [3]. Therefore, some sync techniques may be better for specific media
types than others, although further research is still required.

7.2.1 Local lag & dynamic local lag

Local lag (LL) is used to reduce short-time inconsistencies between clients in an NVE by
delaying an operation for a certain amount of time in every client, this is called the local lag.
This way, all the clients execute the same actions at the same time, despite their differences in
network latency, by slowing down the responsiveness [72]. Figure 26 shows an example in a
Client/Server-based solution. When the clients connect, the Server tests the latency of every
client and based on the maximum value of those latencies, a fixed waiting time (local lag) is set
for each client, which, when added up to the network latency of the client, will be equal to that
maximum delay for all the clients. This technique can be further improved by using Dynamic
local lag (DLL), in which, instead of using a fixed amount of delay, the information is delayed
dynamically according to the network latency in both source and destination clients [72].

First, the local lag is calculated at the beginning for each type of entity, according to the
network latency and the responsiveness requirements of the type of entity (e.g., an entity with
higher relevance in the NVE would require lower delay). Then, every time the network load
changes, or the position of an entity changes, the value of the local lag is calculated and

Fig. 26 Local lag in a Client/Server-based solution. The update message of an event is delayed 30 ms for the
client with lower network delay (on the right), to match the total delay to 100 ms (other client on the left)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

updated. Update messages are stored depending on the local lag value and sent after their
waiting time. Examples of both techniques can be found in [82] (LL), and [72] (DLL).

LL and DLL have a limit, as too much lag negatively affects the responsiveness, therefore,
other techniques should be used in conjunction. Also, the DLL ensures an optimum delay for
every participant that is also adapted to network fluctuations; enough throughput and process-
ing resources are needed for the periodic calculation.

7.2.2 Adaptive Δ-causality

All the clients of the NVE use the same maximum end-to-end delay, as in LL, which is set
dynamically according to the network latency, and determines the time limit the updates can
take to reach their destination [72]. The clients will send the update messages as soon as they
are generated, and, if they are received before the time limit expires, they are stored until it
happens, and then, they are executed. If an update is received later, it is not executed but used
for estimating values (e.g., to predict the future position of an entity). An example of NVE with
Adaptive Δ-causality can be found in [72]. In Fig. 27, Client 1 sends update messages to Client
2, with information of the position of its avatar. The update messages 1 and 3 are received on
time, but the update message 2 (including the position x = 5) arrives late at Client 2. If
Adaptive Δ-causality were not used, the client 2 receiving the update 200 milliseconds late
would update the value of x to 5, since that is the value received; or discard the message and
wait for the next one. However, when using Adaptive Δ-causality, the Client 2 can use the
timestamps and delays to calculate a new value instead. So, the new position is calculated with,
e.g., the formula: Ve = Vl + d × s, where Ve is the value to be estimated, Vl is the value
received late, d is the delay of that value and s is the step (or slope) in the value between the
late update and its previous one. So, in this case, it will be x = 5 + 200 ms × (5–2) / 600 ms
= 6.

Adaptive Δ-causality keeps the causal relationship among messages. Thanks to this, the
consistency can be maintained when the network latency is not too high. Otherwise, other
techniques should be combined.

7.2.3 Bucket synchronization (BS)

The main idea of BS is that messages originated by all the clients at the same time or during the
same period should be processed together and at the same time in all of them. In BS, time is
divided into time slots with a fixed length and a bucket is associated to each slot (called bucket

Fig. 27 Adaptive Δ-causality. A late update used to estimate a position

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

period) [44]. All the update messages received by a client that were generated and transmitted
by sender clients during a given period are stored by the receiver clients in the bucket
corresponding to that period. At the end of each bucket interval, the receiver clients compute
all the (own and received) update messages in that bucket to get their new local views of the
global state of the NVE. With BS, the simulation runs in cycles of the same duration (bucket
period). After each cycle, clients synchronize with the rest and then, its virtual time is increased
the same amount, that is, a bucket period. However, when an update message is received after
its bucket period, due to, e.g., network delay, the clients return the states to that previous
bucket and repeat the execution of all its messages (rollback). When late update messages from
other clients, or other rollbacks affect more than one bucket, cascade rollbacks are conducted,
forcing several buckets to be reprocessed successively. An example of the use of BS can be
found in MiMaze [62].

In Fig. 28, bucket ‘a’ receives the update messages 1 and 2 unordered, but all of them
belong to that same bucket, so they can be processed together without causing rollbacks nor
inconsistencies. During bucket ‘b’, update message 4 is received, but message 3 is missing.
The received message 4 is processed, therefore, causing an inconsistency. During bucket ‘c’,
the late update message 3 is received, forcing a rollback, reprocessing the previous bucket ‘b’,
and then, the bucket ‘c’, recovering the consistency.

The main advantage of BS is its low computation overhead required, but it presents several
flaws that make it impossible to be used in NVEs requiring a high level of responsiveness.
These disadvantages are mainly related to the bucket period, as it should be long enough, so
each client can process enough messages, but it should also be short enough to support fast and
realistic interactions.

7.2.4 Breathing time buckets (BTB)

BTB is like BS, but, in this case, the length of the bucket periods is variable, and each client
processes their buckets independently of the others [57]. During a bucket period, the received
update messages are executed as they arrive if they do not precede another that has already
been processed. Otherwise, if rollbacks are needed, the bucket duration ends prematurely,
while corrections are made. With BTB, when this situation happens, control messages are
interchanged between clients so that rollbacks are done locally, and no cascade rollback
occurs. An example of the use of BTB can be found in [57].

Fig. 28 Example of BS with a rollback

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

In Fig. 29, an example of a transmission of update messages between two clients is shown.
Client 1 sends the update message 3 that arrives late (outside its corresponding bucket period)
to Client 2, but it does not cause a rollback in that client because it does not break consistency
(e.g., it is an independent event). Nevertheless, when Client 2 sends the update message 4 to
Client 1, it arrives too late and generates a rollback on Client 1 because this update message is
received after update message 5 that depends on the update message 4, and the consistency has
been broken.

With BTB, network usage is reduced, since most rollbacks happen locally, and respon-
siveness is increased. Nevertheless, global consistency cannot be ensured, and enough mes-
sages are required in the same bucket to reduce the number of rollbacks.

7.2.5 Lockstep synchronization (LS)

In LS, a server manages a global time reference. For every interaction (event) in the NVE that
changes any states of entities, the server stops the simulation time until all the participants
update their states for those entities. Clients do not advance in time until the server notifies
them to do so. Then, the simulation time is resumed. This way, a consistent NVE is achieved
[32]. In Fig. 30, an example of the steps followed for each interaction in a simple scenario are
described. Firstly, when a user wants to interact, the associate client informs the server. Then,
the server stops the global simulation time or GST (lockstep mode), notifies this to the rest of
clients and sends them the event, so each client can start its computation processing. When
finished, each client notifies it to the server. Only when all the clients’ notifications have been
received by the server, it advances the GST and moves to the next interaction or turn of the
NVE. An example of the use of LS can be found in [32].

With LS, consistency is always ensured. Nevertheless, it is not recommended to be used in
NVEs demanding high levels of interactions and responsiveness, since clients would enter
continuously in the lockstep mode, waiting for the rest of clients to notify that they had
finished processing the events, being very annoying for them. Furthermore, if the processing of
an interaction in any client is delayed for a considerable amount of time (e.g., the end-to-end
delay is high, or the update message takes too much time to be processed on one client), the
server will stop the GST until that client finishes and notifies this to the server. So, the
responsiveness of the NVE, and, consequently, the users’ QoE, could be seriously affected.

Fig. 29 Example of BTB with different sized buckets

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

7.2.6 Asynchronous synchronization (AS)

AS is based on the previous one, but with a decentralized clock, which allows each client to
advance simulation time without depending on the other clients [184]. This is achieved by only
sending event update messages to the clients that are affected by those events (e.g., when a
client’s avatar can see another client’s avatar opening a door or they are shooting each other).
Each client has their own clock and perceives the same consistent world, but at different times.
An example can be found in [184], where the concept of Spheres of Influence (SoI) is used. A
SoI is the zone close to a clients’ avatar that can be affected by it in future turns, as shown in
Fig. 31.

AS is resilient to game cheaters and improves the flaws of the LS, solving isolated effects of
poor connection. However, this method requires all clients to have similar network conditions,
because a client that has higher latency than the rest would act as a bottleneck. Moreover, a
global consistency is also hard to maintain when the number of connected clients increases.

Fig. 30 Steps of the Lockstep Synchronization

Fig. 31 Example of AS. The clients inside a SoI receive the update message

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

7.2.7 Adaptive event synchronization (AES)

AES takes the fluctuating conditions of the network into account and combines the delay and
packet loss to provide information that helps to determine the playout delay. The playout delay
is a controllable delay added in each client to have the same end-to-end delay for all of them
(Fig. 32), attaining visualization of the events at the same time. This playout delay is calculated
by selecting a main client that takes the maximum delay between the different clients,
estimates the jitter based on previous known measurements, monitors the packet loss, and
shares all this information with the rest of clients. Then, the clients determine how much time
the events will be kept in a buffer before being transmitted or executed in sync. The usage of
that buffer is the main difference between AES and LL. The idea of using both the delay and
loss is to solve punctual, as well as long-term inconsistencies. An example of the use of AES
can be found in [84].

As network characteristics are used to establish the sync parameters, users will likely be
able to interact in a consistent virtual world. Nevertheless, as one of the clients is elected to
process the sync computations, it needs enough computation resources to work properly.
Furthermore, AES also adds the control messages that reduce the available network
throughput.

7.2.8 Time warp synchronization (TWS)

In TWS, the event-related messages interchanged in the NVE have four fields: the name of the
sender, the name of the receiver, and the virtual sending and receiving timestamps [110],
which are filled by the clients and used to synchronize the update messages. The sender and
receiver clocks should be previously synchronized, so that the timestamps indicate the correct
relationships between events. The update messages are processed by the clients as they arrive.
If an update message arrives containing information of an event timestamped before the event
being processed, rollbacks are made by executing the older event and then the following ones
in order. As shown in Fig. 33, when an event (3) is received late (a) a rollback is performed to
return to the state corresponding to an execution moment before that event happened and then
all the received events are processed in order (b). To avoid inconsistency problems caused by
update messages that have been sent by that client before the late update message was
received, that client informs the rest of the clients about the rollback and that some of its
previously sent update messages could represent an incorrect state of the NVE. An example of
TWS can be found in [110].

Fig. 32 AES. The latency estimation from the loss and delay is used to calculate the necessary end-to-end delay
to equilibrate the timings of all clients

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

TWS allows the NVE to have a high responsiveness when having enough throughput and
processing resources. If these features cannot be guaranteed, TWS should be used only when
the rollback processes do not occur often because they can be highly annoying for the users.
The main disadvantage of TWS is the need for high memory capacity, as copies of the NVE
processed messages must be stored.

7.2.9 Breathing time warp (BTW)

BTWconsists in a combination of TWS andBTB, and deals with the issues they can experience
[149]. First, it starts with a TWS phase, where events are treated in an optimistic way up to a
chosen time delay (lookahead), performing rollbacks and informing about them if inconsis-
tencies happen. When a specified time passes, the BTW moves into a BTB phase, until a
specific number of events are processed, and rollbacks are stored to be sent later. After this, it
goes back to the TWS phase and repeats the processing cycle. In Fig. 34, the two delayed update
messages in the TWS phase led to two rollbacks, each happening when a late update message is
received. Later, in the BTB phase, the two late update messages received in bucket ‘b’ generate
a single rollback event to bucket ‘a’. Examples of the use of BTW can be found in [149, 182].

The problem of BTW is that the time between cycles can affect the consistency in scenarios
where the number of messages varies dynamically. To solve this problem, in SafeBTW [182]

Fig. 33 Rollback process in Time Warp

Fig. 34 Example of Breathing Time Warp (TWS and BTB combination)

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

the time between these two phases is changed dynamically, adapting to the network and to the
number of received messages. Generally, BTW can provide a better consistency than TWS,
without losing too much responsiveness as with BTB.

7.2.10 Trailing state synchronization (TSS)

TSS is like TWS, but in this case, a series of consistent copies of the NVE in previous
execution times are stored [37]. In parallel to the main simulation of the NVE, delayed copies
of itself (i.e., copies of the NVE at a different virtual time), are being executed. When a new
event arrives, if it precedes the current visible state, a rollback process takes place. As there are
several delayed copies of the NVE running, it is probable that one is in a state before the instant
the late update message was sent, and there will not be any inconsistency in that copy of the
NVE. In that case, this copy of the NVE will be turned into the main version, executing all the
received updates in it in the correct order. This is represented in Fig. 35, in which there is a
main processing copy of the NVE and three delayed copies (trailing state copies) of the NVE
(a). When late update message 6 arrives a kind of rollback is forced. The copy stored
previously to the instant the event in the late message should happen is restored as the main
processing copy and the NVEs continue reprocessing all the ordered received events since the
time it was stored. Although several copies of the NVE are simultaneously running, only the
main one is visible to the users. An example can be found in [37].

In comparison to TWS, TSS provides better responsiveness, and the rollback process is
improved, making it suitable to be used in fast-paced NVEs, such as first-person shooter (FPS)
MOG. Nevertheless, it requires high memory capacity and processing resources to maintain all
the needed copies of the NVE.

7.2.11 Event correlation synchronization (ECS)

ECS is like TWS and is based on event correlation algorithms. Some events are time-related
between them (event-correlation), and some are not (non-event-correlation) [15]. Correlation
means that one event depends on another event, so that one can happen after the other, but not
vice versa. When a late update message arrives, instead of rolling back as in TWS, firstly,

Fig. 35 Example of TSS. In a), 3 TS copies are recorded holding the changes from the preceding received update
messages. In b) a rollback moves the execution point of the last TS copy that did not miss any update message

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

correlation of this event with the already processed events (stored) is checked to decide what
the best choice is. If no correlation is found, the late event can be processed without rolling
back and it will not lead to inconsistency. Otherwise, the rollback process will take place.

As shown in Fig. 36, Client 1 sends update messages to Client 2, and the update message 2
is received after the update message 3 by the Client 2, e.g., due to fluctuations in network
latency. If the events in messages 2 and 3 are correlated, so that event 2 must happen before
event 3, a rollback will take place. Otherwise, update message 2 will be processed without the
need of a rollback. Moreover, if the update message 3 already updated the same state that the
update message 2 would (e.g., both changed an avatar’s position), the late update message 2
will not be executed, as there is already a most recently updated state by the update message 3.
An example of ECS can be found in [15].

ECS can reduce the number of rollbacks, improving responsiveness and interactivity and
lowering the network usage and avoiding inconsistencies. Nevertheless, it has high memory
capacity and processing resource requirements to do the correlation computing.

7.2.12 Optimistic obsolescence-based synchronization (OOS)

In OOS, besides applying TWS and ECS, event obsolescence is also considered. If an event
arrives after it has already been overridden by a newer one, it is discarded [56]. Given two
update messages, i, and j, j makes i obsolete if processing j (generated after i) without i can
achieve the same final state that would be reached if both events were processed in the correct
order. The obsolete events are discarded, so there will not be a need to check for inconsis-
tencies and no rollback will happen. For instance, i could be an update message that changed
the position of an entity, while j could be an update message that destroyed this entity
(eliminating it from the virtual world) and, therefore, the older position update becomes
unnecessary. Examples of the use of OOS can be found in [56].

As in TWS, in OOS a list of the processed events is also maintained, and responsiveness is
improved. However, in OOS, the number of rollback actions is highly decreased, reducing the
users’ annoyance and improving interactivity and users’QoE. However, like in ECS, this one also
requires high memory capacity and processing resources to execute the required processes.

7.2.13 Comparison

Table 8 presents a summary of the sync techniques presented in this section, including their
advantages, disadvantages, as well as some examples of NVEs using them.

Fig. 36 Example of the Event Correlation Synchronization

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

7.2.14 Future research directions

The field of synchronization is already well explored, with a high number of options to
apply to traditional NVEs. However, more studies are needed to consider immersive
NVEs including more multisensory components, as limited research has been done
regarding that aspect [35, 71]. For example, [152] compares the effects of delay and
jitter between haptics, audio and video components transmitted through a network.

Table 8 Sync techniques in NVEs

Synchronization technique Advantages Disadvantages Examples

Local lag (LL) • Easy consistency control
• Reduced network usage

• Responsiveness problems
• Robustness problems

Khan et al. [82]

Dynamic local lag (DLL) • Easy consistency control • Control messages add to
network usage

Huang et al. [72]

Adaptive Δ-causality • Easy consistency and
responsiveness control

• Requires low network
delay

Huang et al. [72]

Bucket synchronization
(BS)

• Low sync overhead • Reduced Responsiveness MiMaze [62]

Breathing time buckets
(BTB)

• Better responsiveness
• Reduced network usage

• Hard to keep global
consistency

Ferscha et al. [57]

Lockstep synchronization
(LS)

• Ensured consistency
• Easy to implement

• Not suited for real-time
applications

• Not suitable if high
responsiveness is needed

Chen et al. [32]

Asynchronous
synchronization (AS)

• Resilience to cheaters
• Good local consistency

• Hard to keep global
consistency

• Not suitable for fast-paced
NVEs

Zhang et al. [184]

Adaptive event
synchronization (AES)

• Good local consistency
and responsiveness

• High computation
resources needed

• Control messages increase
network use

Kim et al. [84]

Time warp synchronization
(TWS)

• Good responsiveness • Increased network usage
• High memory capacity

needs
• Rollbacks

Nguyen et al. [110]

Breathing time warp (BTW) • Good consistency and
responsiveness

• Complex to implement
• High computation

resources needed

Steinman et al. [149];
SafeBTW [182]

Trailing state
synchronization (TSS)

• Good responsiveness
(better than TWS)

• Suited for real-time ap-
plications

• High computing resources
needed

• High memory capacity
needs

• Rollbacks

Cronin et al. [37]

Event correlation
synchronization (ECS)

• Good responsiveness
(better than TSS)

• Decrease network usage
• Reduced number of

Rollbacks

• High computing resources
needed

• High memory capacity
needs

• Rollbacks

Bin Shi et al. [15]

Optimistic
obsolescence-based syn-
chronization

• High responsiveness and
good consistency

• High computing resources
needed

• High memory capacity
needs

• Rollbacks

Ferretti et al. [56]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Likewise, [74] and [174] compare the effects of delay with haptics between users in an
NVE. Finally, in [71], the authors study the inter-stream synchronization with haptic and
olfactory components combined.

Moreover, in the future, newer and more advanced solutions could apply artificial intelli-
gence (AI) or machine learning techniques to model and predict things like the occurrence of
events, the network conditions, user behavior, etc., so the synchronization can be enhanced
[19]. For example, in [111], AI techniques are used to optimize the scheduling of events and
performance on the synchronization of wireless sensor devices. Additionally, more focus
should be put on mobile devices, so that they receive better synchronization, adapted to the
low computing capacity that those offer. Hopefully, with the new, faster, and more reliable
wireless network connections (e.g., 5G), mobile devices will have less problems for experienc-
ing NVEs in real-time.

8 Computing models

Depending on the employed network architecture, in NVEs, the data, the tasks, and the
computation needed by each of the interconnected nodes can be managed in different ways,
optimizing the delivery of information and the performance of tasks, like, e.g., the rendering of
the 3D virtual world. The rendering of the virtual world, other intensive tasks (e.g., a complex
behavior of an entity), and the required storage size for the NVE can be delegated to remote
nodes, which will provide the needed results and information for updating the virtual world
and representing it in the client. Those helper nodes may be closer to or farther from the client
(e.g., in the Edge nodes or in the Cloud, respectively), in another peer or in the same house,
and could be serving their features to a single user or to multiple ones (e.g., rendering frames
for a group of users). These techniques also allow the NVE designers to provide a service-
oriented solution, where the access to products, programs and other technologies are offered as
services (e.g., a subscription to use an application temporarily) instead of the traditional on-
premises approach. So, clients delegate part of (or all) their computational requirements and
roles to third parties. In the Cloud Computing area, this is known as *aaS (“Something” as a
Service). Examples are SaaS (Software as a Service), PaaS (Platform as a Service) and GaaS
(Games as a Service). In the NVE scope, these techniques mitigate the problems that end-user
lightweight clients (e.g., computers with low processing capabilities, or smartphones with
lower storage size) experience. Furthermore, these techniques are still acceptable for the rest of
the clients if the downsides they present are not severe, allowing companies to offer this
business model to all the possible clients.

In this section several techniques to manage the computing processing requirements for
clients in NVEs, such as Remote Rendering, Adaptive Streaming, Foveated Imaging,
Memoization, and Progressive Downloading are explained.

8.1 Remote rendering

Remote Rendering is based on using other computers for rendering the contents of the NVE.
The resulting audio and video streams are delivered through a network connection to the
clients [140]. As users interact with the NVE, their clients send the input interactions to the
renderer computer to execute the necessary processes and return the results or needed
information. To allow a good level of interactivity, the latency between clients and that

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

computer needs to be low, or the responsiveness will be impaired. This becomes a troublesome
task when the quality of the images or video of the NVEs is very high, and the available
throughput is very low. To tackle this problem, besides the predictive modelling and sync,
Adaptive Streaming and Memoization techniques, which will be explained later, can be used.

There are two main reasons to use this model: 1) it allows lightweight clients to still run and
interact with NVEs that have high computation requirements, also saving money with the
Cloud-based architecture [137]; and 2) it avoids the need to store the entire NVE program (as it
runs in another computer), hence saving storage capacity on the client. There are also two
additional benefits that come with Remote Rendering: 1) it is platform-independent, the NVE
must only be developed for the server that is going to execute it, and the same rendered frames
can be transmitted to all kinds of clients and platforms (Android, Linux, Windows,
PlayStation, Xbox, etc.) without restrictions; and 2) there is only one copy of the NVE,
making it easier to maintain and update the NVE.

There are many examples that employ Remote Rendering. Examples of Cloud Gaming
platforms are Sora Stream [145], PlayKey [118], GeForce Now [63] and Google Stadia [66].
These platforms offer games on demand for a monthly fee, all rendered from their Cloud and
brought to the clients. Parsec [112] and Steam Remote Play [148] allow the users to store the
games on their own computer and stream them to other devices (e.g., a TV over LAN). MUVR
[92] and CloudyGame [13] allow mobile clients (e.g., smartphones) to play games using Edge
computers, which do the rendering of frames instead of a farther Cloud that would increase the
delay. Finally, DROVA [49] and Vectordash [164] are distributed solutions, a.k.a. P2P
Cloudless Gaming, which, instead of using a Cloud, depends on a decentralized network that
balances the required rendering and computation load. This way, users can have a close
available computer to manage the NVE load, instead of using a Cloud-based service, improv-
ing responsiveness.

8.2 Adaptive streaming

As high-quality rendered images (frames) require a high throughput, adaptive video streaming
methods can be applied to reduce the throughput usage. The quality of the rendered frames
must be the optimum for the available throughput (which can change dynamically depending
on the fluctuation of the network conditions) [11]. With Adaptive Streaming, when the
available throughput decreases, the client receives lower quality frames instead of getting
them delayed or getting disconnected from the NVE session. When the available throughput
increases, higher quality frames can be rendered again and transmitted. Examples of the use of
Adaptive Streaming can be found in [70, 120, 171].

With Adaptive Streaming, the network usage is optimized, reducing congestion and
possible packet loss. Nonetheless, if the available throughput is too low, the reduced quality
of the received frames can provide the users with a bad QoE. It is also important to note that
these frames are generated and transmitted in real time instead of stored beforehand. Therefore,
an algorithm to decide the quality of the frames to be transmitted in each moment is needed.

8.3 Foveated imaging

When using adaptive streaming the users can perceive a bad QoE when the throughput is too
low. To solve it, with Foveated Imaging a region of interest (RoI) is defined in the viewport of
the user, so that the quality of the RoI in each transmitted frame is higher than in the rest of the

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

frame. It allows to improve the users’ QoE by reducing the quality of the parts of the rendered
frame the user is not paying attention to, as shown in Fig. 37.

Examples of the use of Foveated Imaging can be found in [4, 77]. In the virtual reality (VR)
world, this is called foveated rendering [77]. As users employing an HMD can move the head,
and hence the viewport, freely and more easily than without the HMD, the NVE should be able
to send newer frames faster, updating to the new perspective and reducing the motion-to-
photon latency (which gives the user a distracting effect known as simulation sickness [130]).

The advantage of this Foveated Imaging is that the amount of transmitted information can
be significantly reduced, without affecting the users’ QoE too much, improving the network
usage and the experienced latency. Nonetheless, this comes with a higher computation
demand.

8.4 Memoization

Since there can be redundancy, during the NVE session, between the content of rendered
frames for different clients (e.g., users whose avatar is moving in the same environment view
similar backgrounds), with the Memoization, the rendered frames are cached and reused if
needed. This consists in storing rendered frames or the results of other long computations to
use them again when possible [92]. This way the needed time for processing and computing
resources is decreased, reducing delays, and optimizing the performance of remote rendering.
An example of the use of Memoization can be found in MUVR [92], where it is used on an
Edge-based architecture to reduce delays and rendering requirements between mobile clients.
Every time a frame is requested from a specific position in the virtual environment (usually
from the head of the user’s avatar), it is checked whether there is a stored frame recorded from
a similar position. If not, that frame is rendered, and then it is stored along with the position
and orientation it was viewed from, for possible future uses. If cached frames exist from a
similar position, the NVE combines them to generate a new frame representing what the user
should view from that perspective. This is called image-based rendering (IBR) [140] and it
consists of combining 2D images to simulate and render 3D points of view at different
positions in the virtual world.

Fig. 37 Foveated rendered image

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

The NVE can also use frames that were rendered for different clients to render new ones for
other clients (e.g., a cloud NVE rendering the frames from several users participating in the
same session). So, a system that is rendering the NVE session for multiple clients, can take
advantage of that redundancy too, reducing computing needs.

Figure 38 illustrates Memoization. In a) and b), two different points of view of the same
entity are employed to store two new frames generated by 3D rendering. In c), the two frames
are used to generate a new frame from a different point of view with IBR, discarding the need
of 3D rendering.

As IBR requires less computing power, clients with low processing capabilities can store
and use cached frames to render new frames, reducing the network usage and the latency but
needing more memory capacity to store them. However, the frames can become obsolete as
time passes or when the virtual environment changes (e.g., entities move), forcing new frames
to be rendered. Furthermore, if the number of cached frames is high, a node may choose to
delete less used or older ones in order to save storage size.

8.5 Progressive download

The Progressive Download consists of allowing clients to execute the NVE although not all its
contents are available yet [52]. This means that the NVE application can run while
downloading its remaining content (Fig. 39). Examples that use progressive download can
be found in SuperStreamer [52] and Utomik [161].

Thanks to Progressive Download, users start experiencing the NVE while the complete
version keeps downloading. Recent video games with high-definition graphics already surpass
100GB of storage size (e.g., Destiny 2 is 105GB [46] and Call of Duty: Modern Warfare is
175GB [21]). Furthermore, for clients with low storage capacity, Progressive Download
allows users to just load the information required at each moment (e.g., a virtual zone and
its contents). Progressive Download is also practical for highly customizable and continuously

Fig. 38 Two stored frames used to create a frame from a new point of view

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

changing NVEs, like Second Life [134], Mozilla hubs [105] and Decentraland [42], NVEs
where the parts of the environment are loaded on demand, as the user requires them.

Also following Progressive Download, the Blizzard’s Battle.net [12] launcher has three
stages for a game download. In the first one, a predefined downloaded percentage of the game
is needed to be able to run the game with reduced performance and graphics. In the second
stage, after a subsequent amount has been downloaded, the game can be executed without
stability issues (i.e., without the frames per second fluctuating), but with some content missing.
Finally, the third stage comes when the game is fully downloaded. Moreover, the well-known
video game platforms PS4 and Xbox One have the features Play as you Download [117] and
Ready to Start [54], respectively, for allowing their users to be able to play small segments of a
game while the rest of it is being downloaded. Additionally, the Xbox One has another
functionality called FastStart [54] that determines which resources of the game are needed
before, so they can be downloaded first, allowing a user to run the game before it is fully
downloaded.

8.6 Comparison

Table 9 summarizes the described techniques for optimizing the NVEs requirements, including
their advantages and disadvantages, as well as examples of NVEs using them.

8.7 Future research directions

For the remote rendering of stereoscopic vision (e.g., VR on HMDs), there is no standardized
solution for image compression yet that considers the redundancy existing between the two
frames rendered for both the two eyes [92]. These frames, being rendered at the same moment,
are oftentimes quite similar, and the transmission of them could take advantage from a
streaming technique that reduces that extra network usage for VR, this way improving the
current compression solutions, like in Adaptive Streaming and Foveated Imaging. Other works
that also study this redundancy between eyes and between different clients can be found in

Fig. 39 Progressive Download when the avatar is moving

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

DeltaVR [93] and in Coterie [99], which show the importance of those kinds of solutions that
have not been implemented in NVEs yet. Moreover, in [139], there is a study on modelling the
viewpoint (or gaze) of users in VR, which could be useful to improve the performance of
Foveated Imaging.

Additionally, the IBR can also be used for local rendering, to save computation resources
that could be used by other techniques. Likewise, memoization can be used for storing results
of other computing intensive tasks, like the ones a prediction algorithm could do, and store the
results to reduce the delay added by computing processes. As techniques applied especially on
NVEs are yet to be found, future research in this field could focus on implementing this kind of
techniques in NVEs.

Furthermore, upscaling and sharpening techniques have been used recently in video games
to improve graphic quality of the rendered images, by increasing the image resolution and
detail, without much increase on the computation costs. The most notable example might be
NVIDIA DLSS (Deep Learning Super Sampling) [43], which uses AI to achieve higher
graphic quality with lower computing requirements. The problem of this technology is that
it is applied at the rendering process, meaning that remote rendered images get upscaled before
being transmitted to the client, instead of sending the downscaled version, and letting the
client, or a node closer than the Cloud, to upscale the frame, optimizing the network usage.
Overall, more techniques in these fields are expected to be developed and applied to NVEs in
combination with the increasing requirements of modern NVEs.

9 Conclusions and future work

This paper is intended to serve as a starting point for future investigations in the NVE field as
well as a handy tool for future NVE developments. It provides a broad picture of the main

Table 9 Computing models in NVEs

Technique Advantages Disadvantages Examples

Remote
rendering

• Easy update for all
clients

• Reduces computing
and storage
requirements of the
end clients

• High bitrate requirements
• Sensible to delays

MUVR [92]; CloudyGame [13]; Sora
Stream [145]; PlayKey [118];
GeForce Now [63]; Stadia [66];
Parsec [112]; Remote Play [148];
DROVA [49]; Vectordash [164]

Adaptive
streaming

• Reduces network
usage

• Can worsen the QoE Rhee et al. [120]; Hong et al. [70]; Wang
et al. [171]

Foveated
imaging

• Reduces network
usage

• Low impact on QoE

• Increases computation
requirements

Illahi et al. [77]; Ahmadi et al. [4]

Memoization • Reduced overload of
the Cloud

• Lower requirements
for clients

• Not suited for dynamic
worlds

• Balance needed between
the storage and
computing

MUVR [92]

Progressive
downloa-
ding

• Data easy to manage
by the NVE owner

• Reduce storage needs
• Reduces waiting times

• Increases NVE complexity
• Data downloading

decreases available
throughput employed for
interaction

SuperStreamer [52]; Utomik [161];
Second Life [134]; Mozilla hubs
[105]; Decentraland [42]; Battle.net
[12]; PS4 [117]; Xbox One [54]

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

technologies employed for designing NVEs. First, some NVE-related background information
has been provided and very important factors to be considered in NVEs are described, such as
consistency, responsiveness, concurrency, and synchronization, among others, to guarantee an
overall satisfaction of the users (i.e., a good QoE). Additionally, the problems faced when
implementing NVEs have been discussed, justifying the need for techniques to solve them.

Then, an up-to-date review and compilation of the most important network architectures,
computing models, data distribution models, and techniques for resource balancing, predictive
modelling, and synchronization used in NVEs, has been presented. They have been revised,
compared, and classified, while also mentioning the diverse fields that may boost interest to
explore.

It has been shown how the different techniques manage the described important factors in
an NVE, requiring a classification in different components. A novel taxonomy has been
provided as an assistance tool in the study of NVE techniques, and to classify new techniques
appearing in the future. This classification is based on the nature of those techniques, to make
it simpler to extract the relationship between them and to choose the most appropriate ones for
each NVE to be designed.

However, more research is still needed in the NVE field to improve the users’ QoE, as the
field is continuously growing with new and better components and techniques. In the future,
along with the new technological advances, users will continue demanding even better quality
and functionalities, which will pose new challenges for researchers.

New emerging technologies, like blockchain andWeb 3.0, promise new ways of interacting
and generating content in NVEs, allowing users to socialize and engage with more security in
what is called the metaverse [87]. Nonetheless, further research is needed to get more insights
and prove the benefits of the metaverse [150].

In future work, authors would like to update the survey with the new NVE components or
new techniques for NVEs that will appear in the future. Moreover, a document with some
recommendations of combinations of different techniques presented in this paper for typical
examples of NVEs, based on their specific requirements, will be prepared.

Appendix I. Abbreviations

& 3D: Three-Dimensional.
& AES: Adaptive Event Synchronization
& AI: Artificial Intelligence
& AS: Asynchronous Synchronization
& BS: Bucket Synchronization.
& BTB: Breathing Time Buckets.
& BTW: Breathing Time Warp.
& CAVE: Cave Assisted Virtual Environment.
& DB: Database.
& DCS: Distributed Control Scheme.
& DHT: Distributed Hash Tables.
& DIS: Distributed Interactive Simulation.
& DLL: Dynamic Local Lag.
& DLSS: Deep Learning Super Sampling.
& ECS: Event Correlation Synchronization.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

& EWMA: Exponentially Weighted Moving Average.
& FPS: First-Person Shooter.
& GaaS: Games as a Service.
& GST: Global Simulation Time.
& HCI: Human-Computer Interaction.
& HLA: High-Level Architecture.
& HMD: Head-Mounted Display.
& HW: Hardware.
& IBR: Image-Based Rendering.
& IDES: Inter-Device Synchronization.
& IDMS: Inter-Destination Media Synchronization.
& IoT: Internet of Things.
& LAN: Local Area Network.
& LL: Local Lag.
& LS: Lockstep Synchronization.
& M/S: Master-Slave.
& MMO: Multiplayer Massively Online.
& MOG: Multiplayer Online Game.
& MU: Media Unit.
& NVE: Networked Virtual Environment.
& OOS: Optimistic Obsolescence-based Synchronization.
& OPF: Optimum-path Forest.
& OS: Operating System.
& P2P: Peer-to-Peer.
& PaaS: Platform as a Service.
& PS4: PlayStation 4.
& PVS: Potentially Visible Sets.
& QoE: Quality of Experience.
& RoI: Region of Interest.
& RTCP: RTP Control Protocol.
& RTP: Real-time Transport Protocol.
& SaaS: Software as a Service.
& SMS: Synchronization Maestro Scheme.
& SoI: Sphere of Influence.
& SP: Super Peer.
& SW: Software.
& TCP: Transmission Control Protocol.
& TSS: Trailing State Synchronization.
& TV: Television.
& TW: Time Warp.
& TWS: Time Warp Synchronization.
& UDP: User Datagram Protocol.
& UFR: Update-Free Regions.
& UTC: Coordinated Universal Time.
& VE: Virtual Environment.
& VR: Virtual Reality.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work
was supported, in part, by Grants PEJ2018-003875-A-A and PID2021-126645OB-I00, funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe”. It was also supported, in part, by
ACIF/2021/192 from “Programa I+D+i de la Generalitat Valenciana”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References2

1. Abdulazeez SA, El Rhalibi A, Al-Jumeily D (2017) Dynamic area of interest management for massively
multiplayer online games using OPNET. In: 10th International Conference on Developments in eSystems
Engineering (DeSE), pp 50–55. https://doi.org/10.1109/DeSE.2017.19

2. Acadicus (n.d.) https://acadicus.com/. Accessed 4 May 2021
3. Ademoye OA, Murray N, Muntean G-M, Ghinea G (2016) Audio masking effect on inter-component

skews in olfaction-enhanced multimedia presentations. ACM Trans Multimed Comput Commun Appl
12(4). https://doi.org/10.1145/2957753

4. Ahmadi H, Zadtootaghaj S, Pakdaman F, Hashemi MR, Shirmohammadi S (2021) A skill-based visual
attention model for cloud gaming. IEEE Access, (Early Access), p 1. https://doi.org/10.1109/ACCESS.
2021.3050489

5. Alcañiz M, Bigné E, Guixeres J (2019) Virtual reality in marketing: A framework, review, and research
agenda. Front Psychol 10(July):1530. https://doi.org/10.3389/fpsyg.2019.01530

6. Amar Y, Tyson G, Antichi G, Marcenaro L (2019) Towards cheap scalable browser multiplayer. In: IEEE
Conference on Games (CoG), pp 1–4. https://doi.org/10.1109/CIG.2019.8847958

7. Amiri M, Al Osman H, Shirmohammadi S (2017) “Game-aware bandwidth allocation for home gateways.
Iin 15th Annual Workshop on Network and Systems Support for Games (NetGames), pp. 1–3. https://doi.
org/10.1109/NetGames.2017.7991546

8. Aung ST, Ishibashi Y, Mya KT, Watanabe H, Huang P (2020) Influences of network delay on cooperative
work in networked virtual environment with haptics. In: 2020 IEEERegion 10 Conference (TENCON), pp
1266–1271. https://doi.org/10.1109/TENCON50793.2020.9293934

9. Avni S, Stewart J (2010) Frontier sets in large terrains. In: Graphics interface, pp 169–176. https://doi.org/
10.5555/1839214.1839244

10. Bamutange B, Ramsurrun V, Seeam A, Katsina P, Anantwar S (2020) Zoneless load balancing for
massively multiplayer online games. In: 2020 3rd International Conference on Emerging Trends in
Electrical, Electronic and Communications Engineering (ELECOM), pp 173–178. https://doi.org/10.
1109/ELECOM49001.2020.9296989

11. Barman N, Schmidt S, Zadtootaghaj S, Martini MG, Möller S (2018) An evaluation of video quality
assessment metrics for passive gaming video streaming. In: Proceedings of the 23rd Packet Video
Workshop (PV '18). Association for Computing Machinery, New York, pp 7–12. https://doi.org/10.
1145/3210424.3210434

12. Battle.net (2013) https://www.blizzard.com/en-us/apps/battle.net. Accessed 4 May 2021
13. Bhojan A, Ng SP, Ng J, Ooi WT (2020) CloudyGame: enabling cloud gaming on the edge with dynamic

asset streaming and shared game instances. Multimed Tools Appl 79(43–44):32503–32523. https://doi.
org/10.1007/s11042-020-09612-z

14. Bigscreen (2019) https://www.bigscreenvr.com/software. Accessed 4 May 2021
15. Bin Shi X, Fang L, Ling D, Xing-hai Z, Yuan-sheng X (2007) An event correlation synchronization

algorithm for MMOG. In: 8th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, vol 1, pp 746–751. https://doi.org/10.
1109/SNPD.2007.152

2 The availability of the references has been checked on 4 May 2021.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

16. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: 1st
MCC workshop on mobile cloud computing, pp 13–16. https://doi.org/10.1145/2342509.2342513

17. Boronat F, Lloret J, García M (2009) Multimedia group and inter-stream synchronization techniques: A
comparative study. Information Systems 34(1):108–131, ISSN 0306-4379. https://doi.org/10.1016/j.is.
2008.05.001

18. Bouras CJ, Giannaka E, Tsiatsos T (2011) Networked virtual environments. In: Gaming and Simulations.
IGI Global, p 7. https://doi.org/10.4018/9781609601959.ch413

19. Boutaba R et al (2018) A comprehensive survey on machine learning for networking: evolution,
applications and research opportunities. J Internet Serv Appl 9(1):16. https://doi.org/10.1186/s13174-
018-0087-2

20. Buyukkaya E, Abdallah M, Simon G (2015) A survey of peer-to-peer overlay approaches for networked
virtual environments. Peer-to-Peer Netw Appl 8(2):276–300. https://doi.org/10.1007/s12083-013-0231-5

21. Call of Duty: Modern Warfare (2019) https://www.callofduty.com/modernwarfare/pc. Accessed 4
May 2021

22. Calvin J, Dickens A, Gaines B, Metzger P, Miller D, Owen D (1993) The SIMNET virtual world
architecture. In: Proceedings of IEEE virtual reality annual international symposium. Seattle, WA, USA,
pp 450–455. https://doi.org/10.1109/vrais.1993.380745

23. Capece N, Erra U, Losasso G, D’Andria F (Nov. 2019) Design and implementation of a web-based
collaborative authoring tool for the virtual reality. In: 15th International Conference on Signal-Image
Technology Internet-Based Systems (SITIS), pp 603–610. https://doi.org/10.1109/SITIS.2019.00123

24. Carlini E, Lulli A (2019) Analysis of movement features in multiplayer online battle Arenas. J Grid
Comput 17(1):45–57. https://doi.org/10.1007/s10723-018-9470-2

25. Carlsson C, Hagsand O (1993) DIVE a multi-user virtual reality systems. In: Proceedings of IEEE virtual
reality annual international symposium. Seattle, pp 394–400. https://doi.org/10.1109/vrais.1993.380753

26. CAVRNUS (n.d.) https://cavrn.us/. Accessed 4 May 2021
27. Çevikbaş ŞB, İşler V (2019) Phaneros: Visibility-based framework for massive peer-to-peer virtual

environments. Computer Animation and Virtual Worlds 30(1):1808. https://doi.org/10.1002/cav.1808
28. Chan A, Lau RWH, Ng B (2001) A hybrid motion prediction method for caching and prefetching in

distributed virtual environments. In: Symposium on Virtual reality software and technology, pp 135–142.
https://doi.org/10.1145/505008.505035

29. Checa D, Bustillo A (2019) A review of immersive virtual reality serious games to enhance learning and
training. Multimed Tools Appl 79(9):5501–5527. https://doi.org/10.1007/s11042-019-08348-9

30. Chen JF, Lin WC, Bai HS, Dai SY (2005) A message interchange protocol based on routing information
protocol in a virtual world. In 19th International Conference on Advanced Information Networking and
Applications (AINA'05) Volume 1 (AINA papers), Taipei, 2, pp. 377–384. https://doi.org/10.1109/AINA.
2005.34

31. Chen Y, Liu ES (2018) Comparing dead reckoning algorithms for distributed car simulations. In:
Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation
(SIGSIM-PADS '18). Association for Computing Machinery, New York, pp 105–111. https://doi.org/
10.1145/3200921.3200939

32. Chen T, Wang Z, Lu Q (2019) An adaptive lockstep synchronization method for scene collaborative
editing of 3D geometry. In: 2019 International Conference on Intelligent Computing, Automation and
Systems (ICICAS), Chongqing, pp 324–328. https://doi.org/10.1109/ICICAS48597.2019.00076

33. Cipresso P, Giglioli IAC, Raya MA, Riva G (2018) The past, present, and future of virtual and augmented
reality research: a network and cluster analysis of the literature. Front Psychol 1664-1078(9):1664–1078.
https://doi.org/10.3389/fpsyg.2018.02086

34. City of Heroes (2004) http://cityofheroes.ca/. Accessed 4 May 2021
35. Covaci A et al (2019) 360° Mulsemedia: A way to improve subjective QoE in 360° videos. In:

Proceedings of the 27th ACM International Conference on Multimedia (MM '19). Association for
Computing Machinery, New York, pp 2378–2386. https://doi.org/10.1145/3343031.3350954

36. Cristea DS, Navarro RC, Riquelme JS, Ivanov M, Anwar M, Suciu G (2019) Integrating iot modern
communication architectures into the new generation of VR/MR environments. Economics and Applied
Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration
(2):172–180. https://doi.org/10.35219/eai1584040948

37. Cronin E, Kurc AR, Filstrup B, Jamin S (2004) An efficient synchronization mechanism for mirrored
game architectures. Multimed Tools Appl 23(1):7–30. https://doi.org/10.1023/B:MTAP.0000026839.
31028.9f

38. De Alwis C et al (2021) Survey on 6G Frontiers: trends, applications, requirements, technologies and
future research. IEEE Open J Commun Soc 2:836–886. https://doi.org/10.1109/OJCOMS.2021.3071496

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

39. de Back TT, Tinga AM, Nguyen P, Louwerse MM (2020) Benefits of immersive collaborative learning in
CAVE-based virtual reality. Int J Educ Technol High Educ 17(1):51. https://doi.org/10.1186/s41239-020-
00228-9

40. De Grande RE, Boukerche A, Alkharboush R (2017) Time series-oriented load prediction model and
migration policies for distributed simulation systems. IEEE Trans Parallel Distrib Syst 28(1):215–229.
https://doi.org/10.1109/TPDS.2016.2552174

41. de Regt A, Barnes SJ (2019) Multi-user virtual reality technology as means to engage global consumers:
An abstract. In: Academy of Marketing Science World Marketing Congress, pp 945–946. https://doi.org/
10.1007/978-3-030-02568-7_269

42. Decentraland (2020) https://decentraland.org/. Accessed 4 May 2021
43. Deep learning super sampling (2018) https://developer.nvidia.com/dlss. Accessed 4 May 2021
44. Delaney D, Ward T, McLoone S (2006) On consistency and network latency in distributed interactive

applications: A survey-part I. Presence Teleoperators Virtual Environ 15(2):218–234. https://doi.org/10.
1162/pres.2006.15.2.218

45. Delaney D, Ward T, McLoone S (2006) On consistency and network latency in distributed interactive
applications: A survey-part II. Presence Teleoperators Virtual Environ 15(4):465–482. https://doi.org/10.
1162/pres.15.4.465

46. Destiny 2 (2017) https://store.steampowered.com/app/1085660. Accessed 4 May 2021
47. Dias DRC, Guimarães MP, Kuhlen TW, Trevelin LC (2015) A dynamic-adaptive architecture for 3d

collaborative virtual environments based on graphic clusters. In: 30th Annual ACM Symposium on
Applied Computing, pp 480–487. https://doi.org/10.1145/2695664.2695762

48. Din SU, Ahmad B, Ahmed A, Amin M, Aoudi S (2019) Inter-destination synchronization: a comparison
between master-slave and synchronization-manager techniques. In: International Arab Conference on
Information Technology (ACIT), pp 222–229. https://doi.org/10.1109/ACIT47987.2019.8991020

49. DROVA (n.d.) http://play.drova.io/. Accessed 4 May 2021
50. Dupont F et al (2010) Collaborative scientific visualization: The COLLAVIZ framework [Online].

Available: https://hal.inria.fr/inria-00534105. Accessed 4 May 2021
51. Engelbrecht HA, Gilmore JS (2017) Pithos: distributed storage for massive multi-user virtual environ-

ments. ACM Trans Multimed Comput Commun Appl 13(3):33. https://doi.org/10.1145/3105577
52. Eu YX et al (2016) SuperStreamer: enabling progressive content streaming in a game engine. In:

Proceedings of the 24th ACM international conference on Multimedia (MM '16). Association for
Computing Machinery, New York, pp 737–738. https://doi.org/10.1145/2964284.2973827

53. Farooq U, Glauert J (2017) Faster dynamic spatial partitioning in OpenSimulator. Virtual Reality 21(4):
193–202. https://doi.org/10.1007/s10055-017-0307-2

54. FastStart (2018) https://news.xbox.com/en-us/2018/06/10/e3-2018-jump-into-games-faster-with-faststart/.
Accessed 4 May 2021

55. Ferretti S (2008) Cheating detection through game time modeling: A better way to avoid time cheats in
P2P MOGs? Multimed Tools Appl 37(3):339–363. https://doi.org/10.1007/s11042-007-0163-2

56. Ferretti S, Roccetti M, Palazzi CE (2007) An optimistic obsolescence-based approach to event synchro-
nization for massively multiplayer online games. Int J Comput Appl 29(1):33–43. https://doi.org/10.1080/
1206212X.2007.11441830

57. Ferscha A, Tripathi SK (2001) Parallel and distributed simulation of discrete event systems. USA. https://
doi.org/10.5555/193923

58. Fleury C, Duval T, Gouranton V, Arnaldi B (2010) Architectures and mechanisms to maintain efficiently
consistency in collaborative virtual environments [Online]. Available http://hal.archives-ouvertes.fr/inria-
00534082/. Accessed 4 May 2021

59. Fleury C, Duval T, Gouranton V, Arnaldi B (Sep. 2010) A new adaptive data distribution model for
consistency maintenance in collaborative virtual environments. In: 16th Eurographics conference on
Virtual Environments & Second Joint Virtual Reality, pp 29–36. https://doi.org/10.2312/EGVE/
JVRC10/029-036

60. Freitas AC, Dias DRC, Brandão AF, de Fátima Rodrigues Guimarães R, de Paiva GM (2020) Dynamic
adaptive communication strategy for fully immersive, interactive and collaborative virtual reality applica-
tions. Computational Science and Its Applications – ICCSA 2020:771–783

61. Future Visual (n.d.) https://www.futurevisual.com/. Accessed 4 May 2021
62. Gautier L, Diot C (1998) Design and evaluation of MiMaze a multi-player game on the Internet. In:

International Conference on Multimedia Computing and Systems, pp 233–236. https://doi.org/10.1109/
mmcs.1998.693647

63. GeForce Now (2015) https://www.nvidia.com/geforce-now/. Accessed 4 May 2021
64. Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant

web services. ACM SIGACT News 33(2):51. https://doi.org/10.1145/564585.564601

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

65. Godot (2007) https://godotengine.org/. Accessed 4 May 2021
66. Google Stadia (2019) https://store.google.com/product/stadia. Accessed 4 May 2021
67. Gül S, Bosse S, Podborski D, Schierl T, Hellge C (2020) Kalman filter-based head motion prediction for

cloud-based mixed reality. In: 28th ACM International Conference on Multimedia, pp 3632–3641. https://
doi.org/10.1145/3394171.3413699

68. He Z, Du R, Perlin K (2020) CollaboVR: A reconfigurable framework for creative collaboration in virtual
reality. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp 542–554.
https://doi.org/10.1109/ISMAR50242.2020.00082

69. Herscher S et al (2019) CAVRN: An exploration and evaluation of a collective audience virtual reality
nexus experience. In: 32nd Annual ACM Symposium on User Interface Software and Technology, pp
1137–1150. https://doi.org/10.1145/3332165.3347929

70. Hong H-J, Hsu C-F, Tsai T-H, Huang C-Y, Chen K-T, Hsu C-H (2015) Enabling adaptive cloud gaming
in an open-source cloud gaming platform. IEEE Trans Circuits Syst Video Technol 25(12):1–1. https://doi.
org/10.1109/TCSVT.2015.2450173

71. Hoshino S, Ishibashi Y, Fukushima N, Sugawara S (2011) QoE assessment in olfactory and haptic media
transmission: Influence of inter-stream synchronization error. In: 2011 IEEE International Workshop
Technical Committee on Communications Quality and Reliability (CQR), pp 1–6. https://doi.org/10.
1109/CQR.2011.5996082

72. Huang P, Ishibashi Y (2018) Simultaneous output-timing control in networked games and virtual
environments. In: Montagud M, Cesar P, Boronat F, Jansen J (eds) MediaSync: handbook on multimedia
synchronization. Springer International Publishing, Cham, pp 149–166. https://doi.org/10.1007/978-3-
319-65,840-7_5

73. Huang P, Ishibashi Y, Fukushima N, Sugawara S (2012) QoE assessment of group synchronization control
scheme with prediction in work using haptic media. Int J Commun Netw Syst Sci 5(6):321–331. https://
doi.org/10.4236/ijcns.2012.56042

74. Huang P, Zeng Q, Ishibashi Y (2013) QoE assessment of will transmission using haptics: Influence of
network delay. In: 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), pp 456–460.
https://doi.org/10.1109/GCCE.2013.6664889

75. Huyen Nguyen TT, Duval T (2014) A survey of communication and awareness in collaborative virtual
environments. In: 2014 International Workshop on Collaborative Virtual Environments (3DCVE), pp 1–8.
https://doi.org/10.1109/3DCVE.2014.7160928

76. Ida Y, Ishibashi Y, Fukushima N, Sugawara S (2010) QoE assessment of interactivity and fairness in first
person shooting with group synchronization control. In: 9th Annual Workshop on Network and Systems
Support for Games, NetGames, vol 2010, p 10. https://doi.org/10.1109/NETGAMES.2010.5680283

77. Illahi GK, Van Gemert T, Siekkinen M, Masala E, Oulasvirta A, Ylä-Jääski A (2020) Cloud gaming with
foveated video encoding. ACMTrans Multimed Comput Commun Appl 16(1):24. https://doi.org/10.1145/
3369110

78. IMVU (2004) http://www.imvu.com. Accessed 4 May 2021
79. Kamiński B, Jakubczyk M, Szufel P (2018) A framework for sensitivity analysis of decision trees. Cent

Eur J Oper Res 26(1):135–159. https://doi.org/10.1007/s10100-017-0479-6
80. Kanellopoulos DN (2019) Group synchronization for multimedia systems. In: Advanced methodologies

and technologies in media and communications, pp 229–241. https://doi.org/10.4018/978-1-5225-7601-3.
ch019

81. Karuvally AB, Hameem B, Sundar AJ, Joseph JP (2018) Enhancing performance and reliability of
network file system. In: International CET Conference on Control, Communication, and Computing
(IC4), pp 317–321. https://doi.org/10.1109/CETIC4.2018.8531062

82. Khan AM, Chabridon S, Beugnard A (2008) A dynamic approach to consistency management for mobile
multiplayer games. In: 8th International Conference on New Technologies in Distributed Systems, p 42.
https://doi.org/10.1145/1416729.1416783

83. Kharitonov VY (2013) A software architecture for high-level development of component-based distributed
virtual reality systems. In: IEEE 37th Annual Computer Software and Applications Conference, pp 696–
705. https://doi.org/10.1109/COMPSAC.2013.111

84. Kim J, Lee S, Kim JW (2005) Adaptive event synchronization control for distributed virtual environment.
In: 7th Workshop on Multimedia Signal Processing, pp 1–4. https://doi.org/10.1109/MMSP.2005.248612

85. Kingspray (2016) http://infectiousape.com/. Accessed: 4 May 2021
86. Knutsson B, Lu H, Xu W, Hopkins B (2004) Peer-to-peer support for massively multiplayer games. 23rd

Annual Joint Conference of the IEEE Computer and Communications Societies 1:96–107. https://doi.org/
10.1109/infcom.2004.1354485

87. Kshetri N (2022) Web 3.0 and the Metaverse shaping organizations’ brand and product strategies. IT Prof
24(2):11–15. https://doi.org/10.1109/MITP.2022.3157206

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

88. Laakso M (2003) Potentially Visible Set (PVS). In Tik-111.500 Seminar on computer graphics, p. 15
[Online]. Available: http://fabien.tschirhart.free.fr/images/Docs/MikkoLaakso.pdf. Accessed 4 May 2021

89. Lee J, Lim M, Kim H, Kim J (2012) Supporting fine-grained concurrent tasks and personal workspaces for
a hybrid concurrency control mechanism in a networked virtual environment. Presence 21(4):452–469.
https://doi.org/10.1162/PRES_a_00127

90. Leqing H (2020) How to realize the smooth transition from traditional network architecture to SDN. In:
2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp
1948–1952. https://doi.org/10.1109/ICMCCE51767.2020.00427

91. Lewis C, Quijada RS, Harris FC (2020) vFireVI: 3D Virtual Interface for vFire. In: 17th International
Conference on Information Technology - New Generations, pp 309–315. https://doi.org/10.1007/978-3-
030-43,020-7_41

92. Li Y, GaoW (2018) MUVR: supporting multi-user mobile virtual reality with resource constrained edge cloud.
In: 3rd ACM/IEEE Symposium on Edge Computing, pp 1–16. https://doi.org/10.1109/SEC.2018.00008

93. Li Y, Gao W (2019) DeltaVR: achieving high-performance mobile VR dynamics through Pixel reuse. In:
18th International Conference on Information Processing in Sensor Networks, pp 13–24. https://doi.org/
10.1145/3302506.3310385

94. Lugrin J-L et al (2019) Experiencing waiting time in virtual reality. https://doi.org/10.1145/3359996.
3364807

95. Macedonia MR, Zyda MJ (1997) A taxonomy for networked virtual environments. IEEE Multimed 4(1):
48–56. https://doi.org/10.1109/93.580395

96. Makbily Y, Gotsman C, Bar-Yehuda R (1999) Geometric algorithms for message filtering in decentralized
virtual environments. In: Symposium on Interactive 3D Graphics, pp 39–46. https://doi.org/10.1145/
300523.300527

97. Meiländer D, Köttinger S, Gorlatch S (2013) A scalability model for distributed resource management in
real-time online applications. In: 42nd International Conference on Parallel Processing, pp 763–772.
https://doi.org/10.1109/ICPP.2013.90

98. Melo M et al (2022) Immersive multisensory virtual reality technologies for virtual tourism. Multimedia
Systems 28(3):1027–1037. https://doi.org/10.1007/s00530-022-00898-7

99. Meng J, Paul S, Hu YC (2020) Coterie: exploiting frame similarity to enable high-quality multiplayer VR
on commodity mobile devices. In: 25th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp 923–937. https://doi.org/10.1145/3373376.3378516

100. Messaoudi F (2018) User equipment based-computation offloading for real-time applications in the
context of Cloud and edge networks. Université Rennes 1 [Online]. Available: https://tel.archives-
ouvertes.fr/tel-02268196. Accessed: 4 May 2021

101. Mildner P, Triebel T, Kopf S, Effelsberg W (2017) Scaling online games with NetConnectors: a peer-to-
peer overlay for fast-paced massively multiplayer online games. Comput Entertain 15(3):21. https://doi.
org/10.1145/2818383

102. Miller JL (2011) Distributed virtual environment scalability and security. University of Cambridge. https://
doi.org/10.17863/CAM.16371

103. Montagud M, Boronat F, Stokking H, Van Brandenburg R (2012) Inter-destination multimedia synchro-
nization: Schemes, use cases and standardization. Multimed Syst 18(6):459–482. https://doi.org/10.1007/
s00530-012-0278-9

104. Montagud M, Cesar P, Boronat F, Jansen J (2018) Introduction to Media Synchronization (MediaSync). In
MediaSync, Springer, pp 3–31. https://doi.org/10.1007/978-3-319-65,840-7_1

105. Mozilla Hubs (2018) https://hubs.mozilla.com/. Accessed 4 May 2021
106. Muchallil S, Halnum K, Griwodz C (2021) Low-latency head-tracking for Augmented Reality. In: 2021

International Conference on Computer System, Information Technology, and Electrical Engineering
(COSITE), pp 192–197. https://doi.org/10.1109/COSITE52651.2021.9649619

107. Müller J, Gorlatch S (2006) Rokkatan: Scaling an RTS game design to the massively multiplayer realm.
Comput Entertain 4(3):11. https://doi.org/10.1145/1146816.1146833

108. Murray N, Lee B, Qiao Y, Muntean G-M (2014) Multiple-scent enhanced multimedia synchronization.
ACM Trans Multimed Comput Commun Appl 11(1 s). https://doi.org/10.1145/2637293

109. Nasrallah A et al (2019) Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards
and Related 5G ULL Research. IEEE Commun Surv Tutorials 21(1):88–145. https://doi.org/10.1109/
COMST.2018.2869350

110. Nguyen TC, Kim S, Son J, Yun J (2018) Selective Timewarp based on embedded motion vectors for
interactive cloud virtual reality. IEEE Access 7:3031–3045. https://doi.org/10.1109/ACCESS.2018.2888700

111. Paladina L, Biundo A, Scarpa M, Puliafito A (2009) Artificial Intelligence and Synchronization in wireless
sensor networks. J Networks 4(6):382–391. https://doi.org/10.4304/jnw.4.6.382-391

112. Parsec (n.d.) https://parsecgaming.com/. Accessed 4 May 2021

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

113. Patni JC (2020) Centralized approach of load balancing in homogenous grid computing environment. In:
Proceedings of the 2020 the 3rd International Conference on Computers in Management and Business, pp
151–156. https://doi.org/10.1145/3383845.3383877

114. Pedro TMS, Silva JL (2021) Towards higher sense of presence: A 3D virtual environment adaptable to
confusion and engagement. IEEE Access 9:8455–8470. https://doi.org/10.1109/ACCESS.2020.3049060

115. Pérez-Aldana CA, Lewinski AA, Johnson CM, Vorderstrasse AA, Myneni S (2021) Exchanges in a virtual
environment for diabetes self-management education and support: social network analysis. JMIR Diabetes
6(1):e21611. https://doi.org/10.2196/21611

116. Petrykowski M, Berger P, Hennig P, Meinel C (2018) Digital collaboration with a whiteboard in virtual
reality. In: Future Technologies Conference, pp 962–981. https://doi.org/10.1007/978-3-030-02686-8_72

117. Play as you Download (n.d.) https://manuals.playstation.net/document/en/ps4/game/storegame.html.
Accessed 4 May 2021

118. PlayKey (n.d.) https://welcome.playkey.net/. Accessed 4 May 2021
119. Radianti J, Majchrzak TA, Fromm J, Wohlgenannt I (2020) A systematic review of immersive virtual

reality applications for higher education: Design elements, lessons learned, and research agenda. Comput
Educ 147:103778. https://doi.org/10.1016/j.compedu.2019.103778

120. Rhee E, Shin I, Lee H (2014) Implementation of the cloud gaming platform with adaptive bitrate
streaming. In: International Conference on Information and Communication Technology Convergence
(ICTC), pp 478–479. https://doi.org/10.1109/ICTC.2014.6983185

121. Ricci L, Carlini E (2012) Distributed virtual environments: From client server to cloud and P2P architec-
tures. In: International Conference on High Performance Computing and Simulation, pp 8–17. https://doi.
org/10.1109/HPCSim.2012.6266885

122. Roth D (2020) Intrapersonal, interpersonal, and hybrid interactions in virtual reality. Universität Würzburg.
https://doi.org/10.25972/OPUS-18862

123. Roth D, Kleinbeck C, Feigl T, Mutschler C, Latoschik ME (2017) Social augmentations in multi-user
virtual reality: a virtual museum experience. In: Adjunct Proceedings of the 2017 IEEE International
Symposium onMixed and Augmented Reality, ISMAR-Adjunct 2017. IEEE, pp 42–43. https://doi.org/10.
1109/ISMAR-Adjunct.2017.28

124. Roth C, Luckett E, Jones JA (2020) Latency Detection and Illusion in a Head-Worn Virtual Environment.
In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts andWorkshops (VRW), pp 215–
218. https://doi.org/10.1109/VRW50115.2020.00046

125. Rothe S, Schmidt A, Montagud M, Buschek D, Hußmann H (2020) Social viewing in cinematic virtual reality: a
design space for social movie applications. Virtual Reality. https://doi.org/10.1007/s10055-020-00472-4

126. Rubio-Tamayo JL, Gértrudix Barrio M, García García F (2017) Immersive environments and virtual
reality: systematic review and advances in communication, interaction and simulation. Multimodal
Technol Interact 1(4):21. https://doi.org/10.3390/mti1040021

127. Ryan P, Zalcman L (2003) The DIS vs HLA debate: What’s in it for Australia? SimTect 2003. Simul Ind
Assoc Aust 10.1.1.124.5042

128. Sabet SS, Schmidt S, Zadtootaghaj S, Griwodz C, Möller S (2020) Delay sensitivity classification of cloud
gaming content. In: 12th ACM International Workshop on Immersive Mixed and Virtual Environment
Systems, pp 25–30. https://doi.org/10.1145/3386293.3397116

129. Saldana J, Suznjevic M (2015) QoE and latency issues in networked games. In: Nakatsu R, Rauterberg M
(eds) Handbook of digital games and entertainment technologies. Springer Singapore, Singapore, pp 1–36.
https://doi.org/10.1007/978-981-4560-52-8_23-1

130. Salomoni P, Prandi C, Roccetti M, Casanova L, Marchetti L, Marfia G (2017) Diegetic user interfaces for
virtual environments with HMDs: a user experience study with oculus rift. J Multimodal User Interfaces
11(2):173–184. https://doi.org/10.1007/s12193-016-0236-5

131. Satyanarayanan M, Bahl P, Cáceres R, Davies N (2009) The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Comput 8(4):14–23. https://doi.org/10.1109/MPRV.2009.82

132. Schmieg A, Kabus P, Stieler M, Kemme B, Jeckel S, Buchmann A (2008) pSense - maintaining a dynamic
localized peer-to-peer structure for position based multicast in games. In: 8th International Conference on
Peer-to-Peer Computing, pp 247–256. https://doi.org/10.1109/P2P.2008.20

133. Schuwerk C, Xu X, Steinbach E (2017) On the transparency of client/server-based haptic interaction with
deformable objects. IEEE Trans Haptics 10(2):240–253. https://doi.org/10.1109/TOH.2016.2612635

134. Second Life (2003) https://secondlife.com/. Accessed 4 May 2021
135. Shah Khalid SU, Alam A, Din F (2016) Optimal latency in collaborative virtual environment to increase

user performance: a survey. Int J Comput Appl 142(3):35–47. https://doi.org/10.5120/ijca2016909723
136. Sharkey PM, Ryan MD, Roberts DJ (1998) A local perception filter for distributed virtual environments.

In: Virtual reality annual international symposium, pp 242–249. https://doi.org/10.1109/VRAIS.1998.
658502

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

137. Shea R, Liu J, Ngai EC-H, Cui Y (2013) Cloud gaming: architecture and performance. IEEE Netw 27(4):
16–21. https://doi.org/10.1109/MNET.2013.6574660

138. Shen B, Tan W, Guo J, Cai H, Wang B, Zhuo S (2020) A study on design requirement development and
satisfaction for future virtual world systems. Futur Internet 12(7):112. https://doi.org/10.3390/fi12070112

139. Shen S et al (2017) Analysis of viewing behaviors in a head-mounted virtual geographic environment. In:
International Conference on Virtual Reality and Visualization, pp 461–462. https://doi.org/10.1109/
ICVRV.2017.00123

140. Shi S, Hsu C-H (2015) A survey of interactive remote rendering systems. ACM Comput Surv 47(4):1–29.
https://doi.org/10.1145/2719921

141. Singhal SK, Cheriton DR (1995) Exploiting position history for efficient remote rendering in networked
virtual reality. Presence Teleoperators Virtual Environ 4(2):169–193. https://doi.org/10.1162/pres.1995.4.
2.169

142. Smed J, Kaukoranta T, Hakonen H (2002) Aspects of networking in multiplayer computer games. Electron
Libr 20(2):87–97. https://doi.org/10.1108/02640470210424392

143. Soares Pereira A, Dutra Piovesan S (2012) virtual reality applied in distance education. Distance Educ:81–
98. https://doi.org/10.5772/50381

144. Song H, Chen F, Peng Q, Zhang J, Gu P (2018) Improvement of user experience using virtual reality in
open-architecture product design. Inst Mech Eng Part B J Eng Manuf 232(13):2264–2275. https://doi.org/
10.1177/0954405417711736

145. Sora Stream (n.d.) https://sorastream.com/. Accessed 4 May 2021
146. Spatial (n.d.) https://spatial.io/. Accessed 4 May 2021
147. Spinview (n.d.) https://spinview.io/. Accessed 4 May 2021
148. Steam Remote Play (n.d.) https://store.steampowered.com/remoteplay. Accessed 4 May 2021
149. Steinman JS (1993) Breathing time warp. SIGSIM Simul Dig 23(1):109–118. https://doi.org/10.1145/

174134.158473
150. Sykownik P, Maloney D, Freeman G, Masuch M (2022) Something personal from the Metaverse: goals,

topics, and contextual factors of self-disclosure in commercial social VR. https://doi.org/10.1145/3491102.
3502008

151. Tasaka S (2020) Causal structures of multidimensional QoE in haptic-audiovisual communications:
Bayesian Modeling. ACM Trans Multimed Comput Commun Appl 16(1). https://doi.org/10.1145/
3375922

152. Tatematsu A, Ishibashi Y, Fukushima N, Sugawara S (2010) QoE assessment in haptic media, sound and
video transmission: Influences of network latency. In: 2010 IEEE International Workshop Technical
Committee on Communications Quality and Reliability (CQR 2010), pp 1–6. https://doi.org/10.1109/
CQR.2010.5619913

153. The Wild (n.d.) https://thewild.com/. Accessed: 4 May 2021
154. Theia Interactive (n.d.) https://theia.io/. Accessed: 4 May 2021
155. Touel S, Mekkadem M, Kenoui M, Benbelkacem S (2017) Collocated learning experience within

collaborative augmented environment (anatomy course). In: 5th International Conference on Electrical
Engineering - Boumerdes (ICEE-B), pp 1–5. https://doi.org/10.1109/ICEEB.2017.8192219

156. Trezi (n.d.) https://www.trezi.com/. Accessed 4 May 2021
157. Tsiatsos T, Konstantinidis A (2012) Utilizing multiplayer video game design principles to enhance the

educational experience in 3D virtual computer supported collaborative learning environments. In: 12th
International Conference on Advanced Learning Technologies, pp 621–623. https://doi.org/10.1109/
ICALT.2012.54

158. Tumanov A, Allison R, Stuerzlinger W (2007) Variability-aware latency amelioration in distributed
environments. In: IEEE Virtual Reality Conference, pp 123–130. https://doi.org/10.1109/VR.2007.352472

159. Unity (2005) https://unity.com/. Accessed 4 May 2021
160. Unreal Engine (2004) https://www.unrealengine.com/. Accessed 4 May 2021
161. Utomik (2014) https://www.utomik.com/. Accessed 4 May 2021
162. Valadares A, Gabrielova E, Lopes CV (2016) On designing and testing distributed virtual environments.

Congratulations to Concurrency and Computation: Practice and Experience 28(12):3291–3312. https://doi.
org/10.1002/cpe.3803

163. Vasilevski N, Birt J (2020) Analysing construction student experiences of mobile mixed reality enhanced
learning in virtual and augmented reality environments. Research in Learning Technology 28. https://doi.
org/10.25304/rlt.v28.2329

164. Vectordash (2018) https://vectordash.com/. Accessed 4 May 2021
165. Virtual Real Meeting (2015) https://jansen.itch.io/vr-meeting. Accessed 4 May 2021
166. Virtway (2006) https://www.virtway.com/. Accessed 4 May 2021
167. Vizard (n.d.) https://www.worldviz.com/vizard-virtual-reality-software. Accessed 4 May 2021

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

168. Vizible (n.d.) https://www.worldviz.com/virtual-reality-collaboration-software. Accessed 4 May 2021
169. VRChat (2014) https://www.vrchat.com/. Accessed 4 May 2021
170. Wang M, Jia J, Xie N, Zhang C (2016) Interest-driven avatar neighbor-organizing for P2P transmission in

distributed virtual worlds. Comput Animat Virtual Worlds 27(6):519–531. https://doi.org/10.1002/cav.
1670

171. Wang L, Suarez MJ, Domanico RA (2017) Adaptive Bitrate Streaming in Cloud Gaming. Worcester
Polytechnic Institute [Online]. Available: http://web.cs.wpi.edu/~claypool/mqp/ga-adaptive/

172. Washington DB (2001) Implementation of a multi-agent simulation for the NPSNET-V virtual environ-
ment research project. Naval Postgraduate School [Online]. Available: https://core.ac.uk/download/pdf/
36695462.pdf. Accessed 4 May 2021

173. Weissker T, Bimberg P, Froehlich B (2021) An overview of group navigation in multi-user virtual reality.
In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts andWorkshops (VRW), pp 363–
369. https://doi.org/10.1109/VRW52623.2021.00073

174. Win KZ, Thandar Aung S, Ishibashi Y, Mya KT (2021) QoE Assessment of Cooperative Work in
Networked Virtual Environment with Haptics. In: 2021 IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), pp 1–2. https://doi.org/10.1109/ICCETW52618.2021.9602999

175. World of Warcraft (2004) https://worldofwarcraft.com/. Accessed 4 May 2021
176. Wu J, Qu J, Yu G (2021) Behavior prediction based on interest characteristic and user communication in

opportunistic social networks. Peer-to-peer networking and applications 14(2):1006–1018. https://doi.org/
10.1007/s12083-020-01060-8

177. Xiong Y, Li Y, Zhou B, Wang R, Rouskas GN (2018) SDN enabled restoration with triggered
precomputation in elastic optical interdatacenter networks. J Opt Commun Netw 10(1):24–34. https://
doi.org/10.1364/JOCN.10.000024

178. Yahyavi A, Kemme B (2013) Peer-to-peer architectures for massively multiplayer online games: a survey.
ACM Comput Surv 46(1):1–51. https://doi.org/10.1145/2522968.2522977

179. Zhang Q, Ban J-S, Kim M, Byun HW, Kim C-H (2021) Low-asymmetry interface for multiuser VR
experiences with both HMD and Non-HMD users. Sensors 21(2):397. https://doi.org/10.3390/s21020397

180. Zhang J, Chembumroong S, Sureephong P (2021) The implementation of virtual reality technology in
education: the perspective of learning environment. In: 2021 Joint International Conference on Digital
Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer
and Telecommunication Engineering, Cha-am, pp 327–331. https://doi.org/10.1109/
ECTIDAMTNCON51128.2021.9425762

181. Zhang L, Fu Q, Swanson A, Weitlauf A, Warren Z, Sarkar N (2018) Design and evaluation of a
collaborative virtual environment (CoMove) for autism spectrum disorder intervention. ACM Trans
Access Comput 11(2):22. https://doi.org/10.1145/3209687

182. Zhang Y, Li G (2012) In: SafeBTW: A scalable optimistic yet non-risky synchronization algorithm (ed)
26th workshop on principles of advanced and distributed simulation, vol 1, pp 75–77. https://doi.org/10.
1109/PADS.2012.39

183. Zhang W, Zhou H (2017) A dynamic mapping method for reducing migrations in DVE systems. In: IEEE
2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp
187–190. https://doi.org/10.1109/IAEAC.2017.8054003

184. Zhang W, Zhou H (2017) An asynchronous control method for reducing inconsistency in DVE. In: 2nd
Joint International Information Technology, Mechanical and Electronic Engineering Conference, pp 6–11.
https://doi.org/10.2991/jimec-17.2017.2

185. Zhang W, Zhou H, Peng Y, Li S (2009) Providing responsiveness requirement based consistency in DVE.
In: 2009 15th International Conference on Parallel and Distributed System, Shenzhen, pp 594–601. https://
doi.org/10.1109/ICPADS.2009.52

186. Zook ZA, Fleck JJ, O’Malley MK (2022) Effect of tactile masking on multi-sensory haptic perception.
IEEE Trans Haptics 15(1):212–221. https://doi.org/10.1109/TOH.2021.3112509

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Multimedia Tools and Applications

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

