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Abstract—Neural networks (NN) can improve standard video
compression by pre- and post-processing the encoded video.
For optimal NN training, the standard codec needs to be
replaced with a codec proxy that can provide derivatives of
estimated bit-rate and distortion, which are used for gradient
back-propagation. Since entropy coding of standard codecs is
designed to take into account non-linear dependencies between
transform coefficients, bit-rates cannot be well approximated
with simple per-coefficient estimators. This paper presents a
new approach for bit-rate estimation that is similar to the type
employed in training end-to-end neural codecs, and able to
efficiently take into account those statistical dependencies. It is
defined from a mathematical model that provides closed-form
formulas for the estimates and their gradients, reducing the
computational complexity. Experimental results demonstrate the
method’s accuracy in estimating HEVC/H.265 codec bit-rates.

Index Terms—video coding, neural network video enhance-
ment, bit-rate estimation

I. INTRODUCTION

In consumer devices, video codecs are commonly imple-

mented using custom hardware (ASICs), that provide high

performance but reduce flexibility, since modifications require

slow and expensive re-designs and deployment.

Codec performance can be improved without ASIC changes

by modifying the video before encoding and after decoding,

and the latest trend is to employ neural networks (NN), as

shown in Fig. 1(a). Examples of applications include denois-

ing, artifact removal, resolution changes, etc. [1]–[3].

Best results are expected with an end-to-end optimization,

i.e., NN training that takes into account codec parameters and

performance. A fundamental problem is that NN training is

much more effective when it can use derivatives of perfor-

mance measurements [4], [5], but those are not directly ob-

tainable from common standard video codec implementations.

The solution is to employ a codec proxy (e.g., [6]–[9]), that

can accurately estimate performance factors and corresponding

derivatives, as shown in Fig. 1(b), enabling NN gradient back-

propagation [10], [11]. In the context of video coding, the loss

function must simultaneously take into account the conflicting

objectives of minimizing distortion and bit-rates.

For distortion estimation, the approaches developed for

training end-to-end neural codecs (EENCs) provide good
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Fig. 1. Systems for (a) video compression enhancement with neural networks,
and (b) corresponding network training.

differentiable approximations, and can be used together with

methods to estimate subjective quality [8], [9], [12].

On the other hand, the differentiable bit-rate estimation

methods developed for EENCs cannot be directly modified

to the standard codec case, since they are applied to very

different types of data, and thus use quite distinct strategies

for optimizing entropy coding.

The problem of bit-rate estimation for video compression

is well-known, since it is needed for rate control, which is

fundamental for practical video coding [13], [14]. Several

methods use, for example, models that estimate bit-rates based

the quantizer step size Q [15], [16].

However, most of those methods are meant to be directly

used with the standard codecs, and thus may not be differen-

tiable, nor suitable to the conditions of NN training, where it

is necessary to obtain estimates at the fine scale of transform

blocks, with per-pixel derivatives.

Methods like the well-known ρ-domain rate control [17],

are more suitable for small-scale estimations, but become less

accurate when modified to a differentiable version (cf. eq. (1)).

In this paper, we propose a bit-rate estimation designed

to work with the data used by the standard codecs, but that

achieves higher accuracy by using a form of data modeling

that is similar to that used in training neural codecs. We show
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Fig. 2. Simplified diagram of the hybrid video encoding used in standard
codecs.

that, since it is based on a mathematical formulation, it is

possible to derive closed-form equations for the estimate and

corresponding derivatives, enabling more efficient computa-

tions and faster NN training.

In the next section we discuss why advanced entropy coding

makes accurate bit-rate estimation difficult, and in Section III

we present the proposed statistical model, and its similarity to

what is used in EENCs. Section IV presents the formulas and

computation methods, and the experimental results are shown

and discussed in Section V.

II. ENTROPY CODING IN VIDEO CODECS

Fig. 2 shows a diagram of the hybrid coding architecture

used by standard video codecs, and introduces the notation

used in this document. At a given encoding stage a block of

M ×N pixel is predicted, an orthogonal transform is applied

to the vector r of prediction residuals, the resulting vector

d is divided by quantizer step size Q to obtain the scaled

coefficients c, that are finally quantized and entropy-coded.

In this notation all vectors have dimension K =MN , and

to maintain consistency with signal processing notation, all

vector and matrix indexes start at zero.

One simple way to estimate bit-rates is to sum per-

coefficient estimates. For example, the differentiable approxi-

mation to ρ-domain estimation used in [8] is

R̂d(c) = µ

K−1
∑

k=0

log2(1 + |ck|), (1)

where µ is a factor obtained from JPEG bit-rates.

The main problem with this approach is that transform coef-

ficients are not coded separately, since they are not statistically

independent. In fact, exploiting magnitude dependencies yields

large compression gains, and motivates the adoption of quite

complex forms of entropy coding [18]–[21].

For this reason many implementations use the standard’s

actual entropy encoding method for bit-rate estimation. While

this approach is the most precise, there are many practical

problems in adapting it to create a differentiable version.

Differentiable approximations have been developed for solv-

ing the problem that quantization derivatives are zero nearly

everywhere [7], [8], [22]. While they are quite useful for

distortion estimates, it is much harder to employ them in

complex entropy coding processes based on quantized values.

For example, coefficients quantized to zero are commonly

coded together, or by signaling the position of the last nonzero

Fig. 3. Comparison of systems for bit-rate estimation based on statistical
models.

element. Nonzero values are binarized and can be coded with

a variable number of passes, using different coding contexts

per binary symbol [19], [20].

Those difficulties motivate searching for better bit-rate esti-

mation methods, based on the same statistical properties, but

using a different methodology.

III. MODEL-BASED ESTIMATION

Fig. 3(a) shows the basic structure used for training an

EENC with a hyper-prior architecture [12]. It is based on

establishing an statistical model of the non-linear transform

elements (to be entropy coded after quantization), defined by

the distribution type (commonly Gaussian), and array σ with

standard deviations.

This approach can naturally incorporate the statistical de-

pendencies among many data elements, translated into the

variations on standard deviation values, and experimental re-

sults have shown that it yields quite accurate bit-rate estimates.

For those reasons, we propose a similar approach, shown in

Fig. 3(b), with the following differences

• It is applied to coefficients of an orthogonal transform,

like discrete cosine or sine, used by the standard codec.

• Transform coefficients are assumed to be zero-mean

random variables with Laplace distributions, and the

standard deviations are defined by a model with a few

parameters in vector g.

• The statistical model is based on the empiric observa-

tion that the variance of transform coefficients tends to

decrease exponential with frequency [23], with decrease

rate depending on orientation of pixel patterns

• For each block, the maximum-likelihood (ML) parame-

ters g∗ are computed, using all coefficient values, and the

model and g∗ are used to estimate bit-rate and gradient.

IV. PRACTICAL IMPLEMENTATION

There are many practical details in the implementation of a

codec proxy that are outside the scope of this paper. As shown

in Fig. 4, we assume the main prediction parts of a hybrid

encoder, shown in Fig. 2, are approximated. Similarly, the



Fig. 4. Proposed system for bit-rate estimation.

choice of Q can be fixed or change randomly [9], depending

on training objectives.

The main strategy is what was outlined in the previous

section, and in this section we present approximations needed

for a practical implementation, plus some heuristics that were

shown to improve accuracy and numerical stability.

To use indexes that are related to two-dimensional trans-

forms, vectors m and n are defined by

mk
def
= ⌊k/N⌋ , nk

def
= k −N mk, (2)

and using 1 to represent the all-ones vector, we define the

following K × 3 matrix

A
def
=
[

1 m n
]

. (3)

A. Coefficient adjustment

To approximate the common dead-zone [24] or R-D opti-

mized [25] quantization, transform coefficients are first “ad-

justed” to reduce small magnitudes, using the function shown

in Fig. 5, together with its derivative

ψ(c)
def
=

c3

c2 + τ
, (4)

Ψ(c)
def
=

dψ(c)

dc
= 1 +

τ
(

c2 − τ
)

(c2 + τ)
2 .

B. Noise addition

Uniform noise is added to avoid numerical instability when

all coefficients are zero or very small. Given an array of

uniformly distributed random variables ηk ∼ U(−ǫ, ǫ), we

define vectors t and w, used for estimation

tk
def
= ψ(ck), wk

def
= |tk + ηk| . (5)

C. Probability distribution model

For estimating model parameters, it is assumed that ele-

ments of vector w have exponential probability distribution,

and their standard deviation decay exponentially with fre-

quency according to 3-dimensional parameter vector g, as

σk(g) = exp(−[g0 +mkg1 + nkg2]) . (6)

To simplify notation we define the vector with standard

deviation reciprocals

sk(g)
def
= 1/σk(g) = exp(g0 +mkg1 + nkg2) , (7)

to obtain the probability distribution functions

f(wk; sk(g)) = sk(g)e
−sk(g)wk . (8)

Fig. 5. Function used for transform coefficient adjustments, and its derivative.

D. Maximum-likelihood parameters

The likelihood function defined by distributions in (8) is

L(g) =

K−1
∏

k=0

f(wk; sk(g)), (9)

and the negative of the log-likelihood is

L(g)
def
= − log(L(g)) = wTs(g)− 1TAg. (10)

Using ◦ to represent per-element vector multiplications, and

considering that the gradient

∇L(g) = AT [w ◦ s(g)− 1] , (11)

and 3× 3 symmetric Hessian matrix

H(g) = ATdiag[w ◦ s(g)]A, (12)

are easy to compute, the maximum-likelihood solution can be

found, for example, applying Newton’s iterations

g← g− [H(g)]
−1
∇L(g), (13)

which should, with proper implementation [26], converge to

optimal solution g∗.

Note that 3 × 3 symmetric matrix inversions, or a form of

Cholesky decompositions, can be easily computed.

E. Bit-rate estimation

With the maximum-likelihood probability distribution pa-

rameters s∗
def
= s(g∗), we can use the technique developed

for end-to-end neural codecs [12] to obtain differentiable

estimates of the bit-rates, assuming that adjusted parameters

tk have Laplace probability distribution, with the cumulative

distribution function in the form

F (t; s) =

{

1
2e

st, t < 0,

1− 1
2e

−st, t ≥ 0.
(14)

and parameters s∗k. This is not mathematically exact, due to

noise addition in (5), but is a convenient approximation.

The differentiable estimated probability of the quantized

transform coefficient is given by

pk = F (tk + 1/2; s∗k)− F (tk − 1/2; s∗k), (15)

and the bit-rate is estimated from the entropy equation

R̂(c) = −
α

K

K−1
∑

k=0

log2(pk) , (16)



Fig. 6. Distribution of number of iterations to achieve high precision.

where multiplicative factor α is added for calibration, similarly

to parameter µ in eq. (1).

Note that during training, bit-rates must be multiplied by a

factor before being added to distortion. This factor depends

on the training objectives, and optimal values can only be

determined through validation tests.

For example, experimental tests can show that a certain

value of α can be best for H.264/AVC, and another value

for H.265/HEVC. The main objective is to have consistency

in the estimates, so that design choices are correctly based on

video characteristics.

F. Partial derivative computations

Since all stages in the derivation of (16) are differentiable,

gradient ∇R̂(c) can be effectively and easily computed using

automatic differentiation [10], [11].

However, the use of Newton iterations to determine g∗

requires creating sequences of vectors g(0),g(1), . . ., which

adds extra computations during gradient back-propagation.

Those computations can be eliminated by exploiting the

mathematical properties of the model’s formulation. It can be

shown that, defining functions

γ(k, δ)
def
=

αs∗k exp(−s
∗

k|tk + δ|)

2 ln(2)Kpk
, (17)

φ(k, δ)
def
= (tk + δ) γ(k, δ),

and vectors

uk
def
= γ(k, 1/2)− γ(k,−1/2), (18)

vk
def

= φ(k, 1/2)− φ(k,−1/2),

yk
def
= Ψ(ck),

zk
def
= sign(tk + ηk) s

∗

k,

the bit-rate gradient can be computed directly and more

efficiently using the equation

∇R̂(c) = y ◦
[

z ◦
(

A [H(g∗)]−1
ATv

)

− u
]

. (19)

Note that, even though each term of ∇R̂(c) depends on

all elements of c, the efficient computation of intermediate

results allows the computation to be done with O(MN)
instead of O(M2N2) complexity, and it is easy to optimize the

implementation and parallelize vector and matrix operations.

Fig. 7. Histograms of ratios between estimated and HM bit-rates from
different differentiable and non-differentiable methods.

V. EXPERIMENTAL RESULTS

The proposed method was tested to estimate bit-rates of the

H.265/HEVC codec. HM 16.20 reference implementation [27]

was modified to output the DCT of block residuals, and

the resulting estimates were compared to the number of bits

actually used for each frame.

Experiments were performed using a low-delay-P config-

uration, on test videos of VVC standardization, classes A1,

A2, B, and E, with QP = 22, 27, 32, and 37. For consistency,

all 14 videos were converted to 1280 × 720 HD resolution,

250 frames per video, for a total of 14,000 frames tested.

The estimation used only the luma component in all tested

methods. Due to lack of space, only 8 × 8 block results are

reported here, and that was the forced transform size.

The method was implemented using τ = 0.4 in eq. (4), and

η = 0.05 was used for uniform noise generation (significantly

smaller than used for EENC training).

In all tests the initial solution was g1 = g2 = 0.05 and

g0 = − ln

(

1

K

K−1
∑

k=0

wk e
g1mk+g2nk

)

. (20)

Fig. 6 shows the observed distribution of the number of

Newton iterations (13), using this initialization. It can be seen

that, in the majority of cases, sufficiently high precision is

achieved in only 3 iterations.

Fig. 7 shows histograms of ratios between bit-rates from

some estimation methods and actual HM bit-rates. In this type

of figure an ideal estimator would have 100% of the ratios

around one. All tested methods used calibration coefficients

optimized on the four QP values, to measure their accuracy

over a wide range of bit rates.

The best results are obtained using the AGP method [28]

for context-based entropy coding (a simpler entropy coding

method), and somewhat worse results are obtained using

using the ρ-domain estimator [17]. However, those are non-

differentiable estimators.

The proposed method yields accuracy between AGP and

ρ-domain, while being differentiable. The performance of the

differentiable estimator of eq. (1) [8], on the other hand, is

significantly less accurate (note that about 8% of the ratios



TABLE I
STANDARD DEVIATION OF THE ESTIMATION RATIOS, ACCORDING TO HM

QP VALUES.

QP Avrg. Estimation method

bit-rate ρ-domain AGP Eq. (1) Proposed

22 0.257 0.158 0.121 0.817 0.126

27 0.120 0.131 0.125 0.708 0.129

32 0.059 0.149 0.131 0.678 0.147

37 0.030 0.252 0.222 0.709 0.243

All — 0.179 0.156 0.730 0.168

are actually off-scale, beyond 4), indicating the shortcomings

of all forms of per-coefficient estimations.

Bit-rate estimation is easier in high-rate settings, and this

can be observed by measuring the standard deviation of ratios

measured / actual bit-rates, for different QP values, as shown

in Table I. We can observe that, as the average bit rate varies

by about one order of magnitude, the general pattern is the

same observed in Fig. 7.

AGP provides the most accurate and consistent results in

all bit rates, closely followed by the proposed method, with

accuracy decreasing mostly for lower rates (QP = 37). The

ρ-domain estimator is slightly less consistent, while the per-

coefficient estimator has standard deviations that are signifi-

cantly larger in all tests.

VI. CONCLUSIONS

The experimental results confirm the advantages of using

the approach proposed in Section III

• Bit-rate estimations are much more precise when they,

like entropy coding methods, take into account the sta-

tistical dependencies between magnitudes of transform

coefficients.

• Employing a statistical model, with magnitude dependen-

cies defined by distribution of standard deviations (as

used when training end-to-end neural codecs), greatly

increase estimation accuracy.

• Using a proper mathematical formulation allows for di-

rect computations of estimates and their derivatives, and

reduction of computational complexity.
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