
Real-time Detection and Interpretation of 3D Deictic Gestures for
Interaction With an Intelligent Environment

Jan Richarz, Thomas Plötz and Gernot A. Fink
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Abstract
We present a system that enables pointing-based un-

constrained interaction with a smart conference room
using an arbitrary multi-camera setup. For each indi-
vidual camera stream, areas exhibiting strong motion
are identified. In these areas, face and hand hypothe-
ses are detected. The detections of multiple cameras are
then combined to 3D hypotheses from which deictic ges-
tures are identified and a pointing direction is derived.
This is then used to identify objects in the scene. Since
we use a combination of simple yet effective techniques,
the system runs in real-time and is very responsive. We
present evaluation results on realistic data that show
the capabilities of the presented approach.

1. Introduction
The ”intelligence” of a smart room is often under-

stood as the amount of technology that is built in. The
more electronic devices are present and the more ser-
vices it offers, the more ”intelligent” it is. We argue that
a smart room will only be recognized as smart if its ser-
vices can be accessed and controlled in an intuitive and
natural manner. Therefore, in our smart environment
”FINCA” [9], we focus on man-machine interfaces that
are as intuitive as possible. One of our goals is the de-
velopment of a gesture-based interaction module.

In this paper, we present a real-time1 multi-camera
system that is able to reliably detect moving persons
and locate their faces and hands. This is a major pre-
requisite for unconstrained vision-based 3D gestural in-
teraction. In the current application, we use the system
to recognize deictic gestures and infer a 3D pointing
direction from them, which can then be used to con-
trol certain room functions (e.g. switching lights) or to
identify referred objects. Our system combines several
simple techniques to achieve robust detection. It is fast
and responsive and can be used with arbitrary camera
configurations. It also does not need any prior training,
all necessary information is extracted on-line.

1Requirement: Reaction to user actions within 1-2 seconds

The remainder of the paper is organized as follows:
First we shortly review related literature. Then, we
present the architecture of our system followed by an
experimental evaluation on realistic data. We conclude
with a short summary.

2. Related work
While the development of gesture interfaces for

human-machine interaction has gained great interest in
recent years, there are surprisingly few projects that
deal with the explicit recognition of pointing directions
from deictic gestures. Often, gestural interaction is re-
alized via the recognition of a fixed gestural ”control
alphabet” of hand or body postures [6] or sign lan-
guage recognition [8]. Dynamic gestures – i.e. spatio-
temporal motion patterns of the body – are also fre-
quently used in action recognition and surveillance sys-
tems [4] where the goal is not to control an interface,
but to detect certain incidents in an observed scene.

Given the task to recognize object or environment
references from deictic gestures, a reference can be de-
fined via spatial proximity [3] or via explicit calculation
of a pointing direction, which requires an accurate de-
tection of body parts. A common technique is to fit a
detailed body model to the data [5], which, in general, is
computationally expensive.Therefore, some approaches
use simplified models [7] or first reduce the amount of
2D data from different camera streams and then com-
bine the results [11]. The latter is the approach we pur-
sue in this paper. Our goal is to explicitly derive a 3D
pointing direction without constraining the application
to a certain camera setup and without imposing restric-
tions on the user. This also means that no auxiliary tech-
niques like markers or tracking gloves are utilized.

3. System architecture
In order to efficiently detect deictic gestures, we do

most of the computation on the individual 2D image
streams. This greatly reduces the amount of 3D data
that has to be processed. Furthermore, this process can
easily be parallelized, yielding a system that can cope
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with an arbitrary number of cameras. The first step is
to detect areas of strong motion, to which then a face
detector is applied. If a face is found, we extract a skin
color description and combine it with the motion infor-
mation to find hand candidates. These are then clus-
tered, and the results of the image streams are com-
bined in 3D using a ray intersection technique. We then
identify deictic gestures based on contextual informa-
tion and derive a pointing direction from them.

Motion detection: In our scenario, it is reasonable to
assume a mostly static environment in which all mov-
ing objects are of potential interest. However, since
our cameras are potentially moving, the system must be
able to quickly adapt to new situations. Furthermore,
for stability reasons, we want image regions exhibit-
ing strong motion to remain marked as ”interesting” for
some time (even if they become static again). Conse-
quently, static background subtraction is not suitable.

The approach we use is similar to the Motion His-
tory Images of Bobick and Davis [1].We keep a refer-
ence image Rt(x, y) of the scene as model. For each
new frame, a pixel-wise difference image Dt(x, y) to
the model is computed. This is then used in two ways.
First, it is used to calculate the motion map M :

Mt(x, y) =
{

τ : Dt(x, y) > θ
f(Et(x, y)) : otherwise

with Et(x, y) = Et−1(x, y) + 1

where Mt(x, y) is the motion map pixel value at time
t, τ the maximum motion value, θ a threshold, f
an arbitrary decay function and E a pixel-wise decay
counter which is reset to zero if the associated pixel
is detected as foreground. Thus, we do not obtain
a binary foreground-background segmentation, but a
continuously-valued motion saliency map (see Fig. 1).
A side-effect is that the response to motion can be tuned
via the decay function. Second, D is used to update R
with a given update rate. The effect is that, on the one
hand, strong motions ”linger” in the saliency map for
some time while, on the other hand, the model image is
slowly adapted to match the scene. Thus, we can still
detect connected regions for some frames if parts of the
region ceased to move while foreground objects that do
not move for a longer period of time will be learned to
be part of the background. This mechanism also yields
robustness against moderate lighting changes, since the
system will adapt to them within a few frames.

In the resulting motion saliency map M , regions of
interest (ROI) are identified using a quad-tree decom-
position. While traversing the tree, the average saliency
in the area defined by the current node is calculated.
Since the nodes define rectangular subimages, this can

be done very efficiently using an integral image of the
input. Traversal of a branch is aborted when a node
with an average saliency above a threshold is found, and
this node is added to the ROI list. Adjacent ROIs are
then merged to form bounding boxes around areas with
strong motion. This algorithm is very fast and is able to
detect an arbitrary number of ROIs of arbitrary sizes.

Face and hand detection: The largest ROI is kept for
further processing, thus we assume that only one person
is present. However, multiple separate ROIs could be
processed in parallel to overcome this limitation. Per-
sons occluding each other remain problematic, though.

We apply two Viola-Jones detectors [10] (frontal and
profile) to the ROI to detect the person’s face. If multi-
ple face hypotheses are obtained, the one with the high-
est combined motion/skin saliency in its detection re-
gion is chosen. If no face has been found, computation
is aborted for this frame, unless a skin color histogram
with a high trust value (see below) is available. In this
case we use the color information to find likely face po-
sitions near the last known position.

Given the face, a HSV color histogram of the per-
son’s skin color is computed. To be more robust against
detection errors, we only take into account pixels inside
an elliptic area smaller than the face and additionally
weigh them with a Gaussian. Furthermore, a weighted
average between the new and the old histogram is com-
puted in each step which smooths temporal variations
of the histogram bins. We also assign a trust value to
the histogram which is increased if the new and old his-
tograms are similar, and decreased otherwise.

Using the smoothed histogram, we compute a skin
likelihood map and combine it (using weighted aver-
age) with the motion saliency. We then slide a rect-
angular window over the resulting combined saliency
to find hand candidates. All candidates with an aver-
age saliency greater than a threshold and within 80% of
the maximum value are kept. Since this procedure typi-
cally yields numerous overlapping candidate regions on
hands, we apply a Mean Shift clustering algorithm [2]
to reduce clusters to single detections.

3D projection and combination: So far, all compu-
tations have been carried out on the individual 2D image
streams. The next step is to combine the detected faces
and hands into a 3D representation. Note that the im-
age streams are not synchronized. Given the cameras’
internal parameters and 3D room positions, we calcu-
late rays from the cameras’ optical centers through the
detection centers in the respective images using simple
projective geometry. Rays belonging to the same ob-
ject should intersect at the object’s 3D position. How-
ever, due to detection errors and the unsynchronized
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Figure 1. Left to right: input images with face and hand detections, motion/skin saliency with
ROI, 3D projection result. Estimated pointing directions are depicted by dotted black lines, the
dots visualize the marker positions. The referred marker is shown with a bigger dot.

image streams, the rays will generally be skewed. So
we seek combinations that have minimum mutual dis-
tance. We calculate the connecting perpendicular line
for each combination and interpolate the 3D position of
the corresponding detection as the center point of this
line. Rays from false detections will normally not yield
a valid combination because their distance to all other
rays will be too large. Fig. 1 shows an example of the
2D detections and the resulting 3D representation.

The 3D pointing direction is defined by the line con-
necting face and hand. We do not explicitly detect deic-
tic gestures (although we plan to do so in future work),
but recognize them context-based. Normally, inside the
FINCA, the context is given via a speech command. For
this paper, we define context via object references. If,
in a given temporal window of 8 frames, an object ref-
erence occurred (i.e. the pointing ray intersects a scene
object) at least 2 times, we infer that this object was
pointed at. If different object references are detected,
the one that has the majority of entries is selected.

4. Evaluation
For the sake of clarity we evaluated the 2D and 3D

stages separately. For the 2D stage, we recorded short
image sequences inside the FINCA each showing one
person gesticulating unconstrainedly in the camera’s
field of view. The images are 378 by 278 pixels and
were recorded at system frame rate (approx. 6 to 8 fps
on a standard dual-core desktop with an unoptimized
threaded implementation). We used 3 different cameras
showing substantially different views of the room and
recorded 10 different persons on different days and un-
der varying lighting conditions. This set contains 3053
images that were annotated manually.

To evaluate the quality of the 3D reconstruction, we

performed a pointing experiment where 6 different peo-
ple were asked to point at 6 markers placed approx. 40
cm from each other on a table. 2 different camera setups
were used. This set contains 2342 image pairs.

2D stage: The data was labeled using rectangles
around the inner face area and enclosing visible hands.
A face detection is considered valid if its bounding box
entirely contains the annotation and lies inside a rect-
angle with 3 times the size of the annotation. A hand
detection is valid if its center lies inside a labeled hand
area. A hand is counted as found if at least one valid
detection is present that belongs to it, otherwise it is
reported as missed. The same holds for faces. False
positives are detections that cannot be assigned to any
of the annotated areas.

Table 1 shows the results. ”Faces” and ”hands” de-
note the total number of annotated faces and hands that
were detected by the algorithm. The hand detection
stage largely depends on the success of the face detec-
tion. In order to assess the performance of this stage,
we present the scores calculated only for those images
in which the face was detected correctly (”without face
detection errors”). Also shown are the hand detection
results after clustering has been applied to the candidate
regions (”clustered”). Note that clusters with less than
2 supporting detections are omitted. The total number
of correct and false hand hypotheses (”hand hyp.”, i.e.
candidate regions) is shown in the bottom part. The
majority of false hand hypotheses originates from only
very few frames. Overall, there are 69 images with
more than 10 false positives. So, on average we get
one defective frame result every 43 frames.

Overall, the results are satisfactory. Note that most
missed hands have either been idle for several frames
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Table 1. Detection results for 2D stage.
annotated found (%) missed (%)

faces 3008 2334 (77.6) 674 (22.4)
hands 5806 3850 (66.3) 1956 (33.7)
without face detection errors
hands 4540 3546 (78.1) 994 (21.9)
clustered 4540 3405 (75.0) 1135 (25.0)

total correct (%) false pos. (%)
hand hyp. 24339 18625 (76.5) 5714 (23.5)
without face detection errors
hand hyp. 19858 17229 (86.8) 2629 (13.2)
clustered 3665 3406 (92.9) 259 (7.1)

(and therefore very likely do not carry any information),
are in front of the face (where no hand candidates are
searched for obvious reasons) or are shadowed by the
body. The main gesticulating hand is found quite reli-
ably and the system can cope with single missed detec-
tions in between.

3D stage: Since it is not possible to infer precise
ground truth data for human pointing gestures due to
their approximative and person-dependent nature, we
cannot report absolute precisions. Instead, we present
overall detection rates where a detection is valid if the
person was pointing at that moment and the correct
marker is identified. The weak point in the whole de-
tection process is the face detector, which has difficul-
ties dealing with in-plane rotation and tilting of faces.
Also, its detections vary in size and position and there-
fore yield inaccuracies in the head position estimates
which limit the achievable accuracy of the system and
are difficult to assess. Since our goal is to evaluate the
pointing estimation process (not the face detector), we
choose from a large dataset those sequences where the
face detector yields satisfactory performance, resulting
in the testset described above. The results are shown in
table 2. The object detections (where a complete point-
ing sequence belonging to a certain marker is counted
as one object) is reported as ”obj”, ”ref” are frame-wise
object references (i.e. single detections). The misses are
mainly due to head detection failures (as can be seen in
the bottom part of table 2 where we omit the frames
in which no head was found). The system yielded 223
false positive references, mainly due to smooth transi-
tions between gestures. These can rather easily be elim-
inated by incorporating gesture segmentation.

5. Summary
We presented a multi-camera system that is able to

infer the 3D positions of a person’s face and hands in
real-time from almost arbitrary camera configurations
(limited by the requirements of the face detector, which

Table 2. Detection results for 3D stage
annot. correct (%) false (%) missed (%)

obj 132 94 (71.2) 18 (13.6) 20 (15.2)
ref 1144 506 (44.2) 168 (14.7) 470 (41.1)
With detected head position:
obj 114 94 (82.5) 18 (15.8) 2 (1.7)
ref 841 506 (60.1) 168 (20.0) 167 (19.9)

will be replaced in future versions). It, thus, enables
marker-less and unconstrained pointing-based interac-
tion with an intelligent environment. Our experimental
results show that the system achieves reliable detection,
and we successfully utilized it to identify scene objects
via deictic gestures. Note that, once a direction is de-
rived, it can be used for multiple purposes, i.e. control-
ling room services or directing the room’s attention to a
certain area. So far, only settings with 2 cameras were
evaluated, but the extension to multi-camera scenarios
is straightforward.
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