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Abstract. Neural implicit fields have recently been shown to represent
3D shapes accurately, opening up various applications in 3D shape anal-
ysis. Up to now, such implicit fields for 3D representation are scalar,
encoding the signed distance or binary volume occupancy and more re-
cently the unsigned distance. However, the first two can only represent
closed shapes, while the unsigned distance has difficulties in accurate and
fast shape inference. In this paper, we propose a Neural Vector Field for
shape representation in order to overcome the two aforementioned prob-
lems. Mapping each point in space to the direction towards the closest
surface, we can represent any type of shape. Similarly the shape mesh
can be reconstructed by applying the marching cubes algorithm, with
proposed small changes, on top of the inferred vector field. We compare
the method on ShapeNet where the proposed new neural implicit field
shows superior accuracy in representing both closed and open shapes
outperforming previous methods.
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1 Introduction

Representing 3D shapes has long been a challenge in computer graphics and
3D vision. A 3D surface representation should have high accuracy and should
be convenient for any downstream task. Shape analysis tasks such as 3D shape
correspondences [49], 3D deformations [46], registration [15] or generation [37]
rely on 3D representations suitable for learning. Voxel-based representations can
leverage convolutional methods developed in image processing, but can only be
used with relatively low resolution as they come with large time and memory
requirements. Point clouds and meshes, on the other hand, have lower memory
requirements but are far harder to process in a learning pipeline. These are con-
sidered explicit representations as they use the actual positions of the structure
in 3D. Alternatively, there are hybrid methods that are based on representations
that can be used either for implicit processing or explicit visualization. For in-
stance, [13,4] interprets 3D objects as composed of multiple polytopes but lacks
the convenience of other representations.
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Fig. 1. Open surface visualizations. The proposed VT representation can encode
open surfaces and can be converted to a mesh representation with the efficient Marching
Cubes algorithm.

In the recent years, neural implicit functions [31,27,38,5] have been proposed
to overcome these problems. They are used to represent 3D shapes as continuous
functions that map spatial locations to some shape context, such as the signed
distance to the surface. If the chosen shape context is sufficient to retrieve the
original shape, then it forms a valid shape representation. It thus follows that a
neural network that can approximate the aforementioned shape context is able
to represent a surface at arbitrary resolution with fixed memory requirements.
There are mainly two types of implicit representations that are used in the
computer vision and graphics community. Distance based representations [31,8]
associate to each point in space the distance from the closest surface of the object
to be represented. This is either signed or unsigned, with the former that gives
the negative sign to points inside the objects and positive outside. An alternative
representation is binary occupancy [27], where each point in space is classified
to be either inside or outside an object.

Despite the success [49,3,5,38,39] of implicit representations, popular repre-
sentation approaches [31,27] cannot formulate the training objective when the
inside-outside attribute of space is not clear. Examples of such cases, however,
are plentiful, and commonly encountered in open surfaces, non-manifold geome-
try, or non-orientable surfaces. To overcome this issue, [8] suggests to substitute
the SDF with its unsigned version (UDF). With this change it is possible to
represent every type of surface as the zero level set of the UDF. However, this
comes with the problem that the surface cannot be discovered as a level set any-
more due to prediction noise. Rather the minimum is obtained by following the
opposite of the gradient of the distance function [8]. However, the requirement
of differentiating at test time for inference comes at higher memory and time
cost compared to the previous methods.

Inspired by image boundary representation in [35], we propose to overcome
these limitations with an implicit function that maps each point in space to the
normalized direction towards the closest surface. In accordance with its 2D coun-
terpart, we call this representation VT. This is a significant shift from previous
implicit functions that have focused on predicting scalar fields. In contrast, the
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proposed vector field allows us to represent any type of surface while being fast
in inference. More specifically, surface points are found at the -2 level set of the
divergence computed on the vector field and this one-to-one mapping between
the surface point set and the divergence level set allows us to apply the march-
ing cubes (MC) algorithm to our representation with minimal changes. We show
example mesh visualizations of open surface representations using VT in Fig. 1.

In the rest of the paper, we first look at VT and a modified magnitude version
of it (DVT) and show that these representations can be used to represent 3D
surfaces. Then we show how the representations can be learned and integrated
with MC at test time. Finally, we demonstrate that our proposed representation
can achieve superior performance compared to any other representation when
applied in equal train-test conditions.

In summary our contributions are threefold:

– We propose to use VT and DVT, two vector field representations for implicit
representation of 3D shapes and demonstrate their soundness and higher
expressive ability.

– We modify the marching cubes algorithm (Algo. 1) to be applied on a vector
field, so that it is able, for the first time, to handle open surfaces, non-
manifold geometries, and non-orientable objects.

– With extensive tests, we demonstrate the strong performance of our method,
achieving superior accuracy and generalization in multiple testing set-ups.

2 Related Work

We mainly review three areas related to our work; 3D shape representation,
implicit functions, and the MC algorithms.

2.1 Voxel, Point Cloud, and Mesh-Based Representations

Voxel grids [19,22] extend to volumetric data the pixel image structure and have
been used with straightforward extensions of image processing techniques, such
as convolutions, to 3 dimensions. However, the clear drawback of voxel-based
methods is that they scale cubically with the resolution in terms of memory
usage and computation. Therefore, the first methods proposed [9,42,45] could
only work with 323 voxel grids. It has been later improved to 1283 [44,48] with
drawbacks in terms of network sizes and training speed, while still being too
small to represent 3D data with high fidelity. The dimension of voxel grids can
be improved with multi-resolution methods [18] that deal with grid sizes up to
2563 but have high complexity.

To preserve the same structure but alleviate the computation limitations,
octree-based methods [41,36] have been proposed, which could improve resolu-
tion up to 5123. These cannot still produce visually compelling results as they
do not predict normals and do not smooth predictions to a sub-voxel resolution.
Alternatively, [11,40,23] store the truncated signed distance function (TSDF)
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[10] at a voxel level, which allows to represent surfaces at a sub-voxel resolution.
However, these methods still require large amounts of memory as the TSDF
values are stored in a voxel grid and they are much harder to learn.
Point clouds, an alternative to voxel representations, solve the memory re-
quirement problem as they are constituted of the coordinates of the points that
lie on the object surface. This has also no theoretical bound on the resolution
that can be obtained, even though, the number of points required grows with
accuracy. Despite being used both in discriminative learning tasks [32,33] and
for reconstruction [16], they require non-trivial post-processing to be converted
to meshes, the preferred format for shape manipulation and rendering. Further-
more, point clouds do not provide important information such as surface normals
and connected components in the representation.
Meshes represent surfaces as a combination of polygons, generally triangles, and
have often been used to represent classes of similarly shaped objects, like body
parts. They are used for classification or segmentation by applying convolutions
to their graph structure [1,17], exploiting the information on connectivity and the
normals. When used in the reconstruction task, they often create self-intersecting
structures and can only produce simple topology [43]. Alternatively, they require
a template representative of the class that is reconstructed [21,34].

2.2 Implicit Functions

Learning implicit functions to represent the 3D structure of objects has been pro-
posed as a solution to the memory issues and utility of the 3D representations
discussed above. These methods require small amounts of memory to represent
objects at arbitrary resolution. The most successful methods in doing this have
been based on classifying points in space as inside or outside of objects using
either binary occupancy classification [27,7,14,38] or SDF [31,6,20,5]. These have
the further advantage that they represent closed surfaces and can be used to gen-
erate watertight meshes with the quick MC algorithm. However, they cannot be
used for open surfaces or non-manifold structures or objects with non-orientable
surfaces such as the Klein bottle. Moreover, they require watertight structures to
be trained, which are not trivial to obtain in real world scenarios. To solve this
issue, the UDF [8] has been used as an alternative as it is able to represent any
type of object. However, it outputs point cloud representations which still have
the limitations highlighted before. Note that Neural Radiance Fields [28,47,26]
can encode open surfaces with volume density, thanks to the camera rays which
enable an inside-outside definition. However, these approaches are more attuned
to synthesizing realistic views in presence of image-camera pose examples, more
than on inferring 3D shape.

2.3 Marching Cubes Algorithms

Marching cubes [25] is an algorithm which has obtained tremendous success for
speeding up the creation of a surface mesh representing a level set in a scalar field
sampled on a cuberille grid. Each vertex in the cube-like structure is classified
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Fig. 2. Overview of our proposed VT representation. From left to right we show an
example mesh of an object to represent, the predicted VT field and a zoom-in of a crop
of it, and finally the reconstructed object.

as either inside or outside based on whether its value is below or above the level
set. The algorithm is based on the fact that, of all the 256 configuration of inside
and outside that a cube can have, they can be reduced to 15 unique ones, which
represent all of them up to rigid geometrical transformation. This, however,
can still lead to holes as the values are not adapted based on the configuration
in neighboring cubes. Successive versions of MC have tackled the problem, for
example, by introducing trilinear interpolation inside the cubes while improving
the overall mesh accuracy [24,29]. We use [24] as starting point to develop an
updated version of the algorithm that works on a vector field.

3 Method

In this work, we propose to replace the scalar field implicit functions with a vec-
tor field counterpart. The existing implicit representations, are mostly distance
based or binary. [31] and [8] compute the SDF or UDF respectively, from the
surface to be represented, and [27] uses a single variable to formulate a binary
classification of the points in space.

In creating new representations, though, we want to preserve the advantages
of existing methods, for example fast inference and accurate mesh reconstruc-
tion [31,27]. Unlike in the case of UDF inference [8], we want the inference step
to involve only forward passes. To that end, we propose to represent 3D ob-
jects by the normalized direction towards the closest surface point, adapting the
representation proposed for image boundaries in [35]. In the remainder of the
section, we first formally define our vector field function with the properties that
make it suitable for the representation task; then, we compare its properties to
the commonly used scalar fields and discuss its training procedure. Finally, we
show how this particular vector representation allows the fast inference of 3D
meshes with only small changes to the MC algorithm.
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3.1 Vector Field Representation

Suppose we have a 3D object or scene in a subset of 3D space Ω ⊆ R3. A
continuous 2D surface therefore lies in it,Π ⊂ Ω, with surface points xS ∈ Π and
non-surface points x ∈ Ω \Π. Let us call Γ ⊂ R3 the space of ℓ2-normalized 3D
vectors with members v ∈ Γ . We finally define a transform that maps each point x
to the normalized direction v pointing towards the closest surface point xS . Given
the definition, the points xS are discontinuities in the field as positions where
the direction towards the surface flips. For practical purposes, they are mapped
to either of the two opposite directional normals of the surface, without any
downsides. Generalizing to non-differentiable points where no normal is defined,
this is equivalent to treating the point xS as a point x′ = xS + ϵ s.t. x′ /∈ Π and
∥ϵ∥2 → 0+ and computing the transform for point x′.

In accordance with [35], we call the mapping from the positions in space
to the directions fV T : Ω → Γ Vector Transform (VT). Figure 2 shows the
visualization of the VT representation for an example object. We redefine VT
formally for the 3D-space as follows:

fV T (x) = v with x ∈ Ω, v ∈ Γ

va =
da(x, x̂S)

∥d(x, x̂S)∥2
with a ∈ {x, y, z}

and x̂S = inf
xS∈Π

∥d(x, xS)∥2 if x /∈ Π,

otherwise, va =
da(x

′, x̂S)

∥d(x′, x̂S)∥2
with x′ = lim

∥ϵ∥2→0+
x+ ϵ and x′ /∈ Π.

(1)

Here d is an operator that gives the vector difference of its operands. Equation
(1) defines the transform that maps each point in the subset of space Ω to a
normalized direction vector v ∈ Γ . Here ϵ ∈ R3 is an infinitesimal displacement.
We note that when multiple points x̂S satisfy the inferior condition, one of them
is chosen randomly. Similarly, the point x′ can be chosen arbitrarily between the
two sides of the surface Π with the only constraint that x′ /∈ Π.

We now need to ensure that VT can properly represent surfaces embedded
in R3. Specifically, we establish a one-to-one map between surface points and
the −2 level set of divergence computed on the VT field.

Property 1. The vector field v = fV T (x) is equal to the unit normal field at the
surface.

Property 1, instrumental for proving the following property, does not require
extensions and we refer to its proof in [30] and [35].

Property 2. Consider the VT representation v = fV T (x) of a piece-wise smooth
surface as defined in Eq. (1), and the following transform:

g(x) = div fV T (x). (2)

A point x ∈ R3 then is a surface point, x ∈ Π, if and only if it belongs to the
zero level set of g(x) + 2,

Π = L0(g + 2). (3)
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Proof. Let us start proving that, if a point belongs to the surface, then it is
in the zero level set of Eq. (3). In the infinitesimal sphere around any surface
point, using Property 1, the only component of the VT field present is normal
to the surface, with tangential components approaching to 0. Around such an
infinitesimal neighborhood, the normal fields on the two sides of the surface,
pointing in opposite direction, are summed with concordant signs. Thus, they
create a divergence flow of −2, as they are pointing inward and with norm equal
to 1 by definition. Therefore, we have demonstrated that it belongs to the zero
level set L0(g + 2). The proof for the second part of the statement is provided
in the supplementary.

The result just obtained holds for piece-wise smooth surfaces [30]. However, in
practice, small changes can occur on the field divergence on the surface. For
example, the divergence can go lower than −2 at discontinuous surface points.
Nonetheless, the thresholding operation required for surface inference remains
unaffected. Thanks to these generalized properties, we can now use VT as a
surface representation with the knowledge that there is a theoretical guarantee
that shows the correctness of the transform.

3.2 Comparison of Representations

As we now have a formal definition of VT and its main properties, we can
compare the proposed representation with the previous ones. From the expres-
siveness perspective, we have shown that any type of piece-wise smooth surface
can be represented through VT; this includes open and non-orientable surfaces.
It can be further extended to non-smooth surfaces and non-manifold structures
as these show an even lower divergence. It is thus a strong improvement in ex-
pressiveness compared to SDF [31] and binary occupancy [27] that could only
represent closed watertight surfaces.

While considering distance based representations, it is important to note
that [8] can represent any type of surface, similar to VT. However, VT has
a higher sensitivity around the boundary compared to SDF and UDF, where
small differences in the prediction are not strongly penalized by the distance
loss. Furthermore, SDF and UDF require training with a truncated distance
field to make the task stable. Besides adding an hyperparameter to optimize,
this reduces the shape prior learned far from the surface as shown with the
experiment on the shape completion task. Using VT, this is not needed, which
results in a richer representation as every point needs to be aware of the surface
position.

The proposed VT shares strong relationship to UDF, as the negative gradient
of UDF is equal to VT,

fV T (x) = −∇UDF(x). (4)

It may therefore raise the question whether the UDF prediction can achieve
the same results as VT by considering the gradients. However, as shown in the
experiments, applying the divergence criterion to infer a surface on the UDF
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gradients suffers from significant noise on the gradient prediction. Furthermore,
as UDF is not symmetric around 0, it suffers from a bias in the prediction around
the middle of the range between 0 and the maximum distance threshold. This,
together with the low sensitivity around 0 is a factor for the high level of noise
on UDF prediction as demonstrated in [35] for image edge detection.

3.3 Distance-Vector Transform

While the VT representation for 3D shapes provides enough context for shape
inference, it can be reasoned that more context may be helpful for better results.
One way to achieve that is through a modification of VT, by also encoding the
unsigned distance from the surface, thus splitting the distance transform into
separate components, similarly to [12]. We call this method Distance-VT (DVT).
Specifically, we encode the norm of the VT vectors with the distance from the
surface. Apart from having more shape context, DVT also makes it possible to
learn the representation exactly with a continuous function. To preserve a reliable
prediction of direction, we split the loss in a directional component applied on
the normalized DVT vectors and a distance component applied on the norm.
To avoid the undefined case of zero norm at the surface, the norm of the points
used in training has a lower bound set at 10−5. Note that this does not affect the
learning in practice as the vast majority of points used for training are further
from the surface. We also note that DVT can learn even more information as
the distance from the surface is directly available in the representation.

However, the highlighted advantages come with a trade-off as DVT requires
the use of a more complex loss and has a reduced sensitivity at the surface. Hav-
ing a high loss close to the surface allows the network to focus its training and
refinement on the surface values. On the other hand, having a continuous repre-
sentation makes convergence to the target representation easier and the directly
available distance value constitutes an advantage in applying the MC algorithm.
As shown in the experimental section, VT outperforms DVT when complete
observations are used for refinement, suggesting that the higher sensitivity at
the surface is more important than the advantages of DVT for representation.
However, it also shows that DVT can provide advantages in other conditions.

From a theoretical point of view, DVT can be easily shown to be an implicit
representation as it can be simply converted to VT by normalization. Despite
the presence of the distance metric that could provide information on the surface
position, we use the divergence level set relation as it provides higher robustness
and is easier to threshold, as shown in the previous work on images [35].

3.4 Field Creation and Training

Following standard practices [31,49], we want to measure the performance of
VT field for shape inference while also considering the generalization capabili-
ties. Therefore, the field prediction at each coordinate is conditioned on a high
dimensional embedding vector. This is specific to the object to represent and is
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given as input variables to the network together with the inference coordinates
to output the representation.

Considering training, the mean squared error (MSE) loss is computed be-
tween the predicted vector v̂ with components x, y, and z and the ground truth
vector vgt:

ℓV T = ∥vgt − v̂∥22. (5)

Here vgt is the ground truth VT field and v̂ is the prediction. More specifically,
for each object, it is computed on a set of coordinates randomly sampled in space
with a higher density around the surface [31].

The same mean squared error loss is applied to the normalized DVT with the
addition of the ℓ1 loss on its norm. Overall, the loss for DVT is the following:

ℓDV T =

∥∥∥∥vgt − v̂

∥v̂∥2

∥∥∥∥2
2

+
∥∥dgt − ∥v̂∥2

∥∥
1
. (6)

Here vgt is the ground truth VT field and v̂ is the prediction, as before, and dgt is
the ground truth distance from the surface. We note that here, compared to Eq.
(5), it is possible to add an hyperparameter to weight the two loss components,
which may improve performance at the cost of more experimental complexity
and, possibly, less generality.

3.5 Mesh Inference and Marching Cubes Algorithm

A challenging part of implicit 3D representation is an easy transformation to
standard mesh representation. Mesh allows rendering and manipulation of 3D
shapes using standard graphics tools. For the purpose of going from implicit to
mesh representation, a traditionally successful algorithm has been MC. Current
MC algorithms are developed to produce smooth surfaces without holes and with
continuously changing normals. This produces visually appealing representations
but constitutes a challenge when adapting the algorithm for different types of
representation.

The standard MC algorithm is applied to a scalar field to produce triangles at
the positions where the scalar field crosses a predefined value. Considering SDF,
the value used is 0 and the resulting polygonal surface approximates the zero
level set of SDF. This is done taking by first voxelizing the space and evaluating
the field values in these voxels. Furthermore, in order to choose between the
multiple possible mesh configurations that arise from the vertex assignments,
neighboring voxels are used to ensure surface continuity. To secure smoothly
changing normals, the MC algorithms compute them based on a neighborhood
around each surface position and locate the mesh faces in each voxel with a
trilinear interpolation of the field.

To adapt the MC algorithm to the VT field, we now assess the three aspects
just highlighted:

– Level set definition: as the vector field does not have a level set that can be
used to apply MC, we need to define a way to indicate the voxels which have a
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surface. For this, we use Property 2 and identify the surface voxels as the ones
that have a divergence smaller or equal to −2. The divergence computation
can be computed in a highly parallel manner, either with convolutions on
the voxel grid or inside the MC computation.

– Vertices clustering: the directions in each vertex of a voxel are then clus-
tered into two groups, based on their cosine similarity. This replaces the
inside-outside direction computation in the case of SDF. In this case, the
two clusters can be identified by taking the two vectors among the 8 inside
the voxel with the lowest cosine similarity between each other. The other
vectors are then associated to the cluster with which they share the high-
est cosine similarity. This is an effective clustering technique with very low
computational cost, thanks to the easy nature of the problem.
The assignment algorithm just explained is enough to generate a surface
in each voxel but it does not ensure a continuous result, as the assignment
on the two sides of the level set is not consistent between neighboring vox-
els. Note that this is not a problem with SDF because of the unambiguous
inside-outside definition. We solve this for VT by applying a region-growing
algorithm which ensures consistency of normal directions within all parts of
the object. Starting from a random surface point, one of its two dominant
directions is randomly chosen; then, its adjacent surface points have the dom-
inant direction chosen as the one consistent with the one v̂ of the starting
point. Among the two opposite normal directions v1 and v2, one is chosen
so that the bisector between it and v̂ is perpendicular to the displacement
vector from the starting point to the considered neighboring point. This re-
lationship is exact for exact prediction but can be approximated to obtain
consistent directions. This operation is then recursively repeated starting
from the new points. When no new surface point to be set can be reached,
a new random surface point is chosen between the unset ones. In this way
we achieve normal consistency in object parts. However, we should note that
consistency guarantees at a global level cannot be ensured as some objects
- like the Klein bottle - do not allow a definition of inside or outside. Non-
manifold geometries cannot be represented by MC either; however, excluding
the points of connection of three surfaces, the rest of the structure can be
faithfully represented.

– Smooth normal predictions: the final step to adapt is the use of values for
the vertices to exploit the trilinear interpolation. When considering DVT,
it is possible to use the predicted distance embedded in the vector field
structure; the norm of the vectors is assigned to each voxel vertex with the
sign determined as previously explained. In the case of VT field, there is no
exact representation as it does not have explicit notion of the distance from
the surface. However, similarly to DVT, we can use the continuity property
of the representation to have a distance estimation. As the surface is defined
by points where field directions flip, we observe that the norm of the field
gets reduced around the surface points. We note that, even though this
measure cannot represent the actual value of the distance, it monotonically
changes close to the surface and hence can be used for our purpose. The
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same effect is also used when applying the traditional MC algorithm on the
binary occupancy field [27].

Algorithm 1 MCvector (X , fV T (x))

1. Sample point set X ⊂ R3 to form a grid.
2. For each vertex x ∈ X , compute the VT field, compute the divergence, and evaluate
Eq. (3).
3. For voxels in the zero level set of Eq. (3) or below zero, cluster vertices on the
opposite side of the surface and make directions consistent with the region growing
algorithm.
4. Assign the norm of the predicted VT or DVT to the vertices and generate the
surface.

For brevity, our modified MC method is described in Algo. 1. For a quantita-
tive comparison between the proposed algorithm and the one used as reference
[24], we refer the reader to the supplementary material.

4 Experiments

First, we explain the network structure and training set-up together with the
tasks that we tackle followed by the metrics used. Then we describe the results
on each task comparing the performance of VT to other representations. Finally,
we show more qualitative results and provide a discussion on the performance.

4.1 Network Structure and Methods

Our work proposes a surface representation rather than a method with its own
architecture. We describe the standard network architecture used for all repre-
sentations here. Every representation is tested on the same architecture and the
same training technique. More specifically, we chose to use the same architecture
as [31], as it achieves good results while being reasonably lightweight and does
not require any operation to be executed on the expensive voxel structure.

We use a fully connected auto-decoder network that takes as input a latent
vector together with the prediction coordinates to predict the field in such po-
sition. In this context, both the network and the latent code are optimized at
training time, while only the latent vector is optimized at test time. The network
is trained for 2000 epochs with samples from 64 scenes in each batch and 16384
points per batch. For further details concerning the network structure and the
training, please refer to the original work [31].

The described network structure is used to predict a binary occupancy repre-
sentation (BOR), the thresholded signed and unsigned distance field (SDF and
UDF) and the VT field with its magnitude version (DVT). BOR is trained using
the binary cross-entropy loss, SDF and UDF are trained using the ℓ1 loss and
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VT with the mean squared error following previous work on the field [31,27,35].
The threshold value for the signed and unsigned distance field is also set based
on previous work [8,31].

Considering inference, we first sample the fields on a 5123 voxel grid and
then apply MC algorithm on it. BOR and SDF can be directly used with the
standard version of MC [24] to provide the resulting mesh. Regarding UDF, up
to our knowledge, there is no method like MC that can produce a resulting mesh
in a comparable way. Therefore, to evaluate the method fairly with respect to
the others, we apply the proposed MC variant on its negative gradient as we do
on VT and DVT.

4.2 Tasks, Metrics, and Dataset

We apply the representation methods just explained on two different tasks. The
first is the traditional shape reconstruction task. Here, the network is first on a
shape class, and then used to reconstruct an unseen object belonging to the same
class without retraining the network. The second task is focused on reconstruct-
ing shapes of unseen objects belonging to the same class used in training, using
only partial observations of the object at test time. This is called the completion
task. Specifically, each object is observed frontally and the ground truth values
are sampled around the observable points. For more analysis on the completion
task changing the view point, we refer to the supplementary material.

All the tasks are evaluated using the symmetric Chamfer distance (CD) on
30000 points with the results written as CD×1000. Specifically, 30000 points are
uniformly sampled on the ground truth and the predicted mesh, and the average
distances from each point in the set to the closest in the other are summed. To
reduce the random effect of points sampling, each result is obtained by averaging
the results over three different samplings.

We evaluate every method on multiple classes of the popular ShapeNet [2]
dataset. Specifically, we evaluate the reconstruction performance on the chairs,
lamps, planes, and sofas classes separately. Among these classes, lamps has the
smallest amount of training data available and therefore it is not used in the
shape completion task. For every task, each class is divided into a training,
validation and testing set, with respectively 70%, 10%, and 20% of the data.

4.3 Shape Reconstruction

First, we test on the shape reconstruction task. Table 1 shows that the two best
performing representations, on average, are SDF and VT, with BOR being also
competitive with an appropriate amount of training data. This shows that the
vector representation on neural implicit shape representation can perform as well
as SDF. Furthermore, VT can consistently outperform UDF which is the only
other method with the same expressive power that can represent non-watertight
shapes. We also note that VT can perform better than DVT, which suggests that
having a high sensitivity at the surface is possibly more important than modeling
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Method
chairs lamps planes sofas

mean median mean median mean median mean median

BOR 0.4199 0.1732 3.0023 0.4481 0.1615 0.0266 0.1492 0.0931
SDF 0.3373 0.1558 0.7977 0.1831 0.1004 0.0473 0.1197 0.0734
UDF 0.8522 0.4230 1.2385 0.4401 0.6448 0.3989 0.6113 0.4044

VT 0.3222 0.1542 0.6244 0.1896 0.0739 0.0243 0.1689 0.0755
DVT 0.6290 0.3474 0.8436 0.2777 0.3472 0.1614 0.5748 0.2064

Table 1. Reconstruction results on 4 ShapeNet [2] categories. The latent vector used
to represent the object has size 256 and is optimized for 800 iterations.

Method
chairs planes sofas

mean median mean median mean median

BOR 12.4128 11.8306 6.1921 5.6087 13.4265 12.0069
SDF 8.6721 8.2049 4.1413 3.2754 8.4861 7.3419
UDF 3.0013 2.5488 1.1495 0.6468 4.3452 3.1917

VT 4.4817 3.6761 1.5929 1.0629 4.3001 2.8116
DVT 2.9433 2.4462 1.0770 0.4157 3.6209 2.1890

Table 2. Completion results on partial observations of 3 ShapeNet [2] categories.
Lamps are excluded as they are a class with high variability and a very limited training
set. The latent vector representing the object has size 128 and it is optimized for 100
iterations. These values are reduced from the previous task to give more importance
to the learned prior.

a continuous function. Finally VT’s slight edge over SDF in some cases can be
accounted to the sharp sensitivity of the field divergence in recognizing surfaces.

4.4 Shape Completion

The results on the shape completion task, shown in Table 2, further show the
suitability of the VT representation. As hypothesised, using a vector field can
provide a stronger prior on the learned shapes compared to the similarly per-
forming scalar fields. Supporting the same hypothesis, BOR is the method that
performs worse as it is the method with the least prior on the shape as each
point inside an object is treated equally. Furthermore, the better performance of
UDF with respect to SDF can be explained by the different parameters typically
used as distance threshold [31,8]. As UDF has a higher threshold, its shape prior
is stronger than SDF, which allows it to better complete shapes.

On the contrary, the very high loss at the surface, which creates a large
gradient for the latent vector optimization can be a drawback with a limited
view of the objects. This is suggested also by the stronger performance of DVT
compared to all other methods. In fact, DVT has a rich vector representation
and does not suffer from excessively large gradients given the smooth transition
at the surface.

4.5 Qualitative Results

In Figure 3 we show some qualitative predictions obtained using VT for all
the classes in the reconstruction part. The predictions closely follow the target
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Fig. 3. Qualitative comparison. In each line we show from left to right the target
mesh, the reconstruction mesh obtained with VT and DVT and the completion mesh
of the two methods. Please refer to the supplementary material for more comparisons.

shapes in most cases despite the challenging examples. Furthermore, the lack
of holes in the predictions and the consistency in the surface normal suggests
that the proposed variant to the MC algorithm is effective in outputting high
quality meshes. For more qualitative results on different tasks, please refer to
the supplementary material.

5 Conclusion

In this paper we revisited the neural implicit representations for representing
3D shapes and analyze the drawbacks of currently available formulations. We
started with the observation that popular representations such as the SDF or
binary occupancy either lack the expressive power to represent open or non-
watertight surfaces while the UDF representation has problems with fast in-
ference or accurate representation. We therefore, proposed to solve the issue
of open surface representation by considering vector transform in place of the
popular signed/unsigned distance transform. We then modified the popularly
used Marching Cubes algorithm to work with the proposed vector field implicit
representation. Our complete method provides fast and accurate 3D shape infer-
ence along with mesh computation without the requirement of backpropagation.
This is possible while representing a much larger class of shapes compared to
the popular SDF implicit representation.
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A Qualitative Results Analysis

Here we provide additional results visualization comparing each representation.
From Figure 4, we can see the different properties of each representation. As vol-
umetric representations, SDF and BOR predict watertight meshes. This charac-
teristic, produces smooth and watertight results which can be an advantage when
representing shapes with such properties, such as sofas. However, this shows to
be a limitation when representing thin objects parts or thin cylinders, such as
in the lamp example.

On the other hand, VT, UDF, and DVT represent the surfaces itself which
gives a strong advantage when representing this or non-watertight parts, but
can lead to non-smooth meshes or noise. The effect is apparent in the meshes
obtained using UDF representation and suggests that predicting the direction
directly, as in VT and DVT, leads to less noisy results. The advantage on thin
shapes, instead, can be observed in the lamps class with a very large performance
gap between VT or DVT and SDF. Overall, VT shows to achieve highly accurate
prediction across all examples, combining high sensitivity at the surface, the
ability to represent any type of shape, and low levels of noise.

Regarding the qualitative examples on the completion task, every method
has a significant decrease in qualitative accuracy. However, Figure 5 shows that
the same type of properties discussed for the reconstruction task are still valid.
When provided with limited observations, SDF and BOR tend to produce overly
smoothed results, losing precision at the level of the details. On the other hand,
UDF, VT, and DVT tend to suffer from higher levels of noise and often pre-
dict open surface. However, the latter group of methods, and particularly DVT,
produce results that resemble more the target shape. This significant gap in per-
formance, which is visible across the different shape classes, is consistent with
the shown quantitative results.

B Completion Task Analysis

Here we provide two ablations regarding the completion task. First, in Table
3, we study the effect of changing the point of observation of the targets. We
consider the surface as if only the part visible from the specified view-point was
available, and sample point in space close to it. As represented in Figure 6, we
consider 8 different points of view around each object. Since we use the same
approach as DeepSDF [31] for generalization, at test time the latent vector needs
to be optimized or refined further using the predictions. The second ablation,
in Table 4, shows how the results change with varying number of refinement
iterations on the prediction using VT method.

Table 3 shows the varying performance of the methods when the view-point
is changed. Despite the expected oscillations in performance, the observations
suggest that back views of objects generally lead to better reconstructions result.
As the front view (V1) is generally richer in details that diverge from the average
object structure, this indicates that trying to mimic such details harms the ability
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GT SDF BOR UDF VT DVT

Fig. 4. Qualitative reconstruction. We compare each representation method in
reconstructing shapes from each used ShapeNet [2] class. In each line, we show from
left to right the target mesh (GT), followed by SDF, BOR, UDF, VT, and DVT.

to represent the overall unseen structure. The smaller variation in performance
of VT, DVT, and UDF with respect to SDF and BOR may be explained by the
stronger prior learned by the first group of methods.

Table 4 supports the hypothesis that frontal view is harder to use in the
completion task. In fact, the frontal view (V1) is the one in which 10 refine-
ment iterations perform best and 250 worst. In contrast, the back views show
the smallest difference in performance when changing the number of iterations.
Overall, the results suggest that 100 iterations is enough to learn some object-
specific detail without losing the previously learned overall structure.
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GT SDF BOR UDF VT DVT

Fig. 5. Qualitative completion. We compare each representation method in the
completion task on shapes from each used ShapeNet [2] class. In each line, we show
from left to right the target mesh (GT), followed by SDF, BOR, UDF, VT, and DVT.

View Score SDF BOR UDF VT DVT

V1
mean 8.6721 12.4128 3.0013 4.4817 2.9433
median 8.2049 11.8306 2.5488 3.6761 2.4662

V2
mean 6.0960 11.4218 3.1250 3.7523 2.8243
median 5.3626 11.2832 2.6337 3.2037 2.3726

V3
mean 4.1596 10.6581 2.8453 2.8813 2.6283
median 3.8719 10.4418 2.3114 2.4367 2.2596

V4
mean 4.1566 10.6918 2.7138 3.0207 2.7492
median 3.6067 10.5676 2.2801 2.4546 2.3019

V5
mean 4.1707 9.7885 2.8342 3.3771 2.9035
median 3.6694 5.5234 2.3514 2.8988 2.4539

V6
mean 3.8994 8.6477 2.8700 3.5332 2.8565
median 3.5007 8.2587 2.2881 3.0080 2.2191

V7
mean 4.3471 8.5147 2.7578 3.8569 2.6089
median 3.9181 8.1264 2.3590 3.3221 2.2458

V8
mean 5.9195 10.6512 2.8403 4.3937 2.9559
median 5.4887 10.4090 2.3371 3.9224 2.4951

Table 3. Completion task on ShapeNet [2] chairs class with observations taken from
different positions around the object.
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V5

V4

V3

V2

Fig. 6. Completion views. Visualization of the view-points around an object used
in the completion task.

View Score
VT

iters = 10 iters = 100 iters = 250

V1
mean 4.2490 4.4817 6.9978
median 3.6599 3.6761 6.1620

V2
mean 4.1972 3.7523 4.9274
median 3.6211 3.2037 4.3533

V3
mean 4.2037 2.8813 3.4547
median 3.7838 2.4367 2.8115

V4
mean 4.1850 3.0207 3.7967
median 3.7196 2.4546 2.9279

V5
mean 4.6637 3.3771 3.9095
median 4.1660 2.8988 3.3561

V6
mean 4.9031 3.5332 3.7005
median 4.2356 3.0080 3.1213

V7
mean 5.0822 3.8569 4.1342
median 4.4716 3.3221 3.5358

V8
mean 5.0677 4.3937 5.3902
median 4.4216 3.9224 4.9315

Table 4. Ablation on the number of iterations during inference on the completion task
on ShapeNet [2] chairs class. We report all results with our proposed representation
VT.

C Reconstruction Robustness to Noise

We evaluate the robustness of different representations when reconstructing ob-
ject shapes from noisy observations. More specifically, Gaussian noise is added
to the coordinates of the observed predictions used for refinements.
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Method
σ = 0 σ = 0.01 σ = 0.05 σ = 0.1

mean median mean median mean median mean median

BOR 0.4199 0.1732 0.4430 0.1942 2.0989 2.0018 6.7815 6.9108
SDF 0.3373 0.1558 0.3228 0.1584 1.1989 1.1006 5.0831 5.1076
UDF 0.8522 0.4230 0.8953 0.4499 1.5296 1.1945 1.9992 1.8744

VT 0.3222 0.1542 0.3192 0.1529 1.0256 0.9499 2.4574. 2.0616
DVT 0.6290 0.3474 0.6482 0.3713 1.4792 1.1542 2.1165 1.8623

Table 5. Comparison between methods in terms of robustness to noise on ShapeNet [2]
chairs class. σ is the standard deviation of the Gaussian noise added to the observation
coordinates.

Table 5 show how different methods are affected by varying level of noise
on the observations. We note that the results show a pattern similar to the
completion task. This can be explained with the stronger prior on the objects
shape learned by VT, DVT, and UDF.

D Property 2 proof (continued)

In this Section, we continue the proof of Property 2 from that of the main text.
Specifically, we provide the proof that only the surface points are included in
the level-set, Eq. (3) of the main text.

Proof. To prove the implication that only surface points are in the level set, we
can identify two cases of points x̂ not belonging to the surface. We consider case I
when the given point x̂ is equidistant to multiple surface points, multiple outward
vectors stem from it, consequently producing a positive divergence value. We
consider case II when a point x̂ has a single closest surface point. Given that the
VT field is oriented towards the closest surface point from Eq. (1), following the
field direction from any point, it remains constant unless it encounters a surface.
Hence, the divergence amounts to a value approximately 0. A more rigorous
measure can be obtained by trying to mimimize the divergence measure for the
given case II. By elimination, it can be seen that the minimum divergence in case
II occurs when multiple fields in the infinitesimal region around x̂ are converging
to a single point as shown in Figure 7. To obtain a divergence measure we can
consider the infinitesimal surface around the point x̂ drawn with green color. Note
that the surface is made of spherical domes and planar sections in 3D and forms
a closed volume as required by the divergence theorem. For such a closed surface
the field is either parallel (spherical domes) or perpendicular (conic surface) to
the field at any point. The flux through the conic surface is parallel and thus 0.
The divergence for the infinitesimal closed surface and thus the point x̂ can be
minimized by maximizing the difference of surface area between the spherical
domes. To establish the minimum divergence, we first establish the areas of the
spherical domes. The surface area of a spherical dome defined by the solid angle
θ and radius r is given by,

S = 2πr2
(
1− cos

θ

2

)
. (7)
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Fig. 7. Illustration of case II for the proof. We illustrate the case in order to
measure the divergence around the point x̂ which has a single closest point on the
surface Π. S1 and S2 are two different spherical domes with radii r1 and r2 respectively,
not to be confused with curves.

This gives the following areas for the two spherical domes:

S1 = 2πr21

(
1− cos

θ

2

)
.

S2 = 2πr22

(
1− cos

θ

2

)
.

(8)

We now consider the proof by contradiction and assume the that the divergence
measured by the infinitesimal surfaces S1, S2 is -2, as follows:

S1 − S2 = −2, s.t. S1, S2 → 0. (9)

Eq. (9) emerges from the fact that the divergence is the difference of flux
between the two domes and that the field vectors are perpendicular unit vectors
on those surfaces. Thus, the divergence is the measure of the difference of the
surface areas. Finally combining Eq. (8) and Eq. (9), we obtain the following
condition. (

r21 − r20
)
=

1

π
(
1− cos θ

2

) s.t. r1 − r2 → 0 and θ → 0. (10)

Evaluating both the limits of Eq. (10) leads to the contradictory result 0 = ∞.
Consolidating the theoretical results of cases I and II, the proof demonstrates the
statement that a point outside the surface cannot be in the level set L0(g + 2).
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E Adapted Marching Cubes Evaluation

In this section, we support the validity of the proposed modified MC algorithm.
More specifically, we test the accuracy of surfaces of objects reconstructed on
ground truth observations by the two MC algorithms. When applying the pro-
posed variant, we use the DVT representation as it provides distance information.
For the standard MC [24], we use the SDF observations. We use a small subset
of 50 random shapes for the evaluation. Table 6 shows the performance achieved
by the proposed MC algorithm when compared to a standard implementation
[24]. The results show that the accuracy in both cases are the same. Therefore,
we show that the proposed MC algorithm can be successfully used to retrieve
high quality meshes on vector fields.

Method mean median

MC [24] 0.0013 0.0012
MCvector 0.0013 0.0013

Table 6. Comparison on mesh generation between a standard MC implementation
[24], and the proposed MC adaptation. Both algorithms are evaluated on a subset
of 50 examples from ShapeNet [2] with ground truth observations. We refer to the
proposed MC algorithm as MCvector.
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