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Abstract—We present the first one-shot personalized sketch
segmentation method. We aim to segment all sketches belonging
to the same category provisioned with a single sketch with a
given part annotation while (i) preserving the parts semantics
embedded in the exemplar, and (ii) being robust to input style and
abstraction. We refer to this scenario as personalized. With that,
we importantly enable a much-desired personalization capability
for downstream fine-grained sketch analysis tasks. To train a
robust segmentation module, we deform the exemplar sketch
to each of the available sketches of the same category. Our
method generalizes to sketches not observed during training. Our
central contribution is a sketch-specific hierarchical deformation
network. Given a multi-level sketch-strokes encoding obtained
via a graph convolutional network, our method estimates rigid-
body transformation from the reference to the exemplar, on the
upper level. Finer deformation from the exemplar to the globally
warped reference sketch is further obtained through stroke-
wise deformations, on the lower-level. Both levels of deformation
are guided by mean squared distances between the keypoints
learned without supervision, ensuring that the stroke semantics
are preserved. We evaluate our method against the state-of-the-
art segmentation and perceptual grouping baselines re-purposed
for the one-shot setting and against two few-shot 3D shape
segmentation methods. We show that our method outperforms all
the alternatives by more than 10% on average. Ablation studies
further demonstrate that our method is robust to personalization:
changes in input part semantics and style differences.

Index Terms—sketch, segmentation, few-shot, deformation.

I. INTRODUCTION

With the appearance of large-scale sketch datasets and re-
cent advances in deep learning, sketch-related research thrives
[11, [2], [3], [4], [5], [6], [7]. Sketch segmentation in particular
is an important capability that underpins the recent focus
of fine-grained sketch analysis, e.g., part-based sketch-based
modeling and retrieval [8], [9], or fine-grained sketch editing
[10], [11].

Existing methods aiming at semantic sketch segmentation
rely on the availability of large-scale carefully annotated
sketch datasets. Obtaining such annotations for new categories
is however an extremely labor intensive task. Moreover, cur-
rent datasets provide fixed part sketches labeling, disregard-
ing the subjective nature of segmentations [12], [13] — this
impedes downstream applications, not allowing the number of
meaningful labels to be task-specific.

In this paper, for the first time, we address the problem of
personalized sketch segmentation under a one-shot setting, as
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Fig. 1: Given an exemplar annotated sketch we are able to
transfer the labels to any amount of sketches of the same
category, and can achieve task-specific segmentation.

an attempt to facilitate the fine-grained analysis of sketches.
Namely, given one input sketch that is part annotated, we
seek to label any number of gallery sketches in a consistent
manner by conforming to the same user-defined semantic
interpretation, and robustly to differences in drawing style and
abstraction between the input and gallery. We refer to this
scenario as personalized sketch segmentation. Fig. 1 offers
two working examples where two sketches of different styles
and part decomposition were used to segment unseen sketches
of the same category consistent with each input semantic
segmentation.

The problem of one-shot personalized sketch segmentation
is however non-trivial. The key challenge lies with deriving
means of effectively transferring the semantic labels in the
exemplar to all target sketches so that part semantics are
preserved. Diversity in sketch depictions among humans (e.g.,
the ducks in Fig. 1) makes this task even more challenging.

In our work, we exploit deformation, and train the segmen-
tation module by morphing the exemplar sketch to available
sketches of a given category. To increase robustness, we
propose a hierarchical deformation model specific to sketch
data. During training, we first globally align all sketches
with the exemplar and then obtain a fine-level warping of
the exemplar towards the globally aligned sketches. Such an
approach simplifies the task of the segmentation network: The
segmentation network does not need to deal with large geo-
metric differences. At inference time, we first perform a global
alignment with the exemplar, then predict the segmentation
and finally apply an inverse global transformation operator.

Our first key contribution is in exploiting the connectivity
information encoded in sketch strokes, in both parts of our
segmentation model: deformation and segmentation. To embed



this information we obtain a multi-level sketch encoding
using a graph convolution network (GCN). The graph consists
of dynamic and static edges. The role of dynamic edges
is to encode global information embedded into the holistic
sketch. The static edges connect the consequent points along
strokes, encoding stroke-level information. Such representation
allows to retain both sketch- and stroke-level embeddings in
a synergistic fashion.

The sketch deformation module, being our central contribu-
tion, builds around this sketch representation. On the holistic
sketch level, we first predict a global rigid-body transformation
with respect to an exemplar sketch, relying on an analytic
solver. We observe that the conventional Chamfer distance
[14], [15] between an input sketch and an exemplar is not
sufficient to predict the global transformation which preserves
semantic part correspondences, due to the sparse nature of
sketches. We instead jointly train for unsupervised keypoints
prediction [16] which are used to derive global transformation.
Such rigid-body deformation however only roughly aligns the
gallery sketch to the exemplar. To achieve finer alignment,
we impose stroke-level deformations rather than individually
on stroke points. To avoid unrealistic stroke distortions we
limit the transformations to stroke-level rotation, translation
and scaling. To achieve a globally consistent deformation on
this level we leverage both Chamfer distance and mean square
error on keypoints. The distances are computed between
the fine-level deformed exemplar and a holistic sketch-level
deformed gallery sketch.

Given the deformed exemplar we train a segmentation
module in a standard fashion via a cross-entropy loss, which
given the full sketch encoding predicts a label for each sketch
point. We further observe that sketch strokes are frequently
fully contained within one semantic part. We thus further
condition the segmentation label predictor on the stroke en-
coding, eliminating the need for a labels refinement step, such
as graph-cuts [17] or conditional random fields [18], [19].

In summary, (i) we propose for the first time the problem of
one-shot sketch segmentation; (ii) we show that by transferring
the semantic labeling from an input sketch to target ones,
a much-desired personalized segmentation capability can be
achieved; (iii) we propose a hierarchical sketch deformation
framework that faithfully deforms the input sketch to each
reference, as means to assist the transfer; (iv) we conduct
multiple ablation studies demonstrating the robustness of our
proposed method in terms of variations in part semantics and
sketching style; (v) we show an advantage of our method over
alternative solutions for a few-shot sketch segmentation.

II. RELATED WORK

a) Sketch segmentation: Prior works on sketch segmen-
tation can be divided into two categories based on the segmen-
tation goals: strokes perceptual grouping [20], [21], [22], [23]
and semantic segmentation [24], [25], [18], [26], [17], [27],
[28], [29], [30], [31], [32], [33], [34]. Our work belongs to
the second category. Yet, we, for the first time, consider the
problem of a one-shot semantic sketch segmentation.

Appearance of large-scale annotated sketch datasets [25],
[22], [35], [17] fostered research on supervised semantic

sketch segmentation with deep learning. These methods can be
classified into several groups by the used sketch representation:
image-based [17], [19], [36], point-based [32], [37], ordered
point sequences-based [27], [30], joint pixel-/point-based [31]
methods, and graph-based [33]. Image-based methods repre-
sent a sketch as a raster image, and build on a success of
convolutional neural networks (CNNs) in learning descriptive
features. Zhu et al. [19] combine a CNN-based segmentation
with a CRF-based refining. Point-based methods [32], [37]
represent a sketch as an ordered point cloud. Such works build
on the point-cloud architectures, first designed for 3D shape
analysis and representation [38], [39], [40], [41]. Point-based
representation allows to reduce models complexity, compared
to imaged-based representations, due to the sparsity of lines in
sketches. For the task of sketch recognition, Wang et al. [28]
proposed a sketch-dedicated point cloud architecture. Both
Wang et al. [28] and Hahnlein et al. [32] take as points
features not only points spatial coordinates, but also strokes
order. A number of works [27], [30], [42] exploit recurrent
neural networks (RNNs) to translate sequence of strokes into
their semantic parts. Such architectures were first designed
for the the task of sketch recognition [43], [44], [45]. We
though did not observe a correlation between a semantic stroke
label and a stroke number in a general case. Wang et al. [31]
fuses a prediction of the dedicated image-based architecture
with the one obtained from a point-based architecture [38].
Recently, Zhu et al. [34] applied a similar idea to a sketch
recognition task. Despite graph-based sketch representation
was commonly used in earlier works on sketch analysis, just
recently graph convolution networks (GCNs) were adopted for
sketch processing. Yang et al. [33] proposed a two branches
GCN for a supervised sketch segmentation task, implementing
graph convolutions as was proposed in [41] and [46]. Su et
al. [11] exploited GCN with a sparse number of nodes for the
partial sketch completion task. Yang et al. [42] exploit RNN
with conjunction with GCN for a sketch recognition task. In
our work, we leverage a GCN for the task of a few-shot sketch
segmentation, leveraging a multi-level sketch encoding.

b) 3D shape segmentation: Concurrently, two ap-
proaches for a few-shot 3D shape segmentation were recently
proposed [15], [14], relying on the idea of being able to morph
a template shape to an arbitrary target shape. Yuan et al. [15]
directly transfers a label from the morphed template to the
target shape by proximity. Wang et al. [14] instead learns
a continuous probability distribution function that learns to
assign to each point in space a probability of having a certain
semantic label, conditioned on a global shape feature vector.
Yuan et al. [15] exploit mesh connectivity, while Wang et
al. [14] rely on a point-based shape representation.

Chen et al. [47] proposed an autoencoder for unsupervised
consistent segmentation of shapes from the same class, and
demonstrated how such architecture can be tuned for one-shot
learning. The autoencoder consist of several branches, which
are trained to encode complementary shape parts. Instead of
decomposing the shape into parts, Chen et al. [16] study the
problem of unsupervised prediction of semantically consist
keypoints across all shapes of the same class. Dense predicted
keypoints correspondences are used to transfer semantic labels



from one shape to another.

Our work extends these ideas to a few shot sketch seg-
mentation, taking into account points connectivity and sketch
sparsity, designed to be robust to arbitrary global sketch
rotation and reflection.

III. METHOD

Our goal is, given an annotated exemplar sketch, to transfer
its semantic part labels to an arbitrary target sketch of the same
class as the exemplar sketch. We model this segmentation task
as a two step process, comprising exemplar morphing towards
reference sketches (Sec. III-A) and a robust labels prediction
(Sec. III-E). We leverage a graph convolutional network for
multi-level sketch encoding (Sec.IlI-D).

A. Deformation model

We expect the deformation from the exemplar to the refer-
ence to comply with the following rules: (i) The semantic
meaning of the stroke segment label should stay invariant
under the deformation (e.g., a segment of the plane wing
should not be deformed into a body, if they have different
labels in the exemplar); (ii) The relative part relationship
should stay invariant under the deformation (e.g., an eye
should not move outside a head).

We represent a sketch as an N-point set V. = {v; =
(v¥,v!)}iz12,...N, where vf and v! are the 2D absolute
coordinates of the point v;.

We model the deformation process between the exemplar
sketch E and the unlabeled reference sketch X from the
training set hierarchically. First, the global deformation that
accounts for a global sketch rotation and reflection aligns
each sketch in the training batch with the exemplar. Then,
the exemplar is morphed to each of the globally morphed un-
labeled sketches. As mention in the introduction and shown in
the ablation studies section, this hierarchically two-directional
deformation allows to increase the accuracy of segmentation
results by simplifying the task of the segmentation module,
lifting the requirement of learning rotation invariant segmen-
tation. The full deformation network is shown in Fig. 2, and
explained in detail below.

First, a sketch-level transformation, consisting of rota-
tion/reflection R C R2*2 and translation ¢ C R2*!, aligns
an unlabeled sketch towards an exemplar sketch:

where the reference sketch X C R2*Y consists of N 2D
stroke point coordinates. Then, X = U, & € RN is the
reference sketch globally aligned with the exemplar sketch.
Second, a stroke-level transformation morphs the strokes
of the exemplar sketch towards the globally aligned reference
sketch X. The stroke level deformation comprises per stroke
rotation Ry C R?*2, scaling oy = [ag‘l(,agg,} C R? and
translation ty C R**!. The deformation model thus can be
written as follows:
3, X

Yy
o7 .
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where s; is the j-th stroke of the the exemplar sketch E C
R2*N and e; is a 2D stroke point coordinate. Then, E‘X =
U, & € R**¥ is the exemplar sketch aligned with the globally
aligned reference sketch X.

B. Sketch-level transformation estimation

We formulate the global sketch-level alignment task as
a shape-matching problem [48], that allows to analytically
compute a rigid transformation between the two sets of cor-
responding points:

M
I 1
R,t) = argmin— Rx; +1t) —e; 2, 3
(1) = argmingy S| (Rai+0) —ec P, O

Jj=1

where M is the total number of point pairs, z; and e; are the
points in the reference and exemplar sketches.

To obtain point correspondences between the two sketches,
we adopt the recent method by Chen et al. [16], which
estimates semantically consistent sets of keypoints in un-
supervised manner. We first obtain feature representation
for each sketch point, using the encode we describe in
Sec. III-D. The shared multi-layer percepetron (MLP) g,
is then trained to predict for each point v; a probability
map P = {p1,p2,...,pm}. Each element p; represents the
probability of the point v; to be a j-th keypoint k;. The
keypoints are thus computed as k; = ZiL:1 Uipj». Note that
the extracted keypoints are not selected from the sketch stroke
points but are enforced to lie close to the input strokes
by defining the Chamfer loss between the the input points
V c R>*N and predicted keypoints Ky C R?*M | which we
denote as Lop(V, Ky). In Fig. 9 we demonstrate example
extracted keypoints. Since we search for the transformation
optimal in a least square sense the method is tolerant to small
imprecision in the keypoints locations.

C. Stroke-level transformation estimation

Given an aligned reference sketch X and an exemplar sketch
E, we next predict stroke-level transformations (R;,t;,0,)
for each sketch stroke s; € F. To predict stroke level
transformation we use a network @4, consisting of successive
multi-layer perceptrons (MLPs), followed by a ReLu activation
function. The stroke transformation is calculated as

(Rj ty,05) = Qo ([FL" FHAM FHEED @)

where [*,*] denotes the vector concatenation operation, and
F ;(ke“h, Feketeh are the global embedding vectors of a glob-
ally aligned reference sketch X and an exemplar F; ]-';f“’ke
is an embedding vector of the j-th stroke of the exemplar F.

To train this deformation we compute the Chamfer loss
between the deformed template E, obtained by substituting
the prediction result in Eq. 4 to Eq. 2, and the globally
aligned reference sketch X: Lo D(EX, X ). We also compute
the mean square error (MSE) distance between their keypoints:
[:MSE(KEX , KX')

We assume that sketch-level deformation compensates for
the large distances between structure points of the exemplar
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Fig. 2: Deformation module architecture (Section III-A) and a working example of the the deformation process with a
segmentation prediction result by the segmentation module 74, described in Section III-E.

Gallery sketches

Exemplar

Fig. 3: Example keypoints predictions. For the visualization
purposes we show only 9 keypoints. The exemplar lines
trace the position of a keypoint across sketches.

and reference sketches, and only small deformations are re-
quired on a stroke level. During training we constrain each
rotation matrix R; C R**2 to be close to an orthogonal
matrix: Lopn; = I — R;RT||%. Then, since the rotation
matrix can be expressed in terms of one angle «;, we use a
soft constraint on the stroke rotation to not exceed 30 degrees.
We achieve this by constraining each of the matrix elements
to lie in the respective range. For instance, we constraint the
first row and column element 77, of the rotation matrix R;,
which encodes cos(c;) to lie in the interval [@, 1]:

— 7)) 4+ max(0,77, — 1.0).

®)

Similarly, we use a soft constraint on the stroke scaling
o = [0%,0Y] C R? to belong to the interval [0.5,2.0] with
L, ;. Finally, we constraint strokes translation vectors t; to
have a small norm: £; ; = ||t;]|.

Constraining stroke level deformations, and exploiting key-
points, allows us to avoid erroneous deformations, and ensures
that the deformations comply with the two rules listed in
Sec. II-A.

The full loss used to train stroke-level deformations is
defined as

‘Cstrokes = /BECD(EXaX) + ’V‘CMSE(Kﬁ'XvKX)
1 &
+ Wﬁ ; (Eorth,j + Erot,j + £0'7j + ‘Ct,j) s

»Crot,j (’]"11) = max((), —_—

(6)

where #F is the number of strokes in the exemplar sketch.

D. Sketch Encoding

We exploit graph convolutional network (GCN) to obtain
sketch-level, stroke-level, and point-level features. The net-
work architecture we use is similar to the architecture of the

global branch used in [33], building on the study of GCNs by
Li et al. [46]. We found a single branch to perform better than
the full architecture proposed in [33].

The network consists of 4 layers with residual connections
[46]. At each layer we construct a sketch graph G = (V, €),
where V = V is a set of all sketch points, while £ consists of
two types of edges: static and dynamic.

Dynamic edges result in large receptive field and improved
performance, when combined with residual connections [46].
We construct dynamic edges using a Dilated k-NN strategy
proposed in [46]. It first selects k x d nearest neighbors at
each layer, and then constructs edges by selecting every d-th
neighbor. We also implement the stochastic dilation, which,
with a probability € = 0.2, selects d neighbors uniformly from
k x d nearest neighbors, instead. Following [33], we select
k = 4, and set the dilation rate d to 1, 4, 8, 16 for successive
layers.

Since points connectivity in strokes encodes an important
information about a sketch, similar to [33], we combine
the dynamically constructed edges with static edges that are
obtained by gallconnecting consequent strokes points.

We use the convolutional operation, proposed in [41], to
extract point-level features F7°"*. Then, the stroke level
features are defines as

)

stroke __ point

]:sjeV - fg%)s(] ]:i )

where s; denotes j-th strokes of a sketch with a point set V,

and v; are all the points belonging to the stroke s;. Similarly,
the sketch embedding vector is defined as

®)

J—_-sk:etch — max fpoint
v v, €V v ’

where a max-pooling is performed over all sketch points.

E. Segmentation

To obtain a label for each segment we train a label prob-
ability function 7, which takes as an input a sketch point
coordinate v; = (v¥,vY), a sketch embedding vector Fiketeh,
and a stroke embedding vector fj;’é‘{ff;i@j. We condition
the predictor on the stroke, since the points which belong to
the same stroke are likely to have the same label. The label




probability function consists of the successive MLP layers with
ReLu activation functions:

. trok ketch
T(,U'L) = 7—93 (Ui7f;j£(%/fu7‘,65j7f‘s/ e )7 (9)

such that 7 : R'*2+2K) [0 1]%, where L is a number of
labels, and K = 128 is a length of a sketch/stroke embedding
vectors.

At training time, for each EA)&, where ¢ goes over all the
reference sketches in a batch, we compute the cross entropy
classification loss at each point éi’ %, € EXt with a label [;;:

N
Lep = Z Leross enlropy(TGg, (éi,Xt ), lzt) (10)

i=1

F. Training and Losses

We train our segmentation network in the end-to-end man-
ner, where the keypoints prediction network 2y, , the stroke
morphing module ®¢,, and the label probability distribution
function 7y, are trained jointly. The full loss is defined as

|B|

= Oé@ ZLCD(XtyKXt)+
t=1

|B]

1 . . .

|B| E (ﬁstrokes(E)ft7Xt) + 5‘CCE(EX,£)) )
t=1

L
(1)

where |B| is the number of sketches in each batch.

IV. EXPERIMENTS

A. Datasets

We evaluate our method on four sketch datasets: SPG [22],
Huangl4 [25], TU-Berlin [35], [17] and creative birds [36].
The SPG dataset consists of 25 categories with 800 sketches
each, annotated with stroke-level semantic labels. The sketches
come from the QuickDraw dataset [43] — a vector sketches
dataset, collected via an online game where the players are
asked to draw objects within 20 seconds. Annotated TU-
Berlin dataset [17] contains 5 categories with 80 sketches
each from the TU-Berlin dataset [35]. The participants were
asked to produce a sketch of a given category within 30
minutes window. The labeling is obtained through crowd-
sourcing. Huang14 dataset [25] consists of 10 categories with
30 sketches each, drawn by 3 participants from a reference
photo. Creative birds and creatures [36] is a challenging
dataset, featuring non-canonical representation of birds and
arbitrary creatures. The participants are provided with a first
stroke, and are asked to place an eye where they like, and to
visualize how the stroke and the eye can be incorporated into
a creative sketch, e.g., of a bird. We evaluate on the creative
birds only. The segmentation labels vary significantly among
people on the creative creatures, and pose a poor ground-truth
for our studies.

B. Alternative solutions

As discussed in Sec. II, we are the first to consider the
problem of one/a few shot sketch segmentation. We therefore
compare with two state-of-the-art supervised semantic sketch
segmentation method [33] and perceptual grouping method
[22], trained with one or a few example sketches, and few-shot
segmentation methods for 3D shapes [14], [16]. SPGG [22]
exploits a sequence-to-sequence variational autoencoder to ob-
tain sketch encoding, and aims at globally consistent segments
grouping. This method does not predict a label for the group,
for the evaluation we assign each group the label, based on the
overlap with the ground-truth grouping. SGCN [33] encodes a
sketch with a GCN, consisting of two branches with static and
dynamic convolutions. It is trained with the cross-entropy loss.
This work gives the state-of-art segmentation results under
supervised segmentation setting. In our work we use a similar
sketch encoding architecture, it thus is a strong baseline for
our method. FLSS [14] serves as a main baseline for our
method, and addresses a few-shot 3D shape segmentation.
Unlike us, it assumes that all shapes have similar global shape
alignment, and models morphing from the template annotated
3D shape to the reference shape by predicting per point offset
vectors. ISPP [16] is an encoder-decoder based architecture
for semantically meaningful keypoints selection on a 3D point
cloud. In our work we exploit this architecture to supervise
sketch morphing. To perform a label transfer directly, we, first,
for each point in the target sketch, find the closest keypoint in
Euclidean space. Then, we select the closest keypoint from the
exemplar sketch to the selected keypoint in the feature space
and transfer its label. The original ISPP [16] method relies on
the PointNet++ encoder. In all our comparisons, we instead
use our GCN encoder as it results in better performance (we
refer the reader to the supplemental material for the detailed
evaluation).

C. Implementation Details

To obtain an NN point-set sketch representation, we first
simplify the sketches with Ramer-Douglas-Peucker algorithm
to nearly 256 points. Then, if there are less than 256 points, we
use a simple sampling strategy of dividing random segments
in the middle till we have roughly 256 points. In case if there
are still more points we randomly skip some points. We use
M —256 keypoints in our work. For SPGG we used the original
points sampling. We set & = 1.0, § = 0.02 in Eq. 11, 5 = 0.2
and v = 50 in Eq. 6.

For all methods we perform data augmentation by rotat-
ing sketches by a randomly chosen angle from the interval
[—15> 75)- We use Adam optimizer (5, = 0.9, 8 = 0.999)
with a learning rate 5e —5 and a batch size 24. At inference, to
obtain the labeling via Eq. 9, we first estimate our hierarchical
deformation, then the label of a point v; is obtained as follows
T(Ui) = Tp, (,Ui’]:?troke ’fgketch).

Sj EX:’U»;ES]'
D. Evaluation

We evaluate with traditional segmentation metrics: (a)
pixel/point accuracy (P-metric) — the fraction of points that are



P-metric C-metric
SPGG [22] SGCN [33] FLSS [14] ISPP [16] Ours SPGG [22] SGCN [33] FLSS [14] ISPP [16] Ours
category I o 1% 4 I o 1% o o o % o ow o % o w o I o
airplane 24.1 66.6 56.3 50.8 86.0 20.0 57.3 34.6 23.0 80.6
alarm clock 27.6 79.7 59.7 59.4 86.4 10.2 68.4 36.5 329 76.0
ambulance 29.6 78.1 61.5 60.1 87.1 14.6 66.9 46.2 33.7 81.4
angel 35 54.2 47.6 57.8 70.7 1.6 45.7 22.1 31.4 64.9
ant 10.7 442 41.7 473 60.8 7.8 35.2 22.5 27.2 50.6
apple 57.5 83.4 82.0 78.2 94.3 35.9 78.3 59.5 56.7 87.1
backpack 33.6 59.2 359 33.7 64.6 21.0 46.6 6.4 8.0 50.2
basket 30.9 68.7 65.9 55.2 79.1 25.4 61.1 41.6 28.8 70.1
bulldozer 40.7 53.4 56.0 67.9 69.1 22.1 43.1 38.8 49.1 58.5
butterfly 439 78.2 70.2 65.0 91.7 38.8 67.4 54.1 38.9 86.2
cactus 40.1 84.6 41.9 47.7 89.2 21.9 80.4 18.9 14.1 83.3
calculator 28.8 89.2 67.3 52.7 92.6 22.3 87.7 442 24.5 90.1
campfire 32.3 91.2 80.7 73.5 93.9 17.6 88.4 71.4 57.1 89.0
candle 21.6 89.8 86.7 85.2 96.3 259 81.0 71.9 67.8 93.9
coffee cup 48.0 73.6 73.7 66.2 82.6 30.7 76.2 54.6 38.3 81.3
crab 28.9 56.2 49.5 48.6 754 21.6 51.9 27.0 21.6 69.9
drill 449 71.3 80.6 84.1 88.7 26.5 56.4 55.1 68.1 79.8
duck 30.3 61.2 53.6 71.2 89.6 22.6 539 26.5 48.4 84.0
face 12.5 69.9 38.3 41.8 83.3 17.4 552 12.4 16.6 72.2
flower 17.6 75.6 62.6 58.1 88.3 27.0 72.7 36.4 27.3 87.1
house 22.3 82.2 57.8 58.4 89.4 16.9 81.7 34.7 32.8 85.3
ice cream 30.4 82.5 75.2 72.9 86.5 21.0 79.2 62.2 60.0 80.6
pig 20.4 66.8 37.1 45.8 76.6 20.1 55.6 14.8 20.6 64.5
pineapple 27.4 76.9 66.6 56.5 80.8 25.3 74.4 43.5 35.0 75.8
suitcase 28.7 89.2 82.4 81.7 93.8 17.3 90.7 72.9 61.0 93.2
Average 29.5 73.0 61.2 60.8 83.9 21.3 66.2 40.4 36.9 77.4
Average ref. 28.9 73.3 70.1 70.8 84.1 25.1 66.9 60.1 61.3 78.2
Airplane [35] 20.4 54.2 55.3 57.1 64.1 13.1 40.2 36.2 325 53.2
Airplane [35] ref. | 20.8 54.8 62.0 64.2 65.3 13.8 422 52.6 53.3 53.6
Airplane [25] 17.3 43.7 45.7 40.5 51.9 14.5 26.1 222 13.1 29.3
Airplane [25] ref. 16.8 44.7 50.7 44.4 53.1 14.9 30.3 28.8 19.2 334
Creative birds 13.8 12.5 25.4 26.8 30.3 12.8 12.5 15.1 12.4 19.0
Creative birds ref. | 14.5 12.5 29.5 29.6 30.4 13.6 12.5 20.8 20.6 20.1

TABLE I: Numerical evaluation on the SPG dataset [22]: first 25 categories; on the ’airplane’ category from TUBerlin [35]
and Huangl14 [25] datasets; on creative birds [36]. 1 denotes the average accuracy over 5 runs with 5 randomly chosen

templates, and o is the standard deviation of the 5 runs results.
‘ref.” refers to the results refined by recomputing the label per point based on the

detailed analysis and ablation studies.

The five categories in bold are the categories we use for the

dominant stroke label.
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Template Ours: (P) 70.5% (C) 63.6% SGCN: (P) 43.6% (C) 27.8%

SGCN: (P) 58.8% (C) 47.4%

Template Ours: (P) 72.6% (C) 63.5%

Fig. 4: Comparison between our method and one-shot setting for SGCN [33]. Our method is generally more accurate. The
most advantage can be observed on more abstract exemplars (e.g., face) or complex categories (e.g., angel). The numbers
indicate (P) point and (C) component average accuracy over the category for the shown template. The points show the
sampled points, and the grey thin lines demonstrate their connectivity into strokes.

assigned with a correct label and (b) component accuracy (C-
metric) — the number of correctly labeled components divided
by the total number of components.

It is challenging to develop a faithful evaluation of the few-
shot segmentation, since each ground-truth has only one set of
labels, which can have different granularity within the same
category and dataset. There are two challenging cases: (1) The
ground-truth labeling of the target is more fine-grained than the
labeling in the exemplar: e.g., a user does not draw or mark a
window for an airplane in the exemplar, while the target sketch
ground-truth contains a window labeling; (2) The exemplar

labeling is more fine-grained than the ground-truth labeling of
the target: e.g., the user labels the plane tail in the exemplar,
while the target sketch ground-truth considers it to be a body of
the plane. The first case we address automatically, by ignoring
during the evaluation the points of the target sketch with the
label not-existing in the exemplar. The second case is more
challenging since it is impossible to automatically detect when
the ground-truth labeling has a different labeling granularity.
In the supplemental we provide a more restrictive evaluation
on subsets of sketches that have the same set of labels as an
exemplar. We though do not observe much differences between



the two evaluation methods.

E. One-shot segmentation: Performance on average

We first evaluate a one-shot segmentation scenario. For each
category we randomly select 5 sketches as exemplars, and
report an average accuracy over the 5 runs. We train on the
training subset of SPG dataset [22] and evaluate on the test
subset of SPG dataset and the overlapping categories from
Huang14 [25] and TU-Berlin [35], [17] datasets, demonstrat-
ing that the segmentation can generalize to sketches from
different distributions and to not observed during training
sketches. Since Huang14 and TU-Berlin have slightly different
set of labels, namely there is no ‘window’ label in both
datasets, we change in all used exemplars the ‘window’
label to the ‘body’ label. Similarly, ‘airplane_horistab’ and
‘airplane_vertstab’, labels are merged to a single ‘tail’ label.
We also train and test on the creative birds [36] dataset.

Tab. I shows the numerical evaluation of all considered
methods. Figures 4, 5 show visual comparisons. Our method
results in highest point and component accuracy on all the
evaluated datasets and categories. On average on the SPG
dataset our method results in 10.8% and 11.2% higher point
and component accuracy than the second best method SGCN
[33]. On the ‘duck’ category it results in up to 28.4% accuracy
increase. FLSS [14] and ISPP [16] have similar performance,
and FLSS performs slightly better. On average on the SPG
dataset our method results in 22.6% and 37.1% higher point
and component accuracy values than FLSS. On the ‘creative
birds’ dataset SGCN [33] performs the worst among all the
methods, not being able to account for diversity in the dataset.
ISPP [16] method results in the second best, after our method,
performance on this dataset.

Since the labeling in the considered datasets is defined per
stroke (the strokes are broken into multiple at data-annotation
stage if is needed), we additionally can perform an easy label
refinement step, by assigning to a point a label dominant to
the stroke the point belongs to (Tab. I ‘ref.’). Note though
that in sketches found in the wild the stroke can have several
labels, and such refinement step can reduce the segmentation
accuracy. It can be seen that under this setting our method
also performs the best. Only on the creative birds dataset our
method gives lower C-metric than FLSS and ISPP, but still
results in higher P-metric. On the SPG dataset FLSS and ISPP
are still losing to SGCN and our methods, where our method
gives 10.8% and 11.3% higher point and component accuracy
than SGCN. After refinement, on the SPG dataset, the accuracy
of our method increases just by 0.2/0.8 points on P/C-metrics,
compared to by 10.0/24.4 points for ISSP and 8.9/19.7 points
for FLSS. Importantly, these results show that our method is
capable of directly taking points connectivity into strokes, but
does not pose a strict requirement of one label per stroke.

FE. One-shot segmentation: Robustness to number of parts,
complexity and diversity

For the remaining experiments, we select 5 categories from
the PSG dataset [22] of varying complexity, by selecting
categories with different maximum number of parts: Apple

has at most three semantic parts, Duck — four, Ambulance —
five, Face — seven, and Pig — eight.

We first evaluate the robustness of our method under
different number of part labels, and compare to the second
best method on the SPG dataset — SGCN [33]. For each
of the five categories we randomly select 3 templates with
minimum and maximum num-
ber of labels. Fig. 6 plots an

Ours min.label -.o.. SGCN min.label
—o—Ours max.label ——SGCN max.label

1004 average accuracy over three

g 9 runs, and shows that our
g 80 method consistently outper-
& 70

forms SGCN. Our method
achieves an average over the
five classes accuracy of 95.9%
on a simpler task with little
parts (yellow dashed line). Fi-
nally, our method is more ro-
bust on complex sketches: as the sketches complexity and
diversity increase from ‘apple’ to ‘pig’ categories under the
challenging task with many labels, SGCN performance de-
grades by 18.9 points (solid blue line), versus just 6.1 points
with our method (solid red line).

e
\
o
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Fig. 6: Performance based
on number of parts.

G. One-shot vs. few-shot

Tab. II shows that the performance improves if there are
several templates available, and our results consistently out-
perform SGCN. For these experiment we select 5 templates
for each category with consistent semantic parts, selecting
the most frequent number of parts in each class ground-truth
labeling. For the results on 1 template, we average the labeling
accuracy over labeling results with each template individually.
For the 3 templates, we average over all unique subsets of 5
templates. When multiple templates are provided, to choose
the best we perform the hierarchical deformation estimation
and select the one that results in the smallest Chamfer distance.

1 template | 3 templates | 5 templates

Category | ® O [ ® O [ ® (©

Ours Average 5 | 857 76.0 | 91.3 854 | 924 878

SGCN [33] | Average 5 | 779 634 | 86.5 794 | 865 79.2

TABLE II: One shot vs. few shot. See Sec.IV-G for the
details.

H. Generalization to unseen sketches of the same category

All results in our work are evaluated on sketches that are
not observed during training. Yet, the target unlabeled sketches
in practice can be used for training. Our results in Table III
demonstrate that the performance is the same whether the
target sketches are used for training directly or not, showing
good generalization properties of our method.

1. Discussion

Our first advantage over SGCN lies in the ability to generate
structural variations on the exemplar, making the training
robust towards different sketch abstractions and styles. Second,
our global deformation step from the reference to the exemplar
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Template Ours: (P) 74.8% (C) 63.6% FLSS: (P) 36.3% (C) 1.4% ISPP: (P) 27.2% (C) 5.5%

Fig. 5: Comparison of our method with FLSS [14] and ISPP [16] on the example templates from ‘ambulance’ and
‘backpack’ categories of the SPG dataset [22]. The numbers indicate (P) point and (C) component average accuracy for the
shown template. The points show the sampled points, and the grey thin lines demonstrate their connectivity into strokes.

P-metric C-metric Ours full No G.T. Chamfer G.T. | Reverse G.T. | No Fstroke
Training Test Training Test ®» ©  ®» © | ®» © |®&» © | & ©
862 77.8 | 68.5 60.1 | 49.6 29.1 | 579 44.1 | 60.8 36.0
m o m o 1 o m o
859 6.7 862 69| 777 103|778 11.1 TABLE IV: Ablation studies: The results are averaged over the five selected

TABLE III: Comparison of the segmentation results on the
unlabeled sketches from the training set (‘Training’) and on
unseen sketches (‘Test’). The results are averaged over the
five selected categories, over the runs with the same
templates as in Tab. L.
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warped target warped exemplar warping

Fig. 7: The deformation process: our method vs. FLSS [14].

lifts the requirement on the segmentation module to be rota-
tion/reflection invariant. Our advantage over FLSS and ISSP
methods lies in the ability to account for points connectivity
into strokes, resulting in more meaningful labeling. Compared
to ISSP, our robust segmentation network makes our algorithm
more tolerant towards mistakes in the keypoints prediction.
Finally, our sketch dedicated deformation model allows to
better preserve sketch structure than FLSS, as shown in Fig. 7.

Our one-shot segmentation performance does not yet reach
the performance of the fully supervised methods. For instance,
the state-of-the-art SGCN under the fully supervised non-
personalized (all sketches have different segmentation gran-
ularity) setting achieves accuracy of 96.8%/94.3% on P/C
metrics. Nevertheless, as it can be seen in Sec. IV-G the
performance of the personalized sketch segmentation quickly
increases when there are more templates available. Moreover,
our solution consistently achieves higher accuracy in one-
shot and few-shot personalized segmentation scenarios than
the state-of-the-art segmentation method, demonstrating the
efficiency of our deformation module.

J. Ablation studies

a) Global transformation (G.T.) and keypoints loss:
Tab. IV (‘Ours’ vs. ‘No G.T.) shows the importance of

categories, over the runs with the same templates as in Tab. I. ‘No G.T.”: We
skip the step of global transformation (G.T.), and perform only stroke-level
deformations. ‘Chamfer G.T.”: The global transformation is estimated with
the Chamfer distance, instead of relying on the distances between keypoints.
‘Reverse G.T.: We estimate the global transformation from an exemplar
towards a reference. ‘No F5!"°k¢’: We remove Ft7°k¢ in Eq. 9.

P-metric C-metric
PointNet++ Ours PointNet++ Ours
I o I o n o I o
39.9 97 | 862 6.9 | 17.2 6.6 | 77.8 11.1

TABLE V: PointNet++ encoder [39] vs. our GCN encoder.
The results are averaged over the five selected categories,
over the runs with the same templates as in Tab. I.

hierarchical estimation: If we remove the step of global
transformation the average over the 5 representative categories
drops by 17.7 points in terms of the point- and component-
based accuracy. Similarly, we demonstrate the importance
of globally warping reference sketches towards an exemplar,
rather than an exemplar towards reference sketches (‘Ours’
vs. ‘Reverse G.T.").

Further, Tab. IV (‘Ours’ vs. ‘Chamfer G.T.) shows the
importance of relying on keypoints instead of the Chamfer
distance between the points of two sparse sketches. If the
Chamfer distance is used, the alignment does not necessary
respect the semantics of strokes.

b) Stroke-level information for segmentation: We show
that accounting for stroke-level information in the segmenta-
tion module (Sec.III-E, Eq. 4) has high impact on the accuracy
of the prediction (Tab. IV (‘Ours’ vs. ‘No F strokeryy,

c) Graph-based vs. point cloud-based encoder: We
demonstrate an advantage of a Graph Convolutional Network
(GCN) over point cloud encoders for the few shot sketch
segmentation problem. We exploit here the PointNet++ [39]
encoder, which we use instead of GCN, keeping the architec-
ture otherwise the same. Table V and Fig. 8 show that point
cloud encoder is not capable of capturing well stroke-level
information, resulting in poor segmentation performance.
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Fig. 8: Visual comparison of the deformation and segmentation results, depending on the used sketch encoder: PointNet++
[39] or our GCN encoder.

No Lot Ours
Los Lo No Lrot No L, No L full

®  © P) ©) P) © P) © P®) ©

61.4 4296 | 81.04 69.62 | 77.36  67.82 | 63.52 44.14 | 86.18 77.84

TABLE VI: The role of constraints on stroke-level
deformation. The results are averaged over the five selected
categories, over the runs with the same templates as in Tab. I.

d) Soft constraints on stroke-level deformation: To evalu-
ate the role of our soft constraints on stroke-level deformation,
we first disable all the constraints L,..¢, Ls,;, Ly ;, apart from
Lortn, in Eq. 6. We then remove each of the three terms
individually. Table VI demonstrates the importance of these
constraints. £, is the most important since it limits how far
strokes can move from their original positions, ensuring global
sketch structure maintenance.

Despite such constraints help to preserve the relative part
relationship, they limit the space of achievable deformations.
For instance, Fig. 7 shows that our model just roughly aligns
the exemplar to the reference. To improve on our results,
future work should investigate alternative deformation models
that can preserve the relative part relationship while achieving
better alignment with the reference sketch.

V. CONCLUSION

We present the first one-shot personalized sketch segmenta-
tion method and study a set of alternatives solutions adopting
the state-of-the-art segmentation and perceptual grouper net-
works, and two 3D shape few-shot segmentation networks.
We address this problem by estimating the deformation from
an exemplar sketch towards a reference sketch and training a
robust part label predictor network on the warped exemplars.
Our key contributions lie in proposing a hierarchical deforma-
tion model that works at both sketch- and stroke-level. Our
hierarchical two-ways deformation model allows to explicitly
account for ambiguity in global sketch orientation, resulting
in more robust segmentation results. We also demonstrate the
importance of taking stroke connectivity into consideration
and compare point cloud and graph-based encoders. We show
that our method by far outperforms all existing alternatives,
showing robust performance on the highly abstract exemplars
and complex categories.
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VI. SUPPLEMENTAL WEB-PAGES

We provide the supplemental web-pages that show the 5
templates, used for each category to compute the results
in Table I in the main document, and the representative
segmentation results for each method.

VII. ONE-SHOT SEGMENTATION
A. Alternative evaluation
As we describe in Section IV-D in the main document:

It is challenging to develop a faithful evaluation
of the few-shot segmentation, since each ground-
truth has only one set of labels, which can have
different granularity within the same category and
dataset. There are two challenging cases: (1) The
ground-truth labeling of the target is more fine-
grained than the labeling in the exemplar: e.g., a user
does not draw or mark a window for an airplane
in the exemplar, while the target sketch ground-
truth contains a window labeling; (2) The exemplar
labeling is more fine-grained than the ground-truth
labeling of the target: e.g., the user labels the plane
tail in the exemplar, while the target sketch ground-
truth considers it to be a body of the plane. The first
case we address automatically, by ignoring during
the evaluation the points of the target sketch with
the label not-existing in the exemplar. The second
case is more challenging, since it is not possible to
automatically distinguish the difference in amount
of labels due to labeling granularity, with due to a
different amount of semantic parts.

We thus provide in Table VII a more restrictive evaluation
on subsets of sketches that have the same set of labels as
an exemplar. Compared to the evaluation in the main paper,
numerical results in Table VII do not account for the cases
when the target sketch has less parts and only a part of labels
has to be transferred. This is the reason why in the main
document we use a less restrictive evaluation strategy. It can
be seen that similarly to the results in the main document our
approach outperforms the alternative solutions.

The remaining experiments in this document use the eval-
uation strategy used in the main document.

B. Detailed numerical evaluation after label refinement
As we mention in the main document:

Since the labeling in the considered datasets is
defined per stroke (the strokes are broken into
multiple at data-annotation stage if is needed), we
additionally can perform an easy label refinement
step, by assigning to a point a label dominant to
the stroke the point belongs to (Tab. I ‘ref.’). Note
though that in sketches found in the wild the stroke
can have several labels, and such refinement step
can reduce the segmentation accuracy. It can be seen
that under this setting our method also performs the
best. Only on creative birds dataset our method gives
lower C-metric than FLSS and ISPP, but still results

in higher P-metric. On the SPG dataset FLSS and
ISPP are still losing to SGCN and our methods,
where our method gives 10.8% and 11.3% higher
point and component accuracy than SGCN. After
refinement, on the SPG dataset, an accuracy of our
method increases just by 0.2/0.8 points on P/C-
metrics, compared to by 10.0/24.4 points for ISSP
and 8.9/19.7 points for FLSS. Importantly, these
results show that our method is capable of directly
taking points connectivity into strokes, but does not
pose a strict requirement of one label per stroke.

In Table VIII we provide the detailed numerical results per
category. While on average our method outperforms competing
approaches after refinement, our method is outperformed by
ISPP method on the ‘bulldozer’ category and tightly follows
FLSS on the ‘suitcase’ category. The worse performance of our
method than the ISPP method on the ‘bulldozer’ category can
be explained by the fact that we solve jointly for the keypoints
and stroke-level transformations. In this case, the prediction
of keypoints sometimes can degrade, resulting in the method
not being able to correctly estimate the global reflection
between the two sketches, e.g. ‘bulldozer’ facing right or left.
In Section VIII-D we evaluate a separate training strategy,
where the keypoints prediction network is trained separately.
While separate training does increase the performance on
the ‘bulldozer’ category by 15.3 points, in overall, the joint
training strategy results in more stable performance across
categories, showing better results on more categories. Please
see Section VIII-D for the further comparison of these two
strategies.

C. One-shot vs. few-shot

In the main paper we show in Table II that the performance
improves if there are several templates available, and our
results consistently outperform SGCN.

Here in Table IX we show the numerical evaluation per
category.

VIII. ABLATION STUDIES
A. ISPP: GCN vs PointNet++ encoder

Table X shows that when the PointNet++ encoder is used
as was proposed in the original paper, the ISPP method
performance on one shot sketch segmentation consistently
drops: The point accuracy reduces on average over the five
categories by 3.6 points, and the component accuracy — by 5
points.

B. Segmentation module
As we mention in Section IV-C in the main document:

At inference, to obtain the labeling via Eq. 9, we
first estimate our hierarchical deformation, then the
label of a point v; is obtained as follows 7(v;) =

i stroke sketch
Tos (UH‘FSjG)A(:v,;Gs]"FE )

Here we compare this strategy with the strategy of passing
in an encoding of a globally warped target sketch F' ;Z(ke“h,



P-metric C-metric
SPGG [22] | SGCN [33] FLSS [14] ISPP [16] Ours SPGG [22] SGCN [33] FLSS [14] ISPP [16] Ours

Category o o I o I o i o s o i o o o o o o o n o
airplane 22.1 86 | 66.0 14.6 | 567 12.3 | 51.1 135 | 834 8.7 | 21.8 78 | 567 175 | 383 150 | 26.0 153 | 76.2 12.7
alarm clock 23.0 53 | 81.8 114 | 60.7 129 | 595 13.7 | 86.5 123 8.7 20 | 725 159 | 428 11.8 | 36.1 17.8 | 77.1  19.7
ambulance 28.5 76.6 62.0 60.7 85.8 15.1 64.8 49.6 325 79.0
angel 1.8 57.2 45.0 61.3 71.7 1.9 46.3 253 33.0 65.1

ant 7.5 44.8 424 47.6 61.8 9.9 34.5 234 23.0 46.4
apple 52.1 834 80.7 78.9 934 329 78.9 60.3 60.9 85.6
backpack 30.0 554 35.2 34.4 63.7 14.0 45.2 55 14.5 48.0
basket 21.9 67.7 67.3 559 81.0 223 61.3 44.0 325 74.9
bulldozer 34.7 51.8 53.7 66.7 69.6 20.8 40.8 33.7 46.6 58.9
butterfly 42.0 79.6 68.0 63.7 93.2 354 714 47.1 33.7 90.4
cactus 30.3 86.6 49.0 523 90.3 25.1 86.4 274 16.6 89.9
calculator 25.3 90.5 62.3 49.2 94.0 18.5 89.3 44.4 21.1 914
campfire 30.8 91.7 81.1 74.0 94.5 17.6 89.9 72.7 58.3 90.6
candle 21.0 90.6 87.0 86.4 97.0 27.0 80.6 70.4 69.4 96.2
coffee cup 44.6 79.4 71.5 74.2 87.8 249 81.6 534 55.0 85.5
crab 25.7 60.1 49.1 48.7 75.4 21.0 579 28.3 254 70.2
drill 44.5 71.2 80.9 84.9 88.6 26.7 55.2 534 68.6 79.7
duck 27.3 66.9 56.0 72.7 91.1 20.6 58.0 30.2 514 86.6
face 11.0 60.1 37.8 39.6 70.4 16.5 454 11.6 16.2 61.7
flower 18.1 74.8 63.0 58.0 88.6 25.6 71.0 36.2 28.0 90.0
house 23.5 79.9 59.5 58.9 90.8 19.8 78.8 36.7 323 86.9

ice cream 30.3 83.9 75.8 73.0 88.8 223 81.1 63.7 62.5 84.3

pig 21.7 68.9 343 51.2 713 224 59.7 15.0 26.2 69.1
pineapple 29.4 76.0 65.1 58.5 79.2 294 72.8 40.4 36.1 73.1
suitcase 30.4 89.3 82.7 81.2 93.7 16.3 91.0 72.4 60.0 92.6
Average 27.1 73.4 61.1 61.7 83.9 20.7 66.8 41.0 38.6 78.0
Airplane [35] 20.0 53.0 55.9 57.8 67.2 15.2 40.1 36.4 28.6 58.9
Airplane[25] 16.4 32.7 29.7 354 37.9 9.6 15.6 13.7 6.7 26.2
Creative birds | 13.9 13.8 28.2 28.3 29.9 153 144 16.5 12.6 19.1

TABLE VII: Numerical evaluation on the SPG dataset [22]: first 25 categories; on the airplane’ category from TUBerlin
[35] and Huang14 [25] datasets; on creative birds [36]. 1 denotes the average accuracy over 5 runs with 5 randomly chosen
templates, and o is the standard deviation of the 5 runs results. The evaluation in this table is done only on those sketches

that have the same semantic parts as an exemplar sketch.

instead of an encoding of a stroke-level warped exemplar
F %ketc’b. Table XI shows that this strategy slightly loses the
one we use in the main paper.

C. Chamfer distance in the stroke-level deformation

Finally, we evaluate the role of the Chamfer distance in
Equation 6. Table XII shows the segmentation accuracy if the
stroke level-deformation is guided only by the mean square
distance between the keypoints of the deformed template
E and the keypoints of the globally deformed sketch X:
CMSE(KEAX,KX). It can be seen that using both losses
Lyvse(Kg_ ,Ky)and Lop(X, EX) gives a slight advantage
over using the keypoints loss only.

D. Two steps training: Isolated training for keypoints

In this section we evaluate the overall performance of our
method, if we train in two steps. First, we train a keypoints
estimation module with our GCN sketch encoder. Then, we
train the deformation and segmentation modules. In this case
the GCN encoders are trained separately at each step. Table
XIII provides the comparison between SGCN [33], FLSS [14],
ISPP [16], ours joint training strategy used in the main doc-
ument (Ours Joint), and a two steps training (Ours Separate).
It can be seen that on average separate training results in a
slightly better average segmentation accuracy with P-metric
of 84% vs. 83.9%, and C-metric of 77.6% vs. 77.4%. Nev-
ertheless, (Ours Joint) strategy gives higher points accuracy
than (Ours Separate) on 14 out of 25 categories on the SPG
dataset. Moreover, (Ours Joint) consistently outperforms all
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Fig. 9: Keypoints and segmentation results. We visualize 8
keypoints, while use 256 for deformations computations.

other methods, while (Ours Separate) gives lower accuracy
than SGCN on the ’backpack’ and ’house’ categories. We
observe that the stroke-level deformation benefits from joint
training, although, for some categories, it comes at cost of
decreased performance of the keypoints prediction step (e.g.
the ‘bulldozer’ category). Joint strategy results in a more robust
performance across the categories with the standard deviation
of point accuracy equal to 9.6% versus 10.1% for the separate
training strategy (Table XIII).

E. Keypoints sensitivity to rotations and robustness of their
prediction

As demonstrated in the supplemental web-pages and in
Fig. 9, keypoints prediction is robust to rotations, not affecting
the segmentation performance. The mean p and standard
deviation o of mean Ls-distances between the keypoints from
the original sketch and its reflected version (after reflecting
back), on the ablation categories is ¢ = 0.058, o = 0.008. All
sketches are normalized to fit the [-0.5,0.5] bounding box.
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1 template | 3 templates | 5 templates
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TABLE IX: One shot vs. few shot. See Sec.VII-C for the

details.
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TABLE XIII: The comparison of training strategies for our proposed method. Ours (Joint) refers to the joint training strategy
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prediction network, as described in Section VIII-D. We also compute the minimum average accuracy across categories (Min),
the maximum average accuracy across categories (Max), and the standard deviations across categories (Std.). These numbers

allow to evaluate how consistent are the segmentation results of each method across different categories.
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