
Validation of Robot Model with Mobile Augmented

Reality

Chanapol Piyavichayanon

Department of Creative Informatics

Kyushu Institute of Technology

Fukuoka, Japan

piyavichayanon.chanapol402@mail.kyutech.jp

Masanobu Koga

Department of Intelligent and Control Systems

Kyushu Institute of Technology

Fukuoka, Japan

koga@ces.kyutech.ac.jp

Abstract—Augmented Reality has excellent potential for many

robotic applications, including the validation of robot models in

working environments. However, a dedicated depth sensor is only

available on a high-end mobile device. Hence, the realistic AR

experience for robotic applications is not available for a wide

range of mobile phones. This paper presents a way to use a robot

control algorithm on a virtual robot model in AR without the need

for a depth sensor while keeping the depth required feature such

as an occlusion. The connection between the AR and the robot

operating system allows the exiting control algorithm to be applied

to the augmented robot model. The navigation of a mobile robot

with the AR interface was used as an example of robot validation

in real-world spaces. Despite some communication delays, the

virtual robot can be controlled and navigated in the real world

with a certain degree of accuracy. It has been shown that

visualizing and controlling a robot in an AR scene can be done

with this method. Future work on the interaction between the

virtual robot and the real environment should be conducted to

expand the application of robot validation with AR.

Keywords—augmented reality, mobile AR, robotics

I. INTRODUCTION

Augmented Reality (AR) has become widely used in many
fields, from the game industry to medical applications as well
as robotic research [1]. One application of AR is visualizing
robot models and the data from various sensors. The AR robot
model, developed by Disney Research [2], demonstrated the
possibility of presenting the virtual robot in real-world space
using Hololens1. On the other hand, Augmented Reality can
also be used as an interfacing tool for controlling robots. Some
research has shown the application of AR in mobile robot
navigation, such as the swarm robotic [3]. One key common
feature introduced in these works is the improvement of
Human-Robot Interaction (HRI) by using AR. HRI is
challenging in the robot validation process since human
interaction is difficult to predict [4]. The study from CARIS
Lab [5] successfully used the virtual robot in AR to test and
improve the operation between a human and robot. The
operator can easily specify the trajectory of the manipulator in
a 3-dimensional space with Hololens and sent it to the robot
workspace. AR is used to preview the robot's motion in the
working environment and increase the confidence of the user
before executing the motion of the robot. Inspired by the
previous works, we desire to use AR for validating robot

models in a real-world environment. However, relying on
expensive AR devices will limit the development of AR
systems and the accessibility of AR solutions. Alternative
devices such as an AR platform on mobile phones seem to be a
more affordable choice but their lack of the time-of-flight
sensor restricts the capability of an AR technology.

To overcome the limitation, we aims to propose a method
for implementing the robot controlling system with ARCore2
and Unity3. We use Depth API [6], a library that provides depth
maps from a single RGB camera, to get over the missing depth
information. By connecting to a robot operating system (ROS),
the robot model in AR can be controlled with the exiting control
algorithms. We apply the method to a Turtlebot3 [7] which is a
widely used open-source mobile robot. After demonstrating the
AR user interface on top of ROS Navigation Stack, we validate
it by controlling the virtual mobile robot in the AR to the desired
position in real-world space. Finally, we evaluate the
performance of the proposed method in terms of navigation
accuracy and execution time. These experimental results
illustrate the capability of the proposed method in robotic
utilization.

II. RELATED WORK

The proposed method is built upon the ARCore toolkit
together with the Unity 3D engine. ROS#, a Plugin for Unity,
is used for interfacing ROS on Unity. Some additional scripts
are required to operate ROS with AR application.

A. ARCore

ARCore is a platform for developing an augmented reality
application on a mobile device introduced by Google. The major
task of the ARCore is tracking where the mobile phone is in real-
world space and finding the surface for placing the AR object.
ARCore can also be used on another developing platform like
Unity. Two SDKs tools are provided for building an ARCore
application on Unity which are AR Foundation and ARCore
SDK for Unity. AR Foundation is a cross-platform API that can
be built on both Android and iOS devices. On the other hand,
ARCore SDK for Unity can only be used on Android devices
but provides all features of the ARCore. The ARCore SDK is
used for developing the prototype because it supports the up-to-
date Depth API.

1Microsoft HoloLens: https://microsoft.com/hololens.
2ARCore : https://developers.google.com/ar.
3Unity : https://unity.com/

1

2021 6th Asia-Pacific Conference on Intelligent Robot Systems

978-0-7381-4694-2/21/$31.00 ©2021 IEEE

20
21

 6
th

 A
sia

-P
ac

ifi
c

Co
nf

er
en

ce
 o

n
In

te
lli

ge
nt

 R
ob

ot
 S

ys
te

m
s (

AC
IR

S)
 |

 9
78

-1
-6

65
4-

40
69

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AC

IR
S5

24
49

.2
02

1.
95

19
36

2

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 24,2021 at 00:43:48 UTC from IEEE Xplore. Restrictions apply.

Depth API is a programming interface that allows
developers to build a depth awareness feature on an android AR
application by using depth-from-motion algorithms. Depth API
makes many AR features possible to be presented on a mobile
phone without a time-of-flight sensor. The examples of these
features are presented in the Depth Lab [8].

B. ROS#

ROS# is an open-source software library containing Unity
plugin and ROS packages for the communication between two
platforms [9]. The provided ROS packages are used to
communicate the data to the Unity application via the RosBridge
server and send the robot description read from the URDF
resource files of the robot model. Oppositely, the provided
plugin on Unity can send the data and the robot model from
Unity to ROS as well.

ROS# provides a simple method for importing the robot
URDF model to a Unity game object. The provided ROS node
read through the robot description and send the corresponding
mesh file to the computer used to develop the Unity application.
After that, the given plugin creates a robot model in Unity using
the hierarchy of the game object.

C. ROS and AR

Previous studies have shown the possibility of using ROS
with the mobile AR device. The framework for communicating
between ROS and the AR using ROS# library has been shown
by Krupkeet et al. [10]. The other work demonstrates the use of
AR for visualizing the information of the navigation stack on top
of the physical space [11]. A similar implementation on mobile
devices has been done by iVIZ [12].

Motivated by these works, we developed a new method for
visualizing and controlling the robot model on a mobile device
AR without the need for a time-of-flight sensor by using Depth
API from ARCore.

III. SYSTEM DESIGN

As stated above, this paper aims to use the Augmented
Reality developed on ARCORE to validate the robot by
assigning the navigation in real-world space to a virtual robot.
Fig. 1 shows the overview of the system in this paper. Starting
by designing the developing environment, Unity3D is chosen
for prototyping AR on a mobile phone since it supports the
development toolkit of an ARCORE. We use Turtlebot3 Burger
as a model of the mobile robot in this work. The robot was
operated on ROS and simulated in GAZEBO resulted in the
need for communication between unity apps and ROS Node.
This can be done by using RosBridge which is a ROS package
helping the non-ROS program to communicate with the ROS
node. ROS#, an open-sourced project from Siemens, present an
effortless way to use RosBridge with Unity together with the
other useful tools for exporting robot URDF model to Unity
game object. After setting up the communication and exporting
the robot model, the transformation between different
coordinate of ROS environment and AR application needs to be
considered to make the virtual robot in AR move to the desired
position in a real-world environment and also to give the desired
goal in the real world to ROS environment correctly. Then, the

Fig. 1. Overview of The System. (a) Robot Model is imported from URDF

with ROS# library. (b) User input data is published to ROS from a mobile
device. (c) The desired goal is sent with an action command to the navigation

stack. (d) The robot states are published to the ROS topic while the robot is

moving toward the goal. (e) The subscribed joint states are sent to the robot
joint and subscribed odometry is sent to the Transformation node. (f) The

transformation node transforms odometry data and sent it to the robot model.

Depth API is applied to introduce the depth-required features
including occlusion and depth cursor. Finally, we connected the
AR interface to the navigation stack to validate the mobile robot
in the workspace.

A. System Requirement

An ARCore compatible device is required for utilizing the
proposed method. The summary of the hardware system
specification together with the chosen version of the software
development tools are listed in Table I.

B. Communication

To communicate between ROS and the android device, a
WebSocket Server is used on top of the ROS# plugin. The
Android device, which is connected to the same local network
as ROS operating computer, can subscribe to the joint state and

TABLE I. SYSTEM SPECIFICATION

Mobile Phone

Module Pixel 4a

Chipset Qualcomm Snapdragon 730G

Operating System Android 11

Computer

Module Alienware m15 R4

CPU Intel® Core™ i7

GPU GeForce RTX 2070 Super

Operating System Ubuntu 20.04.2.0 LTS

Network

Protocol 802.11ac

Software Development Tools

Unity 2019.14.18f1

ARCore SDK for Unity 1.22.0

Gazebo 11.3.0

ROS Noetic

2

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 24,2021 at 00:43:48 UTC from IEEE Xplore. Restrictions apply.

odometry data from the simulation software to move the virtual
robot in AR. Before sending the data from ROS to the mobile
device, serialization is required. ROS# provides the interface
for JSON serialization tools where .Net from Microsoft can be
selected.

C. Placing Virtual Robot in AR

A properly coordinate system alignment needs to be
considered to ensure that the virtual robot in AR is presented
correctly on the real-world scene. Most of the AR-related
robotic research uses an image marker to reference the position
in physical space. However, we found that using the marker is
not very intuitive especially for using on the mobile robot since
the reference position may need to change frequently. Thus, we
use the anchor module for placing the virtual object on the object
tracked by ARCore. ARCore updates the position of the
trackable object when the understanding of the environment
changes. This helps the referencing object stay in the same place
in the real scene even when the mobile phone is moved around
in the real scene.

Before changing the robot's transformation to the desired
place, the odometry data of the robot in ROS has to be
transformed to the world reference frame in ARCore. Fig. 2
demonstrates the corresponding coordinate frame in ROS
workspace and ARCore workspace. The odometry in ROS is the
same value as the transformation between the robot frame and
the anchor frame in the AR scene, but the robot's input
transformation is relative to the world frame in the AR scene.
Hence, the desired robot position in the world coordinate frame
can be found from:

(1)

where 𝐓R
W is a transformation matrix of the robot relative to

world frame in AR scene, 𝐓A
W is transformation matrix of the

anchor frame relative to the world frame in AR, 𝐓R
A is a

transformation matrix of the robot frame relative to the anchor
frame in the AR scene which is equal to the odometry in the ROS
workspace. It should be noted that the coordinate system in
Unity uses the left-handed coordinate system, which is different
from the ROS coordinate system. Hence, additional
transformation is required before using (1).

D. Depth Map Implementation

In reference to Depth API Samples for Unity, accessing
depth information can easily be done by adding a game object
which provides DepthSource class to the scene. This per-pixel
depth data is crucial for applying a depth effect likes the
occlusion effect on the AR object. Fig. 3 displays the AR model
of the Turtlebot3 with the depth effect provided by the Depth
API. In addition to the occlusion effect, we found that this depth
information could be used to localize and navigate the robot
model in real-world space.

E. AR User Interface

In the example of DepthLab, the navigation of virtual
avatars in the AR scene has been shown. It uses the oriented
reticle as a depth-aware cursor to locate the goal for the avatar
to move. Although it is an intuitive user interface, the error
between the desired target and robot position is noticeable. We

Fig. 2. Relevant Coordinate System where the virtual anchor was used as a

reference of the odometry frame in real world. (a) shows the coordinate frame

in Gazebo. (b) shows the coordinate frame in AR scene.

Fig. 3. Visualization of Turtlebot3 on a real-world space. (a) shows a
visualization of depth map generated by Depth API. (b) shows a robot model

without occlusion effect. (c) shows a robot with occlusion effect

customize the stated method to be more suitable for a mobile
robot by ensuring the plane alignment between the robot and
desired target. Also, designing a way to specify the desired
orientation of the robot by using the angle calculated from the
current position of the cursor.

Fig. 4 illustrates the described user interface used in this
paper. Since the Turtlebot3 is moving on a flat plane, aligning
each reference frame on the same plane is important to increase
the accuracy of localization. A raycast function is used to find
where the imaginary ray from the camera hit on the imaginary
plane created by ARCore. The reticle depth cursor was used to
help the user recognize where the raycast would be hit. After
placing a referenced frame object and desired goal position, the
destination in the world coordinate frame needs to be
transformed to the referenced frame before publishing to the
robot in ROS. The interaction between human and the
navigation of the AR robot is shown in Fig. 5.

For an orientation of the robot, the angle between the depth
cursor and the specified goal is used as an input value visualized
by the guiding line. The difference of the desired goal and depth
cursor is then transformed to the reference frame before
publishing the desired rotation to the robot.

𝐓𝑅
W = 𝐓A

W 𝐓R
A

Odom Base Link

World
Anchor

Virtual Robot

3

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 24,2021 at 00:43:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. An AR navigation interface of our system with virtual Turtlebot3

model sitting on the virtual plane. (a) shows a depth cursor for placing a marker
on the goal position. (b) shows an orientation input line for determining the goal

rotation.

Fig. 5. The navigation procedure of human-robot interaction with AR.

F. Robot Model for Validation with AR

We use Turtlebot3 Burger as a demonstration of the robot
validation with AR. Instead of using rviz, a typical 3D robotics
visualization tool for ROS, the kinematic of the robot can be
seen on top of the real environment with a mobile AR. In case
of the dynamic model, we use GAZEBO to simulate the mobile
robot since it has a ROS interface. After the simulation is
calculated, the robot joint state and odometry data are published
to the ROS workspace for moving the virtual robot in AR.

The navigation of Turtlebot3 is relying on the ROS
navigation stack [13]. The navigation is done on the odometry
frame of the robot by publishing the goal derived from the above
method to the subscriber node in ROS. After the navigation
stack receives the action command from the subscriber node, the
planner in navigation would plan the path for the robot in
simulation to follow.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed method,
we evaluated the positioning accuracy and the execution time
before the robot starts to move.

A. Positioning Accuracy

The accuracy evaluation was done by placing an object in a
reference point and another one in a different position. The test
positions were select on the principal axis of the reference point
0.5 m away from each other as shown in Fig. 6. The orientation
accuracy was measured at 1.5 m away from the reference point
at an angle of ±0º, ±45º, ±90º, ±135º, and ±180º. Then, the
distances between these two objects were estimated and
compared with the measured distance in real-world space. Fig.
7 demonstrates the deviation of the measured distance in the real
world and the estimated distance with AR. The accuracy of the
positioning was 17.14 ± 3.56 mm, and the accuracy of the input
rotation was 0.77 ± 0.01º. The statistical tests were done at the
5% significance level.

The experimental result shows the possibility of using an AR
interface to navigate robots in real-world space. The accuracy is
compatible with the time-of-flight method [14] which reports
30 mm for static positioning. A similar test on the Hololens [5]
can achieve an accuracy of 7 mm on the horizontal plane
localization. Although the accuracy of this method is inferior to
the one obtained from using the devices with a depth sensor, this
level of accuracy can navigate the virtual robot to move to the
desired position in physical space as shown in Fig. 8.

B. Execution Time

The execution time was recorded after the user published the
command until the virtual robot in AR starts to move. In order
to investigate the effect of the wireless communication on the
delay of the operation, the result was compared with the
execution time commanded on the same computer running the
robot simulation.

Fig. 9 shows the time required for the virtual robot in AR to
start to move. The rise in execution time on the mobile device
was about 60 ms. The increase could be due to the additional
communications between the programming modules and
devices. The increase in execution time might be a severe issue
for a specific type of robot application and should be considered
when applying the proposed method.

Fig. 6. Scene for testing localization accuracy. (a) shows the range of the

testing environment. (b) Shows the virtual object which were used to get the

input position and orientation of the robot.

4

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 24,2021 at 00:43:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. The positioning of the virtual object estimated by AR and the measured

distance in real world

Fig. 8. Navigation of the Turtlebot3 in real environment

Fig. 9. Time to movement execution for a local-device commander and a

mobile-device commander.

V. CONCLUSION AND FUTURE WORK

]In this paper, we present the method of visualizing the
virtual robot in Augmented Reality for validating the robot in a
real-world environment. The integration with ROS is presented
to be a shortcut for controlling the virtual robot in AR. As an

example of robot validation, we validated the augmented reality
localization and user interface with the ROS navigation stack.
While the virtual robot model in AR can successfully move to
the desire location with a certain degree of accuracy, the
proposed method does have limitations.

The accuracy is limited due to the lack of a time-of-flight
sensor. In case a higher accuracy is required, using the
smartphone with a time-of-flight sensor, or using the additional
range finding sensor might resolve the problem. These
improvements could be simply made since ARCore support the
usage of a time-of-flight sensor on some mobile phone and the
implementation of the other sensor is straight forward on ROS.

This paper mainly focuses on the visualization of the robot
model in real-world space. However, the robot validation might
require the interaction between the augmented robot and the
object in physical space, such as collision-free path planning.
Hence, the study on other physical properties of the robot model
should be conducted to wider the application of AR for robot
validation.

REFERENCES

[1] Z. Makhataeva and H. Varol, “Augmented reality for robotics: A review,”
 Robotics, vol. 9, no. 2, p. 21, 2020.

[2] G. Cimen, Y. Yuan, R. W. Sumner, S. Coros, and M. Guay, “Interacting
 with intelligent characters in AR,” 2018.

[3] S. Batra, J. Klingner, and N. Correll, “Augmented reality for human-
 swarm interaction in a swarm-robotic chemistry simulation,” arXiv
 [cs.RO], 2019.

[4] M. Webster et al., “A corroborative approach to verification and
 validation of human–robot teams,” Int. J. Rob. Res., vol. 39, no. 1, pp.
 73–99, 2020.

[5] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. Machiel Van der Loos,
 and E. Croft, “Robot programming through augmented trajectories in
 augmented reality,” in 2018 IEEE/RSJ International Conference on
 Intelligent Robots and Systems (IROS), 2018, pp. 1838–1844.

[6] J. Valentin et al., “Depth from motion for smartphone AR,” ACM Trans.
 Graph., vol. 37, no. 6, pp. 1–19, 2019.

[7] W.Son, “Turtlebot3.” [Online]. Available: https://github.com/ROBOTIS-
Will/turtlebot3. [Accessed: 22-Mar-2021].

[8] R. Du et al., “DepthLab: Real-time 3D interaction with depth maps for
 mobile augmented reality,” in Proceedings of the 33rd Annual ACM
 Symposium on User Interface Software and Technology, 2020.

[9] M.Bischoff, “RosSharp.” [Online]. Available: https://github.com/siemens
/ros-sharp. [Accessed: 22-Mar-2021].

[10] D. Krupke, F. Steinicke, P. Lubos, Y. Jonetzko, M. Gorner, and J. Zhang,
 “Comparison of multimodal heading and pointing gestures for co-located
 mixed reality human-robot interaction,” in 2018 IEEE/RSJ International
 Conference on Intelligent Robots and Systems (IROS), 2018.

[11] L. Kästner and J. Lambrecht, “Augmented-Reality-based visualization of
 navigation data of mobile robots on the Microsoft Hololens -- possibilities
 and limitations,” arXiv [cs.RO], 2019.

[12] A. Zea and U. D. Hanebeck, “iviz: A ROS Visualization App for Mobile
 Devices,” arXiv [cs.RO], 2020.

[13] “navigation-ROS Wiki,” Ros.org.[Online]. Available:http://wiki.ros.org/
navigation. [Accessed: 22-Mar-2021].

[14] X. Li, Z. Yan, L. Huang, S. Chen, and M. Liu, “High-accuracy and real-
 time indoor positioning system based on visible light communication and
 mobile robot,” Int. J. Opt., vol. 2020, pp. 1–11, 2020.

5

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 24,2021 at 00:43:48 UTC from IEEE Xplore. Restrictions apply.

