
Graphical Models 129 (2023) 101184

Available online 8 August 2023
1524-0703/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Non-homogeneous denoising for virtual reality in real-time path
tracing rendering

Victor Peres a,*, Esteban Clua a, Thiago Porcino b, Anselmo Montenegro a

a Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n, Niterói, Rio de Janeiro, 24210-346, Brazil
b Dalhousie University, 6299 South St, Halifax, Nova Scotia, B3H 4R2, Canada

A R T I C L E I N F O

Keywords:
Foveated rendering
Dual-screen systems
Head-mounted devices
Denoising

A B S T R A C T

Real time Path-tracing is becoming an important approach for the future of games, digital entertainment, and
virtual reality applications that require realism and immersive environments. Among different possible opti-
mizations, denoising Monte Carlo rendered images is necessary in low sampling densities. When dealing with
Virtual Reality devices, other possibilities can also be considered, such as foveated rendering techniques. Hence,
this work proposes a novel and promising rendering pipeline for denoising a real-time path-traced application in
a dual-screen system such as head-mounted display (HMD) devices. Therefore, we leverage characteristics of the
foveal vision by computing G-Buffers with the features of the scene and a buffer with the foveated distribution for
both left and right screens. Later, we path trace the image within the coordinates buffer generating only a few
initial rays per selected pixel, and reconstruct the noisy image output with a novel non-homogeneous denoiser
that accounts for the pixel distribution. Our experiments showed that this proposed rendering pipeline could
achieve a speedup factor up to 1.35 compared to one without our optimizations.

1. Introduction

Path tracing is a consolidated rendering approach for achieving
photo-realistic graphics, but currently not suitable for real-time perfor-
mance. Shadows, global illumination, and reflection are essential
graphical effects that are intrinsically achieved through it. Additionally,
since its complexity is directly related to the number of pixels of the
screen, using it on high-resolution devices is challenging, requiring non-
trivial solutions to be used on head-mounted displays (HMDs).

Furthermore, path tracing is the current state-of-the-art in real-time
rendering games, interactive rendering in graphical applications, and
pre-rendering films. Recently, Nvidia launched RTX GPUs, embedded
with hardware acceleration related to path tracing [12], enabling an
increasing number of consumers and workplaces to leverage these op-
timizations for real-time applications.

Even so, it is still laborious and time-consuming for the graphical
processors to render at high resolutions. Therefore, performance opti-
mizations are required, such as hardware-based Bounding Volume Hi-
erarchy (BVH) structures, ray-polygon intersections computed in
hardware, and better sampling of the traced pixels. Denoising is one of
the most important optimization methods. It is used to reduce the

variance in a noisy image produced by the path-tracing rendering on a
low ray sampling. In the literature, it is possible to find different
denoising techniques such as wavelet filters [6], bilateral filters [18],
machine learning algorithms [10] and sampling with spatio-temporal
accumulation [21], to name a few.

Foveated rendering is an important topic and is related to the fact
that the human eye can only distinguish important details of pigments in
a central region of the retina, called fovea [20]. This paper presents a
novel approach to reconstruct path-traced rendered environment im-
ages in real-time by leveraging the perception characteristics at the
center of the human vision. The proposed rendering pipeline splits the
path-traced noisy image in different concentric layers and apply
denoising strategies on each layer differently, with parameter values
that are adapted according to the different regions of the visual field.

We tested our solution using a collection of scenes with different
triangles count, different display resolutions corresponding to the en-
tirety of the dual screens of a regular HMD, different spatial sampling
configurations for the path-traced step, and different reconstruction
layer parameters. Our method achieved notable speedup improvements
in all configurations when compared to non-optimized implementations.

* Corresponding author.
E-mail addresses: victorperes@id.uff.br (V. Peres), esteban@ic.uff.br (E. Clua), thiago@dal.ca (T. Porcino), anselmo@ic.uff.br (A. Montenegro).

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

https://doi.org/10.1016/j.gmod.2023.101184

mailto:victorperes@id.uff.br
mailto:esteban@ic.uff.br
mailto:thiago@dal.ca
mailto:anselmo@ic.uff.br
www.sciencedirect.com/science/journal/15240703
https://www.elsevier.com/locate/gmod
https://doi.org/10.1016/j.gmod.2023.101184
https://doi.org/10.1016/j.gmod.2023.101184
https://doi.org/10.1016/j.gmod.2023.101184
http://creativecommons.org/licenses/by/4.0/

Graphical Models 129 (2023) 101184

2

2. Related works

Among different methods available for path-tracing rendering, there
are interactive rendering, offline rendering and real-time rendering.
Besides that, we acknowledge the advancement of other optimization
techniques that fall into different categories, such as machine learning-
driven filters or sampling through spatio-temporal accumulation. This
work focus on real-time reconstruction techniques, such as bilateral
kernel filtering with geometric data in the form of G-Buffers.

Our work combines these features to improve path tracing within
dual-screen systems, taking advantage of reduced density of pixel
required in peripheral display regions. This section describes the basics
and related works associated with its proposal.

2.1. Path tracing

Whitted [27] introduced the first ray-traced image with not only
shadows directly projected from a light source but also including a series
of additional graphical effects, such as specular reflection and refraction,
simulating the light transport with optical properties from the Fresnel
equations. Later, Cook [4] introduced a random distribution of the rays
sampled in the hemisphere of a reflected surface.

Kajiya introduced a novel form of ray tracing, named path tracing,
which solved the exponential problem that the nature of ray tracing
methods introduced [9]. It combined concepts of Monte Carlo integra-
tion and, instead of shooting a set of rays for each ray bounce, it shot
only one ray for each ray bounce. Given this property, it is possible to
achieve a high level of graphical realism with all the mentioned visual
effects and global illumination features in a much faster way. This is
made through several samples per pixel, i.e., the lighting factor of an
object that is perceived with the light rays bouncing from different
surface sources.

Hybrid approaches such as Barre et al. [1] were introduced to further
improve performance optimizations by leveraging the advantages of
rasterization, ray-tracing, and compute shaders. It uses rasterization in
G-Buffer, direct shadowing stages and ray-tracing in other steps such as
direct, indirect lighting, and real-time reflections. It also uses compute
shaders in the post-processing stages.

To guarantee that the path-tracing algorithm via Monte Carlo inte-
gration produces a result that converges into a photo-realistic image, it is
necessary hundreds (if not thousands) of samples per pixel to achieve an
almost perfect image. Today, the most demanding scenes can handle at
most a few sample per pixel (spp) with global illumination. This gen-
erates an image with Monte Carlo variance noise and, due to the nature
of Monte Carlo integration, this noise is decreased in a square-root
proportion to the number of samples. Hence, there is a need to recon-
struct this non-perfect noisy image using properties from the scene’s
geometry.

2.2. Denoising

Several algorithms and techniques are available for reconstructing
images in real-time. Methods related to machine learning techniques
and neural network training have recently gained attention. Some of
these works use the concept of autoencoders, which are being popu-
larized due to their adoption by the graphics industry, such as Intel Open
Image Denoise [8] and Nvidia Optix Autoencoder [16]. There are also
techniques that use concepts of image analysis and processing, such as
convolution filters. These are constituted by bilateral filters, which can
produce simple results with some graphical artifacts of brightness
change or blur. They can have a bad computational performance when
the size of the filters is big, becoming inefficient for the use in path
tracing with sampling smaller than one spp and real-time requirements.

Filters guided by buffers progressively reduce the artifacts. More
specifically, the filter introduced by Dammertz et al. [6] is known as
Edge-Avoiding À-Trous. This filter satisfactorily fills the noisy image,

being capable of avoiding almost any artifacts, which makes this suited
for filters with big kernel size and spaced with smaller sampling size.
Further on this, there is another Edge-Aware filter, proposed by Qi et al.
[19], that improves this approach and is capable of decreasing the at-
mospheric fog and the haze of an image with filtering with a decreasing
step in each iteration of the process. Although the original problem was
not related to rendering, these results may also be applied to reducing
the same artifacts present in a noisy image.

Other works use similar filtering concepts, such as the works pro-
duced by Schied et al. [21,22], which uses a guided filter with
spatio-temporal variance and temporally accumulates the samples using
accumulation buffers from previous frames in a way that moving objects
are accounted for the global illumination.

Regression-based techniques with QR factorization are recently
showing promising results due to their high performance for real-time
denoising in path tracing pipelines [13]. Zwicker et al. [29], and
Kaplanyan et al. [11] present more details and discussions related to the
topic.

2.3. Foveated rendering

Foveated rendering divides the rendering areas into different re-
gions, using specific and separated rendering parameters for each re-
gion. Guenter et al. [7] split the image into three distinct layers with
varying rates of sampling following the user gaze, enabling lower se-
lection in the layer far from the center of the fovea gaze due to its small
retina cell cones density. Their work is relevant due to the introduction
of the layers based on the user’s gaze, even though it uses rasterization
as its rendering method. It showed with benchmarking that foveation
rendering achieves a speedup with a factor of 5-6x of a non-foveated
rendering on desktop displays [7].

Weier et al. [26] introduced the idea that a linear falloff is more
suitable when dealing with ray tracing for HMD, in comparison with the
previous hyperbolic falloff, due to the motion perception in the pe-
riphery vision area [26]. Since it used only direct lighting with point
lights, area lights, or ambient occlusion shading, it missed global illu-
mination and reflection effects. Their proposal achieved different
speedups ranging from 1.46 to 4.18 depending on the rendering
configuration.

Our work improves real-time performance optimizations by intro-
ducing a novel concept of a non-homogeneous type of path-traced image
reconstruction, using denoising filtering algorithms with different levels
according to the linear falloff of the center of the user’s gaze and
rendering it in a path tracing environment with a pre-determined ray
sample distribution.

3. Non-homogeneous denoising

This work proposes a novel rendering pipeline suitable for path-
tracing techniques running on HMDs. Although the proposed solution
is hardware-agnostic, we still need a GPU-based system due to denoising
requirements. This section describes the rendering pipeline running on
both GPU and CPU. The pipeline is illustrated in the Fig. 2 and involves
four steps: (1) the pre-pass that computes feature buffers; (2) the
foveation distribution step, that computes the pixels that will be sampled
in the following passes; (3) the path tracing pass that computes the
lighting for including graphical effects and (4) the non-homogeneous
denoising applied onto a noisy path traced image being rendered in
two screens, with its foveation adjustment.

3.1. Pre-pass

The first stage consists of a set of ray-tracing shaders that generates
one sample of ray for each pixel (spp) in both sides of the screen (one for
the left and one for the right eye). Once the traced ray hits a surface, the
shading data of the point intersected is computed. The calculated

V. Peres et al.

Graphical Models 129 (2023) 101184

3

shading data for each pixel can be seen in Fig. 3, with the diffuse
component of the texture (a); the position in world coordinates (b); the
normal of the surface in world coordinates and the position in world
coordinates (c). The result of this computation is stored in buffers (G-
Buffers), required for the subsequent passes, including direct lighting
calculation, global illumination, and denoising.

3.2. Foveation distribution step

In order to take advantage of the fovea distribution, in this stage we
compute a buffer with only the pixels that are being selected to be
sampled with rays in the further step of ray generation. This

computation is constant for all frames and independent of the time or the
scene. For this reason, we choose a CPU buffer instead of a GPU. In that
sense, for coordinates distribution, we used only one buffer. Moreover, it
was used in the left and right eyes, disregarding any possible mismatch
of the cones’ distribution between one eye and the other.

Using concepts similar to those proposed by Weier et al. [26], we
build a three-layer distribution that is represented by concentric circles
of pixels with different sampling decay, in a linear proportion in each
layer. Even though previous studies have already shown that the decay
of cones in the view falls in a hyperbolic distribution [7], the linear
proportion is preferred for foveated rendering due to the movement in
the scene around the periphery area of the vision.

The first layer represents the fovea and has a radius r0. It is defined in
such a way that the samples are taken at full resolution, i.e., each pixel
will receive exactly 1 sample, meaning that it is the same spatial sam-
pling that occurred in the G-Buffers computation in the pre-pass step.
The inner radius of the second layer where the r0 ends and is denoted as
r0 + 1. r1 is its outer radius. Thus, it is the first layer outside the fovea
layer. As in previous works [26], a linear proportion decay is applied in
this layer, starting from r0 + 1 and ending in r1, parametrized with the
probability p. This gives the sub-sampling effect of the middle layer,
with each pixel having a probability p of being sampled according to the
distance of the pixel to the center of the fovea. The third layer starts from
radius r1 + 1 and ends in the edge of the viewport, being the layer
outside the second layer. It receives even less sampling than the second
layer values, with a constant probability of 1 − p of a pixel being
sampled by a ray.

Once the computation of foveation distribution is complete, the
screen coordinates of the pixels are stored in the coordinates buffer. We
also store this computation in a binary mask for the denoising pass to
access the painted coordinates in constant time, as shown in Fig. 4. Thus,
the output of this step are both the coordinates buffer with the size of the
number of pixels that are being sampled, and the binary mask, con-
taining the positions of the sampled pixels decided by the foveated
distribution with linear decay, through the probability p. This step is
necessary for the posterior path tracing pass in each one of the screens of
the HMD and for the denoising pass.

3.3. Path tracing pass

The following step computes the direct shadows and the global

Fig. 1. In the top, from left to right: the foveated noisy input to the non-homogeneous denoiser, the denoised image output using our proposed three-layer foveated
configuration, and the reference rendered image with 1024 samples per pixel. In the bottom, the cropped sections corresponds to the three distinct layers of the non-
homogeneous denoiser in the same order as the top figure: noisy input, denoised output, and reference image.

Fig. 2. Our proposed rendering pipeline: the foveated distribution is outside
the frame because it does not change between frames and remains the same
across the application execution.

Fig. 3. Feature buffers rendered in the left screen in order of calculation, from
left to right: diffuse, position and normal.

V. Peres et al.

Graphical Models 129 (2023) 101184

4

illumination. Using the previously computed coordinates buffer, the set
of path-tracing shaders generates rays with the coordinates defined by
this buffer. This is used for generating rays that will pass through them.
Thus, when taking into account the rendering based on visual acuity
advantage, we maintain the sub-sampling property of this render pass,
with a density smaller than the full sampling less than 1 spp for the
middle and outer layers. Through this foveated rendering technique, it is
possible to decrease the number of generated rays through a config-
urable proportion given by the size of the coordinates buffer in the
previous step.

For each pixel, we compute the global lighting, direct lighting, and
shadow effects, using two groups of shaders: the shadow group and the
indirect lighting group. For the shadow group, when the generated ray
hits a point, it shoots a visibility ray to a random light in the scene. For
the indirect lighting group, when the generated ray hits a point, it shoots
an indirect ray to compute its color, along the standard secondary
shadow ray for its bouncing factor. For lighting and the BRDF, we used
the Lambertian material [17].

It is worth noting that instead of two ray-tracing programs or
instance of programs running, there is only one program that runs for
both the screens. This means that the same program and shader groups
are executed for the screen representing the left and right eyes. The
difference between the shading of the screens is that, when generating a
ray and defining where it is on screen coordinates, it must account for an
offset, given by the width of the leftmost screen. By designing the path-
tracing step in this way, there is a possibility for increasing the ray
coherence from both cameras and, thus, an improvement in the memory
locality of the BVH computations. With this render pass, the result is a
noisy output texture representing the path traced algorithm applied in
the scene accounting for the foveation distribution, as shown in Fig. 5.

3.4. Non-homogeneous denoising pass

The non-homogeneous denoising pass is responsible for the image
reconstruction. This stage receives the output from the path-tracing pass
with the noisy image, along with the G-Buffers and the binary mask as an
input. After the pass finishes, the output is the denoised image with less
variance than the path-traced image, as shown in the Fig. 6, which is in
fact a reconstruction of the noisy output of the path-traced image in the
Fig. 5. Note that the denoised image is lighter because the ”darkness” is
created by a higher variance in the noisy input.

Since the foveated noisy image has different sampling densities for
every layer with varying amount of noise, there is a need to split the
denoising process in accordance to this property. This way, we differ-
entiate the image in three layers, using the same layers used in the
foveation distributed step, as shown in Fig. 4. The pass applies the
denoising process for each layer using the Edge-Avoiding Á-Trous filter
[6] adapted to account for the foveation distribution. Since the filter
works by weighting the noisy image and both the world normal and
world position G-Buffers input against the neighbors’ pixels, we need to
filter with the binary mask as input. This mask works like a selection
filter that decides which neighbor pixel is going to be accumulated for
the final color of the current pixel being iterated. This works in a way
that the sub-sampling does not darken and further increases the variance
of the shaded pixel. Thus, from the original weight function

w(i, j) = wrt ∗ wn ∗ wx (1)

with pixel positions i and j, where wrt is the weight of the path-traced
color, wn is the weight of the world normal, wx is the weight of the
world position. The modified version is

w(i, j) = wrt ∗ wn ∗ wx ∗ b(i, j) (2)

with the added binary mask b(i, j) at the pixel.
By processing the denoise pass only once on both sides of the screen,

it is not possible to achieve a satisfactory noise reduction in the inner
layer and let alone the middle and outer layers, so that each one requires
a different number of iterations in proportion to the respective sampling.
Among the three layers foveation distribution and denoising configu-
ration, the inner layer starts from the center of the screen to the radius r0

Fig. 4. The foveated distribution output, represented in a binary mask,
rendered with the concentric circles delimiting the range of each of the three
layers, with the outer layer being delimited by the borders of the screen.

Fig. 5. Generated image after the path-tracing pass in the Sponza scene
experiment, for the left and the right sides of the screen. The path tracing pass
generates a noisy output for both screens using the G-Buffers and the co-
ordinates buffer as an input, accounting for the foveated distribution.

Fig. 6. The reconstructed image from Fig. 5 after the non-homogeneous
denoising pass, in the Sponza scene experiment.

V. Peres et al.

Graphical Models 129 (2023) 101184

5

and requires M levels of iteration, the middle layer starts from radius r0
+1 to the r1 and requires N levels, and the outer layer starts from radius
r1 + 1 to the border of the viewport and requires P levels.

The outer layer needs more denoising iterations in comparison to the
other inner layers, as it has fewer samples than these layers. Likewise,
the middle layer requires more denoising than the inner layer for the
same reason. Thus, the iterations of denoising must follow the inequality
M < N < P in our non-homogeneous denoising.

Each iteration in a layer reconstructs only the area corresponding to
that layer. It does so with a 5 × 5 kernel using a convolution mask based
on the same cubic B-spline as described in [6]:

(1
16,

1
4,

3
8,

1
4,

1
16
)
, with the

difference that it is extended to a two-dimensional kernel. Thus, in the
borders of each layer, the neighbor pixels from other layers may be
selected for the accumulation of the final shading color. Except in two
cases: the outer layer, where the neighbor pixels could be out of screen,
and the pixels that were not selected in according to the binary mask,
that are not supposed to be accumulated due to the fact that they were
not sampled. With this, we can optimize the filter to be more efficient by
leveraging the sub-sampling configuration from the foveated
distribution.

To reduce the artifacts from the Edge-Avoiding À-Trous filter, we use
the modified version with a decreasing step-width [19], instead of an
increasing step-width in subsequent iterations as illustrated in Fig. 7.

The output of this pass is the final image that the user will see in each
frame being rendered. This pass is described by Algorithm 1.

4. Implementation and results

This section details our implementation and denoising configuration.
We also explore our experiments, based on different configurations of
input parameters. Finally, a brief discussion of the benchmarks is made,
with a speedup analysis.

4.1. Implementation

This work implemented the proposed rendering pipeline and its ray-
tracing programs using the Microsoft DirectX APIs for the graphics
shaders, the Valve OpenVR APIs [24] for the integration with the HMD,
and imGui [5] for the GUI integration for the experiments. All of these
libraries and APIs are inside the Falcor framework, developed by NVI-
DIA [2].

The G-Buffers are computed based on [28] implementation, with
modifications in order to support two screens. This modification is done
to support each one with a different view matrix representing the left
and the right eye. With these two different matrices, the ray-generation
shader traces a ray for each side of the screen, with reference to the pixel
in each screen and its corresponding view matrix. It enables the
computation of the G-Buffers of both screens by the end of a single
rendering pass of the ray-tracing shaders, i.e., with a single run of the
ray-tracing program instead of running the same program for each side
of the screens separately. This improves the memory utilization of the
triangle-ray intersection calculations in the RTX GPU, since there is ray

coherence in both of the different cameras.
The computation of the foveation distribution, is made in a CPU

function before loading the scene, which is passed to the GPU via a
constant buffer. This way, we can guarantee that there is no impact in
the total performance of the rendering pipeline. The computation con-
sists of the iteration over every pixel on the left side of the screen,
verification in which region one pixel belongs to, and then selection of
the pixel. In the inner layer, every pixel is selected. In the middle and
outer layer, a random toss with the probability p set to p = .5 define
which pixel is going to be selected, following the linear decay mentioned
in the previous section. In the current implementation, we set this
probability for both Full HD (960 × 1080 per screen) and near 4K Quest
2 (1832 × 1920 per screen) resolutions. This results in the sample
distribution cited in Table 1. For the lack of eye-tracking devices in our
experiments, we also consider that the user’s gaze is in the center of the
screen. After the computation of the foveated distribution process, we
fill both the coordinate buffer and the binary mask.

The path-tracing pass is a modified version based on an existing
implementation [28] of the diffuse illumination using a Lambertian
model of reflection for the objects of the scene and also used for global
illumination. In this case, the modification was in order to generate the
initial rays based on the pixel buffer size and to trace the rays only
through the coordinates given by the buffer. With this modification, we
were able to generate only a controlled amount of rays in the initial ray
generation shader, given the foveated distribution calculated in the
previous step.

The implementation was tested with different spp densities,
including the configuration that achieved satisfactory performance in
the current hardware, fixed in 4 spp density for the inner layer. These
path tracing shaders, such as the G-Buffers shaders, were also modified
so that they could compute the lighting in both screens in a single pass.
Since the G-Buffers already account for both sides of the screens, this
modification in the path tracing step was simplified, and it resumes to a

Fig. 7. Illustration depicting an example of the À-Trous filter with 3 levels of
iterations with decreasing step-width. It starts by taking into account the pixels
at distance 2i (black dots) from the center pixel in the accumulation process and
decreases for each subsequent iteration. The blue dots are skipped by the
À-Trous filter and the gray dots are skipped by the binary mask modification.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

ALGORITHM 1. Non-homogeneous denoising.

Table 1
Region distribution used in the experiment for comparison, with its resolution,
respective area size, samples, and spp density.

Resolution Region Radius Area Samples spp

FHD Inner 144 65144 260576 4
Middle 288 195432 586296 3
Outer - 776224 1552448 2

Quest 2 Inner 265 220618 882472 4
Middle 530 661855 1985565 3
Outer - 2634967 5269934 2

V. Peres et al.

Graphical Models 129 (2023) 101184

6

mapping of the coordinates buffer to the pixel launch coordinates in the
ray-generation shader. For the right side of the screen, this mapping also
accounts for an offset related to the width of the left screen so that the
pixel launch coordinates are correctly shifted to dispatch the rays in the
GPU shader.

Our denoising step consists of iterating over the levels of denoising
and dispatching a compute task to the GPU. As the compute shader is the
same for all three layers, we only pass the required arguments, such as
inner radius, outer radius, and the current step width. This imple-
mentation also includes an adaptation and translation of the GLSL
shader provided by [6] with some modifications. We changed the loop to
a version introduced by Qi et al.[19], with a decreasing step-width in
each subsequent iteration of the levels of the execution of the shader, in
order to reduce the artifacts near the edge of the scene objects. Here, we
also included the modification in the path-tracing pass to account for
both sides of the screen. Besides that, since this reconstruction was done
in a compute shader, we can dispatch a separate task for every region.
The computation of the denoising is done so that each thread calculates
the weighted sum of its neighboring pixels in both sides of the screen, by
implementing an offset of the screen width. We avoid the pixels that
should not be selected in either of the regions by selecting through our
binary mask from the foveated distribution.

4.2. Results

To present and discuss the results of this work, a series of experi-
ments using different configurations was performed in a single hardware
platform. We ran our experiments through an implementation with a
machine with the specifications: Intel Core i7-3770S CPU @ 3.10GHz,
8.00 GB RAM, NVIDIA GeForce RTX 2080.

We choose to measure the performance of our rendered pipeline
using the metric of time, in milliseconds, that a frame is rendered in the
GPU. This is so that we can diminish any possible interference from the
varying OS system load or other background processes running on the
machine. We render the scenes with the camera traversing a pre-defined
path so that we can observe beyond a static frame of a single image. We
measure the results over 1000 subsequent frames and take the average
metric for each scene. Our target resolutions were set to Full HD
(960–×–1080 per screen, totaling 1920 × 1080) and “near-4K” from the
Quest 2 HMD (1832 × 1920 per screen, totaling 3664 × 1920).

Three different scenes were used in our experiments, with varying
specifications of triangles and light count, as detailed in Table 2.

The first experiment is referenced as Base for our benchmark com-
parison, since it is our baseline for speedup calculations. This configu-
ration was chosen as a reference for the performance analysis because it
does not include neither a foveation distribution nor our non-
homogeneous denoising. Instead, the pipeline in these Base experi-
ments renders a full-screen denoising pass to a path-tracing with sam-
pling of 4 spp across the entirety of the dual-screen viewport.

In the subsequent experiments referenced as Non-Homogeneous 3-
Layer Denoising (NH3LD), we applied the proposed rendering pipeline
optimizations. The foveation distribution has three layers as concentric
circles, and also coincides with the regions split for the non-
homogeneous denoising pass. Following the split in Table 1, for the
sake of comparison, we also set the inner layer with a path-tracing
sampling density of 4 spp, decreasing the sampling in the middle and
outer layers.

We also consider that the outer layer in the NH3LD experiment has

the greater number of denoising levels. Analyzing the averaged milli-
second per frame performance in our experiments, we can compare it to
the Base experiment. In the same level of denoising, the proposed so-
lution with the non-homogeneous denoising optimization applied to
three layers shows a speedup of up to 1.35.

A third experiment tested a different split in the non-homogeneous
denoising pass, using two layers with different levels of denoising
instead of the three-layer design used in the previous experiment. We
reference it as Non-Homogeneous 2-Layer Denoising (NH2LD). Note that
the foveated distribution still has the three-layer as described in Table 1.
For the denoising split, the inner layer coincides with the foveated dis-
tribution as well. The outer layer is a join region with the middle and
outer layer from the foveated distribution. In other words, the outer
layer in the denoising split begins from the circles with radius r0 + 1 and
goes until the edge of the viewport.

We again consider that the outer layer in the NH2LD experiment has
the greater number of denoising levels. Analyzing the performance in
our experiments with the configuration of the same level of denoising in
the first experiment, it is possible to see that the proposed solution with
the non-homogeneous denoising optimization applied to two layers
achieves a speedup of up to 1.33. The detailed performance measure-
ments with the total averaged milliseconds per frame and the speedup
are in Table 3.

For an objective quality analysis, we rendered the same scenes
without the foveation distribution step optimization. We also increased
the number of samples for 1024 spp temporally accumulated across
several frames, where no denoising was applied to these reference im-
ages. In order to measure the error between the reference rendered
images and the optimized by our rendering pipeline, we used Root-
mean-square error (RMSE), Structural Similarity (SSIM) [25], and
Peak signal-to-noise ratio (PSNR) metrics.

We also measured the error between the Base experiment and the
referenced image. This is made in order to figure how our non-
homogeneous denoising is performing quality-wise in comparison to a
full-screen denoising.

As show in Table 4, we see a minor variance in the metrics of both
our experiments of non-homogeneous denoising in comparison to the
full-screen denoise in the Base experiment.

5. Conclusion

This work presented a novel real-time rendering pipeline for virtual
reality devices, using non-homogeneous denoising scaled according to
foveated regions. Our proposed pipeline was able to achieve the same

Table 2
Scenes tested and its characteristics.

Scene Triangle Count Light Count

Pink Room 786056 1 directional; 2 point lights
Sponza 262267 1 directional; 1 point lights
Forest 198541 80 point lights

Table 3
Performance metrics of Base, NH2LD and NH3LD experiments, in averaged
milliseconds per frame for our GPU implementation.

Resolution Scene Renderer Total
time (ms)

Speedup factor

FHD Pink Room Base 16.26
NH2LD 13.99 1.16
NH3LD 12.81 1.26

Sponza Base 31.01
NH2LD 23.28 1.33
NH3LD 22.95 1.35

Forest Base 22.84
NH2LD 18.46 1.23
NH3LD 17.54 1.30

Quest 2 Pink Room Base 45.32
NH2LD 40.58 1.11
NH3LD 39.19 1.15

Sponza Base 99.27
NH2LD 75.52 1.31
NH3LD 74.62 1.33

Forest Base 73.66
NH2LD 60.24 1.22
NH3LD 59.03 1.24

V. Peres et al.

Graphical Models 129 (2023) 101184

7

effects of visual realism achieved when using regular denoising, but
reducing the number of rays and increasing performance. We leveraged
the foveation distribution created in the CPU, stored and passed to the
GPU in a coordinates buffer with different spatial sampling in each layer
of the visual field. This was important to decrease the initial ray gen-
eration in the GPU shader and its bounces. Adding non-homogeneous
denoising also enabled a decrease in the load of work for the recon-
struction steps, with different levels to apply the Edge-Avoiding À Trous
[6] algorithm for the corresponding denoising layers.

Benchmarks were run with this optimized pipeline in several con-
figurations against a non-optimized one. These configurations used
different implementation details such as the size of layers, number of
layers, and levels of denoising. Experiments were able to show a speedup
in rendering time performance of up to 1.35.

In future works, we intend to explore how to apply the non-
homogeneous denoising with other algorithms. Also extend it by con-
ducting a user study to test the human perception of the graphical
quality through different implementation settings, to further optimize
our denoising and path-tracing parameters. There is the possibility to
use another type of rendering system such as mapping coordinates to
log-polar [15] or Visual-Polar [14] space before the start of the
rendering pipeline. While Lambertian is a good approach to diffuse
surfaces, we would like to include other types of materials that
encompass specular surfaces, such as GGX [3,23].

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared the data in the files attached.

References

[1] C. Barré-Brisebois, H. Halén, G. Wihlidal, A. Lauritzen, J. Bekkers, T. Stachowiak,
J. Andersson, Hybrid rendering for real-time ray tracing. Ray Tracing Gems,
Springer, 2019, pp. 437–473.

[2] N. Benty, K.-H. Yao, T. Foley, M. Oakes, C. Lavelle, C. Wyman, The Falcor
rendering framework, 2018, https://github.com/NVIDIAGameWorks/Falcor.

[3] B. Burley, W.D.A. Studios, Physically-based shading at disney. ACM SIGGRAPH
volume 2012, vol. 2012, 2012, pp. 1–7.

[4] R.L. Cook, T. Porter, L. Carpenter, Distributed ray tracing. Proceedings of the 11th
Annual Conference on Computer Graphics and Interactive Techniques, 1984,
pp. 137–145.

[5] O. Cornut, Dear imgui, 2014. https://github.com/ocornut/imgui.
[6] H. Dammertz, D. Sewtz, J. Hanika, H.P.A. Lensch, Edge-avoiding a-trous wavelet

transform for fast global illumination filtering. Proceedings of the Conference on
High Performance Graphics, Citeseer, 2010, pp. 67–75.

[7] B. Guenter, M. Finch, S. Drucker, D. Tan, J. Snyder, Foveated 3d graphics, ACM
Transactions on Graphics (TOG) 31 (6) (2012) 1–10.

[8] Intel®, Intel®open image denoise, 2019. https://www.openimagedenoise.org/.
[9] J.T. Kajiya, The rendering equation. Proceedings of the 13th Annual Conference on

Computer Graphics and Interactive Techniques, 1986, pp. 143–150.
[10] N.K. Kalantari, S. Pradeep, Removing the noise in monte carlo rendering with

general image denoising algorithms. Computer Graphics Forum volume 32, Wiley
Online Library, 2013, pp. 93–102.

[11] A.S. Kaplanyan, A. Sochenov, T. Leimkühler, M. Okunev, T. Goodall, G. Rufo,
Deepfovea: neural reconstruction for foveated rendering and video compression
using learned statistics of natural videos, ACM Transactions on Graphics (TOG) 38
(6) (2019) 1–13.

[12] E. Kilgariff, H. Moreton, N. Stam, B. Bell, Nvidia turing architecture in-depth, 2018.
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/.

[13] M. Koskela, K. Immonen, M. Mäkitalo, A. Foi, T. Viitanen, P. Jääskeläinen,
H. Kultala, J. Takala, Blockwise multi-order feature regression for real-time path-
tracing reconstruction, ACM Transactions on Graphics (TOG) 38 (5) (2019) 1–14.

[14] M. Koskela, A. Lotvonen, M. Mäkitalo, P. Kivi, T. Viitanen, P. Jääskeläinen,
Foveated real-time path tracing in visual-polar space. Proceedings of 30th
Eurographics Symposium on Rendering, The Eurographics Association, 2019.

[15] X. Meng, R. Du, M. Zwicker, A. Varshney, Kernel foveated rendering, Proceedings
of the ACM on Computer Graphics and Interactive Techniques 1 (1) (2018) 1–20.

[16] NVIDIA, Nvidia optix-ai-accelerated denoiser, 2017, https://developer.nvidia.co
m/optix-denoiser.

[17] M. Oren, S.K. Nayar, Generalization of lambert’s reflectance model. Proceedings of
the 21st annual conference on Computer graphics and interactive techniques,
1994, pp. 239–246.

[18] S. Paris, F. Durand, A fast approximation of the bilateral filter using a signal
processing approach. European Conference on Computer Vision, Springer, 2006,
pp. 568–580.

[19] B. Qi, T. Wu, H. He, A novel edge-aware à-trous filter for single image dehazing.
2012 IEEE International Conference on Information Science and Technology, IEEE,
2012, pp. 861–865.

[20] M. Reddy, M. Reddy, The Development and Evaluation of a Model of Visual Acuity
for Computer-Generated Imagery. Technical Report, 1997.

[21] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C.R.A. Chaitanya, J. Burgess, S. Liu,
C. Dachsbacher, A. Lefohn, M. Salvi, Spatiotemporal variance-guided filtering: real-
time reconstruction for path-traced global illumination. Proceedings of High
Performance Graphics, 2017, pp. 1–12.

[22] C. Schied, C. Peters, C. Dachsbacher, Gradient estimation for real-time adaptive
temporal filtering, Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1 (2) (2018) 1–16.

[23] B. Walter, S.R. Marschner, H. Li, K.E. Torrance, Microfacet models for refraction
through rough surfaces, Rendering techniques 2007 (2007) 18th.

[24] J. Selan, J. Ludwig, A. Leiby, Valvesoftware/openvr: Openvr SDK, 2015, https://gi
thub.com/ValveSoftware/openvr.

[25] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from
error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004)
600–612.

[26] M. Weier, T. Roth, E. Kruijff, A. Hinkenjann, A. Pérard-Gayot, P. Slusallek, Y. Li,
Foveated real-time ray tracing for head-mounted displays. Computer Graphics
Forum volume 35, Wiley Online Library, 2016, pp. 289–298.

[27] T. Whitted, An improved illumination model for shaded display. Proceedings of the
6th Annual Conference on Computer Graphics and Interactive Techniques, 1979,
p. 14.

[28] C. Wyman, S. Hargreaves, P. Shirley, C. Barré-Brisebois, Introduction to directx
raytracing. ACM SIGGRAPH 2018 Courses, 2018.

[29] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle,
S. Pradeep, C. Soler, S.-E. Yoon, Recent advances in adaptive sampling and
reconstruction for monte carlo rendering. Computer Graphics Forum volume 34,
Wiley Online Library, 2015, pp. 667–681.

Table 4
Objective quality comparison with RMSE, SSIM and PSNR metrics.

Scenes Rendering Pipeline RMSE (%) SSIM PSNR (dB)

Pink Room Base 3.2862 0.986438 28.659183
NH2LD 3.4374 0.985774 28.030232
NH3LD 3.5997 0.987343 27.619445

Sponza Base 5.7633 0.918678 21.879093
NH2LD 5.9252 0.913988 21.420517
NH3LD 5.9029 0.913633 21.468767

Forest Base 3.7991 0.813191 22.339938
NH2LD 3.8649 0.795324 22.37879
NH3LD 4.1787 0.778536 21.69204

V. Peres et al.

http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0001
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0001
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0001
https://github.com/NVIDIAGameWorks/Falcor
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0002
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0002
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0003
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0003
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0003
https://github.com/ocornut/imgui
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0004
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0004
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0004
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0005
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0005
https://www.openimagedenoise.org/
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0006
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0006
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0007
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0007
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0007
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0008
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0008
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0008
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0008
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0009
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0009
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0009
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0010
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0010
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0010
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0011
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0011
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/optix-denoiser
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0012
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0012
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0012
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0013
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0013
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0013
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0014
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0014
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0014
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0015
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0015
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0016
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0016
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0016
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0016
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0017
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0017
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0017
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0018
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0018
https://github.com/ValveSoftware/openvr
https://github.com/ValveSoftware/openvr
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0019
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0019
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0019
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0020
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0020
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0020
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0021
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0021
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0021
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0022
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0022
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0023
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0023
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0023
http://refhub.elsevier.com/S1524-0703(23)00014-0/sbref0023

	Non-homogeneous denoising for virtual reality in real-time path tracing rendering
	1 Introduction
	2 Related works
	2.1 Path tracing
	2.2 Denoising
	2.3 Foveated rendering

	3 Non-homogeneous denoising
	3.1 Pre-pass
	3.2 Foveation distribution step
	3.3 Path tracing pass
	3.4 Non-homogeneous denoising pass

	4 Implementation and results
	4.1 Implementation
	4.2 Results

	5 Conclusion
	Declaration of Competing Interest
	Data availability
	References

