
2746 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Manuscript received 9 Sept. 2020; revised 15 Dec. 2020; accepted 8 Jan. 2021.
Date of publication 24 Mar. 2021; date of current version 7 Apr. 2021.
Digital Object Identifier no. 10.1109/TVCG.2021.3067768

Instant Panoramic Texture Mapping with Semantic Object Matching
for Large-Scale Urban Scene Reproduction

Jinwoo Park∗, Ik-beom Jeon, Student Members, IEEE, Sung-eui Yoon, and Woontack Woo†, Members, IEEE

Fig. 1: Our proposed method extracts meaningful information, such as semantic segmentation, from readily obtainable street-view
images, refined extrinsic camera parameters, and rendered depth, for use in real-time processes. After a semantic object-matching
test, sparsely sampled street-view images are mapped onto open 3D scene models with proper blending weights, considering the
user’s position, followed by semantic 3D inpainting. Finally, novel views can be realistically synthesized to provide users with free
walk-through experiences in large-scale urban streets.

Abstract—This paper proposes a novel panoramic texture mapping-based rendering system for real-time, photorealistic reproduction
of large-scale urban scenes at a street level. Various image-based rendering (IBR) methods have recently been employed to synthesize
high-quality novel views, although they require an excessive number of adjacent input images or detailed geometry just to render local
views. While the development of global data, such as Google Street View, has accelerated interactive IBR techniques for urban scenes,
such methods have hardly been aimed at high-quality street-level rendering. To provide users with free walk-through experiences
in global urban streets, our system effectively covers large-scale scenes by using sparsely sampled panoramic street-view images
and simplified scene models, which are easily obtainable from open databases. Our key concept is to extract semantic information
from the given street-view images and to deploy it in proper intermediate steps of the suggested pipeline, which results in enhanced
rendering accuracy and performance time. Furthermore, our method supports real-time semantic 3D inpainting to handle occluded and
untextured areas, which appear often when the user’s viewpoint dynamically changes. Experimental results validate the effectiveness
of this method in comparison with the state-of-the-art approaches. We also present real-time demos in various urban streets.

Index Terms—Panoramic texture mapping, large-scale urban-scene rendering, novel-view synthesis, semantic object matching,
real-time inpainting, image-based rendering, virtual reality

1 INTRODUCTION

Photorealistic reproduction of real-world urban scenes has played a
significant role in empowering various virtual reality (VR) applications
that reflect the physical world, including virtual touring [20], geotagged
social media [16], or information visualization [5]. As a core technique
for maximizing the realism of such experiences, image-based rendering
(IBR) is one of the most active and important research topics in both
computer graphics and vision. In particular, according to the geometry-
image continuum of IBR [46], physically-based approaches [10, 14],
which generally map captured real images as textures onto a corre-
sponding virtual proxy geometry, are often employed to synthesize a
novel view with a wide range of free viewpoints for the user.

However, such traditional IBR methods typically require several

• Jinwoo Park, Ik-beom Jeon, and Woontack Woo are with KAIST UVR Lab..
E-mail: {jinwooaa | ikbeomjeon |wwoo}@kaist.ac.kr

• Sung-eui Yoon is with KAIST. E-mail: sungeui@kaist.ac.kr

decades or hundreds of neighboring images from a user’s viewpoint in
order to cover a restricted local area, thus causing difficulties in their
application to large-scale urban scenes. In addition, prior methods for
adjacent novel-view synthesis have depended on local geometric infor-
mation [23, 41, 50], which also limits the extensibility, although these
methods realistically synthesized novel views through the reconstruc-
tion of high-fidelity and dense meshes of local proxy geometry from
depth images [23,41] or point clouds [50]. Hence, such approaches can-
not support a full six degrees of freedom (DoFs), including translation
and rotation, for free walk-through experiences in large scenes.

With the development of global data obtained by leading companies
or research groups, advanced techniques for handling large-scale scenes
have recently been proposed. In particular, given the vast number of
street-level panoramic images and corresponding camera parameters
provided by Google Street View [2], a wide range of urban scenes
can be reconstructed [32, 48] from vision-based algorithms, such as
structure from motion (SfM), which can be used for IBR. Nevertheless,
such methods still require large databases of resource images and
proportionally high computation times to represent a scene at scale. In
addition, the reconstructed point clouds are too large to be used in a
real-time IBR system.

As a more interactive way to support users with highly realistic

fly-over experiences in world-scale urban scenes, Google Earth [20]
reconstructed in advance almost all global scene meshes with textures
using aerial photographs and rendered them in real time. Neverthe-
less, this gigantic project mainly focused on rendering global scenes
at a bird’s-eye view; thus, the quality of the geometry and textures at
a street level significantly decreased. A more applicable method for
constructing walk-through experiences in urban streets was employed
by Geollery [16], which adopted an efficient transformation of a dense
spherical mesh to construct a local proxy geometry based on the depth
maps from Google Street View. Since this method depended on two
nearby street-view images and local depth information, frequent re-
source updates were required according to the user’s position, thus
causing temporally unstable results.

To cover a wide range of urban scenes, the proposed method also
depends on the global street-view images from Google Street View
and a mass of simplified 3D models that can be easily obtained from
open databases [1] as well as maps such images onto the scene geom-
etry as textures based on the seminal idea of view-dependent texture
mapping (VDTM) [13]. Specifically, since our method uses sparsely
sampled street-view images containing high-resolution and omnidirec-
tional scene information at their camera positions, the use of a large
number of image resources or frequent sampling of street-view images
to synthesize an adjacent novel view is not necessary. This property
results in temporally stable rendering quality regardless of the freely
changing view of the user, with a low computational cost.

However, handling gaps between simplified scene models and the
real geometry captured in street-view images remains as an important
issue. This gap causes erroneous texture mapping and perceptually
undesirable rendering results. To solve this issue, our key idea is to
extract semantic information, S, from the given street-view images and
to deploy this powerful information in proper intermediate steps by
the proposed system to enhance both the mapping accuracy and perfor-
mance time. First, S is used in the outline-matching-based image-model
registration to refine the raw extrinsic camera parameters provided by
Google Street View. Then, to correctly assign texture colors to ge-
ometric surfaces, S is used for testing semantic matching between a
real object in a street-view image and a target object to be textured.
Finally, to handle visual holes due to complex occlusions, S also helps
with the proposed semantic 3D inpainting, which uses both semantic
information and 3D geometry, thus providing perceptually convincing
hole-filling results with real-time performance. Ultimately, a user can
have free walk-through experiences in large-scale urban scenes with
high-quality novel views in real time.

Overall, main contributions of our work are summarized as follows:

• A novel, real-time, physically-based IBR system utilizing eas-
ily accessible open resources for high-quality free walk-through
experiences in various large-scale urban scenes at a street level.

• Efficient and accurate panoramic texture mapping, which makes
full use of the inferred semantic information of a scene in proper
intermediate steps of the proposed system pipeline.

• Effective real-time inpainting using both 3D geometry and seman-
tic information to support a dynamically changing novel-view
synthesis without visual holes due to complex occlusions.

2 RELATED WORK

Novel-View Synthesis Using Proxy Geometry. Generally, earlier
IBR approaches used various types of proxy geometries, such as 3D
meshes, depth images, or point clouds. Chaurasia et al. [7] suggested
a warping method using semi-automatically selected silhouettes and
densely reconstructed point clouds. In their following work [6], they
used shape-preserving warping based on superpixels and synthesized
depths for novel-view synthesis. Moreover, Penner et al. [41] suggested
a soft 3D representation of scene geometry based on local depth maps
and vote volumes. Those approaches aimed at plausible rendering of
challenging scenes with complex objects and uncertain geometries.

Hedman et al. [25] jointly used a coarse global 3D geometry and
detailed per-view meshes of an indoor scene using RGB-D input images.

For general purposes, they constructed panoramic 3D photographs [22]
with a texture, a normal map, and multilayered meshes of a scene from
casually captured RGB images, although dense reconstruction took a
few hours using multi-view stereo (MVS). In a follow-up work [23], a
faster and more novice-friendly method was suggested for constructing
3D panoramas using an input sequence of color-and-depth image pairs
captured from a dual-lens cell phone camera. However, such methods
still require dozens of input images to render a local scene or provide
limited free viewpoints; moreover, they are difficult to apply to global-
tour scenarios. Although convolutional neural networks (CNNs) [33]
have been used by recent IBR methods [18,19,24,31,37,53] and yielded
plausible results, they still support a narrow range of possible novel
viewpoints with distortion or blurring errors.

Without using detailed and thus time-consuming reconstruction of a
local scene, for our ultimate goal of novel-view synthesis in large-scale
urban scenes, we use simplified and fixed 3D models of various real
cities obtained from open resources. Moreover, to provide a coherently
rendered scene even when the user’s viewpoint dynamically changes,
our system deploys sparsely sampled panoramic street-view images as
textures, substituting dozens of nearby images with limited FoV.

3D Urban Reconstruction and Texturing. According to the types
of outputs, various urban-scene-reconstruction and rendering methods
were grouped by Musialski et al. [38]. To effectively handle large-scale
urban scenes, previous approaches often employed polygon-based ge-
ometric representations that were simplified and refined from initial
reconstructions using SfM or MVS. One representative work is by Xiao
et al. [50], who constructed simplified 3D building models from RGB
images captured at a street level. They separated the point clouds recon-
structed by SfM into the respective building blocks using a semantic
segmentation method, and then modeled and textured the simplified
facades of the building blocks.

Additionally, urban reconstruction methods have used more suitable
input resources, such as airborne images, point clouds from light detec-
tion and ranging (LiDAR) scans, and panoramic images with GPS and
IMU data, rather than relying solely on typical RGB or depth images
with limited FoVs. Siu et al. [44] took advantage of the wide FoVs of
panoramic images to obtain a scalable proxy geometry. To reconstruct
a plausible facade with its texture, Li et al. [35] complementarily used
RGB images and LiDAR data. Recently, with the development of open
resources, such as Google Street View [2] or OpenStreetMap [21], a
vast urban scene can be reconstructed more conveniently [32,40,43,48].
Although those methods can realistically render urban scenes, they
commonly depend on heavy precomputation to reconstruct detailed
geometry or to refine textures, which may be improper to large scenes.

Our method provides effective instant texture mapping of an entire
scene without significant dependence on a vast amount of precomputa-
tion. To compensate for the use of simplified geometry and sparsely
sampled street-view textures, our key idea is to deploy inferred seman-
tic information from street-view images in proper intermediate steps of
the whole process for an accurate and efficient texture mapping.

Inpainting for Untextured Holes. To deal with untextured areas,
which are invisible to all available cameras or occluded by other ge-
ometry when dynamically changing the user’s viewpoint, an effective
hole-filling algorithm is necessary. In previous IBR methods, simple
interpolation techniques were typically employed. For example, in
the pioneering work of VDTM [13], untextured regions were filled
with colors of the surrounding polygons. Du et al. [16] employed a
Gaussian filter to smoothly interpolate adjacent pixel colors in erro-
neous regions. Other methods, which mostly focused on facade-texture
mapping, used a constant color to fill untextured sides of a recon-
structed building [28, 50]. Although such approaches were suitable for
a real-time system, the inpainted results were blurred or unnatural, thus
lacking semantic awareness of a scene.

In an image space, plausible inpainting results have been yielded
by various methods that used Poisson’s equations [42], or a random-
ized nearest neighbor algorithm to find proper patch matches [4].
PixMix [27] found the best pixels to fill holes by mainly minimiz-
ing two cost functions: pixel distances in the 2D image space and color
differences between adjacent pixels. However, they still could not ob-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

PARK ET AL.: INSTANT PANORAMIC TEXTURE MAPPING WITH SEMANTIC OBJECT MATCHING FOR LARGE-SCALE URBAN SCENE... 2747

Instant Panoramic Texture Mapping with Semantic Object Matching
for Large-Scale Urban Scene Reproduction

Jinwoo Park∗, Ik-beom Jeon, Student Members, IEEE, Sung-eui Yoon, and Woontack Woo†, Members, IEEE

Fig. 1: Our proposed method extracts meaningful information, such as semantic segmentation, from readily obtainable street-view
images, refined extrinsic camera parameters, and rendered depth, for use in real-time processes. After a semantic object-matching
test, sparsely sampled street-view images are mapped onto open 3D scene models with proper blending weights, considering the
user’s position, followed by semantic 3D inpainting. Finally, novel views can be realistically synthesized to provide users with free
walk-through experiences in large-scale urban streets.

Abstract—This paper proposes a novel panoramic texture mapping-based rendering system for real-time, photorealistic reproduction
of large-scale urban scenes at a street level. Various image-based rendering (IBR) methods have recently been employed to synthesize
high-quality novel views, although they require an excessive number of adjacent input images or detailed geometry just to render local
views. While the development of global data, such as Google Street View, has accelerated interactive IBR techniques for urban scenes,
such methods have hardly been aimed at high-quality street-level rendering. To provide users with free walk-through experiences
in global urban streets, our system effectively covers large-scale scenes by using sparsely sampled panoramic street-view images
and simplified scene models, which are easily obtainable from open databases. Our key concept is to extract semantic information
from the given street-view images and to deploy it in proper intermediate steps of the suggested pipeline, which results in enhanced
rendering accuracy and performance time. Furthermore, our method supports real-time semantic 3D inpainting to handle occluded and
untextured areas, which appear often when the user’s viewpoint dynamically changes. Experimental results validate the effectiveness
of this method in comparison with the state-of-the-art approaches. We also present real-time demos in various urban streets.

Index Terms—Panoramic texture mapping, large-scale urban-scene rendering, novel-view synthesis, semantic object matching,
real-time inpainting, image-based rendering, virtual reality

1 INTRODUCTION

Photorealistic reproduction of real-world urban scenes has played a
significant role in empowering various virtual reality (VR) applications
that reflect the physical world, including virtual touring [20], geotagged
social media [16], or information visualization [5]. As a core technique
for maximizing the realism of such experiences, image-based rendering
(IBR) is one of the most active and important research topics in both
computer graphics and vision. In particular, according to the geometry-
image continuum of IBR [46], physically-based approaches [10, 14],
which generally map captured real images as textures onto a corre-
sponding virtual proxy geometry, are often employed to synthesize a
novel view with a wide range of free viewpoints for the user.

However, such traditional IBR methods typically require several

• Jinwoo Park, Ik-beom Jeon, and Woontack Woo are with KAIST UVR Lab..
E-mail: {jinwooaa | ikbeomjeon |wwoo}@kaist.ac.kr

• Sung-eui Yoon is with KAIST. E-mail: sungeui@kaist.ac.kr

decades or hundreds of neighboring images from a user’s viewpoint in
order to cover a restricted local area, thus causing difficulties in their
application to large-scale urban scenes. In addition, prior methods for
adjacent novel-view synthesis have depended on local geometric infor-
mation [23, 41, 50], which also limits the extensibility, although these
methods realistically synthesized novel views through the reconstruc-
tion of high-fidelity and dense meshes of local proxy geometry from
depth images [23,41] or point clouds [50]. Hence, such approaches can-
not support a full six degrees of freedom (DoFs), including translation
and rotation, for free walk-through experiences in large scenes.

With the development of global data obtained by leading companies
or research groups, advanced techniques for handling large-scale scenes
have recently been proposed. In particular, given the vast number of
street-level panoramic images and corresponding camera parameters
provided by Google Street View [2], a wide range of urban scenes
can be reconstructed [32, 48] from vision-based algorithms, such as
structure from motion (SfM), which can be used for IBR. Nevertheless,
such methods still require large databases of resource images and
proportionally high computation times to represent a scene at scale. In
addition, the reconstructed point clouds are too large to be used in a
real-time IBR system.

As a more interactive way to support users with highly realistic

fly-over experiences in world-scale urban scenes, Google Earth [20]
reconstructed in advance almost all global scene meshes with textures
using aerial photographs and rendered them in real time. Neverthe-
less, this gigantic project mainly focused on rendering global scenes
at a bird’s-eye view; thus, the quality of the geometry and textures at
a street level significantly decreased. A more applicable method for
constructing walk-through experiences in urban streets was employed
by Geollery [16], which adopted an efficient transformation of a dense
spherical mesh to construct a local proxy geometry based on the depth
maps from Google Street View. Since this method depended on two
nearby street-view images and local depth information, frequent re-
source updates were required according to the user’s position, thus
causing temporally unstable results.

To cover a wide range of urban scenes, the proposed method also
depends on the global street-view images from Google Street View
and a mass of simplified 3D models that can be easily obtained from
open databases [1] as well as maps such images onto the scene geom-
etry as textures based on the seminal idea of view-dependent texture
mapping (VDTM) [13]. Specifically, since our method uses sparsely
sampled street-view images containing high-resolution and omnidirec-
tional scene information at their camera positions, the use of a large
number of image resources or frequent sampling of street-view images
to synthesize an adjacent novel view is not necessary. This property
results in temporally stable rendering quality regardless of the freely
changing view of the user, with a low computational cost.

However, handling gaps between simplified scene models and the
real geometry captured in street-view images remains as an important
issue. This gap causes erroneous texture mapping and perceptually
undesirable rendering results. To solve this issue, our key idea is to
extract semantic information, S, from the given street-view images and
to deploy this powerful information in proper intermediate steps by
the proposed system to enhance both the mapping accuracy and perfor-
mance time. First, S is used in the outline-matching-based image-model
registration to refine the raw extrinsic camera parameters provided by
Google Street View. Then, to correctly assign texture colors to ge-
ometric surfaces, S is used for testing semantic matching between a
real object in a street-view image and a target object to be textured.
Finally, to handle visual holes due to complex occlusions, S also helps
with the proposed semantic 3D inpainting, which uses both semantic
information and 3D geometry, thus providing perceptually convincing
hole-filling results with real-time performance. Ultimately, a user can
have free walk-through experiences in large-scale urban scenes with
high-quality novel views in real time.

Overall, main contributions of our work are summarized as follows:

• A novel, real-time, physically-based IBR system utilizing eas-
ily accessible open resources for high-quality free walk-through
experiences in various large-scale urban scenes at a street level.

• Efficient and accurate panoramic texture mapping, which makes
full use of the inferred semantic information of a scene in proper
intermediate steps of the proposed system pipeline.

• Effective real-time inpainting using both 3D geometry and seman-
tic information to support a dynamically changing novel-view
synthesis without visual holes due to complex occlusions.

2 RELATED WORK

Novel-View Synthesis Using Proxy Geometry. Generally, earlier
IBR approaches used various types of proxy geometries, such as 3D
meshes, depth images, or point clouds. Chaurasia et al. [7] suggested
a warping method using semi-automatically selected silhouettes and
densely reconstructed point clouds. In their following work [6], they
used shape-preserving warping based on superpixels and synthesized
depths for novel-view synthesis. Moreover, Penner et al. [41] suggested
a soft 3D representation of scene geometry based on local depth maps
and vote volumes. Those approaches aimed at plausible rendering of
challenging scenes with complex objects and uncertain geometries.

Hedman et al. [25] jointly used a coarse global 3D geometry and
detailed per-view meshes of an indoor scene using RGB-D input images.

For general purposes, they constructed panoramic 3D photographs [22]
with a texture, a normal map, and multilayered meshes of a scene from
casually captured RGB images, although dense reconstruction took a
few hours using multi-view stereo (MVS). In a follow-up work [23], a
faster and more novice-friendly method was suggested for constructing
3D panoramas using an input sequence of color-and-depth image pairs
captured from a dual-lens cell phone camera. However, such methods
still require dozens of input images to render a local scene or provide
limited free viewpoints; moreover, they are difficult to apply to global-
tour scenarios. Although convolutional neural networks (CNNs) [33]
have been used by recent IBR methods [18,19,24,31,37,53] and yielded
plausible results, they still support a narrow range of possible novel
viewpoints with distortion or blurring errors.

Without using detailed and thus time-consuming reconstruction of a
local scene, for our ultimate goal of novel-view synthesis in large-scale
urban scenes, we use simplified and fixed 3D models of various real
cities obtained from open resources. Moreover, to provide a coherently
rendered scene even when the user’s viewpoint dynamically changes,
our system deploys sparsely sampled panoramic street-view images as
textures, substituting dozens of nearby images with limited FoV.

3D Urban Reconstruction and Texturing. According to the types
of outputs, various urban-scene-reconstruction and rendering methods
were grouped by Musialski et al. [38]. To effectively handle large-scale
urban scenes, previous approaches often employed polygon-based ge-
ometric representations that were simplified and refined from initial
reconstructions using SfM or MVS. One representative work is by Xiao
et al. [50], who constructed simplified 3D building models from RGB
images captured at a street level. They separated the point clouds recon-
structed by SfM into the respective building blocks using a semantic
segmentation method, and then modeled and textured the simplified
facades of the building blocks.

Additionally, urban reconstruction methods have used more suitable
input resources, such as airborne images, point clouds from light detec-
tion and ranging (LiDAR) scans, and panoramic images with GPS and
IMU data, rather than relying solely on typical RGB or depth images
with limited FoVs. Siu et al. [44] took advantage of the wide FoVs of
panoramic images to obtain a scalable proxy geometry. To reconstruct
a plausible facade with its texture, Li et al. [35] complementarily used
RGB images and LiDAR data. Recently, with the development of open
resources, such as Google Street View [2] or OpenStreetMap [21], a
vast urban scene can be reconstructed more conveniently [32,40,43,48].
Although those methods can realistically render urban scenes, they
commonly depend on heavy precomputation to reconstruct detailed
geometry or to refine textures, which may be improper to large scenes.

Our method provides effective instant texture mapping of an entire
scene without significant dependence on a vast amount of precomputa-
tion. To compensate for the use of simplified geometry and sparsely
sampled street-view textures, our key idea is to deploy inferred seman-
tic information from street-view images in proper intermediate steps of
the whole process for an accurate and efficient texture mapping.

Inpainting for Untextured Holes. To deal with untextured areas,
which are invisible to all available cameras or occluded by other ge-
ometry when dynamically changing the user’s viewpoint, an effective
hole-filling algorithm is necessary. In previous IBR methods, simple
interpolation techniques were typically employed. For example, in
the pioneering work of VDTM [13], untextured regions were filled
with colors of the surrounding polygons. Du et al. [16] employed a
Gaussian filter to smoothly interpolate adjacent pixel colors in erro-
neous regions. Other methods, which mostly focused on facade-texture
mapping, used a constant color to fill untextured sides of a recon-
structed building [28, 50]. Although such approaches were suitable for
a real-time system, the inpainted results were blurred or unnatural, thus
lacking semantic awareness of a scene.

In an image space, plausible inpainting results have been yielded
by various methods that used Poisson’s equations [42], or a random-
ized nearest neighbor algorithm to find proper patch matches [4].
PixMix [27] found the best pixels to fill holes by mainly minimiz-
ing two cost functions: pixel distances in the 2D image space and color
differences between adjacent pixels. However, they still could not ob-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

2748 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

Fig. 2: Overview. In a pre-process, our system constructs 3D Scene Data, which contains five different input resources: street-view images,
3D models, estimated panoramic-segmentation images, synthetic panoramic-depth images, and refined extrinsic camera parameters. For sparse
sampling of street-view images according to a user’s current position, 3D Scene Data is divided into smaller Districts. In a real-time process,
pixels in a position buffer at a current view are projected onto sampled street-view images to get texture colors. After passing a depth test and a
semantic object matching test, filtered candidate colors are properly blended as a final color. As a final step of complete scene rendering without
visual holes, low-pass filtering and semantic 3D inpainting are applied to sky and non-sky areas respectively. Note that our main contributions lie
on utilizing semantic information in the proper intermediate steps (marked in red boxes) to enhance both rendering quality and performance time.

tain semantic information on what to fill. Recent deep learning-based
methods trained semantically aware networks using a large dataset.
Conversely, Iizuka et al. [30] used expensive post-processing, and Yang
et al. [51] restricted the shapes of holes to be rectangular. As solutions,
context-aware inpaintings using partial convolutions (PCs) [36] and
gated convolutions [52] were suggested to handle irregular holes, but
they had difficulty dealing with high-resolution images in real time
and performing geometrically correct inpainting due to the lack of 3D
information (e.g., edges of a building in a hole were rarely preserved).

For complete urban-scene rendering with a free user’s viewpoint, our
method proposes a novel semantic 3D technique for natural, context-
aware inpainting that can handle large holes in real time.

3 METHOD

With the ultimate aim of providing a highly realistic experience of
real-world urban streets in VR, this paper proposes a novel instant
texture-mapping system using sparsely sampled panoramic street-view
images and open 3D models that cover large-scale global urban scenes.
As presented in Fig. 2, the proposed system comprises two main parts:
a pre-process for obtaining input resources and constructing a 3D scene
to be rendered (Sect. 3.1), and a real-time process that involves both
panoramic texture mapping (Sect. 3.2) and semantic 3D inpainting
(Sect. 3.3). To effectively enhance the rendering quality, our main idea
is to deploy semantic information extracted from the street-view images
in proper intermediate steps, such as image-3D model registration for
the refinement of raw extrinsic camera parameters from Google Street
View, semantic object-matching testing, and semantic 3D inpainting
(Sect. 3.3), as indicated in red boxes in Fig. 2.

To assign various types of panoramic-scene information captured
from a kth camera, including an RGB color in PIk (Panoramic Im-
age), a semantic object label in PSk (Panoramic Segmentation), and
a depth value in PDk (Panoramic Depth), to a 3D surface point, it is
necessary to know mapping relationship between the pixel position on
the panoramic image and the corresponding surface point [13]. For
this, our system basically uses projection function E from 3D point
pk

view in the camera coordinates to pixel uk on a panoramic image with
camera index k, based on the well-known spherical projection Esphere
and equirectangular projection Eequi in sequence:

uk = E(pk
view) = Eequi(Esphere(pk

view)). (1)

Please refer to the detailed explanation of this fundamental transforma-
tion in our supplementary material.

3.1 Resource Pre-acquisition

To render a wide variety of urban scenes using the proposed panoramic
texture-mapping system in real time, it is important to obtain five
different fundamental resources in advance, including a set of RGB
street-view images PI, 3D geometric data M, sets of semantically
segmented images PS, depth images PD, and refined extrinsic camera
parameters C. The last three sets are paired with the corresponding PI,
as described in Pre-process in Fig. 2. They are also managed using 3D
Scene Data to create a virtual scene that is actually rendered through
the following real-time process.

Open Data for Street-View Images and 3D Models. Thanks to the
development of techniques for global data acquisition using airborne or
panoramic images with an omnidirectional camera or inertial sensors,
it has become easier to obtain various global resources. Furthermore,
the existing map-service platforms or open databases usually provide
these data; thus, our system assumes that the basic resources PI and
M can be supported in most cases. In this study, Google Street View
images with 6,656×3,328 resolutions, which can be downloaded using
APIs provided by the Google Maps platform, are used as PI and City
GML 3D models from the open database [1] are used as M.

The three remaining types of resources need separate acquisition
processes, as explained in the following subsections. Since the semantic
information (PS) plays a significant role in our system in enhancing
the quality of the proposed panoramic texture mapping, we estimate
such information from PI using a deep learning-based method. Then,
the inferred PS is used for the image-model registration between PI
and M to refine the extrinsic camera parameters C. Finally, we render
panoramic-depth (PD) images using M and C for a depth test in real-
time texture mapping.

Deep Learning-Based Semantic Segmentation. To extract semanti-
cally segmented pixel information from a street-view image, we deploy
DeepLabv3+ [9], which is one of the leading deep learning-based ap-
proaches, as ranked by the Cityscapes Benchmark Suite1. To encode
multi-scale contextual information, it used Atrous Spatial Pyramid

1https://www.cityscapes-dataset.com/benchmarks/

Fig. 3: Camera-pose refinement result. Compared with a registration
result using a raw camera pose from Google Street View (left), building
models (red) on the right-hand image are better aligned with a street-
view image when using a refined camera pose computed by image-
model registration deploying inferred semantic information.

Pooling (ASPP) applied to its previous version [8], and also suggested
an effective decoder for refining the boundaries of segmented objects.

Although this network was not trained for panoramic-input images,
which may result in distortion errors, we found that segmentation results
were acceptable for our tested data. One reason for this may be that the
network has been well trained on the Cityscapes dataset [12], which
provides 5,000 large-scale urban scene images with high-quality dense
pixel annotations of 30 classes, which are fit to our target scenes. For
example, a segmentation image in the first row in Fig. 1 demonstrates
properly segmented boundaries of the sky, buildings, and the ground,
which are fundamental classes used by our system.

Camera-Pose Refinement Using Image Registration. For accurate
panoramic image projection E in Equation 1, it is important to prop-
erly obtain the camera parameters used to capture a resource texture.
Even though Google Street View provides extrinsic camera parame-
ters, including latitude, longitude, and elevation values, estimated by
GPS and IMU [2] for a corresponding panoramic image, such param-
eters still have errors of many meters, especially in the case of urban
environments, for which it is challenging to measure GPS data [32].

In this study, an effective image-3D model registration [47] based
on outline alignment is employed to refine a six-DoF extrinsic camera
pose Ck. The advantage of this method is that we can simply perform
optimization for individual cameras, unlike camera-pose estimation
using SfM [32] or bundle adjustment, which jointly consider multiple
cameras and require much time to operate, especially when a target
scene becomes larger. This image registration method optimizes an
energy function, which reaches its zero value when uk projected from a
world-space point, pworld , of the 3D models exactly overlaps on PIk,
thus causing the outlines from the 3D models to be aligned with those
from PIk. To realize this, we use a raw camera pose from Google Street
View as an initial value and then minimize a loss function:

argmin
ck

∥∥Λ(Ck)−Lk
∥∥

1 , (2)

where the outlines of the 3D models can be efficiently rendered through
function Λ using Ck with camera index k in a Unity shader (e.g., pink
lines in Fig. 3), and the boundaries Lk from PIk can be extracted using
a previously obtained semantic segmentation map PSk (e.g., cyan lines
in Fig. 3). Each pixel in those outline images has a binary value (0:
non-outline pixel, 1: outline pixel), and Equation 2 is minimized when
the optimal Ck is found, realizing the best registration.

To effectively find the best Ck, we deploy particle-swarm optimiza-
tion [11] using an evolutionary sampling method, where a set of random
camera poses, with user-defined thresholds for translation and rotation,
are iteratively sampled and for each iteration, a better sample of Ck
is searched by considering both a locally found optimum and a glob-
ally found one shared by all the other samples. Note that our method
depends on deep learning-based semantic segmentation, unlike the
classification method used in the original work [47]. That method
employed conditional random fields [34] trained on 70 labeled images,
which required additional iterative refinement during the image regis-
tration process. In Fig. 3, the registration result using a refined camera
pose demonstrates qualitatively better alignment than that using a raw
camera pose from Google Street View.

Fig. 4: Visualized panoramic texture-mapping process. After mapping
world-space point pi

world to pixel position ui
k in the panoramic image

space of kth camera Camk, pi
world is required to pass a depth test and

a semantic object-matching test. In the case of Cam4, pi
world cannot

pass a depth test as it is occluded by geometry and invisible to Cam4.
Although pi

world passes a depth test for Cam2, its semantic information
does not match an object class of ui

2 in a street view PI2 due to mis-
alignment between real and virtual geometries. Colors from PI1 and
PI3 are good candidates for blending described in (b). When deciding
a blending weight, distances between pi

world and Camk (disti−k), and
between user’s camera Camuser and Camk (distuser−k), as well as the
cosine between normal vector ni of pi

world and camera vector vk are
fully considered, providing more user location optimal blending results.

Panoramic-Depth Image. Our method renders a panoramic-depth
image PDk using 3D scene models M and a previously refined camera
pose Ck in advance and deploys PDk for a depth test. More details can
be found in our supplementary material.

Sampling Street-View Images from Districts. For the effective re-
source management, we employ a sparse sampling technique based
on the regularly divided world space similar to the partitioned global
geometry [25]. During preprocessing, the X-Z plane is separated into
small tiles, which we call Districts, based on the user-selected values
(50 m, in our system) of width and height. Of the street-view cameras
located in a district, we sample the one nearest to the district’s center
position, as indicated by yellow circles in 3D Scene Data with Districts
(Fig. 2). For the user’s current district, a maximum of eight adjacent
districts are deployed in a real-time texture-mapping process. Please
refer to our supplementary material for more details.

3.2 Panoramic Texture Mapping

In this section, we explain the proposed real-time panoramic texture
mapping that deploys previously acquired resources for large-scale
urban-scene reproduction. In each frame, our method renders G-buffers,
including position buffer Gp, segmentation buffer Gs, and normal buffer

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

PARK ET AL.: INSTANT PANORAMIC TEXTURE MAPPING WITH SEMANTIC OBJECT MATCHING FOR LARGE-SCALE URBAN SCENE... 2749

Fig. 2: Overview. In a pre-process, our system constructs 3D Scene Data, which contains five different input resources: street-view images,
3D models, estimated panoramic-segmentation images, synthetic panoramic-depth images, and refined extrinsic camera parameters. For sparse
sampling of street-view images according to a user’s current position, 3D Scene Data is divided into smaller Districts. In a real-time process,
pixels in a position buffer at a current view are projected onto sampled street-view images to get texture colors. After passing a depth test and a
semantic object matching test, filtered candidate colors are properly blended as a final color. As a final step of complete scene rendering without
visual holes, low-pass filtering and semantic 3D inpainting are applied to sky and non-sky areas respectively. Note that our main contributions lie
on utilizing semantic information in the proper intermediate steps (marked in red boxes) to enhance both rendering quality and performance time.

tain semantic information on what to fill. Recent deep learning-based
methods trained semantically aware networks using a large dataset.
Conversely, Iizuka et al. [30] used expensive post-processing, and Yang
et al. [51] restricted the shapes of holes to be rectangular. As solutions,
context-aware inpaintings using partial convolutions (PCs) [36] and
gated convolutions [52] were suggested to handle irregular holes, but
they had difficulty dealing with high-resolution images in real time
and performing geometrically correct inpainting due to the lack of 3D
information (e.g., edges of a building in a hole were rarely preserved).

For complete urban-scene rendering with a free user’s viewpoint, our
method proposes a novel semantic 3D technique for natural, context-
aware inpainting that can handle large holes in real time.

3 METHOD

With the ultimate aim of providing a highly realistic experience of
real-world urban streets in VR, this paper proposes a novel instant
texture-mapping system using sparsely sampled panoramic street-view
images and open 3D models that cover large-scale global urban scenes.
As presented in Fig. 2, the proposed system comprises two main parts:
a pre-process for obtaining input resources and constructing a 3D scene
to be rendered (Sect. 3.1), and a real-time process that involves both
panoramic texture mapping (Sect. 3.2) and semantic 3D inpainting
(Sect. 3.3). To effectively enhance the rendering quality, our main idea
is to deploy semantic information extracted from the street-view images
in proper intermediate steps, such as image-3D model registration for
the refinement of raw extrinsic camera parameters from Google Street
View, semantic object-matching testing, and semantic 3D inpainting
(Sect. 3.3), as indicated in red boxes in Fig. 2.

To assign various types of panoramic-scene information captured
from a kth camera, including an RGB color in PIk (Panoramic Im-
age), a semantic object label in PSk (Panoramic Segmentation), and
a depth value in PDk (Panoramic Depth), to a 3D surface point, it is
necessary to know mapping relationship between the pixel position on
the panoramic image and the corresponding surface point [13]. For
this, our system basically uses projection function E from 3D point
pk

view in the camera coordinates to pixel uk on a panoramic image with
camera index k, based on the well-known spherical projection Esphere
and equirectangular projection Eequi in sequence:

uk = E(pk
view) = Eequi(Esphere(pk

view)). (1)

Please refer to the detailed explanation of this fundamental transforma-
tion in our supplementary material.

3.1 Resource Pre-acquisition

To render a wide variety of urban scenes using the proposed panoramic
texture-mapping system in real time, it is important to obtain five
different fundamental resources in advance, including a set of RGB
street-view images PI, 3D geometric data M, sets of semantically
segmented images PS, depth images PD, and refined extrinsic camera
parameters C. The last three sets are paired with the corresponding PI,
as described in Pre-process in Fig. 2. They are also managed using 3D
Scene Data to create a virtual scene that is actually rendered through
the following real-time process.

Open Data for Street-View Images and 3D Models. Thanks to the
development of techniques for global data acquisition using airborne or
panoramic images with an omnidirectional camera or inertial sensors,
it has become easier to obtain various global resources. Furthermore,
the existing map-service platforms or open databases usually provide
these data; thus, our system assumes that the basic resources PI and
M can be supported in most cases. In this study, Google Street View
images with 6,656×3,328 resolutions, which can be downloaded using
APIs provided by the Google Maps platform, are used as PI and City
GML 3D models from the open database [1] are used as M.

The three remaining types of resources need separate acquisition
processes, as explained in the following subsections. Since the semantic
information (PS) plays a significant role in our system in enhancing
the quality of the proposed panoramic texture mapping, we estimate
such information from PI using a deep learning-based method. Then,
the inferred PS is used for the image-model registration between PI
and M to refine the extrinsic camera parameters C. Finally, we render
panoramic-depth (PD) images using M and C for a depth test in real-
time texture mapping.

Deep Learning-Based Semantic Segmentation. To extract semanti-
cally segmented pixel information from a street-view image, we deploy
DeepLabv3+ [9], which is one of the leading deep learning-based ap-
proaches, as ranked by the Cityscapes Benchmark Suite1. To encode
multi-scale contextual information, it used Atrous Spatial Pyramid

1https://www.cityscapes-dataset.com/benchmarks/

Fig. 3: Camera-pose refinement result. Compared with a registration
result using a raw camera pose from Google Street View (left), building
models (red) on the right-hand image are better aligned with a street-
view image when using a refined camera pose computed by image-
model registration deploying inferred semantic information.

Pooling (ASPP) applied to its previous version [8], and also suggested
an effective decoder for refining the boundaries of segmented objects.

Although this network was not trained for panoramic-input images,
which may result in distortion errors, we found that segmentation results
were acceptable for our tested data. One reason for this may be that the
network has been well trained on the Cityscapes dataset [12], which
provides 5,000 large-scale urban scene images with high-quality dense
pixel annotations of 30 classes, which are fit to our target scenes. For
example, a segmentation image in the first row in Fig. 1 demonstrates
properly segmented boundaries of the sky, buildings, and the ground,
which are fundamental classes used by our system.

Camera-Pose Refinement Using Image Registration. For accurate
panoramic image projection E in Equation 1, it is important to prop-
erly obtain the camera parameters used to capture a resource texture.
Even though Google Street View provides extrinsic camera parame-
ters, including latitude, longitude, and elevation values, estimated by
GPS and IMU [2] for a corresponding panoramic image, such param-
eters still have errors of many meters, especially in the case of urban
environments, for which it is challenging to measure GPS data [32].

In this study, an effective image-3D model registration [47] based
on outline alignment is employed to refine a six-DoF extrinsic camera
pose Ck. The advantage of this method is that we can simply perform
optimization for individual cameras, unlike camera-pose estimation
using SfM [32] or bundle adjustment, which jointly consider multiple
cameras and require much time to operate, especially when a target
scene becomes larger. This image registration method optimizes an
energy function, which reaches its zero value when uk projected from a
world-space point, pworld , of the 3D models exactly overlaps on PIk,
thus causing the outlines from the 3D models to be aligned with those
from PIk. To realize this, we use a raw camera pose from Google Street
View as an initial value and then minimize a loss function:

argmin
ck

∥∥Λ(Ck)−Lk
∥∥

1 , (2)

where the outlines of the 3D models can be efficiently rendered through
function Λ using Ck with camera index k in a Unity shader (e.g., pink
lines in Fig. 3), and the boundaries Lk from PIk can be extracted using
a previously obtained semantic segmentation map PSk (e.g., cyan lines
in Fig. 3). Each pixel in those outline images has a binary value (0:
non-outline pixel, 1: outline pixel), and Equation 2 is minimized when
the optimal Ck is found, realizing the best registration.

To effectively find the best Ck, we deploy particle-swarm optimiza-
tion [11] using an evolutionary sampling method, where a set of random
camera poses, with user-defined thresholds for translation and rotation,
are iteratively sampled and for each iteration, a better sample of Ck
is searched by considering both a locally found optimum and a glob-
ally found one shared by all the other samples. Note that our method
depends on deep learning-based semantic segmentation, unlike the
classification method used in the original work [47]. That method
employed conditional random fields [34] trained on 70 labeled images,
which required additional iterative refinement during the image regis-
tration process. In Fig. 3, the registration result using a refined camera
pose demonstrates qualitatively better alignment than that using a raw
camera pose from Google Street View.

Fig. 4: Visualized panoramic texture-mapping process. After mapping
world-space point pi

world to pixel position ui
k in the panoramic image

space of kth camera Camk, pi
world is required to pass a depth test and

a semantic object-matching test. In the case of Cam4, pi
world cannot

pass a depth test as it is occluded by geometry and invisible to Cam4.
Although pi

world passes a depth test for Cam2, its semantic information
does not match an object class of ui

2 in a street view PI2 due to mis-
alignment between real and virtual geometries. Colors from PI1 and
PI3 are good candidates for blending described in (b). When deciding
a blending weight, distances between pi

world and Camk (disti−k), and
between user’s camera Camuser and Camk (distuser−k), as well as the
cosine between normal vector ni of pi

world and camera vector vk are
fully considered, providing more user location optimal blending results.

Panoramic-Depth Image. Our method renders a panoramic-depth
image PDk using 3D scene models M and a previously refined camera
pose Ck in advance and deploys PDk for a depth test. More details can
be found in our supplementary material.

Sampling Street-View Images from Districts. For the effective re-
source management, we employ a sparse sampling technique based
on the regularly divided world space similar to the partitioned global
geometry [25]. During preprocessing, the X-Z plane is separated into
small tiles, which we call Districts, based on the user-selected values
(50 m, in our system) of width and height. Of the street-view cameras
located in a district, we sample the one nearest to the district’s center
position, as indicated by yellow circles in 3D Scene Data with Districts
(Fig. 2). For the user’s current district, a maximum of eight adjacent
districts are deployed in a real-time texture-mapping process. Please
refer to our supplementary material for more details.

3.2 Panoramic Texture Mapping

In this section, we explain the proposed real-time panoramic texture
mapping that deploys previously acquired resources for large-scale
urban-scene reproduction. In each frame, our method renders G-buffers,
including position buffer Gp, segmentation buffer Gs, and normal buffer

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

2750 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

Fig. 5: Effects of the texture-filtering tests. When using raw projective
texture mapping without any tests, textures pass through geometries
and are mapped onto all intersecting surfaces (a). Although depth tests
roughly filter out incorrectly projected textures (b), errors still remain
due to imperfect depth information from simplified 3D models. Our
system enhances projection accuracy using semantic information (c).

Gn, according to the user’s current camera view. Then, using the view
matrix and projection E in Equation 1, every world-space point pi

world
in Gp is mapped onto the corresponding pixel position ui

k on each
sampled street-view image PIk with camera index k. Finally, through
this mapping, texture colors can be assigned from the sampled PIks to
possible pixels in the current view, as presented in Fig. 4-(a). However,
not all such colors can be used to produce a final color for a specific
surface pixel due to possible projection errors in Fig. 5-(a).

Thus, our system selects available candidate texture colors from sam-
pled PIks and calculates proper weights to blend them. To effectively
enhance texture mapping accuracy, we propose to use not only PDks to
filter out wrongly projected texture colors on occluded surface points
in a depth test, but also PSks to choose contextually correct candidates
in a semantic object-matching test, followed by novel blending weights
to render perceptually natural results, as shown in Fig. 4.

Depth Test. The purpose of the depth test is to handle a well-known
penetrating problem of naive projective texture mapping [13], whereby
the pixel colors of texture PIk visible to camera k may be incorrectly
mapped onto the occluded geometry behind them. Since our system
already rendered a synthetic panoramic-depth image, PDk, of the 3D
scene models according to refined extrinsic camera parameters Ck, it
can simply decide whether or not an arbitrary 3D point pi

world in Gp
is visible to camera k by comparing the distance between the camera
position and pi

world with the depth value of pixel ui
k in PDk.

Although this depth test can eliminate most projection errors, it is
not an optimal solution due to the following reasons: (1) an imperfect
depth map PDk can arise with simplified 3D models, and (2) calibration
errors of the refined extrinsic camera parameters Ck may result in
misregistration between the real geometry in a street-view image PIk
and the synthetic scene geometry. Consequently, texture colors can still
be projected onto a semantically inappropriate target object, as shown
in Fig. 5-(b). Therefore, our method performs an additional semantic
object-matching test to precisely remove such remaining errors.

Semantic Object-Matching Test. Unlike previous works focused on
mapping a texture onto a specific object of interest [15,50], the proposed
system aims at simultaneous texture mapping of various objects in a
whole scene, requiring more elaborate matching between a texture and
a target object. Therefore, to solve the remaining projection errors in a
depth test, the deployment of semantic information on the respective
objects in the current scene can be an effective solution to precisely
assign texture colors. We are not the first to utilize semantic information
to address this problem. Xiao et al. [50] also used such information
to separate a reconstructed point cloud into respective buildings and
to compose their textures. However, its offline usage was limited to
dealing with buildings without considering other important elements,
such as the sky or the ground, which should be properly rendered for
realistic urban scenes.

Our method uses panoramic semantic segmentation map PSk in
the real-time texture-mapping process to assign a color from PIk to a
correct target object by conducting an object-matching test. Since PSk
estimated previously from the DeepLabv3+ network [9] can classify
each PIk pixel based on pre-trained object classes and various urban

Fig. 6: Blending result comparison. Compared with our blending
weight that considers the user’s current position, Holoportation [39]
sets a weight using cosine between a surface normal vector and a
resource-camera vector, whereas Montage4D [15] uses cosine between
a user’s camera vector and a resource-camera vector. Since our method
can recognize that trees behind a user are invisible in the current view,
proper building-texture colors are mapped without the trees.

scenes in the Cityscapes dataset [12], we can obtain accurate and clear
boundaries for the different object areas. Specifically, assuming that
a 3D model has a known label defined in DeepLabv3+, the semantic
object-matching test succeeds when the label of a surface point pi

world
on the model and an estimated class of ui

k in PSk are the same. Hence,
our system can filter out an incorrect texture color projected onto a
mismatched object (e.g., a removed texture color of a building projected
onto the sky, as in Fig. 5).

Multi-texturing Using Weighted Blending. After completing the
previous tests, the selected candidate texture colors from the sampled
street-view images PIk must be interpolated to synthesize the final color.
Basically, given N candidate colors, output color oi is interpolated using
normalized weights ŵi

k as follows:

oi =
N

∑
k=1

ŵi
k · I(k,u

i
k), (3)

where ui
k denotes a projected pixel position of a surface point pi

world
on PIk with camera index k through the projection function E in Equa-
tion 1, and texture function I gives a pixel color at ui

k. For high-quality
texture mapping, a proper blending method needs to be established
considering three key factors that are described in [15]: smoothness for
lowering discontinuities between different textured areas, sharpness for
preserving details of the original texture, and temporal consistency of
the blending results when a user’s viewpoint changes.

Starting from the pioneering work of Debevec et al. [13], which
set blending weights based on the angle between a surface normal
and a texture-camera vector, various methods have been introduced
for choosing proper weights for image-space blending [17, 42] or
real-time VDTM [15, 39]. In particular, the Holoportation [39] and
Montage4D [15] algorithms effectively decreased ghosting effects by
deploying dilated depth maps and majority-color voting with well-
calibrated camera parameters in an indoor environment. However,
these are insufficient for application to our system, which uses fewer
and more sparsely sampled textures with imperfect camera parameters
Ck to cover a large-scale urban scene.

Therefore, we use a novel blending weight motivated by a funda-
mental energy-transfer equation [3] for calculating intensity of incident
light upon a surface based on the inverse-square law between energy
and distance. Furthermore, the proposed weight considers geometric
relationships not only between texture camera Ck and pi

world , but also
between Ck and the user’s current position as follows:

wi
k =

max(0, ni · vk)
α

(disti−k)2(distuser−k)2 , (4)

where ni denotes a normal vector on surface point pi
world , and vk de-

notes a camera vector from pi
world to kth camera position tk. α denotes

a smoothness term (α = 4, in our system). Also, disti−k and distuser−k
denote distances between pi

world and tk and between the user’s position
and tk, respectively. As demonstrated by the comparative examples in

Fig. 7: Seamless sky low-pass filtering. After panoramic texture map-
ping, the raw-input sky still has visual errors (a). So, our system first
separates sky areas (b), and then fills in holes with an average sky color
(c). After downsampling this image (d), a 5×5 Gaussian filter is applied
for convolution (e), and iterative ×2 upsampling and low-pass filtering
are executed until the image has the original resolution (f). Finally, the
refined sky is composed with previously separated non-sky areas (g).

Fig. 6, the main advantage of the proposed blending weight is its ability
to calculate more accurate colors at the user’s location while observing
the three key factors explained for blending.

3.3 Real-Time Inpainting Using Semantic Segmentation
Even though sparsely sampled street-view images can be mapped onto
most of the 3D scenes currently in the user’s view, occluded and un-
treated surfaces invisible to any texture camera still remain. Since
our system aims to provide six DoFs for the user’s viewpoint, such
untextured areas should be properly handled for the complete rendering.

In the first trial, we applied previous 2D inpainting methods [27,
42] and recent deep learning-based methods [36, 52], which yielded
advanced context-aware inpainting results but still required much time,
making them unsuitable for our real-time system. Therefore, we suggest
a novel inpainting method that separately manages the sky and non-sky
areas to effectively reduce the computation time. Specifically, cascaded
low-pass filters are applied to the sky areas and deal with untextured
holes and remaining visual errors simultaneously. For non-sky areas,
the proposed inpainting method fills geometrically and semantically
matching texture colors in real time.

Seamless Sky with Cascaded Low-Pass Filtering. When mapping
multiple textures onto the sky, we found three notable artifacts: 1)
visual seams due to differing conditions of the sky, such as brightness
and shapes of clouds, as captured in respective street-view images; 2)
remaining projection errors caused by imperfect classification of the
employed DeepLabv3+; and 3) untextured sky areas, which cannot be
covered by sampled street-view images due to occlusion by skyscrapers,
as shown in Fig. 7-(a).

To effectively handle these problems, we focus on the fact that the
sky contains relatively lower-frequency information than buildings,
which have sophisticated textures, such as patterns on exterior walls
or signboards. Thus, instead of using expensive algorithms to remove
visual seams and fill-in holes, we apply multi-level low-pass filtering
to sky areas to solve these issues simultaneously. As shown in Fig. 7, a
previously texture-mapped scene is first divided into sky and non-sky
parts; then, the untextured sky areas are filled with an average sky color
for the current frame. Subsequently, we use the k-nearest neighbor
downsampling to resize this image into 32×16 resolutions. Here, a 5×5
Gaussian filter with a standard deviation of 5.0 is applied to the image
to convolute and naturally blur pixel colors. Finally, the width of the
image doubles through every upsampling with the low-pass filter until
the image size returns to its original value. Thus, our method yields a
convincing result without visual seams, projection errors, or untextured
pixels of the sky while still containing meaningful color variations,
such as the top-right bright areas of white clouds in Fig. 7-(f).

Semantic 3D PixMix. Unlike the sky, untextured non-sky areas need
to be seamlessly filled with high-frequency and semantically proper
texture colors to provide a realistic urban scene. Therefore, the pro-
posed method uses an advanced inpainting technique, which considers

Fig. 8: Semantic 3D PixMix inpainting. A pixel p(px, py) in T needs
optimal transformation function f (px, py) to find a proper source pixel
in S. Our system uses a total cost function containing a spatial cost,
an appearance cost, and a matching cost. With regard to the spatial
cost, f (px + 1, py) has zero cost while maintaining the same spatial
structure both in T and S. Contrarily, f (px −1, py) is the worst case,
as it aggravates the spatial cost. In the case of the appearance cost,
adjacent pixel colors of p need to be similar to those of transformed p
in S. Finally, to minimize the matching cost, a replaceable source pixel
should have the same label as that of p. Since p is labeled in blue, it
cannot be replaced by a source pixel with an orange label.

the 3D geometric and semantic information of a current scene based on
the high-quality 2D inpainting method called PixMix [27].

PixMix yielded convincing results by iteratively finding per-pixel
transformation function f : T → S from target pixel p in untextured
area T to a source pixel in already-textured area S, as described in
Fig. 8. When the proper f is found for every p, the color of each p is
replaced by a determined source color in S for a final image. To obtain
the best mapping function f , PixMix solved the global minimization
problem of a total function consisting of two types of costs, i.e., spatial
cost Costs and appearance cost Costa [27]:

Costs(p) = ∑
−→v ∈Ns

ds[f (p+−→v), f (p)+−→v] ·ws(
−→v), (5)

Costa(p) = ∑
−→v ∈Na

da[h(p+−→v),h(f (p)+−→v)] ·wa(p+−→v). (6)

Here, p = (px, py)
� denotes a pixel position in T , and N(·) denotes

relative positions of neighboring pixels around p, which contains el-
ement vectors −→v from p to neighboring pixels, except −→v = 0�. As
in the original work, patch sizes of 3×3 and 5×5 were used for Ns
and Na respectively, and importance weight w(·) basically has uniform
weight w(·)(

−→v) = 1/|N(·)|. However, in the case of wa, an adjacent
pixel on the border between T and S selectively has a large weight
for a high impact on Costa, which can reduce the border effects. For
distance functions ds and da, a squared Euclidean distance is used.
Intuitively, minimizing Costs means that neighbors of target pixel p are
nearly mapped onto those of f (p) while maintaining similar surround-
ing structures. When h(p) denotes a pixel color of p, minimizing Costa
helps p have neighboring pixels colors similar to those of f (p).

Although PixMix also yielded convincing real-time video-inpainting
results, it had difficulty filling in holes with a non-planar background
and lacked semantic matching between the source and target pixels. Our
method extends PixMix for deployment to 3D geometry and semantic
information of a current scene using the following total cost function:

Costtotal(p) = α ·Costs(p)+(1−α) ·Costa(p)+Costm(p). (7)

Here, the matching cost Costm(p) is 0 when a semantic label of p
and that of f (p) are the same, whereas it is ∞ in the other cases. Note
that we can obtain the label of target pixel p from a known class of
a 3D model to which p belongs; however, the label of source pixel
f (p) is obtained from PSk of the most influential candidate texture PIk
selected in the previous weighted blending step. This facilitates in more
accurately finding a semantically proper source pixel than by using just

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

PARK ET AL.: INSTANT PANORAMIC TEXTURE MAPPING WITH SEMANTIC OBJECT MATCHING FOR LARGE-SCALE URBAN SCENE... 2751

Fig. 5: Effects of the texture-filtering tests. When using raw projective
texture mapping without any tests, textures pass through geometries
and are mapped onto all intersecting surfaces (a). Although depth tests
roughly filter out incorrectly projected textures (b), errors still remain
due to imperfect depth information from simplified 3D models. Our
system enhances projection accuracy using semantic information (c).

Gn, according to the user’s current camera view. Then, using the view
matrix and projection E in Equation 1, every world-space point pi

world
in Gp is mapped onto the corresponding pixel position ui

k on each
sampled street-view image PIk with camera index k. Finally, through
this mapping, texture colors can be assigned from the sampled PIks to
possible pixels in the current view, as presented in Fig. 4-(a). However,
not all such colors can be used to produce a final color for a specific
surface pixel due to possible projection errors in Fig. 5-(a).

Thus, our system selects available candidate texture colors from sam-
pled PIks and calculates proper weights to blend them. To effectively
enhance texture mapping accuracy, we propose to use not only PDks to
filter out wrongly projected texture colors on occluded surface points
in a depth test, but also PSks to choose contextually correct candidates
in a semantic object-matching test, followed by novel blending weights
to render perceptually natural results, as shown in Fig. 4.

Depth Test. The purpose of the depth test is to handle a well-known
penetrating problem of naive projective texture mapping [13], whereby
the pixel colors of texture PIk visible to camera k may be incorrectly
mapped onto the occluded geometry behind them. Since our system
already rendered a synthetic panoramic-depth image, PDk, of the 3D
scene models according to refined extrinsic camera parameters Ck, it
can simply decide whether or not an arbitrary 3D point pi

world in Gp
is visible to camera k by comparing the distance between the camera
position and pi

world with the depth value of pixel ui
k in PDk.

Although this depth test can eliminate most projection errors, it is
not an optimal solution due to the following reasons: (1) an imperfect
depth map PDk can arise with simplified 3D models, and (2) calibration
errors of the refined extrinsic camera parameters Ck may result in
misregistration between the real geometry in a street-view image PIk
and the synthetic scene geometry. Consequently, texture colors can still
be projected onto a semantically inappropriate target object, as shown
in Fig. 5-(b). Therefore, our method performs an additional semantic
object-matching test to precisely remove such remaining errors.

Semantic Object-Matching Test. Unlike previous works focused on
mapping a texture onto a specific object of interest [15,50], the proposed
system aims at simultaneous texture mapping of various objects in a
whole scene, requiring more elaborate matching between a texture and
a target object. Therefore, to solve the remaining projection errors in a
depth test, the deployment of semantic information on the respective
objects in the current scene can be an effective solution to precisely
assign texture colors. We are not the first to utilize semantic information
to address this problem. Xiao et al. [50] also used such information
to separate a reconstructed point cloud into respective buildings and
to compose their textures. However, its offline usage was limited to
dealing with buildings without considering other important elements,
such as the sky or the ground, which should be properly rendered for
realistic urban scenes.

Our method uses panoramic semantic segmentation map PSk in
the real-time texture-mapping process to assign a color from PIk to a
correct target object by conducting an object-matching test. Since PSk
estimated previously from the DeepLabv3+ network [9] can classify
each PIk pixel based on pre-trained object classes and various urban

Fig. 6: Blending result comparison. Compared with our blending
weight that considers the user’s current position, Holoportation [39]
sets a weight using cosine between a surface normal vector and a
resource-camera vector, whereas Montage4D [15] uses cosine between
a user’s camera vector and a resource-camera vector. Since our method
can recognize that trees behind a user are invisible in the current view,
proper building-texture colors are mapped without the trees.

scenes in the Cityscapes dataset [12], we can obtain accurate and clear
boundaries for the different object areas. Specifically, assuming that
a 3D model has a known label defined in DeepLabv3+, the semantic
object-matching test succeeds when the label of a surface point pi

world
on the model and an estimated class of ui

k in PSk are the same. Hence,
our system can filter out an incorrect texture color projected onto a
mismatched object (e.g., a removed texture color of a building projected
onto the sky, as in Fig. 5).

Multi-texturing Using Weighted Blending. After completing the
previous tests, the selected candidate texture colors from the sampled
street-view images PIk must be interpolated to synthesize the final color.
Basically, given N candidate colors, output color oi is interpolated using
normalized weights ŵi

k as follows:

oi =
N

∑
k=1

ŵi
k · I(k,u

i
k), (3)

where ui
k denotes a projected pixel position of a surface point pi

world
on PIk with camera index k through the projection function E in Equa-
tion 1, and texture function I gives a pixel color at ui

k. For high-quality
texture mapping, a proper blending method needs to be established
considering three key factors that are described in [15]: smoothness for
lowering discontinuities between different textured areas, sharpness for
preserving details of the original texture, and temporal consistency of
the blending results when a user’s viewpoint changes.

Starting from the pioneering work of Debevec et al. [13], which
set blending weights based on the angle between a surface normal
and a texture-camera vector, various methods have been introduced
for choosing proper weights for image-space blending [17, 42] or
real-time VDTM [15, 39]. In particular, the Holoportation [39] and
Montage4D [15] algorithms effectively decreased ghosting effects by
deploying dilated depth maps and majority-color voting with well-
calibrated camera parameters in an indoor environment. However,
these are insufficient for application to our system, which uses fewer
and more sparsely sampled textures with imperfect camera parameters
Ck to cover a large-scale urban scene.

Therefore, we use a novel blending weight motivated by a funda-
mental energy-transfer equation [3] for calculating intensity of incident
light upon a surface based on the inverse-square law between energy
and distance. Furthermore, the proposed weight considers geometric
relationships not only between texture camera Ck and pi

world , but also
between Ck and the user’s current position as follows:

wi
k =

max(0, ni · vk)
α

(disti−k)2(distuser−k)2 , (4)

where ni denotes a normal vector on surface point pi
world , and vk de-

notes a camera vector from pi
world to kth camera position tk. α denotes

a smoothness term (α = 4, in our system). Also, disti−k and distuser−k
denote distances between pi

world and tk and between the user’s position
and tk, respectively. As demonstrated by the comparative examples in

Fig. 7: Seamless sky low-pass filtering. After panoramic texture map-
ping, the raw-input sky still has visual errors (a). So, our system first
separates sky areas (b), and then fills in holes with an average sky color
(c). After downsampling this image (d), a 5×5 Gaussian filter is applied
for convolution (e), and iterative ×2 upsampling and low-pass filtering
are executed until the image has the original resolution (f). Finally, the
refined sky is composed with previously separated non-sky areas (g).

Fig. 6, the main advantage of the proposed blending weight is its ability
to calculate more accurate colors at the user’s location while observing
the three key factors explained for blending.

3.3 Real-Time Inpainting Using Semantic Segmentation
Even though sparsely sampled street-view images can be mapped onto
most of the 3D scenes currently in the user’s view, occluded and un-
treated surfaces invisible to any texture camera still remain. Since
our system aims to provide six DoFs for the user’s viewpoint, such
untextured areas should be properly handled for the complete rendering.

In the first trial, we applied previous 2D inpainting methods [27,
42] and recent deep learning-based methods [36, 52], which yielded
advanced context-aware inpainting results but still required much time,
making them unsuitable for our real-time system. Therefore, we suggest
a novel inpainting method that separately manages the sky and non-sky
areas to effectively reduce the computation time. Specifically, cascaded
low-pass filters are applied to the sky areas and deal with untextured
holes and remaining visual errors simultaneously. For non-sky areas,
the proposed inpainting method fills geometrically and semantically
matching texture colors in real time.

Seamless Sky with Cascaded Low-Pass Filtering. When mapping
multiple textures onto the sky, we found three notable artifacts: 1)
visual seams due to differing conditions of the sky, such as brightness
and shapes of clouds, as captured in respective street-view images; 2)
remaining projection errors caused by imperfect classification of the
employed DeepLabv3+; and 3) untextured sky areas, which cannot be
covered by sampled street-view images due to occlusion by skyscrapers,
as shown in Fig. 7-(a).

To effectively handle these problems, we focus on the fact that the
sky contains relatively lower-frequency information than buildings,
which have sophisticated textures, such as patterns on exterior walls
or signboards. Thus, instead of using expensive algorithms to remove
visual seams and fill-in holes, we apply multi-level low-pass filtering
to sky areas to solve these issues simultaneously. As shown in Fig. 7, a
previously texture-mapped scene is first divided into sky and non-sky
parts; then, the untextured sky areas are filled with an average sky color
for the current frame. Subsequently, we use the k-nearest neighbor
downsampling to resize this image into 32×16 resolutions. Here, a 5×5
Gaussian filter with a standard deviation of 5.0 is applied to the image
to convolute and naturally blur pixel colors. Finally, the width of the
image doubles through every upsampling with the low-pass filter until
the image size returns to its original value. Thus, our method yields a
convincing result without visual seams, projection errors, or untextured
pixels of the sky while still containing meaningful color variations,
such as the top-right bright areas of white clouds in Fig. 7-(f).

Semantic 3D PixMix. Unlike the sky, untextured non-sky areas need
to be seamlessly filled with high-frequency and semantically proper
texture colors to provide a realistic urban scene. Therefore, the pro-
posed method uses an advanced inpainting technique, which considers

Fig. 8: Semantic 3D PixMix inpainting. A pixel p(px, py) in T needs
optimal transformation function f (px, py) to find a proper source pixel
in S. Our system uses a total cost function containing a spatial cost,
an appearance cost, and a matching cost. With regard to the spatial
cost, f (px + 1, py) has zero cost while maintaining the same spatial
structure both in T and S. Contrarily, f (px −1, py) is the worst case,
as it aggravates the spatial cost. In the case of the appearance cost,
adjacent pixel colors of p need to be similar to those of transformed p
in S. Finally, to minimize the matching cost, a replaceable source pixel
should have the same label as that of p. Since p is labeled in blue, it
cannot be replaced by a source pixel with an orange label.

the 3D geometric and semantic information of a current scene based on
the high-quality 2D inpainting method called PixMix [27].

PixMix yielded convincing results by iteratively finding per-pixel
transformation function f : T → S from target pixel p in untextured
area T to a source pixel in already-textured area S, as described in
Fig. 8. When the proper f is found for every p, the color of each p is
replaced by a determined source color in S for a final image. To obtain
the best mapping function f , PixMix solved the global minimization
problem of a total function consisting of two types of costs, i.e., spatial
cost Costs and appearance cost Costa [27]:

Costs(p) = ∑
−→v ∈Ns

ds[f (p+−→v), f (p)+−→v] ·ws(
−→v), (5)

Costa(p) = ∑
−→v ∈Na

da[h(p+−→v),h(f (p)+−→v)] ·wa(p+−→v). (6)

Here, p = (px, py)
� denotes a pixel position in T , and N(·) denotes

relative positions of neighboring pixels around p, which contains el-
ement vectors −→v from p to neighboring pixels, except −→v = 0�. As
in the original work, patch sizes of 3×3 and 5×5 were used for Ns
and Na respectively, and importance weight w(·) basically has uniform
weight w(·)(

−→v) = 1/|N(·)|. However, in the case of wa, an adjacent
pixel on the border between T and S selectively has a large weight
for a high impact on Costa, which can reduce the border effects. For
distance functions ds and da, a squared Euclidean distance is used.
Intuitively, minimizing Costs means that neighbors of target pixel p are
nearly mapped onto those of f (p) while maintaining similar surround-
ing structures. When h(p) denotes a pixel color of p, minimizing Costa
helps p have neighboring pixels colors similar to those of f (p).

Although PixMix also yielded convincing real-time video-inpainting
results, it had difficulty filling in holes with a non-planar background
and lacked semantic matching between the source and target pixels. Our
method extends PixMix for deployment to 3D geometry and semantic
information of a current scene using the following total cost function:

Costtotal(p) = α ·Costs(p)+(1−α) ·Costa(p)+Costm(p). (7)

Here, the matching cost Costm(p) is 0 when a semantic label of p
and that of f (p) are the same, whereas it is ∞ in the other cases. Note
that we can obtain the label of target pixel p from a known class of
a 3D model to which p belongs; however, the label of source pixel
f (p) is obtained from PSk of the most influential candidate texture PIk
selected in the previous weighted blending step. This facilitates in more
accurately finding a semantically proper source pixel than by using just

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

2752 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

Fig. 9: Intermediate results with qualitative comparisons against recent
inapinting methods. Baseline uses panoramic texture mapping with
only depth testing (b). After semantic object-matching test, most projec-
tion errors in sky areas can be removed (c). With sky low-pass filtering,
visual errors and holes are simultaneously handled (d). Finally, our
semantic 3D inpainting naturally fills remaining holes, which requires
more detailed textures (e). Note that, contrary to ours, PixMix [26]
cannot fill in contextually correct colors on a building side (f), whereas
deep learning-based method using partial convolutions (PCs) [36] loses
geometric information, causing blurred building edges in the holes (g).

semantic labels of the 3D models for both p and f (p). To consider 3D
geometric structures already known from Gp, we calculate the spatial
cost using 3D positions of f (p+−→v) and f (p)+−→v , and a 3D distance
function ds. To set the control parameter α ∈ [0,1], we use 0.5.

The main advantage of using semantic information is that the search
range for f (p) can be effectively decreased by sampling contextually
matching source pixels. Furthermore, our method can better fill large
holes with a non-planar background than the method in the previous
work, as it uses 3D geometric structures, as shown in Fig. 9. Please
refer to our supplementary material for more detailed parameters.

4 RESULTS AND ANALYSIS

4.1 Evaluation of System Performance
To validate necessity of the suggested techniques, including the seman-
tic object-matching test, low-pass filtering for seamless sky areas, and
semantic 3D inpainting, we first demonstrate how those respective steps
can increase the quality of novel-view synthesis by comparing each
intermediate-rendering result with a ground-truth novel view sampled
from a Google Street View image.

Experimental Design. To sample test-image sets, we construct
experimental areas of 1km2 in three different global urban scenes,
including Berlin in Germany, Vienna in Austria, and Daejeon in South
Korea; their 3D models can be obtained from open databases [1,45]. For
each test area, Google Maps provides about 850 street-view images, of
which 350 are typically used for the proposed texture-mapping method
when we use a district size of 50m2. Then, we randomly select 20% of
the remaining 500 street-view images, such that 100 testable street-view
images with corresponding camera parameters can be selected.

Then, using each selected street-view image, a ground-truth novel
view is rendered with a random camera direction, a FoV of 60°, and
image resolutions of 1024×512, as shown in Fig. 9-(a). With the same
camera and image configurations of the corresponding ground truth

Table 1: Quantitative results for intermediate steps. Using 300 arbitrary
test views from 3 different urban settings, respective steps, as shown in
Fig. 9, are measured against ground truth by RMSE and SSIM.

Intermediate Steps RMSE SSIM

Baseline 0.309 0.510
+ Semantic Object Matching Test 0.306 0.539
+ Sky Low-Pass Filtering (Ours w/ Holes) 0.305 0.553
+ Semantic 3D Inpainting (Ours) 0.244 0.584

Ours w/ Holes + PixMix [26] 0.259 0.561
Ours w/ Holes + Partial Convolutions [36] 0.252 0.559

images, we also render novel views using respective progressive steps
of the proposed system. Specifically, for the Baseline rendering shown
in Fig. 9-(b), colors from sampled street-view images are mapped onto
surfaces of 3D models after a depth test and after weighted blending is
performed, similar to typical VDTM works [13, 15]. Then, using the
respective proposed steps, the intermediate results are rendered.

Errors between the ground-truth and intermediate-rendering results
are measured using two different metrics: the root-mean-square er-
ror (RMSE) and the structural similarity index measure (SSIM) [49].
Note that the measurement of only absolute per-pixel differences us-
ing RMSE may be insufficient as even subtle errors in the obtainable
camera parameters and geometries can have excessive effects. In this
regard, SSIM can be an appropriate supplementary metric for measur-
ing perception-based errors while considering structural similarities
between two images.

Results. Quantitative results presented in Table 1 indicate that each
proposed step enhances the rendering quality in terms of both RMSE
and SSIM. However, overall variance of SSIM is bigger than that of
RMSE, showing that each step has a greater effects on the structural and
perceptual accuracy than on pixel-by-pixel correctness. For example,
in Fig. 9-(c) and (d), when using a semantic object-matching test to
select candidate texture colors and low-pass filtering for sky areas, it
is noticeable that erroneously mapped object colors and visual seams
can be appropriately removed from the sky areas in respective steps,
whereas those steps hardly reduce RMSE. The biggest improvement
is observed in both RMSE and SSIM after the suggested semantic 3D
inpainting is performed, thus filling in the occluded and untextured
areas. This final step plays a significant role in our system that uses
sparsely sampled textural images to provide users with a completely
free viewpoint at a street level. Finally, compared with Baseline, our
method demonstrates quantitative improvements in the RMSE and
SSIM of 21% and 14.5%, respectively.

In addition, for more comprehensive experiments, we also compare
our inpainting method with two recent works, namely, PixMix [26]
and a deep learning-based method using PCs [36]. Although those two
methods enhance rendering quality well (as shown in Table 1), PixMix
usually lacks semantic information, and the learned network generates
geometrically inadequate textures in holes, as shown in Fig. 9-(f) and
(g). Note that our inpainting method also cannot fill in accurate texture
colors when compared with the ground truth, but tends to show a more
advanced structural similarity, as demonstrated by the SSIM results.

System Performance. When tested on a computer equipped with
an Intel Core i7-6700k CPU and NVIDIA GeForce GTX 1080 GPU,
the proposed system can guarantee an average of 50 fps with image
resolutions of 1024×512. However, since the rendering performance
of our method depends on the complexity of the geometry, it can be
controlled when we properly manage the number of vertices rendered
in a single frame. Specifically, when the geometry is highly complex
and has 120 k vertices, the whole rendering process is completed in
18 ms (55 fps), whereas a simpler geometry with 77 k vertices can be
rendered in 9.8 ms (102 fps). In the proposed pipeline, semantic 3D
inpainting is the most time-consuming step, which accounts for about
30% of the whole computation time.

Fig. 10: Qualitative comparisons in various test scenes. Unlike our method, those of Geollery-Depth and Huang et al. often show distortion errors
due to imperfect sphere-based geometry, and Geollery-Model cannot reproduce sky areas; refer to details in the corresponding part in the paper.

Fig. 11: Quantitative comparison results. Using 270 views in three
urban test settings, the quality of novel-view synthesis is measured
in terms of the RMSE and SSIM according to the distance between a
novel view and the nearest-street view image used for texture mapping.
Note that our method yields better and relatively more stable results
than the other three methods, regardless of the distance, whereas the
errors of the other methods increase with the distance.

4.2 Comparisons
Experimental Design. To compare the proposed method with the state-
of-the-arts, we employ three different approaches, including the respec-
tive depth- and model-based panoramic texture mappings suggested in
Geollery [16] by Du et al. for real-time urban scene experiences and
the sphere-based image warping by Huang et al. [29], which targets
six-DoF novel views using image streams. Specifically, the depth-based
approach of Geollery (Geollery-Depth) samples the street-view image
nearest to the user’s current position and its corresponding panoramic-
depth map provided by Google Street View [2]. Moreover, it deforms a

spherical mesh according to the depth map to efficiently obtain the local
proxy geometry at which colors of the street-view image are mapped.
Conversely, a model-based approach (Geollery-Model) uses 3D models
from open databases, such as OpenStreetMap [21], and also maps the
nearest street-view image onto a geometry with a simple back-face test
to prevent unseen surfaces from being textured. The work of Huang et
al. warps a single panoramic RGB image from a reference view to a
novel view based on the optimization between two spherical meshes.
Note that, in this experiment, we reconstruct dense point clouds from
depth images from Google Street View. Although a video input is used
in the original work, this cannot be obtained for the global test scenes.

For evaluation, the same test scenes and metrics are used as in
Sect. 4.1, whereas testable street views are differently sampled for an
intensive comparison of not only the rendering quality at a random
novel viewpoint but also the rendering accuracy according to the dis-
tance range between a novel viewing position and the nearest reference
street view sampled for texture mapping. For each urban scene, we ran-
domly sample 30 street-view images for each of three different distance
ranges. Since our system uses a district length of 50 m and samples
street view PIk used for texture mapping near the center of the district,
the average distance between PIk and one of the furthest novel views in
the district is about 25 m. Thus, for the experiment, we selected 8 m
as a proper distance for three different ranges, namely, 0-8, 8-16, and
16-24 m, where a user’s novel view can be rendered. Thus, a total of 90
pairs of novel views rendered by respective methods and a ground truth
are constructed for each of the Berlin, Vienna, and Daejeon scenes.

Results. For a qualitative comparison, Fig. 10 presents four exem-
plary novel views rendered by four different methods. Our method
qualitatively yields better rendering results in the overall test scenes

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

PARK ET AL.: INSTANT PANORAMIC TEXTURE MAPPING WITH SEMANTIC OBJECT MATCHING FOR LARGE-SCALE URBAN SCENE... 2753

Fig. 9: Intermediate results with qualitative comparisons against recent
inapinting methods. Baseline uses panoramic texture mapping with
only depth testing (b). After semantic object-matching test, most projec-
tion errors in sky areas can be removed (c). With sky low-pass filtering,
visual errors and holes are simultaneously handled (d). Finally, our
semantic 3D inpainting naturally fills remaining holes, which requires
more detailed textures (e). Note that, contrary to ours, PixMix [26]
cannot fill in contextually correct colors on a building side (f), whereas
deep learning-based method using partial convolutions (PCs) [36] loses
geometric information, causing blurred building edges in the holes (g).

semantic labels of the 3D models for both p and f (p). To consider 3D
geometric structures already known from Gp, we calculate the spatial
cost using 3D positions of f (p+−→v) and f (p)+−→v , and a 3D distance
function ds. To set the control parameter α ∈ [0,1], we use 0.5.

The main advantage of using semantic information is that the search
range for f (p) can be effectively decreased by sampling contextually
matching source pixels. Furthermore, our method can better fill large
holes with a non-planar background than the method in the previous
work, as it uses 3D geometric structures, as shown in Fig. 9. Please
refer to our supplementary material for more detailed parameters.

4 RESULTS AND ANALYSIS

4.1 Evaluation of System Performance
To validate necessity of the suggested techniques, including the seman-
tic object-matching test, low-pass filtering for seamless sky areas, and
semantic 3D inpainting, we first demonstrate how those respective steps
can increase the quality of novel-view synthesis by comparing each
intermediate-rendering result with a ground-truth novel view sampled
from a Google Street View image.

Experimental Design. To sample test-image sets, we construct
experimental areas of 1km2 in three different global urban scenes,
including Berlin in Germany, Vienna in Austria, and Daejeon in South
Korea; their 3D models can be obtained from open databases [1,45]. For
each test area, Google Maps provides about 850 street-view images, of
which 350 are typically used for the proposed texture-mapping method
when we use a district size of 50m2. Then, we randomly select 20% of
the remaining 500 street-view images, such that 100 testable street-view
images with corresponding camera parameters can be selected.

Then, using each selected street-view image, a ground-truth novel
view is rendered with a random camera direction, a FoV of 60°, and
image resolutions of 1024×512, as shown in Fig. 9-(a). With the same
camera and image configurations of the corresponding ground truth

Table 1: Quantitative results for intermediate steps. Using 300 arbitrary
test views from 3 different urban settings, respective steps, as shown in
Fig. 9, are measured against ground truth by RMSE and SSIM.

Intermediate Steps RMSE SSIM

Baseline 0.309 0.510
+ Semantic Object Matching Test 0.306 0.539
+ Sky Low-Pass Filtering (Ours w/ Holes) 0.305 0.553
+ Semantic 3D Inpainting (Ours) 0.244 0.584

Ours w/ Holes + PixMix [26] 0.259 0.561
Ours w/ Holes + Partial Convolutions [36] 0.252 0.559

images, we also render novel views using respective progressive steps
of the proposed system. Specifically, for the Baseline rendering shown
in Fig. 9-(b), colors from sampled street-view images are mapped onto
surfaces of 3D models after a depth test and after weighted blending is
performed, similar to typical VDTM works [13, 15]. Then, using the
respective proposed steps, the intermediate results are rendered.

Errors between the ground-truth and intermediate-rendering results
are measured using two different metrics: the root-mean-square er-
ror (RMSE) and the structural similarity index measure (SSIM) [49].
Note that the measurement of only absolute per-pixel differences us-
ing RMSE may be insufficient as even subtle errors in the obtainable
camera parameters and geometries can have excessive effects. In this
regard, SSIM can be an appropriate supplementary metric for measur-
ing perception-based errors while considering structural similarities
between two images.

Results. Quantitative results presented in Table 1 indicate that each
proposed step enhances the rendering quality in terms of both RMSE
and SSIM. However, overall variance of SSIM is bigger than that of
RMSE, showing that each step has a greater effects on the structural and
perceptual accuracy than on pixel-by-pixel correctness. For example,
in Fig. 9-(c) and (d), when using a semantic object-matching test to
select candidate texture colors and low-pass filtering for sky areas, it
is noticeable that erroneously mapped object colors and visual seams
can be appropriately removed from the sky areas in respective steps,
whereas those steps hardly reduce RMSE. The biggest improvement
is observed in both RMSE and SSIM after the suggested semantic 3D
inpainting is performed, thus filling in the occluded and untextured
areas. This final step plays a significant role in our system that uses
sparsely sampled textural images to provide users with a completely
free viewpoint at a street level. Finally, compared with Baseline, our
method demonstrates quantitative improvements in the RMSE and
SSIM of 21% and 14.5%, respectively.

In addition, for more comprehensive experiments, we also compare
our inpainting method with two recent works, namely, PixMix [26]
and a deep learning-based method using PCs [36]. Although those two
methods enhance rendering quality well (as shown in Table 1), PixMix
usually lacks semantic information, and the learned network generates
geometrically inadequate textures in holes, as shown in Fig. 9-(f) and
(g). Note that our inpainting method also cannot fill in accurate texture
colors when compared with the ground truth, but tends to show a more
advanced structural similarity, as demonstrated by the SSIM results.

System Performance. When tested on a computer equipped with
an Intel Core i7-6700k CPU and NVIDIA GeForce GTX 1080 GPU,
the proposed system can guarantee an average of 50 fps with image
resolutions of 1024×512. However, since the rendering performance
of our method depends on the complexity of the geometry, it can be
controlled when we properly manage the number of vertices rendered
in a single frame. Specifically, when the geometry is highly complex
and has 120 k vertices, the whole rendering process is completed in
18 ms (55 fps), whereas a simpler geometry with 77 k vertices can be
rendered in 9.8 ms (102 fps). In the proposed pipeline, semantic 3D
inpainting is the most time-consuming step, which accounts for about
30% of the whole computation time.

Fig. 10: Qualitative comparisons in various test scenes. Unlike our method, those of Geollery-Depth and Huang et al. often show distortion errors
due to imperfect sphere-based geometry, and Geollery-Model cannot reproduce sky areas; refer to details in the corresponding part in the paper.

Fig. 11: Quantitative comparison results. Using 270 views in three
urban test settings, the quality of novel-view synthesis is measured
in terms of the RMSE and SSIM according to the distance between a
novel view and the nearest-street view image used for texture mapping.
Note that our method yields better and relatively more stable results
than the other three methods, regardless of the distance, whereas the
errors of the other methods increase with the distance.

4.2 Comparisons
Experimental Design. To compare the proposed method with the state-
of-the-arts, we employ three different approaches, including the respec-
tive depth- and model-based panoramic texture mappings suggested in
Geollery [16] by Du et al. for real-time urban scene experiences and
the sphere-based image warping by Huang et al. [29], which targets
six-DoF novel views using image streams. Specifically, the depth-based
approach of Geollery (Geollery-Depth) samples the street-view image
nearest to the user’s current position and its corresponding panoramic-
depth map provided by Google Street View [2]. Moreover, it deforms a

spherical mesh according to the depth map to efficiently obtain the local
proxy geometry at which colors of the street-view image are mapped.
Conversely, a model-based approach (Geollery-Model) uses 3D models
from open databases, such as OpenStreetMap [21], and also maps the
nearest street-view image onto a geometry with a simple back-face test
to prevent unseen surfaces from being textured. The work of Huang et
al. warps a single panoramic RGB image from a reference view to a
novel view based on the optimization between two spherical meshes.
Note that, in this experiment, we reconstruct dense point clouds from
depth images from Google Street View. Although a video input is used
in the original work, this cannot be obtained for the global test scenes.

For evaluation, the same test scenes and metrics are used as in
Sect. 4.1, whereas testable street views are differently sampled for an
intensive comparison of not only the rendering quality at a random
novel viewpoint but also the rendering accuracy according to the dis-
tance range between a novel viewing position and the nearest reference
street view sampled for texture mapping. For each urban scene, we ran-
domly sample 30 street-view images for each of three different distance
ranges. Since our system uses a district length of 50 m and samples
street view PIk used for texture mapping near the center of the district,
the average distance between PIk and one of the furthest novel views in
the district is about 25 m. Thus, for the experiment, we selected 8 m
as a proper distance for three different ranges, namely, 0-8, 8-16, and
16-24 m, where a user’s novel view can be rendered. Thus, a total of 90
pairs of novel views rendered by respective methods and a ground truth
are constructed for each of the Berlin, Vienna, and Daejeon scenes.

Results. For a qualitative comparison, Fig. 10 presents four exem-
plary novel views rendered by four different methods. Our method
qualitatively yields better rendering results in the overall test scenes

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

2754 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

Fig. 12: User test results. For each scene, preferred methods are
selected by 200 online participants in (a), and each video is scored with
a 7-Likert scale in (b). P-values are calculated using the paired t-test,
showing significant differences between two means.

with fewer distortion errors than Geollery-Depth and the work of Huang
et al.. Moreover, it offers better texture-model registration and sky re-
production than Geollery-Model. For example, in the Berlin-1 scene,
the green and orange boxes indicate that ours provides significantly
better rendering quality compared with Geollery-Depth and the work
of Huang et al., which employ sphere-based limited geometry, thus
resulting in distortion errors of geometry or texture mapping. With
regard to the blue boxes, Geollery-Depth and Geollery-Model render a
road using low-resolution satellite images, whereas the other methods
map colors from reference street-view textures. However, distorted
textures can still easily be found in the work of Huang et al..

In the Berlin-2 scene, the green box in our result indicates well-
represented sky areas when compared with the ground truth based on
the proposed cascaded low-pass filtering. Note that Geollery-Model
cannot cover sky rendering, and Geollery-Depth and the work of Huang
et al. cannot correctly map sky textures onto the sky areas without any
object-texture-matching test, although their results seem convincing.
One interesting difference between our result and that of Geollery-
Model can be seen in the orange boxes in the Vienna scene. Ours
can naturally fill in untextured areas using the proposed semantic 3D
inapinting method, whereas Geollery-Model simply fills in holes with
a single color. Note that our method has limitations when recovering
detailed patterns of the sky, as shown in the green box. We will further
discuss the issue of erroneous texture projection, as indicated by the
orange box in Daejeon in Sect. 5.

In terms of the quantitative comparison presented in Fig. 11, our
method shows the lowest per-pixel errors and the highest structural
similarity with ground-truth images, regardless of the distance ranges
between a reference street view and a novel view. One interesting
point is that errors of the other methods tend to increase in proportion
to the distance ranges, whereas our model has a relatively constant
error; this indicates that the quality of a synthesized novel view can be
consistently preserved when a user’s position dynamically changes.

We attribute the main reason for this result to be that ours can
render a novel view even with sparsely sampled street-view images by
deploying the proposed weighted blending based on a current user’s
position and the proper inpainting technique. Contrarily, the other
methods mainly depend on the nearest resource texture, which only
covers a limited range of user movement, thus resulting in a decrease
in the rendering quality when a user gets far from the sampled texture.
Note that Geollery’s original work required frequent sampling steps
before a previous resource texture gets further away from a current
user’s position, which results in a fluctuating rendering quality [16].

User Test. In order to assess how realistic urban scene rendering
results of different methods is for typical users, we conducted a per-
ceptual online user test, instead of a face-to-face manner due to the
COVID-19 pandemic. All procedures were approved by an indepen-

Fig. 13: To handle projection errors of detailed objects (a), we may
remove objects using semantic information (b) or map textures on
retrieved object models from accessible databases (c).

dent Institutional Review Board. Using Amazon Mechanical Turk, we
obtained 200 paid participants, including 128 males and 72 females,
ranging from 20 to 70 years old (35.5 average), regardless of familiarity
with VR or related rendering systems.

When a test started, each participant was required to watch 15-second
short videos with 1024×512 resolutions, for virtual walk-through ex-
periences in three test urban scenes. In each scene, the same path was
rendered by four different methods as used in the previous experiment,
and such four videos were shown in a random order. As the first ques-
tion for user preference, we asked participants to select one video which
seemed the most realistic for each scene. In addition, participants were
asked to assess realism of each video, based on the question of Zivrek et
al. [54], using a Likert scale with 7 positions, starting from low to high.
For the analysis of realism, we used the paired sample t-test (α = .05)
to determine significant differences between means of two methods.

As shown in Fig. 12-(a), users preferred ours in all test scenes among
the four different methods, although there was small gap between ours
and the work of Huang et al. in the Daejeon scene. Furthermore, as
described in Fig. 12-(b), with specific mean and standard deviation
values, ours also showed the highest mean scores for realism in three
different scenes. Note that specified p-values demonstrate significant
differences between the mean value of ours and that of each compared
method in most cases, except a few cases in Daejeon. We think the
reason is that the Daejeon scene has complex geometries with various
small objects that our method cannot fully cover, thus resulting in more
projection errors and decrease of realism.

5 DISCUSSION AND CONCLUSION

This paper proposed a novel panoramic texture-mapping system using
open global scene data to provide realistic walk-through experiences
in large-scale urban streets, which can be available for various VR ap-
plications reflecting the real world. Our system mainly used semantic
information obtained from street-view images to enhance both the ren-
dering quality and performance time. Moreover, with sparsely sampled
street-view images, our inpainting technique supported perceptually
natural scene rendering, even when the user’s viewpoint dynamically
changed, as is also shown in the supplementary material and video.

Our method has some remaining issues that need to be solved. Al-
though we further calibrated camera poses of street-view images using
image-model registration, accurate values could not be found; this re-
sulted in erroneous texture mapping on 3D scene models. Also, since
the current system’s performance depends on the number of vertices of
3D scene models, it is hard to render all geometries located in the far
distance. Thus, a proper way to effectively manage renderable vertices
is required. On the extension, the gap between the real geometry and the
simplified virtual geometry should be decreased by using 3D models
with a high level of detail and proper resource management which can
affect real-time performance. Furthermore, since the current system
does not support detailed objects geometries, projection errors of such
objects are also found on buildings or roads, as shown in Fig. 13. We
suggest some possible solutions for the removal or retrieval of those
objects, which should be properly dealt with in the future work. Finally,
our inpainting method fills in holes with contextually proper texture
colors, but it still needs a temporally stable algorithm (e.g., instead of
searching for locally optimal source pixels in each frame, the global
solution can be obtained by considering previous frames, potentially
resulting in more temporally coherent inpainting).

ACKNOWLEDGMENTS

This work was supported by Institute for Information & Communica-
tions Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No. 2019-0-01648, Development of 360 De-
gree VR Content Authoring Platform based on Global Street View and
Spatial Information, and No.2019-0-01270, WISE AR UI/UX Platform
Development for Smartglasses).

REFERENCES

[1] 3d geoinformation research group. https://3d.bk.tudelft.nl/opendata/.
[2] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale,

L. Vincent, and J. Weaver. Google street view: Capturing the world at
street level. Computer, 43(6):32–38, 2010.

[3] A. Appel. Some techniques for shading machine renderings of solids. In
Proceedings of the April 30–May 2, 1968, spring joint computer confer-
ence, pp. 37–45, 1968.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch:
A randomized correspondence algorithm for structural image editing. In
ACM Transactions on Graphics (ToG), vol. 28, p. 24. ACM, 2009.

[5] A. Bulbul and R. Dahyot. Social media based 3d visual popularity. Com-
puters & Graphics, 63:28–36, 2017.

[6] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth
synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG), 32(3):1–12, 2013.

[7] G. Chaurasia, O. Sorkine, and G. Drettakis. Silhouette-aware warping
for image-based rendering. In Computer Graphics Forum, vol. 30, pp.
1223–1232. Wiley Online Library, 2011.

[8] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion. In ECCV, 2018.

[10] S. E. Chen and L. Williams. View interpolation for image synthesis. In
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pp. 279–288, 1993.

[11] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE transactions on
Evolutionary Computation, 6(1):58–73, 2002.

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3213–3223, 2016.

[13] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent image-
based rendering with projective texture-mapping. In Rendering Techniques’
98, pp. 105–116. Springer, 1998.

[14] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering archi-
tecture from photographs: A hybrid geometry-and image-based approach.
In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pp. 11–20, 1996.

[15] R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney. Montage4d:
Real-time seamless fusion and stylization of multiview video textures.
Journal of Computer Graphics Techniques, 1(15):1–34, 2019.

[16] R. Du, D. Li, and A. Varshney. Project geollery. com: Reconstructing a live
mirrored world with geotagged social media. In The 24th International
Conference on 3D Web Technology, pp. 1–9, 2019.

[17] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. De Aguiar,
N. Ahmed, C. Theobalt, and A. Sellent. Floating textures. In Computer
graphics forum, vol. 27, pp. 409–418. Wiley Online Library, 2008.

[18] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker. Deepview: View synthesis with learned
gradient descent. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2367–2376, 2019.

[19] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deepstereo: Learning to
predict new views from the world’s imagery. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5515–5524,
2016.

[20] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore. Google earth engine: Planetary-scale geospatial analysis for
everyone. Remote sensing of Environment, 202:18–27, 2017.

[21] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4):12–18, 2008.

[22] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf. Casual 3d photography.
ACM Transactions on Graphics (TOG), 36(6):1–15, 2017.

[23] P. Hedman and J. Kopf. Instant 3d photography. ACM Transactions on
Graphics (TOG), 37(4):1–12, 2018.

[24] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and G. Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM
Transactions on Graphics (TOG), 37(6):1–15, 2018.

[25] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. Scalable inside-out
image-based rendering. ACM Transactions on Graphics (TOG), 35(6):1–
11, 2016.

[26] J. Herling and W. Broll. Pixmix: A real-time approach to high-quality
diminished reality. In 2012 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 141–150. IEEE, 2012.

[27] J. Herling and W. Broll. High-quality real-time video inpaintingwith
pixmix. IEEE Transactions on Visualization and Computer Graphics,
20(6):866–879, 2014.

[28] F. Huang, Y.-J. Wu, J.-S. Hsu, and A. Tsai. 3d modeling of street
buildings from panoramic video sequences and google map image. In
GRAPP/IVAPP, pp. 109–114, 2012.

[29] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-dof vr videos with a single
360-camera. In 2017 IEEE Virtual Reality (VR), pp. 37–44. IEEE, 2017.

[30] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent
image completion. ACM Transactions on Graphics (ToG), 36(4):1–14,
2017.

[31] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi. Learning-based view
synthesis for light field cameras. ACM Transactions on Graphics (TOG),
35(6):1–10, 2016.

[32] B. Klingner, D. Martin, and J. Roseborough. Street view motion-from-
structure-from-motion. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 953–960, 2013.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pp. 1097–1105, 2012.

[34] L. Ladickỳ, C. Russell, P. Kohli, and P. H. Torr. Associative hierarchical
crfs for object class image segmentation. In 2009 IEEE 12th International
Conference on Computer Vision, pp. 739–746. IEEE, 2009.

[35] Y. Li, Q. Zheng, A. Sharf, D. Cohen-Or, B. Chen, and N. J. Mitra. 2d-3d
fusion for layer decomposition of urban facades. In 2011 International
Conference on Computer Vision, pp. 882–889. IEEE, 2011.

[36] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro.
Image inpainting for irregular holes using partial convolutions. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp.
85–100, 2018.

[37] M. Liu, X. He, and M. Salzmann. Geometry-aware deep network for
single-image novel view synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4616–4624, 2018.

[38] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. Van Gool, and
W. Purgathofer. A survey of urban reconstruction. In Computer graphics
forum, vol. 32, pp. 146–177. Wiley Online Library, 2013.

[39] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degt-
yarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al. Holoportation:
Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, pp. 741–754,
2016.

[40] M. Over, A. Schilling, S. Neubauer, and A. Zipf. Generating web-based
3d city models from openstreetmap: The current situation in germany.
Computers, Environment and Urban Systems, 34(6):496–507, 2010.

[41] E. Penner and L. Zhang. Soft 3d reconstruction for view synthesis. ACM
Transactions on Graphics (TOG), 36(6):1–11, 2017.

[42] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM
SIGGRAPH 2003 Papers, pp. 313–318. 2003.

[43] F. Prandi, F. Devigili, M. Soave, U. Di Staso, and R. De Amicis. 3d
web visualization of huge citygml models. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences, 40,
2015.

[44] A. M. Siu, A. S. Wan, and R. W. Lau. Modeling and rendering of walk-
through environments with panoramic images. In Proceedings of the ACM
symposium on Virtual reality software and technology, pp. 114–121, 2004.

[45] SPACEN. Vworld. http://vworld.kr/.
[46] R. Szeliski. Computer vision: algorithms and applications. Springer

Science & Business Media, 2010.
[47] A. Taneja, L. Ballan, and M. Pollefeys. Geometric change detection in

urban environments using images. IEEE transactions on pattern analysis

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

PARK ET AL.: INSTANT PANORAMIC TEXTURE MAPPING WITH SEMANTIC OBJECT MATCHING FOR LARGE-SCALE URBAN SCENE... 2755

Fig. 12: User test results. For each scene, preferred methods are
selected by 200 online participants in (a), and each video is scored with
a 7-Likert scale in (b). P-values are calculated using the paired t-test,
showing significant differences between two means.

with fewer distortion errors than Geollery-Depth and the work of Huang
et al.. Moreover, it offers better texture-model registration and sky re-
production than Geollery-Model. For example, in the Berlin-1 scene,
the green and orange boxes indicate that ours provides significantly
better rendering quality compared with Geollery-Depth and the work
of Huang et al., which employ sphere-based limited geometry, thus
resulting in distortion errors of geometry or texture mapping. With
regard to the blue boxes, Geollery-Depth and Geollery-Model render a
road using low-resolution satellite images, whereas the other methods
map colors from reference street-view textures. However, distorted
textures can still easily be found in the work of Huang et al..

In the Berlin-2 scene, the green box in our result indicates well-
represented sky areas when compared with the ground truth based on
the proposed cascaded low-pass filtering. Note that Geollery-Model
cannot cover sky rendering, and Geollery-Depth and the work of Huang
et al. cannot correctly map sky textures onto the sky areas without any
object-texture-matching test, although their results seem convincing.
One interesting difference between our result and that of Geollery-
Model can be seen in the orange boxes in the Vienna scene. Ours
can naturally fill in untextured areas using the proposed semantic 3D
inapinting method, whereas Geollery-Model simply fills in holes with
a single color. Note that our method has limitations when recovering
detailed patterns of the sky, as shown in the green box. We will further
discuss the issue of erroneous texture projection, as indicated by the
orange box in Daejeon in Sect. 5.

In terms of the quantitative comparison presented in Fig. 11, our
method shows the lowest per-pixel errors and the highest structural
similarity with ground-truth images, regardless of the distance ranges
between a reference street view and a novel view. One interesting
point is that errors of the other methods tend to increase in proportion
to the distance ranges, whereas our model has a relatively constant
error; this indicates that the quality of a synthesized novel view can be
consistently preserved when a user’s position dynamically changes.

We attribute the main reason for this result to be that ours can
render a novel view even with sparsely sampled street-view images by
deploying the proposed weighted blending based on a current user’s
position and the proper inpainting technique. Contrarily, the other
methods mainly depend on the nearest resource texture, which only
covers a limited range of user movement, thus resulting in a decrease
in the rendering quality when a user gets far from the sampled texture.
Note that Geollery’s original work required frequent sampling steps
before a previous resource texture gets further away from a current
user’s position, which results in a fluctuating rendering quality [16].

User Test. In order to assess how realistic urban scene rendering
results of different methods is for typical users, we conducted a per-
ceptual online user test, instead of a face-to-face manner due to the
COVID-19 pandemic. All procedures were approved by an indepen-

Fig. 13: To handle projection errors of detailed objects (a), we may
remove objects using semantic information (b) or map textures on
retrieved object models from accessible databases (c).

dent Institutional Review Board. Using Amazon Mechanical Turk, we
obtained 200 paid participants, including 128 males and 72 females,
ranging from 20 to 70 years old (35.5 average), regardless of familiarity
with VR or related rendering systems.

When a test started, each participant was required to watch 15-second
short videos with 1024×512 resolutions, for virtual walk-through ex-
periences in three test urban scenes. In each scene, the same path was
rendered by four different methods as used in the previous experiment,
and such four videos were shown in a random order. As the first ques-
tion for user preference, we asked participants to select one video which
seemed the most realistic for each scene. In addition, participants were
asked to assess realism of each video, based on the question of Zivrek et
al. [54], using a Likert scale with 7 positions, starting from low to high.
For the analysis of realism, we used the paired sample t-test (α = .05)
to determine significant differences between means of two methods.

As shown in Fig. 12-(a), users preferred ours in all test scenes among
the four different methods, although there was small gap between ours
and the work of Huang et al. in the Daejeon scene. Furthermore, as
described in Fig. 12-(b), with specific mean and standard deviation
values, ours also showed the highest mean scores for realism in three
different scenes. Note that specified p-values demonstrate significant
differences between the mean value of ours and that of each compared
method in most cases, except a few cases in Daejeon. We think the
reason is that the Daejeon scene has complex geometries with various
small objects that our method cannot fully cover, thus resulting in more
projection errors and decrease of realism.

5 DISCUSSION AND CONCLUSION

This paper proposed a novel panoramic texture-mapping system using
open global scene data to provide realistic walk-through experiences
in large-scale urban streets, which can be available for various VR ap-
plications reflecting the real world. Our system mainly used semantic
information obtained from street-view images to enhance both the ren-
dering quality and performance time. Moreover, with sparsely sampled
street-view images, our inpainting technique supported perceptually
natural scene rendering, even when the user’s viewpoint dynamically
changed, as is also shown in the supplementary material and video.

Our method has some remaining issues that need to be solved. Al-
though we further calibrated camera poses of street-view images using
image-model registration, accurate values could not be found; this re-
sulted in erroneous texture mapping on 3D scene models. Also, since
the current system’s performance depends on the number of vertices of
3D scene models, it is hard to render all geometries located in the far
distance. Thus, a proper way to effectively manage renderable vertices
is required. On the extension, the gap between the real geometry and the
simplified virtual geometry should be decreased by using 3D models
with a high level of detail and proper resource management which can
affect real-time performance. Furthermore, since the current system
does not support detailed objects geometries, projection errors of such
objects are also found on buildings or roads, as shown in Fig. 13. We
suggest some possible solutions for the removal or retrieval of those
objects, which should be properly dealt with in the future work. Finally,
our inpainting method fills in holes with contextually proper texture
colors, but it still needs a temporally stable algorithm (e.g., instead of
searching for locally optimal source pixels in each frame, the global
solution can be obtained by considering previous frames, potentially
resulting in more temporally coherent inpainting).

ACKNOWLEDGMENTS

This work was supported by Institute for Information & Communica-
tions Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No. 2019-0-01648, Development of 360 De-
gree VR Content Authoring Platform based on Global Street View and
Spatial Information, and No.2019-0-01270, WISE AR UI/UX Platform
Development for Smartglasses).

REFERENCES

[1] 3d geoinformation research group. https://3d.bk.tudelft.nl/opendata/.
[2] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale,

L. Vincent, and J. Weaver. Google street view: Capturing the world at
street level. Computer, 43(6):32–38, 2010.

[3] A. Appel. Some techniques for shading machine renderings of solids. In
Proceedings of the April 30–May 2, 1968, spring joint computer confer-
ence, pp. 37–45, 1968.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch:
A randomized correspondence algorithm for structural image editing. In
ACM Transactions on Graphics (ToG), vol. 28, p. 24. ACM, 2009.

[5] A. Bulbul and R. Dahyot. Social media based 3d visual popularity. Com-
puters & Graphics, 63:28–36, 2017.

[6] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth
synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG), 32(3):1–12, 2013.

[7] G. Chaurasia, O. Sorkine, and G. Drettakis. Silhouette-aware warping
for image-based rendering. In Computer Graphics Forum, vol. 30, pp.
1223–1232. Wiley Online Library, 2011.

[8] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion. In ECCV, 2018.

[10] S. E. Chen and L. Williams. View interpolation for image synthesis. In
Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pp. 279–288, 1993.

[11] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE transactions on
Evolutionary Computation, 6(1):58–73, 2002.

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3213–3223, 2016.

[13] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent image-
based rendering with projective texture-mapping. In Rendering Techniques’
98, pp. 105–116. Springer, 1998.

[14] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering archi-
tecture from photographs: A hybrid geometry-and image-based approach.
In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pp. 11–20, 1996.

[15] R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney. Montage4d:
Real-time seamless fusion and stylization of multiview video textures.
Journal of Computer Graphics Techniques, 1(15):1–34, 2019.

[16] R. Du, D. Li, and A. Varshney. Project geollery. com: Reconstructing a live
mirrored world with geotagged social media. In The 24th International
Conference on 3D Web Technology, pp. 1–9, 2019.

[17] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. De Aguiar,
N. Ahmed, C. Theobalt, and A. Sellent. Floating textures. In Computer
graphics forum, vol. 27, pp. 409–418. Wiley Online Library, 2008.

[18] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker. Deepview: View synthesis with learned
gradient descent. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2367–2376, 2019.

[19] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deepstereo: Learning to
predict new views from the world’s imagery. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5515–5524,
2016.

[20] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore. Google earth engine: Planetary-scale geospatial analysis for
everyone. Remote sensing of Environment, 202:18–27, 2017.

[21] M. Haklay and P. Weber. Openstreetmap: User-generated street maps.
IEEE Pervasive Computing, 7(4):12–18, 2008.

[22] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf. Casual 3d photography.
ACM Transactions on Graphics (TOG), 36(6):1–15, 2017.

[23] P. Hedman and J. Kopf. Instant 3d photography. ACM Transactions on
Graphics (TOG), 37(4):1–12, 2018.

[24] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and G. Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM
Transactions on Graphics (TOG), 37(6):1–15, 2018.

[25] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow. Scalable inside-out
image-based rendering. ACM Transactions on Graphics (TOG), 35(6):1–
11, 2016.

[26] J. Herling and W. Broll. Pixmix: A real-time approach to high-quality
diminished reality. In 2012 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), pp. 141–150. IEEE, 2012.

[27] J. Herling and W. Broll. High-quality real-time video inpaintingwith
pixmix. IEEE Transactions on Visualization and Computer Graphics,
20(6):866–879, 2014.

[28] F. Huang, Y.-J. Wu, J.-S. Hsu, and A. Tsai. 3d modeling of street
buildings from panoramic video sequences and google map image. In
GRAPP/IVAPP, pp. 109–114, 2012.

[29] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-dof vr videos with a single
360-camera. In 2017 IEEE Virtual Reality (VR), pp. 37–44. IEEE, 2017.

[30] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent
image completion. ACM Transactions on Graphics (ToG), 36(4):1–14,
2017.

[31] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi. Learning-based view
synthesis for light field cameras. ACM Transactions on Graphics (TOG),
35(6):1–10, 2016.

[32] B. Klingner, D. Martin, and J. Roseborough. Street view motion-from-
structure-from-motion. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 953–960, 2013.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pp. 1097–1105, 2012.

[34] L. Ladickỳ, C. Russell, P. Kohli, and P. H. Torr. Associative hierarchical
crfs for object class image segmentation. In 2009 IEEE 12th International
Conference on Computer Vision, pp. 739–746. IEEE, 2009.

[35] Y. Li, Q. Zheng, A. Sharf, D. Cohen-Or, B. Chen, and N. J. Mitra. 2d-3d
fusion for layer decomposition of urban facades. In 2011 International
Conference on Computer Vision, pp. 882–889. IEEE, 2011.

[36] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro.
Image inpainting for irregular holes using partial convolutions. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp.
85–100, 2018.

[37] M. Liu, X. He, and M. Salzmann. Geometry-aware deep network for
single-image novel view synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4616–4624, 2018.

[38] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. Van Gool, and
W. Purgathofer. A survey of urban reconstruction. In Computer graphics
forum, vol. 32, pp. 146–177. Wiley Online Library, 2013.

[39] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degt-
yarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al. Holoportation:
Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, pp. 741–754,
2016.

[40] M. Over, A. Schilling, S. Neubauer, and A. Zipf. Generating web-based
3d city models from openstreetmap: The current situation in germany.
Computers, Environment and Urban Systems, 34(6):496–507, 2010.

[41] E. Penner and L. Zhang. Soft 3d reconstruction for view synthesis. ACM
Transactions on Graphics (TOG), 36(6):1–11, 2017.

[42] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM
SIGGRAPH 2003 Papers, pp. 313–318. 2003.

[43] F. Prandi, F. Devigili, M. Soave, U. Di Staso, and R. De Amicis. 3d
web visualization of huge citygml models. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences, 40,
2015.

[44] A. M. Siu, A. S. Wan, and R. W. Lau. Modeling and rendering of walk-
through environments with panoramic images. In Proceedings of the ACM
symposium on Virtual reality software and technology, pp. 114–121, 2004.

[45] SPACEN. Vworld. http://vworld.kr/.
[46] R. Szeliski. Computer vision: algorithms and applications. Springer

Science & Business Media, 2010.
[47] A. Taneja, L. Ballan, and M. Pollefeys. Geometric change detection in

urban environments using images. IEEE transactions on pattern analysis

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

2756 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 5, MAY 2021

and machine intelligence, 37(11):2193–2206, 2015.
[48] A. Torii, M. Havlena, and T. Pajdla. From google street view to 3d city

models. In 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pp. 2188–2195. IEEE, 2009.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions
on image processing, 13(4):600–612, 2004.

[50] J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan. Image-based street-
side city modeling. In ACM SIGGRAPH Asia 2009 papers, pp. 1–12.
2009.

[51] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution
image inpainting using multi-scale neural patch synthesis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6721–6729, 2017.

[52] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form
image inpainting with gated convolution. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 4471–4480, 2019.

[53] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View synthesis by
appearance flow. In European conference on computer vision, pp. 286–301.
Springer, 2016.

[54] K. Zibrek, S. Martin, and R. McDonnell. Is photorealism important
for perception of expressive virtual humans in virtual reality? ACM
Transactions on Applied Perception (TAP), 16(3):1–19, 2019.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 22,2021 at 05:40:27 UTC from IEEE Xplore. Restrictions apply.

