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Enabling Real-time Sign Language Translation on Mobile Platforms
with On-board Depth Cameras
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In this work we present SUGO, a depth video-based system for translating sign language to text using a smartphone’s front
camera. While exploiting depth-only videos offer benefits such as being less privacy-invasive compared to using RGB videos,
it introduces new challenges which include dealing with low video resolutions and the sensors’ sensitiveness towards user
motion. We overcome these challenges by diversifying our sign language video dataset to be robust to various usage scenarios
via data augmentation and design a set of schemes to emphasize human gestures from the input images for effective sign
detection. The inference engine of SUGO is based on a 3-dimensional convolutional neural network (3DCNN) to classify a
sequence of video frames as a pre-trained word. Furthermore, the overall operations are designed to be light-weight so that
sign language translation takes place in real-time using only the resources available on a smartphone, with no help from cloud
servers nor external sensing components. Specifically, to train and test SUGO, we collect sign language data from 20 individuals
for 50 Korean Sign Language words, summing up to a dataset of ∼5,000 sign gestures and collect additional in-the-wild data
to evaluate the performance of SUGO in real-world usage scenarios with different lighting conditions and daily activities.
Comprehensively, our extensive evaluations show that SUGO can properly classify sign words with an accuracy of up to 91%
and also suggest that the system is suitable (in terms of resource usage, latency, and environmental robustness) to enable a
fully mobile solution for sign language translation.
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1 INTRODUCTION
5% of the world population lives with hearing disabilities, and 0.4% are functionally deaf [1]. While people
with mild hearing loss can still communicate verbally, with serious functional deafness, natural communication
becomes difficult. Thus, many cultures have developed their form of sign language. The American Sign Language
(ASL) is a widely used example together with the British, Australian, and New Zealand Sign Language (BANZSL).
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There are many other locally used language examples, such as the Korean Sign Language (KSL) and Japanese Sign
Language (JSL). These different sign languages result from varying alphabet patterns and cultural differences,
but all share the common characteristic that words are visually expressed using the hand(s), facial expressions
and upper body movements to assist message delivery [8]. Nevertheless, the communication gap between verbal
communication and sign language is yet prominent.
In the mobile and ubiquitous computing community, there have been efforts to exploit sensing platforms for

sign language translation [14, 34, 37, 39, 44, 57, 60]. These previous works use devices such as RGB cameras [5, 21,
27, 29, 33, 35, 46, 54, 55], motion sensors (e.g., Leap Motion) [14, 41], depth cameras/sensors (e.g., Kinect) [6, 10,
11, 16, 38, 48, 51], or electromyogram (EMG) sensors [53, 57] to capture user hand motions and combine sensing
results with various machine learning models to infer the word being expressed. More recently, research has
considered the contextual meanings of words and their syntaxial relationships to generate proper sentences
from sign language motions [13, 14, 21]. However, it is not trivial to apply these technologies in everyday
situations since they either require additional devices or infrastructure support. First, many systems adopt an
extra sensing device for accurate hand motion tracking. For example, MyoSign uses EMG sensors [57] and
DeepASL [14] requires a Leap Motion [50] depth sensor. Second, the use of infrastructure-embedded sensors (e.g.,
WiFi [34, 45, 56], mmWave radios [44]) require the users to perform hand gestures in pre-defined locations. In
addition, while sign language consist of more than the hand gestures themselves [15], most previous works have
only focused on the gestural characteristics (i.e., movements) of the hands.
In this work, we propose a new system SUGO, which uses the smartphone as the only hardware platform

(with the server only taking the role of model training and distribution) for light-weight and accurate on-device
sign language translation. Our key approach is in leveraging a depth-camera equipped in most state-of-the-art
smartphones. Unlike some previous systems that exploit the smartphone’s RGB camera [21, 46], the depth camera
provides unique opportunities in three folds: (i) improving translation accuracy with new depth information,
which is also more robust against light conditions, colors of clothing and surroundings, and occlusions, (ii)
reducing the processing burden as the depth images include much smaller information while sufficient for
sign language translation, and (iii) alleviating user-perceived privacy concerns related to using RGB videos in
third-party apps. Furthermore, depth cameras are no longer “add-on” accessories carried around separately. For
instance, since iPhone X, the iPhone has included a TrueDepth sensor, and the Pixel 4 provides depth capturing
capabilities using multiple (stereo) cameras. By leveraging these benefits, SUGO performs all operations required
for translation entirely on the smartphone, minimizing inference latency and reducing potential privacy invasions
due to sharing continuous images over the wireless network.
Despite the advantages of using depth information, several challenges persist. First of all, there have been

no prior studies to build a computational model to translate sign language solely based on the depth video
information. A naive computational model would fail to accurately translate the sign language since the depth
information is just a single channel grayscale image with significant noises. Such limited information can make
the translation model vulnerable to various motion artifacts introduced across multiple sign language gestures. In
addition, the characteristics of depth cameras embedded in today’s smartphones are still understudied, and their
performance under various light conditions remains unknown for custom applications. Finally, the end-to-end
computation pipeline should run on resource-constrained mobile devices, requiring a light-weight computational
model.
To address these challenges, SUGO first adopts a 3-dimensional convolutional neural network (3DCNN) as

its baseline inference model for feature extraction and word classification. The 3DCNN effectively extracts
temporal patterns of a user’s hand movements from depth image frames, allowing for accurate sign language
translation [9, 23]. On top of this base model, we developed a suite of techniques to improve translation accuracy
as well as the computational cost. Firstly, the raw images from the smartphone’s depth camera are passed through
a human gesture emphasis module. In this module, we restructure the pixel values to emphasize and re-normalize

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 77. Publication date: June 2021.



Enabling Real-time Sign Language Translation on Mobile Platforms with On-board Depth Cameras • 77:3

depth representations of effective regions while nullifying the irrelevant background. Secondly, we perform
augmentation on the training dataset by mimicking hand-trembling effects to make our inference model robust
against hand motion-initiated artifacts. Finally, to assure that the 3DCNN can operate on resource-limited mobile
devices, we prune and fine-tune the model to achieve a small memory footprint with low inference latency.

For a thorough evaluation of our system, we collect 50 different Korean Sign Language words from 20 people
(including two trained experts), summing up to a dataset of 5,000 sign word gestures. We carefully select the
50 words that represent possible forms of hand and body gestures to ensure the contextual scalability of SUGO
towards supporting more words with similar motion characteristics. Moreover, we collect an additional dataset
to confirm that SUGO is robust under various practical usage conditions such as varying light conditions and
different external noise factors (e.g., vibrations from user motions).

Overall, the word-level classification results of SUGO are as high as 91%, and such high classification accuracy
holds even under various environmental conditions. Furthermore, our implementations of SUGO on embedded
GPUs and the iPhone show that the classification latency can be kept low even when operating with the limited
computing resources of a smartphone. Overall, our results suggest that SUGO shows the potential to be a
practically applicable sign language translation system in real-world use cases.
Specifically, the contributions of this work are as follows:

• [Mobile Depth Camera-based Sign Language Translation System]: We introduce an on-device sign
language translation system, enabled by a depth camera. Our study shows that depth videos collected from
recent smartphones, combined with a deep learning model for efficiently processing the input videos can
be an effective sensing modality for sign language translation.

• [Accurate and Light-weight Sign Language Translation Techniques:] We develop a suite of tech-
niques (e.g., human gesture emphasis module, a light-weight 3DCNN-based translation model, and data
augmentation) to utilize depth information for sign language translation effectively. Our system shows that
the depth information is indeed useful to i) improve the accuracy of the sign language translation compared
to using RGB datasets, and ii) show improved robustness under various lighting conditions (up to ∼40%
in dark environments and ∼10% with typical indoor lighting compared to the RGB-based model). In this
work, we focus on exploring the possibility of utilizing the depth information as the sole sensing modality,
but it can be fused with other modalities to achieve an even higher translation accuracy, especially when
powerful networking and computing resources are available.

• [Large-scale Open Sign Language Dataset]: In this work, we collect and present a large-scale dataset
consisting of 5,000 KSL signs (50 unique words) and a multi-environment dataset that consists of 1,000 signs
under different lighting and motion characteristics. When selecting the 50 words, we focus on the hand
gestures’ motion characteristics rather than the context to examine the scalability of depth video-based sign
language translation systems. The Korean Sign Language dataset used in this work is publicly available at
https://www.eis-lab.org/yonsei-ksl-dataset.

2 RELATED WORK
Sign language translation research combines findings from a number of different research domains, ranging from
computer vision, IoT, and mobile computing. Based on such various technologies, the research community has
proposed a number of systems to support sign language translation by combining a number of different sensors
and computing platforms.
• Glove-based Motion Capturing: Given that sign language is mostly performed with a user’s hand, previous
work have proposed glove type sensors to capture a person’s hand gestures in detail. Such approaches have a solid
advantage over other indirect sensing modalities that fine-grained samples user hand shapes or movements can
be captured. Mohandes [37] designed a two-handed sign recognition system for Unified Arabic Sign Language
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Table 1. Comparison of SUGO with recently proposed related work in sign language translation. We do not provide a full list,
but present most relevant examples for different sensing modalities.

Paper Modality Devices # of Words # of Subjects On-device Sensing Parts

EIS [60] Epidermal EIS glove 35 8 X Hand-iontronic
DeepASL [14] Skeleton Leap motion 56 11 O Hand/Arm
Signfi [34] WiFi WiFi APs 150 5 X Head/Hand/Arm

MyoSign [57] EMGs Myo 100 15 O Hand/Arm
SignSpeaker [19] IMU Smartwatch 129 16 X Hand/Arm

mmASL [44] 60 GHz Radio 50 15 X Upper body / Head
mm wave / Arm / Hand

DeepArSLR [5] Color RGB camera 23 3 X Hand
Molchanov et al. [38] Color+Depth Kinect 25 20 X Hand

Huang et al. [20] Color+Depth Kinect 25 9 X Upper body / Head
+Skeleton / Arm / Hand

SUGO Depth Smartphone 50 20 O Upper body / Head
/ Arm / Hand

using CyberGloves, and a support vector machine (SVM) was used as a classifier. Mummadi et al. [39] designed a
real-time recognition system for the French Sign Language alphabet using a custom-developed IMU sensor-based
glove. In this work, the authors exploit a multi-layer perceptron (MLP) to classify between different alphabet
letters. The EIS system proposed by Zhu et al. [60] translates and recognizes American Sign Language alphabets
through a glove-type epidermal iontronic sensing based wearable device. While glove type wearables offer a
detailed perspective on the hand gestures, they show two major limitations. First, the act of wearing the glove
for sign language translation can be burdensome and second, they can only capture the hand gestures. Previous
literature has shown that sign language is not only a language expressed using the hands, but also where the
hand is positioned on the human body and body motions (combined with hand gestures) can reflect different
meanings [52].
• Band-type Sensing: Unlike a glove type wearable, a sensing device in the form of an arm band worn on a
wrist or the arm can capture sign language gestures using information by detecting the minute movements of the
fingers and hand. MyoSign [57] integrates Myo EMG sensors [40] to capture different muscle movements for
sign language classification. Combined with a Bi-LSTM, MyoSign achieves a classification accuracy of 93.7% for
100 different ASL words. More recently, SignSpeaker [19] has been proposed to capture hand gestures using a
smartwatch platform for sign language translation. It captures IMU sensor signals from the users’ smartwatch
and analyzes the data using an LSTM model. These wearable sensors are less invasive compared to glove-type
systems, but still share similar limitations, given the additional burden of carrying an additional sensor device
and the limits of only being able to capture hand motions.
• User Skeleton-based Sensing: Another active direction of research is in exploiting user skeleton information
for sign gesture recognition. Using devices such as the Microsoft Kinect [58] or Leap Motion [50], these systems
capture skeletal movements of the user’s hand and/or upper body to translate motions to sign language words.
DeepASL [14] is a system that exploits skeleton data collected from a Leap Motion platform. It exploits a
hierarchical bidirectional deep recurrent neural network for sign classification and shows 94% accuracy for 56
ASL words collected from 11 subjects. Naglot et al. [41] also used leap motion sensor-based hand skeleton data
to create a multi-layer perceptron classifier for the ASL alphabet. While the reported results are promising, the
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need for an external sensing platform still remains. Systems that use larger devices such as the Kinect, require a
designated room in which the device is installed [10].
• Exploiting RGB Videos: Sign language recognition through RGB video has been studied for a long time in
the field of computer vision, and has the advantage of being able to obtain datasets more easily compared to other
sensing modalities. Yogopuspito et al. [55] and Makarov et al. [35] designed a lightweight system that classifies
sign language alphabets on a smartphone. Liao et al. [33] designed a word-level sign language translation system
using a 3DCNN architecture and LSTM models via handcrafted RGB video-based features, and Li et al. [31]
compared the performance of various deep learning architectures with a large scale word-level dataset. Aly et
al. [5] also designed a word-level sign language recognition system focusing on hand shape. Koller et al. [29]
designed a sentence-level sign language translation system through the open source PHOENIX [28] dataset.
Unfortunately, word-level classification models in previous work were not designed to operate fully on mobile
platforms. The video dataset used in these works were mostly captured from PC-connected cameras and inference
operations took place on a server-scale device only.
•RGB+Depth Videos for Sign Language Translation: Another drawback of exploiting RGB videos is that the
content includes various information that can bother the classification process. As an example, color similarities
with the hand and clothing and externally present patterns can interfere with the segmentation operations needed
in RGB-based sign language translation. For this, some recent work have integrated depth information together
with RGB videos. Aly et al. [6] designed a sign language alphabet translation system with RGB+depth videos and
Molchanov et al. [38], Wang et al. [51], Huang et al. [20], and Guo et al [16] design word-level sign language
translation systems with the same modality. In these works, a Kinect camera was used and complex algorithms
such as Open Flow [36] were used to capture and match skeleton data with RGB videos. These works represent
meaningful progress in sign language translation research, but the ultimate goal of such a system should to be
fully mobile and independent, with no external sensing equipment.
• Other Meaningful Efforts: Besides the dominant trend of using visual information, another stream of recent
research exploit other modalities for sign language translation, such as CSI capable WiFi or mmWave radios.
Signfi [34] removes the need for carrying an additional sensor device and uses WiFi signals to capture hand
gestures and classifies up to 150 ASL words. mmASL [44] utilizes signals from millimeter-wave radios to capture
different upper body gestures for detecting and classifying 50 different words. While these systems neglect the
need for a user-carried platform, they require special equipment to be installed in the target environment, which
is another obstacle for practical use.

Apart from these systems, SUGO exploits only the depth video information, which is available on most recently
released smartphones. Such new data modality collected from a smartphone’s depth camera has been recently
applied in designing novel application systems such as Hand gesture recognition [26], authentication [59], and
mobile augmented reality (AR) [12]. Exploiting depth videos allow for the ubiquitous use of sign language
translation independent of the environment, and without additional hand-carried sensors. To our knowledge,
this is the first work to exploit only the smartphone’s depth camera information for offering full on-device sign
language translation. For sign classification, SUGO incorporates a 3DCNN-based deep learning model architecture,
which has been shown recently to be extremely beneficial in gesture recognition systems due to their capability
of processing image sequences on the timescale [31]. Specifically, as Table 1 shows, unlike many previous works,
our work targets to operate solely using the smartphone’s internal computing resources without any assistance
from external computing platforms.
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3 SYSTEM OVERVIEW

3.1 Design Goals
In formulating our system design goals, we held an interview session in the form of unstructured open discussions
with four sign language users, a sign language interpreter, and one researcher from our team. The main focus of
the interview was to extract user-requirements on a smartphone-based system for sign language translation.
Upon starting the discussions we asked the sign language users about their experiences with previously accessed
sign language translation systems and what they expect from a smartphone camera-based system. Three common
issues raised from the interviewees were that (1) currently accessible research prototypes induce too much
translation latency and show low accuracy for specific words such as compound words, (2) they did not want to
carry additional devices for the purpose of increasing the accuracy, and (3) they felt reluctant in using video-based
systems as it would reveal the environment they are located in to external parties - mostly caused from the
distrust of service providers. The 2 hour long interview also lead to discussions on the diversity and motion
complexity of sign language words, while discussing on the potential limitations that a smartphone-based system
may possess. The initial interview with the four participants was followed by an additional interview with a
sign language instructor, which we used to confirm and formalize the outcomes from the earlier open discussion
format interview.

Based on the user requirements extracted from the interviews, we set the design goals for our proposed system
as the following.
(1) Depth Video Usage: The system should use only the depth video data from the smartphone as its input.

This is to minimize potential user-perceived privacy concerns from using RGB videos in third party apps and
to reduce model complexity. Our discussions with sign language users suggest that they feel uncomfortable
with capturing RGB images since it would expose their surroundings and faces to a third-party app.

(2) On-device Operation: We target to use the smartphone as the only device in the system. The system
should not incorporate data from external sensing platforms and perform all computational operations on
the smartphone device, rather than offloading the computation to remote servers.

(3) Latency: Sign language translation, should execute within minimal latency on resource-limited smart-
phones. To practically use the system in real-world scenarios, the latency introduced from the translation
process should be kept low enough to not interfere with daily conversations.

(4) Word Scalability: Typical sign language translation systems focus on designing an inference model for a
set of words. This is understandable, given that it is difficult to cover several thousands of words in a sign
language vocabulary set. Nevertheless, the model should be general enough to interpret a comprehensive
set of words with various gestures.

3.2 Exploiting Depth Videos for Sign Language Translation
While using depth-only videos offers several application-level and usage benefits compared to RGB or RGB+Depth-
based systems [38, 43], on-board smartphone depth cameras have several fundamental limitations for sign
language translation. Specifically, infrared (IR)-based depth sensors (e.g., Apple TrueDepth) can perform poorly
under bright sunlight since the solar spectrum includes interfering IR wavelengths. As a preliminary study in
Figure 1, we present an image of a person performing a gesture in a sunny environment and compare the the
same gesture in an indoor environment. In bright environments, the edges (of the person and hand) in the image
are less precisely expressed (in some cases even missing) when compared to the indoor environment, which
can lead to difficulties in tracking subtle hand movements. Furthermore, low-cost time-of-flight (ToF) sensors,
used by some recent smartphones such as LG G8 ThinQ, ill-perform under bright light conditions [25]. Stereo
camera-based depth-sensing modules may perform well when bright, as they exploit the disparity between
multiple RGB cameras. However, they are limited in dark environments as a clear multi-dimensional image is
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(a) Outdoor sunny environment (b) Indoor office environment

Fig. 1. Depth images captured in indoor and outdoor environments using the iPhone X’s TrueDepth camera from a single
participant making the same sign gesture. Data collected in an sunny outdoor environment is shows less clear edges compared
to the data collected in and indoor environment.

required. These practical issues suggest that a depth camera-based system should be designed (or should confirm
their performance) for environments under various lighting conditions.
From Figure 1 (b), we can also notice that, despite being clearer than the outdoor case, even in indoor

environments, the IR camera introduces noticeable noise compared to an RGB image. This is mainly a performance
limitation of low-cost IR-depth cameras equipped on smartphones and suggests the need for a robust inference
model that can tolerate such input noise.

Depth videos can also be more vulnerable to different types of motions compared to RGB videos. Specifically,
suppose the camera or target object dynamically moves during a video sequence (i.e., a device’s relative position
to the target object changes). It can be challenging to accurately segment and track objects across multiple frames
due to the lack of contextual information. However, for understanding sign language, continuously tracking small
movements of the human body (e.g., changes to finger movements or body posture changes) is essential. Thus, to
solely use depth videos under such dynamic conditions, additional image processing schemes are required to
overcome these contextual limitations.

3.3 System Overview
Considering such issues in exploiting depth videos for sign language translation, we design our proposed system,
SUGO, as the following. We present an overview of the SUGO operations in Figure 2. When SUGO is in operation
(e.g., dotted lines in Figure 2), we first pass all input videos to the Human Gesture Emphasis module (Sec. 5.1) to
remove the background pixels and emphasize the hand gestures, and feed them to the 3DCNN-based inference
model (Sec. 5.2) after performing word segmentation (Sec. 5.5). All operations here take place on the smartphone,
from video capture to sign classification.

When training the 3DCNN inference model (e.g., solid lines in Figure 2), we collect data samples and perform
an additional phase of generating an augmented dataset, which includes data mimicking the motion noise that
can be introduced in real-world usage scenarios (Sec. 5.4). Once the model is trained, we perform operations
to lighten the model, including filter pruning and weight quantization, to reform the model to be suitable for
resource-limited mobile platforms (Sec. 5.3). The following sections present details on the data collection process
and the system design.
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Core Dataset

Augmented Dataset

Human Gesture Emphasis

Background Removal

Re-normalization

Model Training

3DCNN

3DCNN

Pruning

Filter Pruning

Quantization

Retraining
(Fine tuning)

Inference

+

Flow in operation
Flow when training

Word Segmenation

Fig. 2. System overview of SUGO. Dotted lines present the operational flow and the solid lines show the flow taken in the
model training phase. All inference operations, from data collection to sign language translation, takes place on the user’s
smartphone. SUGO performs human gesture emphasis on the input images and the 3DCNN-based inference model is trained
using the core dataset collected for 50 KSL words along with an augmented dataset for robustness towards motion artifacts
that occur in real-world use cases.

4 DATASET

4.1 Word Selection
To train and test our inferencemodel, we created a depth video dataset of 50 different words from the “daily life sign
language vocabulary set” available in the Korean sign language (KSL) dictionary. Unlike many previous datasets
containing words from widely used sentences/phrases (or with unknown selection criteria), our dataset differs in
that we focus on the word gestures’ motion characteristics. In other words, we design a dataset comprehensive
enough to cover the various types of motions/gestures that KSL words (similar to many other sign languages)
encompass. We choose the following criteria for dataset word selection based on previous literature offered by
the National Institute of the Korean Language [52]. As a result, we construct a KSL dataset of 50 words that
comprehend different criteria as below.

• Hand gesture positions: Some signs are performed near the face, and some are made near the body. In
KSL, the location of the singer’s hand can be located near the head, body, or both. In detail, the gestures
performed near the head is sectored as the entire face, forehead, temple, eyes, ears, mouth, cheeks, nose
and chin areas. Furthermore, gestures made around the body area is sectored as the whole body, the front
and back of the neck, shoulders, chest, and abdomen. We therefore chose words with such categories
inconsideration. For example, raising the right fist to the nose (i.e., face) indicates the word “right” (word
#0), and placing the right palm in the center of the chest (i.e., body) means“me” (word #6). There are also
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Table 2. 50 different KSL words included in the core dataset with respect to where the motions are performed.

Hand gesture Wordspositions
Near the face Like, Eat, Right, None, Mental, Can, Smile, Age, High, Boring, Wonder, Poverty

Near the body
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Fun, Entertainment, Power, What, Where, Will,
Income, Motorcycle, Hello, Game, Name, Best, Place, Person, Mind, Only,

You, This, Action, Go out, Play, Me
Both Coffee, Poor, Ability, Nice to meet, Ask, Shock

Table 3. 50 different KSL words with respect to the number of hands used for the gestures.

Hand Usage Words

Single-hand Like, Eat, Right, None, Me, 1, 2, 3, 4, 5, 6, 7, 8, 10, Mental, What, Where, Power, Can,
Ability, Age, This, You, High, Boring, Name, Best, Ask, Wonder, Only, Place, Poverty

Two-hand Go out, Coffee, Will, Play, Fun, Entertainment, Smile, Nice to meet, Game, Action,
Income, Motorcycle, Hello, Shock, Person, Poor, Mind

Table 4. Word groups with motion/gesture similarity.

Group Words Group Words
Group 1 Me, 7, 8, 9 Group 5 Motorcycle, Hello
Group 2 Name, Best Group 6 This, You, Action
Group 3 Ask, Shock Group 7 Fun, Entertainment
Group 4 Wonder, Only, Boring Group 8 1, 10, What

Table 5. 50 KSL words classified with respect to their gesture/motion complexity.

Gesture Wordscomplexity

Simple Like, Eat, Right, Me, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Mental, What, Where, Will, Power, Can,
Ability, Play, This, You, Motorcycle, Hello, Place

Complex None, Go out, Coffee, Fun, Entertainment, Smile, Nice to meet, Game, Age, Action,
Income, High, Boring, Name, Best, Ask, Shock, Wonder, Only, Poverty, Person, Poor, Mind

more complex words such as “ask” (word #41) that require the gesture to start at the head position (i.e.,
face) and move down to the chest (i.e., body). Table 2 summarizes the 50 words in our dataset in these three
categories.

• Single-hand and two-hand gestures: Some sign gestures are expressed with a single hand, and some
require both. We point out that a major characteristic of KSL is that there are many different two-handed
sign language words with various cheremes mixing the dominant and non-dominant hand gestures. Our
dataset shows a mixture of these two types of words. As a representative example, the gesture that means
“ask” (word #41), described earlier, is a word that uses the right hand, in which the user points the index
finger to the temple, and as the hand lowers down to the chest, all fingers open and the palm faces upward.
A word with similar motion, but using both hands, “shock” performs the same operations as “ask” but as
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Table 6. Compound words included in our dataset with their respective element words.

Compound word Element words Compound word Element words
Coffee Nose + Tea (not in dataset) Nice to meet Smile + Fun
Where What + Place Game Entertainment + Fun
Ability Can + Power Poor Poverty + Human

the right hand lowers to the chest, the left hand acts as the bottom floor and the gesture ends with the back
of the right hand strongly hitting the palm of the left hand near the chest. We summarize how different
words are signed in Table 3.

• Motion similarity: KSL consists of a total of 30 core hand shapes. Small gesture variations from these core
gestures and the position in the head/body of where the gesture is performed leads to completely different
meanings. Therefore, many words will have similarities and classifying them can be a challenging task.
In our dataset, we select eight groups of words that are similar in terms of the motion. We intentionally
selected them to validate the effectiveness of sign language translation systems in practical usage scenarios.
For example, in KSL, putting your index finger on your chin while you bounce your middle finger with the
thumb represents the term “only” (word #44). The same motion, but when done near the nose, expresses
“wonder” (word #43), an entirely different meaning with similar motions. Furthermore, the same motion
near the side of the head (at the temple) means “boring” (word #36). Such words suggest that systems
focusing on hand gestures only [15] (without observing the upper body as a whole) may fail to scale to a
diverse vocabulary set. Table 4 presents how we group such similar words.

• Gesture complexity: Given the diversity of sign language gestures, some gestures are simple (e.g., static
finger representations), while some are more complex (e.g., fast and dynamic movements). KSL gestures
include path movements and articulator-internal movements that modify hand shapes or directions by
moving wrists or finger joints. Furthermore, there are many words that require the folding, bending or
twisting of the fingers. Words expressed in this form are considered complex. We make sure that our dataset
includes both types of gestures (simple and more complex). Among the 50 words in our dataset, we include
23 complex hand gesture sign words and 27 simple hand gesture sign words. In addition, we mix gestures
that include finger occlusions, which are challenging for camera-based sign language translation systems.
In Table 5 we classify the 50 words as either a simple or complex word.

• Compound words: Sign language (similar to verbal language) includes compound words, which are
combinations of multiple words. Among words registered in the KSL Dictionary, there are 2,606 single-
word words and 5,916 compound words [52]. Therefore, compound words occupy a very large portion of
the entire word set. For example, in KSL, the word for “nice to meet” (word #28) is a mixture of “smile”
(word #27) and “fun” (word #25) signs. In our dataset, we include six compound words. Table 6 presents
different compound words included in our dataset with their respective element words.

We emphasize that the words in our dataset were carefully selected to evaluate the performance of SUGO for
various sign language vocabulary’s motion characteristics. By focusing on the motion characteristics, we try to
confirm that SUGO can scale to new words that are currently not included in our dataset. High classification
accuracy for limited types of gestures could not necessarily indicate the robustness against the words with
different motion characteristics.

4.2 Data Collection Process
4.2.1 Core Dataset (Training and Testing). Our core dataset consists of data collected from 20 participants (12 male
and 8 female; age range 13-52), in which all participants performed each of the 50 words for five times. All videos
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Coffee

Nice to meet

Poor

Fig. 3. Sample word sequences for three different sign gestures. A sign language translation inference model should extract
separate features from each image and these features should be effective in understanding the context over multiple
consecutive frames.

were captured at 8 frames per second. In total, our dataset consists of 5,000-word sequences encoded as ∼450,000
depth video frames. Two of the 20 participants received professional KSL training, and the other 18 were assisted
with videos offered from the web-based KSL dictionary from the National Institute of the Korean Language
(http://sldict.korean.go.kr/). We provided enough time for the subjects to get used to each of the 50 words before
recording. Data collection for each subject took approximately 1.5 hours in a research lab environment where we
mount the smartphone on the desk with the front camera facing the participant’s face and upper body. We used
an iPhone X and recorded the video from its TrueDepth camera and the RGB camera. We used the RGB videos
only for verification purposes to better understand the performance of SUGO. Specifically, they were used to
understand ground truth human gestures for analyzing misclassified cases in our evaluation and in designing
SUGO’s core deep learning model. The data collection process and all experimental procedures presented in this
work have been approved by our Institutional Review Board (IRB).

4.2.2 Multi-environment Dataset (Testing). In addition to the core dataset, we gathered an additional multi-
environment dataset of 10 different words that sum up to 2,000 word sequences (200 sequences per word; 48,000
frames in total). We collect the dataset under different environmental conditions (e.g., bright daylight, dark
outdoors) or with added motion artifacts (e.g., hand-held walking and in-vehicle recordings). Specifically, for
collecting data with different motion artifacts, we ask the participants to i) stand still and hand-hold the camera
while making single hand gestures with the other, ii) perform the same single hand gestures while in moving
vehicle’s passenger seat with the smartphone hand-held, and iii) make the same single hand gestures while
walking. We used this dataset as a validation set to confirm the performance of SUGO in practical usage scenarios.
We will later discuss the classification results for this data in Section 6.2.

5 SUGO - SMARTPHONE DEPTH CAMERA-BASED SIGN LANGUAGE TRANSLATION
We now present details on the system design of SUGO. Specifically, to achieve the goals mentioned in Section 3,
we develop three major software components: (1) a Human Gesture Emphasis module for re-normalizing an
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(a) 2D representation of depth im-
age without human gesture empha-
sis.

(b) 2D representation of depth im-
age with background removal ap-
plied.

(c) 2D representation of depth im-
age with background removal and
re-normalization applied.

(d) 3D representation of depth im-
age without human gesture empha-
sis.

(e) 3D representation of depth im-
age with background removal ap-
plied.

(f) 3D representation of depth im-
age with background removal and
re-normalization applied.

Fig. 4. Impact of the Human Gesture Emphasis module (background removal and re-normalization) on input frames. The
Human Gesture Emphasis module in SUGO successfully removes the background and emphasizes the hand and upper body
gestures, which is important in overcoming the unique noise that low-cost depth camera-based videos introduce.

input depth video frame, (2) a 3DCNN module for sign language-text inference, and (3) a Word Segmentation
module to assist word detection in multi-word embedded videos. Furthermore, SUGO includes techniques such as
data augmentation, weight quantization, and model pruning to add robustness and lighten the 3DCNN model so
that it meets the system-level requirements. The following sections present details on each of these components.

5.1 Human Gesture Emphasis Module
The human gesture emphasis module takes in raw depth videos from the smartphone’s depth sensor and performs
a set of operations to prepare the frames for an ideal format for the inference model. The goals here are to (1)
remove background noise, and (2) emphasize the human gestures so that the core contents of the images can be
effectively exploited for sign language translation.
When a depth frame is captured for sign-language translation, we can expect the person’s face and upper

body to consist most of the image, with some parts of the image including contents such as the environmental
background. Depth data for such background regions are merely useful in sign language translation, and we are
more interested in capturing detailed motions near the human body and face.
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Fig. 5. Data collection app screenshot used for core dataset collection. The app provides guidelines on where the subject
should position their face and chest. Similar visual guidelines are used for sign language inputs in the operational app.

To perform background removal, it is important to identify where the subject’s face and upper body regions
are located. We take a simple yet effective approach for this purpose. Specifically, as Figure 5 shows, we present
visual guidelines on the smartphone app to assist the users in placing their face near the center of the image.
Using this information the human gesture emphasis module takes the depth value from the image’s center pixel
and re-configures the depth. This results in modifying the maximum depth to be 15 cm deeper than the center
point’s depth (typically 80 cm from the camera) and the minimum depth near the camera module itself. Using
8-bit depth representations, each bit will correspond to approximately 3 mm differences in depth. Based on this
information, the human gesture emphasis module performs background removal by setting all pixels farther
away than the maximum range to 0.
Next, for emphasizing the human-related contents within the image, the human gesture emphasis module

re-normalizes the parts of the video frame that contains potential human body parts. Specifically, in this phase,
we try to disregard the depth values of the background, and make sure that the body-to-hand depth range covers
the full depth spectrum. Given that the depth differences between the background and body is typically larger
than the difference between the body and hand, such a re-normalizing approach allows the depth difference
between the body and hand gestures to be much more emphasized than the body-to-background distance. For
example, given a depth range of 0-1000, in the original image, the hand may be positioned at 150, the body at
300 and the background at 800. When trying to capture features based on depth differences, since the distance
between the body and background stand our the most, the 150 difference between the body and hand, where in
fact most of the sign language-related motions take place, may not be properly emphasized. Therefore, when
re-normalizing we extend the depth range between the hand and body to a wider range, say 0-800. When done
so, the difference between the background and body is de-emphasized and depth changes are mostly captured
between the body and hand.
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conv1 conv2

w/o Human Gesture Emphasis

conv3 conv1 conv2

Background Removal applied

conv3 conv1 conv2

Re-normalization applied

conv3

Fig. 6. Feature map plots of the first, second, third convolution layer of SUGO’s deep learning model. The Human Gesture
Emphasis module emphasizes the input images so that more attention is given to the user’s gestures.

As we exemplify in Figure 4 (a) and (d), in 2D and 3D respectively, an image before applying the human gesture
emphasis module is noisy, and the features made from the user’s hand cannot be seen clearly. As the image passes
the two phases of the module (e.g., background removal and re-normalization), the body and hand features gain
clarity (Figure 4 (b), (e) and (c), (f), respectively). Note that Figures 4 (d), (e), and (f) present the 3D illustration of
the frame as we apply each of the components in the human gesture emphasis module.
The initial convolution layers in a CNN typically serve as an edge detector, and the whole point of SUGO’s

human gesture emphasis module is to assist this edge detecting process. As an example, we show in Figure 6 we
present the feature maps for three different convolution layers for different approaches. Note that the user in this
video frame is moving the right hand towards the camera. We can see by comparing the figures that when the
re-normalization is applied, the hand gesture is best recovered. Given that this re-normalization emphasizes the
difference in depth for the regions between the body and hand, while nullifying the impact of the background,
the convolution layers can detect a more crisp edge compared to the other cases.
We will later show in the evaluations that the use of the human gesture emphasis module is essential in

achieving high classification accuracy when using depth images for sign language translation.

5.2 Sign Language Translation Model
Unlike many existing image classification applications, translating sign language gestures involves understanding
the context for a sequence of frames. Given a frame sequence that consists of sign gestures, useful features need
to be extracted from each video frame, and the sequence of these features should be used to classify a word
represented by the gesture. Figure 3 shows sample frame sequences of depth video frames after the human
gesture emphasis phase. A model should extract proper features from each of these frames and make sure
that the features are useful in understanding the context over multiple consecutive frames. For this reason, we
need an inference model that can process and extract both single image-based features and sequential features.
Typically, a Convolutional Neural Network (CNN) architecture is used to extract features from images [4], and a
Recurrent Neural Network (RNN) structure is applied when understanding sequential information [42]. Due to
such characteristics, to understand video data, there have been some attempts of inputting features obtained
through a CNN into an RNN model [16, 29, 46]. However, such an approach can be challenging given that, ideally,
the features of a frame extracted by the CNN, should not focus on the per-frame characteristics, but output
features that are effective for time-series analysis by the RNN. In other words, the quality of the per-frame
features extracted by the CNN model can only be determined to be of good quality if the RNN makes accurate
predictions. This requires careful engineering of the loss function that both the CNN an RNN can share, which
is a engineering challenge by itself. As a result, for sign language translation, many studies focus on manually
focusing on hand-picked features such as the skeletal features extracted from RGB(+D) videos or external sensing
platforms [10, 11, 14, 57].
In SUGO, we take a different approach and exploit a 3 dimensional CNN (3DCNN) architecture for video

processing. A 3DCNN-based deep learning model is similar to a typical 2D CNN, but it uses a 3D version
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Fig. 7. Inference model architecture used in SUGO. SUGO exploits a 3DCNN network architecture as its base model given
that the 3DCNN offers both per-image feature extraction and feature sequence-based classification via a single pass of the
model. The illustration is the final network architecture of SUGO’s inference model, after the pruning process.

convolutional layer. Note that a 2D convolutional layer is effective in extracting features from a 2D image,
whereas, in 3DCNNs, the third dimension can be used to learn features in the time domain (i.e., over a sequence
of 2D images). Thus, 3DCNNs can be designed to allow the extraction per-frame features that are meaningful on
a multi-frame (i.e., time) perspective. The selection of using a 3DCNN-based model was also influenced by recent
work in human activity recognition and motion classification, which acknowledged the effectiveness of applying
3DCNN for similar applications [9, 31].
As the base inference model architecture for the 3DCNN, we use the ResNet-18 model, which is known to

provide satisfactory feature extraction performance for human gestures and has been validated as an effective
base model for 3D structures [17]. The ResNet3D model [17], the 3DCNN we use in SUGO, has the same structure
as ResNet-18, except that it exploits 3D convolution and batch normalization operations. Using the ResNet-18, we
pre-train this model with the Kinetics-400 dataset [24], which includes detailed categories for classifying various
body parts, and re-train this model with our collected dataset. This re-training process can be considered as a
simple form of transfer learning to exploit the pre-trained weights for the 3DCNN model using the Kinetics-400
dataset to suit our application’s purposes [49].

5.3 Model Size and Computational Cost Reduction
The 3DCNN model holds the advantage of analyzing a single video frame and, at the same time, can extract
sequential features over consecutive frames. However, 3DCNN models are known to be resource-demanding and
large [30], which contradicts our goal of operating our system solely on resource-constraint mobile devices. For
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this purpose, we perform pruning on the 3DCNN model. Specifically, in SUGO, we apply filter-pruning [32] to
the original ResNet3D-based 3DCNN architecture. The filter-pruning is a technique that reduces the memory
usage of a model and also the computational overhead by eliminating less important filters on the final result.
Since filter-pruning eliminates filters, it is important to understand the relationships between different layers of
the model. Specifically, given the skip connection characteristics of the ResNet-18 model [18], the filter pruning
should consider the input and output shapes of each layer. Thus, while there are 18 layers in ResNet-18, only four
of these layers can be aggressively pruned. Overall, we present the final model architecture after the pruning
process in Figure 7. Compared to the original ResNet3D model [17], our pruning approach effectively reduces
the size and complexity of the model so that it is suitable for on-device operations. Later using Sections 6.1.4
and 6.4, we will discuss the impact of pruning on the model size and accuracy with respect to different pruning
parameters.
In addition to model pruning, to further reduce the inference operation complexity, we perform weight

quantization on the inference model [22]. Specifically, we convert all weight parameters in the 3DCNN to be
in half floating-point units (i.e., float16) instead of float32 to expedite the inference process and lighten the
model complexity.

5.4 Data Augmentation
We train the 3DCNN model using a subset of data from our core dataset introduced in Section 4.2. The core
dataset serves well as a representative dataset, but it is limited in covering various real-world scenarios; for
instance, it is collected using a smartphone mounted to a desk to eliminate user hand vibrations’ effects. To make
the model more robust against input noise from various forms of user motions, we add an augmented dataset to
diversify the coverage of the core dataset with realistic motion noise. While it is ideal to physically collect a large
amount of data empirically, it can be difficult due to practical limitations.

Specifically, given the challenges discussed in Section 6.2, we move the human contents of an image vertically
and horizontally (randomly) by 0 − 10 pixels to imitate small vibrations that hand-held recordings can introduce.
At each learning iteration, we randomly set the position of the human contents on the image to create an
augmented dataset for model training. At each training phase, each original data (a frame from the core dataset)
is augmented with an additional frame with the random changes. Note that data augmentation is only used in
the model training phase and not for SUGO’s performance validation. Later, we will show the impact of data
augmentation on how it improves the system’s performance when evaluated for videos collected in real-world
settings.

5.5 Word Segmentation Module
When multiple words are sequentially embedded in a single input video, SUGO should split the video frames
into subsets so that individual words can be processed separately. However, splitting the video into units of
sign words is a challenging task. While sentence construction using different natural language processing (NLP)
techniques is out of the scope of this work, there is still a need to confirm that SUGO holds the capability to
detect the boundary between consecutive word-level signs for proper word-level classification.

For this, we implement a simple word segmentation module where we structure the input video sequence so
that the input video is split using a fixed-sized sliding window. Figure 8 presents an overview of this module’s
operations. Given that most sign language gestures take less than 1-2 seconds [7], and SUGO takes as input depth
videos with a frame rate of 8 frames per second (fps), we conservatively take the first 24 frames. Note that signs
can be shorter than 24 frames, but our goal is to make sure that our processing unit can cover the entire gesture
and nothing is missed. If the video is less than this size, we take the full video from f0 to f23 as the initial input.
Next, the sliding window moves by α , and the input sequence becomes f0+α to f23+α , and this process recursively
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Fig. 8. Word segmentation in SUGO. For input sequences with multiple words embedded, SUGO performs inference operations
based on a sliding window to capture possible words from the input data.

continues until the end of the video. By applying word segmentation, SUGO carefully examines at what sequence
a gesture can be recognized as a (known) word and outputs the word with the highest possible match. Finally, we
set a threshold of τ to filter out word estimations with low confidence since intermediate gestures can lead to
classifying wrong words.
While this scheme effectively identifies multiple words in a single video sequence, this is a greedy approach.

Therefore, the downside is that multiple rounds of 3DCNN operations are required to identify a single word from
the video. For resource-limited platforms, this can lead to increased resource and energy usage. Moreover, the
most critical threat of using such a scheme is that the latency of sign language translation can increase. If the
inference latency of the 3DCNN model (δ ) is high, since a chunk of the video is passed to the 3DCNN for every
α frames, given an input video consisting of n words or f cn frames, a latency of δ ×

f cn
α is required to process

the full word sequence. Nevertheless, a core requirement in SUGO is to support real-time daily conversations;
thus, the translation latency should be kept minimal. Fortunately, by adjusting α , we can control this latency by
skipping through frames, and as a positive side effect, reduce the computational overhead. We will later evaluate
the accuracy of word classification on multiple word sequences in Section 6.5 and show the impact of α on the
classification accuracy.

6 EVALUATION
To evaluate the performance of SUGO, we train the inference model using the PyTorch deep learning framework.
Using the models, we perform experiments in different computing environments. Specifically, for accuracy-related
experiments, we exploit a GPU server machine equipped with four NVIDIA RTX 2080ti graphics processing
units (GPU). All other systems-related features are tested with four different resource-constraint platforms: i) the
NVIDIA Jetson TX2 [2], ii) NVIDIA Jetson Nano [3], iii) Apple iPhone X and iv) the Apple iPhone 11 Pro. Details
on these four device configurations will be presented in Section 6.4.
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Fig. 9. Classification accuracy for different variations of SUGO’s inference model. Applying techniques such as transfer
learning (using the Kinetics-400 dataset) and input video processing contributes to improving the classification latency.
Furthermore, integrating augmented data to the training dataset and pruning the model does not harm the overall accuracy
of the model. We will examine how these two schemes contribute to the robustness and light-weight characteristics of SUGO
using following results. Note that the plots present changes to the performance in additive manner from left to right, in the
order of presentation.

For model training, we select data from 15 of the 20 subjects from the core dataset and perform data augmenta-
tion for this training data, as presented in Section 5.4. The data for the remaining five subjects are not included in
the training phase and isolated for testing only. Note that the data points in the testing dataset are excluded from
the data augmentation phase as well. Finally, we note that the core dataset is used for both training and testing
purposes unless we specify that a different dataset was used.

6.1 Word Classification Accuracy
We start our evaluations by examining the word classification accuracy from the depth videos captured from an
iPhone X (i.e., the core dataset). We take a step-by-step approach in which we first examine the impact of transfer
learning where we observe the performance of the original 3DCNN model trained using only the Kinetics-400
dataset [24] then add our training dataset to see how much improvement in performance we can achieve. Next,
we examine the impact of human gesture emphasis and model pruning. For all experiments, we performed 4-fold
cross-validation in which data from 15 of the 20 subjects were used for training. The other five are used as the
testset, with each data being part of the testset only once.

6.1.1 Impact of Transfer Learning. To observe the impact of transfer learning, we evaluate two different models:
(1) a raw ResNet3D model trained with our training dataset only, and (2) a ResNet3D model with pre-trained
weights using the Kinetics-400 dataset [24] and re-trained with our training dataset. Note that the Kinetics-400
dataset consists of RGB images; thus, the weights are trained using three different channels (e.g., R, G, and B).
Nevertheless, since our dataset of depth videos consist of only a single channel (i.e., depth), when initially training
the weights using the Kinetics-400 dataset, we make sure that only the first layer of the ResNet3D model takes in
three channels as input and the input is reduced to a single channel from the second layer onwards. In operation,
we point out that when using the depth-only videos, there is only a single input channel. Note that we empirically
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Table 7. Impact of different model pruning cases and weight quantization on the memory usage and model size. The filter
pruning and weight quantization methods used in SUGO contributes to significantly reducing the model size, making it
suitable for on-mobile device operations.

Test case Model pruned ratio Memory usage Memory usage Model size Model size
float32 (MB) float16 (MB) float32 (MB) float16 (MB)

0 original 473 237 127 64
1 (0.1, 0.1, 0.1, 0.3) 387 194 74 37
2 (0.2, 0.2, 0.2, 0.4) 335 168 56 28
3 (0.25, 0.275, 0.25, 0.45) 304 152 48 24

confirmed that using the original three channels by stacking the depth image did not show statistically different
performance. To perform 4-folds validation, each of the two test models was trained four times separately with
different training sets.

In the first two plots of Figure 9 (i.e., “Without Transfer Learning” and “With Transfer Learning”), we present
the classification accuracy of these two test cases. Notice from these plots that applying transfer learning (i.e.,
initial weights configured using the Kinetics-400 dataset) nearly doubles the classification accuracy from an
average of 47% to 85%. This suggests that applying transfer learning to pre-train weights in the inference model
significantly contribute towards achieving a very high classification accuracy.

6.1.2 Impact of the Human Gesture Emphasis Module. We now examine the performance of SUGO without the
human gesture emphasis to show its impact on the classification accuracy. By default, all inputs in SUGO pass
through the human gesture emphasis module introduced in Section 5.1. However, we note that the “With Transfer
Learning” plots in Figure 9 are results when this phase is neglected, and in the third plot of Figure 9 (i.e., “Without
Human Gesture Emphasis”), we show the performance of SUGO when input depth videos are passed through
the human gesture emphasis module. Results suggest that the human gesture emphasis module helps achieve
classification accuracy gain of ∼7% (from 85% to 91% - note: changes in the schemes in Figure 9 is additive in the
order of presentation). The main reason behind this improvement is that the resulting frames from the human
gesture emphasis module effectively separates background context from the foreground and emphasizes sign
language motions with improved feature extraction.

6.1.3 Impact of Data Augmentation. While we will examine the detailed impact of different motions on SUGO’s
classification performance in Section 6.2, in the fourth plot of Figure 9 (“With Augmented Data Training”) we
present the model’s classification accuracy after adding the augmented data as part of the training dataset. For
this we add augmented data for the training dataset (e.g., data from 15 subjects) as part of the training data. Note
that the test dataset here is from the same core dataset, and we do not add augmented data to the test data. The
results indicate that additional augmented training data only showed 0.3% degradation compared to the “With
Human Gesture Emphasis” plots. In any case, the augmented data was added to make SUGO resilient towards
motion-introduced noise, and we will show later that the use of augmented data for training helps achieve this
goal in practical use case scenarios.

6.1.4 Impact of Model Pruning. Next, we apply filter pruning and weight quantization on SUGO’s inference
model and examine the memory usage and model size in Table 7. Here, we can see that for different pruning
cases (target pruning ratio presented for each of the four adjustable layers of the 3DCNN model) and weight
quantization, the model size and the memory usage decreases noticeably, making the inference model suitable
for operation on resource-constraint mobile platforms. For each different pruning and weight quantization test
case in Table 7, we present the top-K classification accuracy in Figure 10. Notice that using float16 reduces the
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Fig. 10. Top-K accuracy for different pruning and weight quantization test cases. Model pruning and weight quantization
does not affect the overall classification accuracy.
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Fig. 11. Confusion matrix snippets for three points discussed in text (x-axis: predicted label, y-axis: ground true label).
Detailed discussions are in Section 6.1.5.

model size and memory usage, but does not degrade the classification performance. Furthermore, filter pruning
does not degrade the classification accuracy. Given the resource constraints of our target smartphone (iPhone
X), we select to use test case 1 for the remainder of the evaluations, which offered almost identical performance
compared to the non-pruned case, with nearly 20% reduction in memory usage and more than 40% reduction in
model size. We point out that iOS does not yet fully support deep learning models with float16 weights (details
on Sec. 5.3). Thus, for the iPhone implementations, we keep float32.
In the final plots presented in Figure 9 (“With Model Pruning”), we present the 4-folds evaluation on the

classification accuracy for comparisons with the previous model configurations. As the plots show, we see no
significant performance degradation, suggesting that applying model pruning is effective in reducing model size
while maintaining model accuracy.

6.1.5 Analyzing the Confusion Matrix. Figure 11 highlights three different regions on the final confusion matrix
that show relatively lower classification performance. As aforementioned, our dataset was designed so that we
intentionally include various challenges to the inference model. Specifically, Figure 11 (a) presents three words
#13, #14, #15, which represent the sign gestures for the number 7, 8 and 9, respectively. These words commonly
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Fig. 12. Accuracy among different subjects. The per-subject results suggest that SUGO can be applied to new users with no
prior learning of the user’s sign gestures.

share the gesture of showing the back of the right hand to the camera with the palm opened towards the chest.
For word #13, the thumb, index, and middle finger are open with the other two fingers closed, while word #14
additionally opens the ring finger, and word #15 opens all fingers. Therefore, the gesture difference among these
motions is minimal.

Deep investigations into our dataset revealed that a few non-professional participants failed to fold and open
their fingers properly when making these gestures, which led to misclassification in some cases. Nevertheless,
word similarity was not always problematic. For example, take words #43 and #44, which represent “wonder”
and “only”. These gestures both take place near the face, but one gesture puts the hand near the chin, and the
other makes the same hand gesture but near the nose. As Figure 11 (b) shows, these two cases were successfully
classified. We note that compared to the first example, in this case, we could see that most participants properly
performed the gestures. Next, we note that words #3, #4, #33, and #34 (not explicitly highlighted) each represent
“none” , “go out”, “action”, and “income”. These words are an example of complex gestures, but the confusionmatrix
results suggest that the complexity of sign language gestures only minimally impacts classification accuracy.

Lastly, in Figure 11 (c), we present an example of a compound word. The word #23 (“ability”) is a combination
of words #22 (“can”) and #21 (“power”) taking place sequentially. We noticed that the classification accuracy of
#23 is high but observe 12% of word #22 being incorrectly classified as #23. Word #22 is a gesture where the right
hand is fully open towards the mouth and moves farther away from the mouth with no changes to the hand
postures, and #21 is a motion where the users make a fist with their right hand pull the fist towards the chest.
When these two gestures are combined sequentially, it becomes the gesture for #23. By analyzing the data, we
noticed that when users recorded videos for word #22, they put down their hand after the gesture, and some of
these motions showed similarity with #23. This caused the inference model to make improper decisions leading
to wrong classification results.

Overall, SUGO is capable of classifying the words correctly, but the lack of well-captured sign gestures lead to
limitations on the classification accuracy in some cases. Nevertheless, with a larger training dataset, we believe
that such limitations can be overcome. Furthermore, while out of the scope of this work, a natural language
processing module that constructs full sentences with “candidate words” offered by SUGO can help enhance the
overall sign language translation performance.
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Table 8. Classification accuracy with respect to different lighting conditions. The human gesture emphasis module effective
adds robustness towards variation in lighting conditions and helps maintain a high classification accuracy.

Environment Location Brightness IR-level Accuracy w/o Overall
(Lux) HGE Module (%) Accuracy (%)

Office 1077 188 73.36 (14.26) 91.31 (3.19)
Indoor Bright Setting 2163 295 50.45 (4.46) 95.51 (4.07)

Dark Setting 1 0.0 48.30 (15.17) 90.08 (7.17)
Daytime 65535 30905 63.10 (14.67) 92.19 (4.25)

Outdoor Dark Night 82 12 56.16 (13.49) 93.36 (4.99)
Night w/ Street Lamp 1 0 58.78 (1.91) 90.69 (8.96)

6.1.6 Per-participant Classification Accuracy. Finally, we present the per-participant classification accuracy in
Figure 12. For this experiment, we train the model (the final version including pruning) with samples from all
study participants in the core dataset except for the target test subject; thus, we train 20 different models, one for
each test subject (i.e., data from 19 subjects as training data and the remaining one’s data as test data). Figure 12
indicates that the classification accuracy over different participants is relatively even, except for cases such as
participant #14. We noticed that the depth video samples produced by this participant were made unclear even
with the human eye for some signs, especially for the signs that introduce motion similarity. Therefore, a large
number of misclassifications occurred in such cases. Nevertheless, this result suggests that the inference model
designed for SUGO is suitable for delivering satisfying performance for newly participating subjects without any
personalized prior learning of the participant’s sign gestures.

6.2 Applicability in Real-World Use Cases
In this section, we quantify the impact of such real-world environmental variations using the multi-environment
dataset collected under different conditions (e.g., changes to external lighting and different motion factors that
can affect the input video quality). We point the readers to Section 4.2.2 for details on the multi-environment
dataset.

6.2.1 Impact of Lighting Conditions. Note that SUGO uses depth video samples collected from an iPhone X,
which offers IR-based depth measurements. While IR-based depth videos capture accurate depth information,
they can be vulnerable to external IR input sources and their variations. Thus, there can be questions on how the
IR depth camera-based sign language translation can operate under bright sunlight conditions. Given that SUGO
targets to be applied to everyday conversations, it is important to validate its performance in such cases.
We perform experiments in two different physical environments: (1) indoors and (2) outdoors. For each

environment, we test for three different lighting conditions, as summarized in Table 8. The classification results,
also presented in Table 8, suggest that despite the differences in overall brightness and IR levels, the classification
accuracy is kept high under any lighting conditions. By comparing the accuracy results in the final two columns
of the table, human gesture emphasis (HGE) plays an important role as the usage environment differs from
a typical indoor office environment. Specifically, we can notice that applying human gesture emphasis adds
robustness to SUGO towards light condition changes.

6.2.2 Impact of Human/Environmental Motion Artifacts. We now introduce different types of motion artifacts
that the smartphone can encounter in daily usage scenarios. Specifically, in this set of experiments, we no longer
mount the camera to a stable location, but rather test for different cases while holding the camera in one hand.
For this reason, the samples collected for these experiments were sign language words that could be done with
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Table 9. Classification accuracy with respect to different real-world motions. Adding augmented data in the model training
phase contributes to keeping a high classification accuracy even when motion artifacts persist in the input data.

Motion Type Accuracy w/o Overall Accuracy w/
Augmentation (%) Augmentation (%)

Standing Still (Device hand held) 87.38 (6.13) 90.83 (6.20)
Vehicle 85.86 (4.91) 87.02 (4.76)
Walking 81.71 (2.20) 87.23 (2.48)
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Fig. 13. Accuracy among different dataset cases. The result of training an additional 10 words for the model initialized in
advance for each case.

a single hand. Specifically, we ask five participants to make sign gestures for numbers from 1-10 to see the
classification accuracy of these gestures in mobile situations (also part of the multi-environment dataset). As
Table 9 shows, we test for three different cases: (1) standing still with the phone in hand, (2) riding a vehicle
in the passenger seat, and (3) walking while holding the phone with one hand and making sign gestures with
the other. Table 9 also presents the classification accuracy for two different models. Firstly, we present results
without the augmented data included in the training dataset, and secondly, with augmented data included for
model training. The results show that the impact of data augmentation significantly improves classification
performance. Specifically, we see improvements ranging from as low as 2% to as much as 5.5% for different cases.
This performance gain is mainly because SUGO’s data augmentation discussed in Section 5.4 primarily focus on
the trembling artifacts that can occur in daily motions, where the center of the subject moves slightly in different
directions, Thus, adding such augmented data to the training data allows SUGO’s inference model to be robust
under such input noise.

6.2.3 Potential System Scalability. To examine the potential of scaling SUGOwith untrained sign language words,
we perform an additional experiment in which we pre-train the 3DCNN model with 40 words from the 50-word
dataset and use the remaining (non-overlapping) 10 words to fine tune the model and test the classification
performance. The 40 words for pre-training were selected to cover the different gesture characteristics we
discussed in Section 4.1. We hypothesise that since the dataset in SUGO includes words with different gesture
characteristics, a sign language translation system that exploits such features can perform well even for new
words, with a small amount of model fine-tuning. For fine-tuning, among the data collected from 20 participants,
we re-train the pre-trained model with data from 15 participants, and test with the remaining five and perform
four-folds cross validation. Results in Figure 13 compares this with the case where no pre-training is applied to
the model. The plots indicate that pre-training the model with words of different motion characteristics has a
noticeable positive impact on the classification performance.
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Fig. 14. Accuracy among different subjects. We present results for the cases when using the RGB dataset, the RGB+depth
dataset and the Depth-only (SUGO) dataset (taken from Fig. 12).

Table 10. Classification accuracy with respect to different lighting conditions for the RGB, RGB+depth and Depth-only(SUGO)
datasets (taken from Tab. 8).

Environment Location RGB Dataset RGB+Depth Depth-only (SUGO)
Dataset Dataset

Office 82.89 87.78 91.31
Indoor Bright Setting 72.61 87.56 95.51

Dark Setting 64.08 81.55 90.08
Daytime 67.83 80.67 92.19

Outdoor Dark Night 64.95 83.51 93.36
Night w/ Street Lamp 74.63 82.35 90.69

6.3 Comparisons with RGB and RGB+Depth Approaches
To examine the impact of exploiting depth-only videos for sign language translation compared to previously
proposed methods of using RGB or RGB+depth videos, in the following experiments, we train the SUGO deep
learning model using the RGB videos that were simultaneously collected during our data collection phase. For
RGB+depth, we add pre-processed depth images to the dataset and configure four input channels to the 3DCNN
model. Overall, the classification accuracy for the RGB-trained model (via the same four-fold cross validation)
was 86.04% (stdev: 3.17), suggesting that using the depth only videos not only allow for application-level gains in
terms of privacy, but also shows superior performance. Surprisingly, the RGB+depth video-based model showed
an average classification accuracy of 89.99% (stdev: 1.70), which is better than the RGB only case, but still does
not outperform SUGO. Figure 14 presents the per-user accuracy achieved for the RGB-only and RGB+depth test
cases. By comparing the two case, we can see that the results here also agree with our overall accuracy results.
From the results, we can see that SUGO shows a more balanced performance over different users (stdev: 7.4 -
RGB, 5.4 - RGB+Depth, 4.5 - SUGO).
We also present the performance of RGB only and RGB+depth inputs with different lighting conditions in

Table 10. Note that for the depth data used in this experiment, we apply the human gesture emphasis module
on the raw depth video inputs. Results suggest that the depth information indeed plays an important role in
maintaining high accuracy under different lighting conditions. Compared with the results for SUGO, we can see
that using the depth-only dataset shows the best performance among all cases. We note that the performance of
different datasets with motion artifacts also show similar trends, in which exploiting depth information plays an
important role in increasing the classification accuracy.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 77. Publication date: June 2021.



Enabling Real-time Sign Language Translation on Mobile Platforms with On-board Depth Cameras • 77:25

Table 11. Per-sign classification latency and the latency experienced by each frame in the human gesture emphasis module
for different resource-limited platforms. SUGO is light-weight and fast enough to support real-world conversations.

Device
Per-sign Classification Per-frame HGELatency (s) Module Latency (s)
float32 float16

NVIDIA Jetson TX2 0.1632 0.1487 0.0006
NVIDIA Jetson Nano 0.3615 0.3419 0.0010

iPhone X 1.8393 - 0.0088
iPhone 11 Pro 1.2471 - 0.0065

We conjecture that such limited performance of RGB and RGB+depth is due to two (related) main reasons. First,
when using RGB videos, the color and patterns present on the user’s clothing can be an obstacle to the model.
Similar colors and complex patterns can complicate the hand/body feature extraction process on RGB-based sign
language translation systems. Second, and similarly, such a complex feature set would require a more sophisticated
model architecture or a significant amount of additional training data to achieve high classification performance.
Finally, we emphasize the importance of depth information in achieving high accuracy. We believe that a more
tailored model for exploiting both RGB and depth information can potentially achieve better performance.
Nevertheless, these comparison results suggest the importance of exploiting depth information for human gesture
detection applications such as sign language translation.

6.4 Latency on Mobile Platforms
The target of SUGO is to operate on mobile platforms without any support from external computing platforms in
the inference phase. The increased computational power of recently commercialized smartphones, especially
their on-board GPUs, allow for deep learning model inference operations to take place on the mobile device.
Nevertheless, compared to server-scale GPUs, their computational power is still limited; thus, making it important
to consider the computational complexity of the model. We note that the model training is a one time process
and takes place at the server; thus, we do not consider the training latency in this work.

We use four different platforms to observe SUGO’s latency performance in mobile/resource-limited computing
environments: (1) NVIDIA Jetson TX2, (2) NVIDIA Jetson Nano, (3) Apple iPhone X, and (4) Apple iPhone 11 Pro.
We use the PyTorch framework for the Jetson implementations and implement SUGO using Apple’s Metal API
for the iPhone platforms. Note that float16 based implementations are not yet supported on the Apple Metal
API; thus, the iPhone implementations are done based on float32 type variables.

A summary of the per-sign classification latency and per-frame human gesture emphasis module’s processing
latency can be found in Table 11. Here, we can make some interesting observations. First, we can see that the
human gesture emphasis module operations do not consume a noticeable amount of computation overhead
compared to the actual classification process. This is important given that all input frames to SUGO must
experience this overhead. Second, notice that the Jetson platforms’ sign classification latency is much faster
compared to the iPhone implementations. This is mainly because the implementations for Jetson exploit float16
types, which reduces the computation complexity, and the PyTorch implementations are heavily optimized for
the device’s GPU operations. Despite being relatively higher, given that conversational pauses can be as long as
1-2 seconds [47], the latency measurements for the iPhone implementation operating on the two phones are
still acceptable (especially for the iPhone 11 Pro), given typical conversation scenarios. Nevertheless, we point
out that there is still room for additional optimization for the iPhone implementations. The newly announced
update of the Swift framework supports float16 implementations (which is currently only part of a beta release
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Table 12. Multiple word input sequences used for our experiments.

Case # Word Sequence
1 I enjoy drinking coffee
2 I am tired of having no money
3 Motorcycles are the best
4 I don’t want to drink coffee

Top1 Top2 Top3
Case = 1

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
) α = 1

α = 2
α = 3
α = 4
α = 5

Top1 Top2 Top3
Case = 2

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
) α = 1

α = 2
α = 3
α = 4
α = 5

Top1 Top2 Top3
Case = 3

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
) α = 1

α = 2
α = 3
α = 4
α = 5

Top1 Top2 Top3
Case = 4

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
) α = 1

α = 2
α = 3
α = 4
α = 5

Fig. 15. Classification accuracy (top-1, 2 and 3) for different multi-word input sequences with varying α . Increasing α has
minimal impact of classification accuracy; thus, can be adjusted to reduce computational overhead and latency when applying
SUGO to input sequences of multiple words.

at the point of this writing), and re-implementing all operations to operate fully on the GPU in an optimized
way can potentially further accelerate the iOS app operations. We see these issues as essential steps towards
commercial-scale deployments, but do not focus on implementation optimization in this work.

6.5 Continuous Word Segmentation
Finally, we examine how continuous word-based input sequences are effectively detected in SUGO using the
word segmentation scheme presented in Section 5.5. As mentioned, we vary α to show how frame skipping
impacts word classification accuracy for continuous word-based input as we perform sliding window-based word
segmentation. The data for this experiment was collected from five participants for four different word sequences.
Specifically, the sequences were (1) “I enjoy drinking coffee”, (2) “I am tired of having no money”, (3) “Motorcycles
are the best”, and (4) “I don’t want to drink coffee” as presented in Table 12. Note that these word sequences are
a combination of the words in our dataset, and are designed so that the sequences contain compound words,
complex signs, and signs that have motion similarity with other signs. In Figure 15 we present the top-1, 2 and 3
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accuracy for the four word sequences (cases 1-4) with varying α . Note that α determines the number of frames
to skip when operating with video inputs embedding multiple words. Results suggest that the overall accuracy
of matching the proper word improves with a lower α , which is expected given that a low α will check more
possible cases for word detection. What is surprising is that for some cases, increasing α has nearly no impact on
classification performance. Even for cases 2 and 3, where the top-1 accuracy degrades with increasing α , the
top-3 performance is kept high. This suggests that with an effective natural language processing (NLP) module to
choose the most grammatically and contextually probable word among the three, we can dramatically reduce the
computation cost (near linearly to α ) and still achieve high accuracy in word/sentence estimation. While detailed
studies on such NLP schemes are out of the scope of this work, SUGO shows promising results in being applied
to sentence-level sign language translation.

7 LIMITATIONS AND FUTURE DIRECTIONS
While we demonstrate the strong potential of SUGO, we need further investigation regarding some issues due
to the complexity of the application domain. In this section, we list a few limitations of the current system and
describe future research directions related to such issues.

• Performance with Heterogeneous Depth Cameras: SUGO focuses on analyzing depth videos for sign
language translations, but one limitation of this work is that we have focused on a single type of depth
camera, IR-based depth sensors. We do so given that the iPhone’s TrueDepth sensor is easy to access and
exploiting this data can be considered as a suitable candidate to show the feasibility of using depth-only
video data for sign language translation. However, other mobile platforms adopt different sensors such as
stereo cameras to collect depth data. While both represent depth information, we need further studies on
how a model trained with one sensor type can perform with input data collected at heterogeneous sensing
components. This will be an interesting direction of research to observe how inference models for depth
videos can be generalized to support heterogeneous depth camera inputs.

• Sentence Level Analysis: As discussed in Section 5.5, it is crucial to design a system with the capability
to understand and process sentence-level input sequences. In this work, we perform first-stage experiments
to validate that word sequences can be detected with depth videos being used as input, but is limited in the
fact that we do not focus on how an entire sentence can be structured with grammatical accuracy. It is
meaningful to note that the grammar of various sign languages and the grammar of the corresponding
verbal language do not necessarily match. Thus, to perfectly support sign language translation, there is a
need to understand the input sentence sequence at the word-level, then present a translation with grammar-
aware sentences. Furthermore, as our results in Figure 15 suggest, with a word-level translation system
offering the top-K candidates, a natural language processing module can be designed to select to most
probable match. As such an example, we believe that many interesting natural language processing-related
research issues exist, while they are out of the scope of this work. Such future efforts can improve the
performance and usability of sign language translation systems.

• Validating Word Diversity: Given that sign language words are continuously created and there are near
5,000 commonly used words in most sign languages, further research is required to validate the scalability
of SUGO. While we carefully chose 50 words with diverse motion characteristics to assure that the system
can be scalable to more words, validating the performance with additional words is essential. Thus, we see
the diversification of vocabulary as the most important step prior to real-world deployments. For this, we
are collaborating with local associations for the deaf in creating a large scale dataset with commonly used
KSL vocabulary.
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8 CONCLUSION
We live in a society where different types of communication methods coexist: verbal and visual. As a ubiquitous
computing research community, we have continuously proposing enhanced systems for bridging the gap between
the two communication groups as we believe that such efforts are essential in realizing a true language barrier-free
society. In this work, building up on many previous efforts, we proposed SUGO. Unlike previous work, SUGO
targets to use only depth videos as its input from the user, and the smartphone as the only computing platform for
inference (after on-server training) to achieve effective sign language translation. Such attributes of SUGO offer a
less privacy-invasive system and frees‘ sign language users from carrying external sensing components just for
the sake of pursuing everyday conversations. The dataset used in this study, collected from 20 subjects for 50
Korean Sign Language words, is designed to validate the effectiveness of SUGO with respect to different motion
characteristics of various sign language gestures. We verify the performance of SUGO in various real-world
environments and use cases to show that SUGO is robust enough to overcome the diverse input noise that
practical scenarios introduce and produce accurate word classification results. Furthermore, we show that SUGO
is light-weight and the inference latency is suitable for supporting real-world conversations. With a larger dataset
of sign language gestures, we believe that the findings in this work can act a catalyst for supporting privacy-aware
smartphone-based sign language translation that can socially connect the people using different communicating
methods.
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