HandPoseMenu: Hand Posture-Based Virtual Menus for Changing Interaction Mode in 3D Space

Abstract
A system control technique (changing the interaction mode) is needed to provide various spatial interaction techniques for virtual, augmented and mixed reality (VR/AR/MR) applications. We propose HandPoseMenu, a hand posture-based virtual menus system in 3D space. HandPoseMenu recognizes the non-dominant hand's posture using a depth sensor that is attached to a wearable display and presents the virtual menu corresponding to the hand posture beside the non-dominant hand. When the user selects a desired function among the presented menu as a dominant hand, the interaction mode changes. The combination of the two system controls (graphical menu and hand posture) makes it possible to display the menu that the user wants to use in 3D space. This paper describes the implementation of HandPoseMenu and its application.

CCS Concepts
Human-centered computing → Interaction techniques; Mixed / augmented reality; Virtual reality;

Author Keywords
mixed reality; virtual reality; graphical menu; hand posture; gesture recognition; head-mounted display.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

ISS’19, November 10–13, 2019, Daejeon, Republic of Korea
http://dx.doi.org/10.1145/3343055.3360752
Introduction and Related Work

With the advent of the latest wearable devices and spatial interaction techniques, virtual, augmented and mixed reality (VR/AR/MR) can be applied to various applications in three-dimensional (3D) space. Users can experience the 3D space through wearable displays (head-mounted-display (HMD), HoloLens [2], etc.) and perform spatial interaction with the controller or hand gestures [10]. Because it requires various interaction functions depending on the type of application, it is necessary to be able to change the user’s interaction mode during the main task.

The graphical menu is a common method for switching the interaction mode in 3D space [1, 5, 6]. If the graphical menu is fixed at a specific location [1], or the user cannot view the main task and the menu at the same time [6], the user must exit from the main task and switch the interaction techniques. It is also possible to provide a hierarchical menu to occupy a minimal amount of the field of view, but it can take a long time to select a target when the target is deeply hidden [5].

Gesture interface [12, 14, 18, 19] which involves a change of position and/or orientation of the body can be a powerful system control technique. Generally, one gesture interface provides one interaction function by the user-defined approach. Although it has the advantage of quickly changing the interaction mode, all gestures must be learned by the users to provide various kinds of interaction functions. On the other hand, users can use a physical tool’s corresponding grasp as a gesture [20]. This approach provides tool-related interaction functions and is easy for the users to memorize, but similar grasping gestures (due to similar shapes of the objects) can confuse the users.

We propose HandPoseMenu (see Figure 1), a hand posture-based graphical menus system for changing the user interaction mode in 3D space. It uses a depth sensor to recognize the non-dominant hand posture and displays a virtual menu corresponding to a user-defined hand posture beside the user’s non-dominant hand. The user can switch the interaction function by selecting the menu target with the dominant hand while performing the main task.

Figure 1: The concept of HandPoseMenu. (a) Example use of HandPoseMenu (b) Various menus can be presented according to the hand posture
HandPoseMenu

HandPoseMenu is displayed in 3D space around the user’s hand [4, 7] providing a wider display area compared to the body parts (forearm [6], hand [11]) and real objects [13]. To avoid confusion with the user’s natural hand movement and to improve the hand recognition rate of our system, a menu is displayed on the side of the little finger [4] as shown in Figure 1(b). Our system can present the menu reliably by using the hand posture which contains only static movement, and it is easy for the users to learn. For the touch screen, a system control method that combines a hand posture and a graphical menu [8, 16] was proposed, but we move to a 3D environment (VR and MR). Similar to [16], our system recognizes the non-dominant hand’s posture, presents a menu corresponding to the posture, and selects the target menu to change the interaction mode with the dominant hand.

Implementation

We implemented HandPoseMenu (see Figure 2) using Oculus Rift DK2 (960 x 1080 per eye at a 75Hz, 100° FOV diagonally) for VR space. We also considered MR space with Ovrvision Pro, a front-facing stereo camera (960 x 950 per eye at a 60Hz, 99° FOV diagonally). Leap Motion was attached to HMD for hand tracking and hand posture recognition. We used Unity 3D to render graphics.

Hand Posture Recognition

HandPoseMenu recognizes hand posture by Leap Motion attached to the front of the wearable display. We selected 16 hand postures as candidates (see Figure 3) to create a machine learning model by referring to previous studies [17, 21]. We recruited 6 right-handed participants, ages 28 to 34, and collected non-dominant hand (left hand) posture data. In this task, the subject did not wear a display because the subject had to take the same hand posture as the posture in the image presented in the experiment. In addition, our system was intended to present a virtual menu based on egocentric hand posture, but we collected the data by placing the Leap Motion on the desk in order to easily acquire 3D skeleton data based on the top center of the sensor.

Before the experiment, the subjects had preliminarily practiced a set of hand postures and measured the 3D distance (H_{length}) from tip of thumb to tip of little finger at the P2 posture. When the experiment started, the subject took each hand posture that appeared on the screen and recorded hand skeleton data obtained from the Leap Motion SDK at a 50Hz frame rate for 5 seconds. The extracted 29 features were as follows (feature values related to distance were divided by H_{length} to make our system robust to different hand sizes [15]):

- The distances between the fingertips and palm center (5 features)
- The distances of the fingertips from the plane corresponding to the palm region (5 features)
- The distances between fingertips (4 features)
- The angles corresponding to the orientation of the fingertips with respect to the hand orientation (5 features)
- The angles between adjacent fingertips (10 features)

Each hand posture was repeated five times, and a total of 120000 data frames (6 people x 16 hand postures x 5 times x 5 seconds x 50Hz) were collected. We used LIB-SVM [9], a library for support vector machines, to classify the 16 hand postures. The results of a 6-fold cross validation showed a mean accuracy rate of 94.49%.
Controlling Graphical Menu

While the user is performing the main task in 3D space, we set the following trigger to display the graphical menu:

- The angle between the vertical vector at the top of the Leap Motion and the normal vector of the back of the hand is within θ ($= 60^\circ$)

If the hand tracking condition is satisfied, the hand posture is classified in real-time based on the SVM model. Our system determines the final hand posture in the current frame as the most counted posture for t ($= 0.5s$). Then, a virtual menu corresponding to a predetermined hand posture is displayed. When a graphical menu appears, the user changes the interaction mode with a dominant hand. The target menu is selected when the 3D distance between the index fingertip of the dominant hand and the target menu is within D_{thr} ($= 1.5cm$).

Application

We demonstrated a 3D drawing and modeling task application using the HandPoseMenu. We applied a learning model using 6 hand postures (P1∼P6) to the application for real-time hand posture classification and configured the corresponding menu as shown in Figure 5. First, the user controls the activation of the interaction mode of the dominant hand by the P1 posture (Figure 5(a)). Then, the user creates a pre-made 3D model or performs a 3D drawing using the thickness, color, material menus (Figure 5(b)∼(e)). Also, the user can delete the 3D objects or drawing contents (Figure 5(f)).

For example, Figure 4(a) shows a 3D drawing task using the pinch gesture of the dominant hand [3] in VR. When the user wants to change the thickness of the pen, the user can take the P3 posture to display a thickness menu, select the thickest pen, and finally perform a 3D drawing with the thickest pen (Figure 4(b)∼(c)). Also, our system can be used in MR environment (Figure 4(d)).

Conclusion and Future Work

In this study, we proposed a hand posture based graphical menus system: HandPoseMenu. The user can control
the virtual menus using hand postures corresponding to the purpose of the main task, and can change the interaction mode. In future work, we will compare the usability of our proposed method, which combines a graphical menu and hand posture, with the existing system control methods (only the graphical menu or the gesture interface).

Acknowledgments
This research was supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program. [1375026932, Development of participational AR platform for large-scale cultural space]

REFERENCES

