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Fig. 1. Our approach DragGAN allows users to "drag" the content of any GAN-generated images. Users only need to click a few handle points (red) and
target points (blue) on the image, and our approach will move the handle points to precisely reach their corresponding target points. Users can optionally
draw a mask of the flexible region (brighter area), keeping the rest of the image fixed. This flexible point-based manipulation enables control of many spatial
attributes like pose, shape, expression, and layout across diverse object categories. Project page: https://vcai.mpi-inf.mpg.de/projects/DragGAN/.

Synthesizing visual content that meets users’ needs often requires flexible
and precise controllability of the pose, shape, expression, and layout of the
generated objects. Existing approaches gain controllability of generative
adversarial networks (GANs) via manually annotated training data or a
prior 3D model, which often lack flexibility, precision, and generality. In
this work, we study a powerful yet much less explored way of controlling
GANs, that is, to "drag" any points of the image to precisely reach target
points in a user-interactive manner, as shown in Fig.1. To achieve this, we
propose DragGAN, which consists of two main components: 1) a feature-
based motion supervision that drives the handle point to move towards
the target position, and 2) a new point tracking approach that leverages
the discriminative generator features to keep localizing the position of the
handle points. Through DragGAN, anyone can deform an image with precise
control over where pixels go, thus manipulating the pose, shape, expression,
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and layout of diverse categories such as animals, cars, humans, landscapes,
etc. As these manipulations are performed on the learned generative image
manifold of a GAN, they tend to produce realistic outputs even for chal-
lenging scenarios such as hallucinating occluded content and deforming
shapes that consistently follow the object’s rigidity. Both qualitative and
quantitative comparisons demonstrate the advantage of DragGAN over prior
approaches in the tasks of image manipulation and point tracking. We also
showcase the manipulation of real images through GAN inversion.
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1 INTRODUCTION
Deep generative models such as generative adversarial networks
(GANs) [Goodfellow et al. 2014] have achieved unprecedented suc-
cess in synthesizing random photorealistic images. In real-world
applications, a critical functionality requirement of such learning-
based image synthesis methods is the controllability over the syn-
thesized visual content. For example, social-media users might want
to adjust the position, shape, expression, and body pose of a hu-
man or animal in a casually-captured photo; professional movie
pre-visualization and media editing may require efficiently creating
sketches of scenes with certain layouts; and car designers may want
to interactively modify the shape of their creations. To satisfy these
diverse user requirements, an ideal controllable image synthesis
approach should possess the following properties 1) Flexibility: it
should be able to control different spatial attributes including posi-
tion, pose, shape, expression, and layout of the generated objects
or animals; 2) Precision: it should be able to control the spatial at-
tributes with high precision; 3) Generality: it should be applicable
to different object categories but not limited to a certain category.
While previous works only satisfy one or two of these properties,
we target to achieve them all in this work.

Most previous approaches gain controllability of GANs via prior
3D models [Deng et al. 2020; Ghosh et al. 2020; Tewari et al. 2020] or
supervised learning that relies on manually annotated data [Abdal
et al. 2021; Isola et al. 2017; Ling et al. 2021; Park et al. 2019; Shen
et al. 2020]. Thus, these approaches fail to generalize to new object
categories, often control a limited range of spatial attributes or pro-
vide little control over the editing process. Recently, text-guided
image synthesis has attracted attention [Ramesh et al. 2022; Rom-
bach et al. 2021; Saharia et al. 2022]. However, text guidance lacks
precision and flexibility in terms of editing spatial attributes. For
example, it cannot be used to move an object by a specific number
of pixels.
To achieve flexible, precise, and generic controllability of GANs,

in this work, we explore a powerful yet much less explored interac-
tive point-based manipulation. Specifically, we allow users to click
any number of handle points and target points on the image and
the goal is to drive the handle points to reach their corresponding
target points. As shown in Fig. 1, this point-based manipulation
allows users to control diverse spatial attributes and is agnostic to
object categories. The approach with the closest setting to ours is
UserControllableLT [Endo 2022], which also studies dragging-based
manipulation. Compared to it, the problem studied in this paper
has two more challenges: 1) we consider the control of more than
one point, which their approach does not handle well; 2) we require
the handle points to precisely reach the target points while their
approach does not. As we will show in experiments, handling more
than one point with precise position control enables much more
diverse and accurate image manipulation.
To achieve such interactive point-based manipulation, we pro-

pose DragGAN, which addresses two sub-problems, including 1)
supervising the handle points to move towards the targets and 2)
tracking the handle points so that their positions are known at
each editing step. Our technique is built on the key insight that
the feature space of a GAN is sufficiently discriminative to enable

both motion supervision and precise point tracking. Specifically, the
motion supervision is achieved via a shifted feature patch loss that
optimizes the latent code. Each optimization step leads to the handle
points shifting closer to the targets; thus point tracking is then per-
formed through nearest neighbor search in the feature space. This
optimization process is repeated until the handle points reach the
targets. DragGAN also allows users to optionally draw a region of
interest to perform region-specific editing. Since DragGAN does not
rely on any additional networks like RAFT [Teed and Deng 2020],
it achieves efficient manipulation, only taking a few seconds on a
single RTX 3090 GPU in most cases. This allows for live, interactive
editing sessions, in which the user can quickly iterate on different
layouts till the desired output is achieved.
We conduct an extensive evaluation of DragGAN on diverse

datasets including animals (lions, dogs, cats, and horses), humans
(face and whole body), cars, and landscapes. As shown in Fig.1,
our approach effectively moves the user-defined handle points to
the target points, achieving diverse manipulation effects across
many object categories. Unlike conventional shape deformation
approaches that simply apply warping [Igarashi et al. 2005], our
deformation is performed on the learned image manifold of a GAN,
which tends to obey the underlying object structures. For example,
our approach can hallucinate occluded content, like the teeth inside
a lion’s mouth, and can deform following the object’s rigidity, like
the bending of a horse leg. We also develop a GUI for users to
interactively perform the manipulation by simply clicking on the
image. Both qualitative and quantitative comparison confirms the
advantage of our approach over UserControllableLT. Furthermore,
our GAN-based point tracking algorithm also outperforms existing
point tracking approaches such as RAFT [Teed and Deng 2020] and
PIPs [Harley et al. 2022] for GAN-generated frames. Furthermore,
by combining with GAN inversion techniques, our approach also
serves as a powerful tool for real image editing.

2 RELATED WORK

2.1 Generative Models for Interactive Content Creation
Most current methods use generative adversarial networks (GANs)
or diffusion models for controllable image synthesis.

Unconditional GANs. GANs are generative models that transform
low-dimensional randomly sampled latent vectors into photorealis-
tic images. They are trained using adversarial learning and can be
used to generate high-resolution photorealistic images [Creswell
et al. 2018; Goodfellow et al. 2014; Karras et al. 2021, 2019]. Most
GAN models like StyleGAN [Karras et al. 2019] do not directly
enable controllable editing of the generated images.

Conditional GANs. Several methods have proposed conditional
GANs to address this limitation. Here, the network receives a con-
ditional input, such as segmentation map [Isola et al. 2017; Park
et al. 2019] or 3D variables [Deng et al. 2020; Ghosh et al. 2020], in
addition to the randomly sampled latent vector to generate photo-
realistic images. Instead of modeling the conditional distribution,
EditGAN [Ling et al. 2021] enables editing by first modeling a joint
distribution of images and segmentation maps, and then computing
new images corresponding to edited segmentation maps.
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Controllability using Unconditional GANs. Several methods have
been proposed for editing unconditional GANs by manipulating the
input latent vectors. Some approaches find meaningful latent direc-
tions via supervised learning from manual annotations or prior 3D
models [Abdal et al. 2021; Leimkühler and Drettakis 2021; Patashnik
et al. 2021; Shen et al. 2020; Tewari et al. 2020]. Other approaches
compute the important semantic directions in the latent space in
an unsupervised manner [Härkönen et al. 2020; Shen and Zhou
2020; Zhu et al. 2023]. Recently, the controllability of coarse object
position is achieved by introducing intermediate “blobs" [Epstein
et al. 2022] or heatmaps [Wang et al. 2022b]. All of these approaches
enable editing of either image-aligned semantic attributes such as
appearance, or coarse geometric attributes such as object position
and pose. While Editing-in-Style [Collins et al. 2020] showcases
some spatial attributes editing capability, it can only achieve this by
transferring local semantics between different samples. In contrast
to these methods, our approach allows users to perform fine-grained
control over the spatial attributes using point-based editing.
GANWarping [Wang et al. 2022a] also use point-based editing,

however, they only enable out-of-distribution image editing. A few
warped images can be used to update the generative model such
that all generated images demonstrate similar warps. However, this
method does not ensure that the warps lead to realistic images.
Further, it does not enable controls such as changing the 3D pose
of the object. Similar to us, UserControllableLT [Endo 2022] en-
ables point-based editing by transforming latent vectors of a GAN.
However, this approach only supports editing using a single point
being dragged on the image and does not handle multiple-point
constraints well. In addition, the control is not precise, i.e., after
editing, the target point is often not reached.

3D-aware GANs. Several methods modify the architecture of the
GAN to enable 3D control [Chan et al. 2022, 2021; Chen et al. 2022;
Gu et al. 2022; Pan et al. 2021; Schwarz et al. 2020; Tewari et al.
2022; Xu et al. 2022]. Here, the model generates 3D representations
that can be rendered using a physically-based analytic renderer.
However, unlike our approach, control is limited to global pose or
lighting.

Diffusion Models. More recently, diffusion models [Sohl-Dickstein
et al. 2015] have enabled image synthesis at high quality [Ho et al.
2020; Song et al. 2020, 2021]. These models iteratively denoise a
randomly sampled noise to create a photorealistic image. Recent
models have shown expressive image synthesis conditioned on text
inputs [Ramesh et al. 2022; Rombach et al. 2021; Saharia et al. 2022].
However, natural language does not enable fine-grained control
over the spatial attributes of images, and thus, all text-conditional
methods are restricted to high-level semantic editing. In addition,
current diffusion models are slow since they require multiple denois-
ing steps. While progress has been made toward efficient sampling,
GANs are still significantly more efficient.

2.2 Point Tracking
To track points in videos, an obvious approach is through optical
flow estimation between consecutive frames. Optical flow estimation
is a classic problem that estimates motion fields between two images.

Conventional approaches solve optimization problems with hand-
crafted criteria [Brox and Malik 2010; Sundaram et al. 2010], while
deep learning-based approaches started to dominate the field in
recent years due to better performance [Dosovitskiy et al. 2015;
Ilg et al. 2017; Teed and Deng 2020]. These deep learning-based
approaches typically use synthetic data with ground truth optical
flow to train the deep neural networks. Among them, the most
widely used method now is RAFT [Teed and Deng 2020], which
estimates optical flow via an iterative algorithm. Recently, Harley
et al. [2022] combines this iterative algorithm with a conventional
“particle video” approach, giving rise to a new point tracking method
named PIPs. PIPs considers information across multiple frames and
thus handles long-range tracking better than previous approaches.
In this work, we show that point tracking on GAN-generated

images can be performed without using any of the aforementioned
approaches or additional neural networks. We reveal that the fea-
ture spaces of GANs are discriminative enough such that tracking
can be achieved simply via feature matching. While some previous
works also leverage the discriminative feature in semantic segmen-
tation [Tritrong et al. 2021; Zhang et al. 2021], we are the first to
connect the point-based editing problem to the intuition of discrim-
inative GAN features and design a concrete method. Getting rid of
additional tracking models allows our approach to run much more
efficiently to support interactive editing. Despite the simplicity of
our approach, we show that it outperforms the state-of-the-art point
tracking approaches including RAFT and PIPs in our experiments.

3 METHOD
Thiswork aims to develop an interactive imagemanipulationmethod
for GANs where users only need to click on the images to define
some pairs of (handle point, target point) and drive the handle points
to reach their corresponding target points. Our study is based on
the StyleGAN2 architecture [Karras et al. 2020]. Here we briefly
introduce the basics of this architecture.

StyleGAN Terminology. In the StyleGAN2 architecture, a 512 di-
mensional latent code 𝒛 ∈ N (0, 𝑰 ) is mapped to an intermediate
latent code𝒘 ∈ R512 via a mapping network. The space of𝒘 is com-
monly referred to asW.𝒘 is then sent to the generator𝐺 to produce
the output image I = 𝐺 (𝒘). In this process,𝒘 is copied several times
and sent to different layers of the generator 𝐺 to control different
levels of attributes. Alternatively, one can also use different 𝒘 for
different layers, in which case the input would be𝒘 ∈ R𝑙×512 = W+,
where 𝑙 is the number of layers. This less constrained W+ space is
shown to be more expressive [Abdal et al. 2019]. As the generator
𝐺 learns a mapping from a low-dimensional latent space to a much
higher dimensional image space, it can be seen as modelling an
image manifold [Zhu et al. 2016].

3.1 Interactive Point-based Manipulation
An overview of our image manipulation pipeline is shown in Fig. 2.
For any image I ∈ R3×𝐻×𝑊 generated by a GAN with latent code
𝒘 , we allow the user to input a number of handle points {𝒑𝑖 =

(𝑥𝑝,𝑖 , 𝑦𝑝,𝑖 ) |𝑖 = 1, 2, ..., 𝑛} and their corresponding target points {𝒕𝑖 =
(𝑥𝑡,𝑖 , 𝑦𝑡,𝑖 ) |𝑖 = 1, 2, ..., 𝑛} (i.e., the corresponding target point of 𝒑𝑖
is 𝒕𝑖 ). The goal is to move the object in the image such that the
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Fig. 2. Overview of our pipeline. Given a GAN-generated image, the user only needs to set several handle points (red dots), target points (blue dots), and
optionally a mask denoting the movable region during editing (brighter area). Our approach iteratively performs motion supervision (Sec. 3.2) and point tracking
(Sec. 3.3). The motion supervision step drives the handle points (red dots) to move towards the target points (blue dots) and the point tracking step updates
the handle points to track the object in the image. This process continues until the handle points reach their corresponding target points.

semantic positions (e.g., the nose and the jaw in Fig. 2) of the handle
points reach their corresponding target points. We also allow the
user to optionally draw a binary mask M denoting which region of
the image is movable.
Given these user inputs, we perform image manipulation in an

optimization manner. As shown in Fig. 2, each optimization step
consists of two sub-steps, including 1) motion supervision and 2)
point tracking. In motion supervision, a loss that enforces handle
points to move towards target points is used to optimize the latent
code � . After one optimization step, we get a new latent code � ′

and a new image I′. The update would cause a slight movement
of the object in the image. Note that the motion supervision step
only moves each handle point towards its target by a small step but
the exact length of the step is unclear as it is subject to complex
optimization dynamics and therefore varies for different objects
and parts. Thus, we then update the positions of the handle points
{�� } to track the corresponding points on the object. This tracking
process is necessary because if the handle points (e.g., nose of the
lion) are not accurately tracked, then in the next motion supervision
step, wrong points (e.g., face of the lion) will be supervised, leading
to undesired results. After tracking, we repeat the above optimiza-
tion step based on the new handle points and latent codes. This
optimization process continues until the handle points {�� } reach
the position of the target points {�� }, which usually takes 30-200
iterations in our experiments. The user can also stop the optimiza-
tion at any intermediate step. After editing, the user can input new
handle and target points and continue editing until satisfied with
the results.

3.2 Motion Supervision
How to supervise the point motion for a GAN-generated image has
not been much explored before. In this work, we propose a motion
supervision loss that does not rely on any additional neural net-
works. The key idea is that the intermediate features of the generator
are very discriminative such that a simple loss suffices to supervise
motion. Specifically, we consider the feature maps F after the 6th
block of StyleGAN2, which performs the best among all features due
to a good trade-off between resolution and discriminativeness. We
resize F to have the same resolution as the final image via bilinear

!"#$%&"

'"("&#$)&

*#$"($+,)-"+. ./

!"#$"%&'
!"()*+,$

-./0,%%1'''''2'''''34"&#5*166-./0,%%1'''''2'''''34"&#5*166

Fig. 3. Method. Our motion supervision is achieved via a shifted patch loss
on the feature maps of the generator. We perform point tracking on the
same feature space via the nearest neighbor search.

interpolation. As shown in Fig. 3, to move a handle point �� to the
target point �� , our idea is to supervise a small patch around ��
(red circle) to move towards �� by a small step (blue circle). We use
Ω1 (�� , �1) to denote the pixels whose distance to �� is less than �1,
then our motion supervision loss is:

L =
�∑
�=0

∑

�� ∈Ω1 (�� ,�1)
‖F(�� ) − F(�� + �� )‖1 + �‖(F − F0) · (1 −M)‖1,

(1)

where F(�) denotes the feature values of F at pixel �, �� =
��−��

‖��−�� ‖2
is a normalized vector pointing from �� to �� (�� = 0 if �� = �� ),
and F0 is the feature maps corresponding to the initial image. Note
that the first term is summed up over all handle points {�� }. As the
components of �� +�� are not integers, we obtain F(�� +�� ) via bilin-
ear interpolation. Importantly, when performing back-propagation
using this loss, the gradient is not back-propagated through F(�� ).
This will motivate �� to move to �� + �� but not vice versa. In case
the binary maskM is given, we keep the unmasked region fixed with
a reconstruction loss shown as the second term. At each motion
supervision step, this loss is used to optimize the latent code� for
one step.� can be optimized either in theW space or in theW+
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Fig. 4. Qualitative comparison of our approach to UserControllableLT [Endo 2022] on the task of moving handle points (red dots) to target points (blue dots).
Our approach achieves more natural and superior results on various datasets. More examples are provided in Fig. 10.

space, depending on whether the user wants a more constrained
image manifold or not. As W+ space is easier to achieve out-of-
distribution manipulations (e.g., cat in Fig. 16), we useW+ in this
work for better editability. In practice, we observe that the spatial
attributes of the image are mainly affected by the 𝒘 for the first
6 layers while the remaining ones only affect appearance. Thus,
inspired by the style-mixing technique [Karras et al. 2019], we only
update the𝒘 for the first 6 layers while fixing others to preserve the
appearance. This selective optimization leads to the desired slight
movement of image content.

3.3 Point Tracking
The previous motion supervision results in a new latent code 𝒘 ′,
new feature maps F′, and a new image I′. As the motion supervision
step does not readily provide the precise new locations of the handle
points, our goal here is to update each handle point 𝒑𝑖 such that it
tracks the corresponding point on the object. Point tracking is typi-
cally performed via optical flow estimation models or particle video
approaches [Harley et al. 2022]. Again, these additional models can
significantly harm efficiency and may suffer from accumulation
error, especially in the presence of alias artifacts in GANs. We thus
present a new point tracking approach for GANs. The insight is that
the discriminative features of GANs well capture dense correspon-
dence and thus tracking can be effectively performed via nearest
neighbor search in a feature patch. Specifically, we denote the fea-
ture of the initial handle point as 𝒇𝑖 = F0 (𝒑𝑖 ). We denote the patch
around 𝒑𝑖 as Ω2 (𝒑𝑖 , 𝑟2) = {(𝑥,𝑦) | |𝑥 − 𝑥𝑝,𝑖 | < 𝑟2, |𝑦 − 𝑦𝑝,𝑖 | < 𝑟2}.
Then the tracked point is obtained by searching for the nearest
neighbor of 𝑓𝑖 in Ω2 (𝒑𝑖 , 𝑟2):

𝒑𝑖 := argmin
𝒒𝑖 ∈Ω2 (𝒑𝑖 ,𝑟2)

∥F′(𝒒𝑖 ) − 𝒇𝑖 ∥1 . (2)

In this way, 𝒑𝑖 is updated to track the object. For more than one
handle point, we apply the same process for each point. Note that
here we are also considering the feature maps F′ after the 6th block
of StyleGAN2. The feature maps have a resolution of 256 × 256 and
are bilinear interpolated to the same size as the image if needed,
which is sufficient to perform accurate tracking in our experiments.
We analyze this choice at Sec. 4.2.

3.4 Implementation Details
We implement our approach based on PyTorch [Paszke et al. 2017].
We use the Adam optimizer [Kingma and Ba 2014] to optimize
the latent code 𝒘 with a step size of 2e-3 for FFHQ [Karras et al.
2019], AFHQCat [Choi et al. 2020], and LSUN Car [Yu et al. 2015]
datasets and 1e-3 for others. The hyper-parameters are set to be
_ = 20, 𝑟1 = 3, 𝑟2 = 12. In our implementation, we stop the optimiza-
tion process when all the handle points are no more than 𝑑 pixel
away from their corresponding target points, where 𝑑 is set to 1
for no more than 5 handle points and 2 otherwise. We also develop
a GUI to support interactive image manipulation. Thanks to the
computational efficiency of our approach, users only need to wait
for a few seconds for each edit and can continue the editing until
satisfied. We highly recommend readers refer to the supplemental
video for live recordings of interactive sessions.

4 EXPERIMENTS
Datasets. We evaluate our approach based on StyleGAN2 [Karras

et al. 2020] pretrained on the following datasets (the resolution of
the pretrained StyleGAN2 is shown in brackets): FFHQ (512) [Karras
et al. 2019], AFHQCat (512) [Choi et al. 2020], SHHQ (512) [Fu et al.
2022], LSUN Car (512) [Yu et al. 2015], LSUN Cat (256) [Yu et al.
2015], Landscapes HQ (256) [Skorokhodov et al. 2021], microscope
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Real image 4th Edit (expression)1st Edit (pose) 2nd Edit (hair) 3rd Edit (shape)

GAN Inversion
Fig. 5. Real image manipulation. Given a real image, we apply GAN inversion to map it to the latent space of StyleGAN, then edit the pose, hair, shape, and
expression, respectively.
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Fig. 6. Qualitative tracking comparison of our approach to RAFT [Teed and
Deng 2020], PIPs [Harley et al. 2022], and without tracking. Our approach
tracks the handle point more accurately than baselines, thus producing
more precise editing.

(512) [Pinkney 2020] and self-distilled dataset from [Mokady et al.
2022] including Lion (512), Dog (1024), and Elephant (512).

Baselines. Our main baseline is UserControllableLT [Endo 2022],
which has the closest setting with our method. UserControllableLT
does not support a mask input but allows users to define a number
of fixed points. Thus, for testing cases with a mask input, we sample
a regular 16 × 16 grid on the image and use the points outside the
mask as the fixed points to UserControllableLT. Besides, we also
compare with RAFT [Teed and Deng 2020] and PIPs [Harley et al.
2022] for point tracking. To do so, we create two variants of our
approach where the point tracking part (Sec.3.3) is replaced with
these two tracking methods.

4.1 Qualitative Evaluation
Fig. 4 shows the qualitative comparison between our method and
UserControllableLT. We show the image manipulation results for
several different object categories and user inputs. Our approach
accuratelymoves the handle points to reach the target points, achiev-
ing diverse and natural manipulation effects such as changing the
pose of animals, the shape of a car, and the layout of a landscape.
In contrast, UserControllableLT cannot faithfully move the handle
points to the targets and often leads to undesired changes in the
images, e.g., the clothes of the human and the background of the
car. It also does not keep the unmasked region fixed as well as ours,
as shown in the cat images. We show more comparisons in Fig. 10.
A comparison between our approach with PIPs and RAFT is

provided in Fig. 6. Our approach accurately tracks the handle point
above the nose of the lion, thus successfully driving it to the target

Input Target UserControllableLT Ours

Fig. 7. Face landmark manipulation. Compared to UserControl-
lableLT [Endo 2022], our method can manipulate the landmarks detected
from the input image to match the landmarks detected from the target
image with less matching error.

Table 1. Quantitative evaluation on face keypoint manipulation. We com-
pute the mean distance between edited points and target points. The FID
and Time are reported based on the ‘1 point’ setting.

Method 1 point 5 points 68 points FID Time (s)
No edit 12.93 11.66 16.02 - -
UserControllableLT 11.64 10.41 10.15 25.32 0.03
Ours w. RAFT tracking 13.43 13.59 15.92 51.37 15.4
Ours w. PIPs tracking 2.98 4.83 5.30 31.87 6.6
Ours 2.44 3.18 4.73 9.28 2.0

position. In PIPs and RAFT, the tracked point starts to deviate from
the nose during the manipulation process. Consequently, they move
thewrong part to the target position.When no tracking is performed,
the fixed handle point soon starts to drive another part of the image
(e.g., background) after a few steps and never knows when to stop,
which fails to achieve the editing goal.

Real image editing. Using GAN inversion techniques that embed
a real image in the latent space of StyleGAN, we can also apply
our approach to manipulate real images. Fig. 5 shows an example,
where we apply PTI inversion [Roich et al. 2022] to the real image
and then perform a series of manipulations to edit the pose, hair,
shape, and expression of the face in the image. We show more real
image editing examples in Fig. 13.

4.2 Quantitative Evaluation
We quantitatively evaluate our method under two settings, including
face landmark manipulation and paired image reconstruction.
Face landmark manipulation. Since face landmark detection is

very reliable using an off-the-shelf tool [King 2009], we use its
prediction as ground truth landmarks. Specifically, we randomly
generate two face images using the StyleGAN trained on FFHQ and
detect their landmarks. The goal is to manipulate the landmarks
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Table 2. Quantitative evaluation on paired image reconstruction. We follow the evaluation
in [Endo 2022] and report MSE (×102)↓ and LPIPS (×10)↓ scores.
Dataset Lion LSUN Cat Dog LSUN Car
Metric MSE LPIPS MSE LPIPS MSE LPIPS MSE LPIPS
UserControllableLT 1.82 1.14 1.25 0.87 1.23 0.92 1.98 0.85
Ours w. RAFT tracking 1.09 0.99 1.84 1.15 0.91 0.76 2.37 0.94
Ours w. PIPs tracking 0.80 0.82 1.11 0.85 0.78 0.63 1.81 0.79
Ours 0.66 0.72 1.04 0.82 0.48 0.44 1.67 0.74

Table 3. Effects of which feature to use. x+y means the con-
catenation of two features. We report the performance (MD)
of face landmark manipulation (1 point).
Block No. 4 5 6 7 5+6 6+7
Motion sup. 2.73 2.50 2.44 2.51 2.47 2.45
Tracking 3.61 2.55 2.44 2.58 2.47 2.45

Table 4. Effects of 𝑟1.

𝑟1 1 2 3 4 5
MD 2.49 2.51 2.44 2.45 2.46

w/ mask w/o mask

Fig. 8. Effects of the mask. Our approach allows masking the movable
region. After masking the head region of the dog, the rest part would be
almost unchanged.

of the first image to match the landmarks of the second image.
After manipulation, we detect the landmarks of the final image
and compute the mean distance (MD) to the target landmarks. The
results are averaged over 1000 tests. The same set of test samples is
used to evaluate all methods. In this way, the final MD score reflects
howwell the method canmove the landmarks to the target positions.
We perform the evaluation under 3 settings with different numbers
of landmarks including 1, 5, and 68 to show the robustness of our
approach under different numbers of handle points. We also report
the FID score between the edited images and the initial images as
an indication of image quality. In our approach and its variants, the
maximum optimization step is set to 300.
The results are provided in Table 1. Our approach significantly

outperforms UserControllableLT under different numbers of points.
A qualitative comparison is shown in Fig. 7, where our method
opens the mouth and adjusts the shape of the jaw to match the
target face while UserControllableLT fails to do so. Furthermore,
our approach preserves better image quality as indicated by the FID
scores. Thanks to a better tracking capability, we also achieve more
accurate manipulation than RAFT and PIPs. Inaccurate tracking
also leads to excessive manipulation, which deteriorates the image
quality as shown in FID scores. Although UserControllableLT is
faster, our approach largely pushes the upper bound of this task,
achieving much more faithful manipulation while maintaining a
comfortable running time for users.
Paired image reconstruction. In this evaluation, we follow the

same setting as UserControllableLT [Endo 2022]. Specifically, we
sample a latent code 𝒘1 and randomly perturb it to get 𝒘2 in the
same way as in [Endo 2022]. Let I1 and I2 be the StyleGAN images
generated from the two latent codes. We then compute the optical
flow between I1 and I2 and randomly sample 32 pixels from the flow
field as the user inputU. The goal is to reconstruct I2 from I1 and
U. We report MSE and LPIPS [Zhang et al. 2018] and average the
results over 1000 samples. The maximum optimization step is set
to 100 in our approach and its variants. As shown in Table 2, our
approach outperforms all the baselines in different object categories,
which is consistent with previous results.

Fig. 9. Out-of-distribution manipulations. Our approach has extrapolation
capability for creating images out of the training image distribution, for
example, an extremely opened mouth and a greatly enlarged wheel.

Ablation Study. Here we study the effects of which feature to use
in motion supervision and point tracking. We report the perfor-
mance (MD) of face landmark manipulation using different features.
As Table 3 shows, in both motion supervision and point tracking,
the feature maps after the 6th block of StyleGAN perform the best,
showing the best balance between resolution and discriminative-
ness. We also provide the effects of 𝑟1 in Table 4. It can be observed
that the performance is not very sensitive to the choice of 𝑟1, and
𝑟1 = 3 performs slightly better.

4.3 Discussions
Effects of mask. Our approach allows users to input a binary

mask denoting the movable region. We show its effects in Fig. 8.
When a mask over the head of the dog is given, the other regions
are almost fixed and only the head moves. Without the mask, the
manipulation moves the whole dog’s body. This also shows that
point-based manipulation often has multiple possible solutions and
the GAN will tend to find the closest solution in the image manifold
learned from the training data. The mask function can help to reduce
ambiguity and keep certain regions fixed.

Out-of-distribution manipulation. So far, the point-based manipu-
lations we have shown are "in-distribution" manipulations, i.e., it
is possible to satisfy the manipulation requirements with a natural
image inside the image distribution of the training dataset. Here we
showcase some out-of-distribution manipulations in Fig. 9. It can be
seen that our approach has some extrapolation capability, creating
images outside the training image distribution, e.g., an extremely
opened mouth and a large wheel. In some cases, users may want to
always keep the image in the training distribution and prevent it
from reaching such out-of-distribution manipulations. A potential
way to achieve this is to add additional regularization to the latent
code𝒘 , which is not the main focus of this paper.
Limitations. Despite some extrapolation capability, our editing

quality is still affected by the diversity of training data. As exem-
plified in Fig. 14 (a), creating a human pose that deviates from the
training distribution can lead to artifacts. Besides, handle points in
texture-less regions sometimes suffer from more drift in tracking, as
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shown in Fig. 14 (b)(c). We thus suggest picking texture-rich handle
points if possible.
Social impacts. As our method can change the spatial attributes

of images, it could be misused to create images of a real person with
a fake pose, expression, or shape. Thus, any application or research
that uses our approach has to strictly respect personality rights and
privacy regulations.

5 CONCLUSION
We have presented DragGAN, an interactive approach for intuitive
point-based image editing. Our method leverages a pre-trained GAN
to synthesize images that not only precisely follow user input, but
also stay on the manifold of realistic images. In contrast to many
previous approaches, we present a general framework by not relying
on domain-specific modeling or auxiliary networks. This is achieved
using two novel ingredients: An optimization of latent codes that
incrementally moves multiple handle points towards their target
locations, and a point tracking procedure to faithfully trace the
trajectory of the handle points. Both components utilize the dis-
criminative quality of intermediate feature maps of the GAN to
yield pixel-precise image deformations and interactive performance.
We have demonstrated that our approach outperforms the state of
the art in GAN-based manipulation and opens new directions for
powerful image editing using generative priors. As for future work,
we plan to extend point-based editing to 3D generative models.
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Fig. 10. Qualitative comparison. This is an extension of Fig. 4.

Input Target Ours Input Target Ours

Fig. 11. Face landmark manipulation. Our method works well even for such dense keypoint cases.
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1st Edit (foot) 2nd Edit (mouth) 3rd Edit (ears)

Fig. 12. Continuous image manipulation. Users can continue the manipulation based on previous manipulation results.

Real image 1st Edit (hair) 2nd Edit (expression) 3rd Edit (pose)

GAN Inversion

GAN Inversion GAN Inversion

GAN InversionGAN Inversion
Fig. 13. Real image manipulation.

(b) Texture-less handle point (c) Texture-rich handle point(a) Out-of-distribution pose

Fig. 14. Limitations. (a) the StyleGAN-human [Fu et al. 2022] is trained on a fashion dataset where most arms and legs are downward. Editing toward
out-of-distribution poses can cause distortion artifacts as shown in the legs and hands. (b)&(c) The handle point (red) in texture-less regions may suffer from
more drift during tracking, as can be observed from its relative position to the rearview mirror.

Fig. 15. Effects of the mask. By masking the foreground object, we can fix the back-
ground. The details of the trees and grasses are kept nearly unchanged. Better back-
ground preservation could potentially be achieved via feature blending [Suzuki et al.
2018].

Input W+ W

Fig. 16. Effects of W/W+ space. Optimizing the latent code in W+
space is easier to achieve out-of-distribution manipulations such as
closing only one eye of the cat. In contrast, W space struggles to
achieve this as it tends to keep the image within the distribution of
training data.
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