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Abstract

We introduce Neural Point Light Fields that represent
scenes implicitly with a light field living on a sparse point
cloud. Combining differentiable volume rendering with
learned implicit density representations has made it pos-
sible to synthesize photo-realistic images for novel views
of small scenes. As neural volumetric rendering methods
require dense sampling of the underlying functional scene
representation, at hundreds of samples along a ray cast
through the volume, they are fundamentally limited to small
scenes with the same objects projected to hundreds of train-
ing views. Promoting sparse point clouds to neural im-
plicit light fields allows us to represent large scenes effec-
tively with only a single implicit sampling operation per ray.
These point light fields are as a function of the ray direction,
and local point feature neighborhood, allowing us to inter-
polate the light field conditioned training images without
dense object coverage and parallax. We assess the proposed
method for novel view synthesis on large driving scenarios,
where we synthesize realistic unseen views that existing im-
plicit approaches fail to represent. We validate that Neural
Point Light Fields make it possible to predict videos along
unseen trajectories previously only feasible to generate by
explicitly modeling the scene.

1. Introduction

Learning implicit volumetric scene representations has
made it possible to synthesize photo-realistic images of sin-
gle scenes [22, 26, 29, 41]. The most successful meth-
ods combine a conventional volumetric rendering approach
with a coordinate-based neural network that predicts den-
sity and radiance [26]. As such, instead of explicitly stor-
ing density and radiance in a high-dimensional 5D volume,
these methods represent this volume as a learned function,
that can be further decomposed into radiance and illumina-
tion [53, 42, 7]. Although the implicit volumetric represen-
tation is highly memory-efficient and differentiable, it also
fundamentally requires sampling the volume, that is evalu-
ating the coordinate-based network, hundreds of times for
each ray for a given pixel. This mandates long training and
small volumetric support inside the volume.

Figure 1: Neural Point Light Fields encode a local light field on
a point cloud. An image is rendered for each camera ray and the
local encoding of the light field on relevant points.

To tackle these challenges, hybrid representations [15,
21, 17] are used to embed or “bake” local implicit func-
tions on explicit sparse proxy representations such as coarse
voxel grids, point clouds or meshes to enable faster render-
ing by ignoring empty space. While this approach drasti-
cally improves rendering speed at test time, it still requires
volumetric sampling during training. This is because the
scene geometry must be learned during the training pro-
cess. These methods share the limitations of volumetric
approaches during training and, as such, have also been lim-
ited to small scenes that are costly to train. Learning repre-
sentations for large outdoor scenes is an open challenge.

Unfortunately, approaches that are free of implicit rep-
resentations do not yet offer an alternative. Specifically,
explicitly storing features on proxy geometry [36, 35, 19]
has not been able to achieve the same quality as volumetric
methods when interpolating a view without a nearby train-
ing sample. Existing formulations utilize geometry as a pro-
jection canvas combined with features extracted from target
views, and therefore require a large number of input images
near the target view.

In this work, we depart from volumetric models and in-
troduce Neural Point Light Fields, a local implicit repre-
sentation that encodes a light field on a point cloud. The
proposed representation supports novel view synthesis in
large outdoor scenes without strong parallax needed as in
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volumetric methods. Although recent automotive depth es-
timation networks make it possible to estimate dense depth
point clouds from video data, we assume measured lidar
point clouds as input to our method, especially as lidar data
is readily available in most outdoor vehicle datasets [44, 12]
and recent smartphone cellphones. Although sparse, the li-
dar geometry provides enough cues to encode a local light
field on the point cloud. Instead of a 5D volumetric radiance
function, or a conventional 4D light field [20], we propose
to formulate a light field only depending on the two dimen-
sional ray direction and a one dimensional index pointing
to a point cloud feature, an implicit 3D representation. This
formulation makes it possible to evaluate a single radiance
prediction per ray. Traditionally, view-dependent effects
captured in light fields have been analyzed by presenting
epipolar plane images [6] (EPI), which capture 2D slices of
a light field that interpolating between two extremal views.
In Fig. 2 we present EPIs rendered from trained Neural
Point Light Fields.

We extract features for each point with a learned feature
extractor on point cloud projections [13]. For a given cam-
era pose, we shoot rays for each pixel and select a set of
close points inside the point cloud. The features from these
selected points are then weighted by passing the points rel-
ative position to the ray and features through an attention
module, resulting in a single ray feature code. The color
for each ray is then reconstructed by an implicit light field
representation conditioned by this feature code. To enforce
local feature variations per point we store the point features
after that first training stage and refine the point features in a
second training stage. We assess the proposed method on a
large-scale automotive driving dataset [44] and demonstrate
novel view synthesis along unseen trajectories with quality
unseen before.

Specifically, we make the following contributions

• We introduce Neural Point Light Fields, a representa-
tion that implicitly encodes features in a point cloud,
allowing for a single radiance evaluation per ray.

• The proposed method lifts the restrictions of volumet-
ric neural scene representations by exploiting sparse
geometry available in estimated or captured point
clouds.

• We validate the proposed method on novel video syn-
thesis tasks for large-scale driving scenes, where we
demonstrate that the proposed method is capable of
generating realistic novel views along trajectories that
existing implicit scene representation methods fail for.

We will release all source code and trained models to make
the proposed model fully reproducible.
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Figure 2: Epipolar Plane Images (EPI) rendered from a Neural
Point Light Field. Our light field representation is only trained
on a set of images from a monocular camera on a single trajec-
tory through the scene. Despite having sparse views, we are able
to synthesize realistic view extrapolations and accurately capture
view-dependent light field effects.

Scope Even though existing automotive datasets include
data from multiple cameras, lidar and radar sensors, we fo-
cus on this work to learn from a single camera with a sin-
gle trajectory per scene, and without highly dynamic scene
motion. We note that training on multiple camera views
is not straightforward as camera poses, exposure and tone-
mapping differences have to be accounted for. Incorporat-
ing multiple cameras and dynamic object suppression into
the proposed method could be exciting future directions.

2. Related Work

Novel View Synthesis. Synthesizing novel views from a
set of unstructured images of a scene is a long standing
problem in computer vision and graphics. Early work on
image-based rendering introduces light fields [20] as a 4D
parametrization of light rays and their respective radiance
in a scene. Light fields are derived by considering a convex
subspace of the 5D plenoptic function [1] that parametrized
a ray by a point in space and a direction. Conventional light
field rendering, i.e., interpolation of novel views, required a
large set of densely sampled views of the light field as tradi-
tional optimization methods [49, 50] handle only small par-
allax changes between the interpolated and measured view.
Recently, methods relying on deep learning [25] introduced
a method to recover the light field using from plane sweep
volumes using 3D convolutional neural networks.

An orthogonal line of work investigates the reconstruc-
tion of explicit 3D models from a set of images. By opti-
mizing the reprojection error between features found in all
images, multi-view reconstruction methods are capable of
reconstructing the underlying scene geometry and camera
poses [2, 38]. These methods are able to reconstruct large
scenes but also require many images to achieve high qual-
ity, and, in contrast to image-based rendering methods, they
struggle to synthesize photorealistic novel views.

Neural Scene Representations. A large body of work has
emerged that explores learned representations in scene re-
construction pipelines. These neural rendering approaches
are able to generate photo-realistic novel views [22, 29]
and they are capable of reconstructing high-quality scene
geometry. Existing methods rely on explicit, implicit,
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or hybrid representations of the scene. Explicit meth-
ods recover proxy geometry of the scene that hosts tex-
ture or radiance features, such as meshes [46], multi-planes
[10, 23, 25, 43, 54], voxels [40] or points [3, 33]. In-
stead of having to recover geometry and appearance jointly,
these methods can focus on the recovery of image de-
tail. However, at the same time, relying on explicit proxy
geometry also limits the achievable image quality. To
overcome the reliance on such geometry, researchers ex-
plored implicit representations that represent scenes using
coordinate-based networks. The most successful methods
[26] represent volumetric density using such a coordinate-
network. However, while achieving photo-realistic quality
for diverse tasks [24, 31, 51, 42, 39, 28, 30], this comes
at the cost of expensive training and testing. The lack of
explicit geometric knowledge requires evaluating the im-
plicit network densely in the volume with the majority of
samples located in empty space that do not contribute to
the rendered pixel color. Extensions [11] have tackled this
issue at test time evaluation by either predicting the sam-
pling regions [27, 5] or explicitly extracting proxy geometry
[21] after training. DS-NeRF [8] uses 3D keypoints recon-
structed from COLMAP on a scene to supervise the opac-
ity prediction with those sparse keypoints, which speed ups
training. Neural Sparse Voxel Fields (NSVF) [21] are a hy-
brid representation that stores implicit functions in a voxel
grid. All of these methods struggle with large scale outdoor
scenes or scenes with very few view observations. In con-
trast, the proposed approach allows for large outdoor scenes
from a sparse set of observations by introducing a light field
parameterization on sparse scene geometry.

Multi-View Structure Reconstruction. Reconstructing
geometry such as point clouds or meshes from images
[38, 37] can guide the training of implicit scene represen-
tations [8] or offer a scaffold for learned features [36, 19].
Riegler and Koltun [36, 35] propose such geometric scaf-
folds living on MVS-meshes. Kopanas et al. [19] showed
that optimizing the point location from an initial point cloud
together with their novel view synthesis pipeline can com-
pensate for the errors during reconstruction from MVS.
These methods and similar [4] point based approaches use
point clouds as a geometric proxy while following a strict
rendering and projection approach. In contrast, we propose
a method that uses features not only as a projection and ag-
gregation surface but are encoded from a 3D point cloud
and that does not require any input images during test time.

Encoding features directly on a point clouds has been
extensively explored [34] for diverse tasks. Recent work re-
visited the use of multi-view projections of a point cloud for
classification tasks [13, 14] similar to the presented recon-
structions from point clouds, but not using image features.
Their method is robust to occlusions [14] and achieves state-
of-the-art results on their selected downstream tasks. In-

stead of solving a classification or segmentation task, we
show that multi-view point cloud encoding can deliver rich
local point features for reconstruction of novel views.

3. Point Light Fields

In this section, we introduce Point Light Fields. A Point
Light Field encodes the light field of a scene on sparse point
clouds. Assuming a camera-lidar sensor setup typical in
robotic and automotive contexts [12], at time step i, the pro-
posed method learns an RGB frame Ii as input and the cor-
responding point cloud capture Pi. To learn a light field
implicitly embedded on the point clouds corresponding to
a video sequence, we devise three steps: an encoding step,
a latent feature aggregation, and a point-conditioned light
field prediction, all of which we describe in the following.

3.1. Per-point Feature Encoding

We first produce a feature embedding for each point in
the point cloud. To do this, we follow the simple strategy
presented by Goyal et al. [13]. The input point cloud is
projected onto six planes producing sparse depth images.
These images are each fed directly into a convolutional net-
work. We use the initial layers of a vanilla ResNet18 [16]
to extract per-pixel features at one-quarter the input resolu-
tion. For a given point xk, we retrieve the corresponding fea-
ture vector at its projected location in each of the six views.
These are concatenated together to produce the final feature
encoding lk ∈ R6×128.

We find it sufficient to normalize input point clouds to a
canonical cube bounded by [−1,1] and use the 6 sides of the
cube as projection planes. This works robustly even given
the complexity of in-the-wild large-scale scenes. We per-
form ablations comparing features encoded using this strat-
egy against alternative point-based models such as Point-
Net [34], see Supplementary Material.

The learned per-point features lk do not depend on any
image data and can be trained end-to-end with the full light
field rendering. We can introduce augmentations such that
the model does not overfit to a particular arrangement of
points. This includes sampling different subsets of points
from the full captured point cloud, and using point cloud
captures from nearby time steps.

3.2. Light Field Feature Interpolation

Given a set of points Pi = {x0, ...,xN}iwith xk ∈R3, their
encoded features lk ∈R6×128, and a camera view Ci, defined
by its intrinsic K, extrinsic E i and sensor dimensions W and
H, we aggregate the relevant features that reconstruct the
local light field around each ray. For all W ×H pixels from
Ci we cast a set of rays Ri into the scene using a pinhole
camera model. Each r j ∈ R is defined by its origin o j and
viewing direction d j.
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Figure 3: Neural Point Light Field Rendering Pipeline. For each ray r j a set of K closest points is selected from a point cloud of the scene.
From each point xk a latent encoding lk and the relative location with respect to r j predict a key and value vector. The most relevant point
features are aggregated for the ray with a multi-head attention module using the encoded ray direction d j to form the query vector. A light
field function FθLF computes the ray color given the ray feature l j and ray direction d j.

Local Point Selection. The local point cloud encoding can
explain the scene properties at their sparse locations. To ex-
plicitly represent high-frequency light field detail from all
views a dense descriptor would be necessary. Instead, we
implicitly interpolate a representation descriptor for each
ray. The work of DeVries et al. [9] shows that the inter-
polation of local latent descriptors allows for implicit scene
representations of large indoor scenes. Unlike their regular
grid structure, we want to leverage the information given
through the geometric properties of the point cloud. We
assume that point features lk hold enough information not
only to represent the light field at their exact location but
in their neighbourhood. We aggregate a descriptor for each
ray r j from a relevant set of sparse points. To this end, we
select a set of K points Pj,i ⊂ Pi inside the viewing frustum
of the camera Ci, with the smallest orthogonal distance dk, j
between the points and the ray, as formulated in Eq. 2.

cos
(
ϕk, j
)
= d j,i ·

(
xk,i−o j,i

||xk,i−o j,i||

)
(1)

dk, j = sin
(
ϕk, j
)
·
(
xk,i−o j,i

)
with sin

(
ϕk, j
)
=
√

1− cos 2
(
ϕk, j
) (2)

The ray origin o j,i, the normalized ray direction d j,i, and
the point xk,i are all given in a local reference frame centered
in the captured Pi. A light field descriptor is then generated
for each ray considering all encoded features on the points
in Pj,i.

Ray-centric Point Encoding. There are several immediate
choices for the point embeddings of Pj,i, including average
pooling, max pooling or a linear weighting by the distance
d j,k of the selected K point features. However, these inter-
polation methods are ambiguous, thus can deliver the same
descriptor for various rays and features on the same set of
closest points Pi, j. In order to ensure a consistent and unique
description for each ray from the same set, Pj,i must con-
sider an unambiguous relative position of all points with re-

spect to that ray, with coherence across different time steps
i of the same scene.

As illustrated in Fig. 4 and formalized in Eq. 2, 5 and 4,
we parameterize a close point by the angle θk, j between xk
and the ray d j, the orthogonal distance between the point,
and ray and the angle ψ that is defined as the radial co-
ordinate of a projected xk onto a plane defined through a
projection of the global Y -axis and it’s cross product with
the ray direction d j in Eq. 3.[

x
y

]
k, j,pro j

=

[
yT

j(
d j× y j

)T

]
xk,

with y j =
Y − (Y ·d j)d j∥∥Y − (Y ·d j)d j

∥∥ and y ∈ R3,

(3)

ψk, j = arctan
xk, j,pro j

yk, j,pro j
. (4)

Note that θ j,k is computed between the global point xk and
d j in world coordinates, independent of the position, and
therefore different from the local ϕ j,k, that computes the
distance, that is

θk, j = arccos
(

d j,i ·
xk

||xk||

)
. (5)

Ray Feature Attention. Instead of applying an arbitrary
chosen weighting for the ray features, we propose a learned
multi-head attention module presented in Fig. 5 to compute
the ray feature vector l j. We propose a variant of the multi-
head attention module presented by Vaswani et al. [47]. In
the experimental Sec. 4 we compare the chosen attention
based weighting with other linear interpolation schemes.

γ (s) =
[
...,sin

(
2t

πs
)
,cos

(
2t

πs
)
, ...
]

with t = 0, . . . ,T
(6)

vk, j =
(
lk⊕ γ

(
θk, j
)
⊕ γ
(
ψk, j

)
⊕ γ
(
dk, j
))

(7)

The two angular distances θk, j and ψk, j, as well as dk, j are
transformed using the positional encoding in Eq. 6 with
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Figure 4: The ray-point distances are illustrated for a ray j and the
k = 3 closest points. For a better visualization the ray and points
are translated with −o j into the scenes coordinate frame and all
points are projected into a single plane instead of 3 parallel planes.

T = 4 known from NeRF [26] and further explained by
Tancik et al. [45] to interpolate high frequency data from
a low frequency input domain. The point latents lk and the
positional encoded distances are concatenated to a unique
descriptor vk, j between ray r j and point k, that encompasses
the positional encoding and the latent information of that
point. The descriptor vk, j is then passed through two MLPs
with two layers that predict a key Kk, j and value Vk, j for
each of the K point ray pairs.

Vk, j = FθV

(
vk, j
)

, Kk, j = FθK

(
vk, j
)

(8)

Q j = FθQ (γ (d j)) (9)

From the positionally encoded ray direction γ (d j), we de-
rive a query vector Q j. The ray direction d j is again pre-
sented in world coordinates here, such that it will produce
the same result independent from any coordinate reference
in the locally captured scene. The multi-head attention
learns to predict a weight for all Vk, j given Kk, j for each
selected point ray pair (k, j) and a query ray Q j. The ag-
gregated output of the multi-head attention module is then
a latent code l j ∈ R128, that describes the light fields for
each ray r j, that is

multi-head attention: l j = Fθattn(Q j,Kk, j,Vk, j). (10)

Points Beyond the Point Cloud. In most automotive
datasets the captured point cloud data only captures the
scene geometry from the ground plane up to a height of
multiple meters. Thus there are parts of the scene which are
not explicitly captured in the point cloud data, such as high
building structures and the sky. We therefore set a threshold
d∞ below which we consider rays to intersect with the point
cloud. The value d∞ is chosen as the maximum distance
between two points in any Pi after ignoring outlying points.
Only for points that exceed d∞ we concatenate vk, j with a
learned global latent code l∞, such that the attention module
can leverage both a global and point feature representation.

Figure 5: The multi-headed self-attention module aggregates the
latent encoding l j of ray j given the ray direction d j from the in-
formation of the K closest points. For each point k an embedding
vk, j is computed from the point’s feature and the positional en-
coded relative location to r j for each ray-point pair ( j,k). FθK and
FθV compute the key K and value V vectors from vk, j. The query
vector Q is predicted for the ray’s direction d j.

The point features are still useful as they may contain rele-
vant context and geometry for structures that rise above the
point cloud.

3.3. RGB Prediction

Now that we have shown how we predict a latent vector
l j for any ray r j from encodings on a sparse point cloud, we
are finally able to reconstruct the color C j for an arbitrary
ray in our global scene, that is

FθLF : (d j, j)→C (11)

C j = FθLF (d j⊕ l j) (12)

Here, given the ray direction d j and index j, that accesses
the respective latent code, we evaluate a learned color map-
ping function in Eq. 11, that predicts the color along each
ray in the light field. Ray direction and latent vector are
concatenated (d j⊕ l j) and the mapping from the light field
representation is approximated with an eight layer and 256
wide MLP, that is trained jointly with all other modules. Im-
plementation details for this and all other modules are pro-
vided in the supplementary materials. For each predicted
ray color Ĉ (r j) we can compute the mean-squared error im-
age loss L= ∑

j∈R

∥∥Ĉ (r j)−C (r j)
∥∥2

2 . (13)

Training All parameters of the model, that is θResNet18, θK ,

θV , θQ, θattn and θLF , are jointly optimized using the re-
spective gradients computed by back propagating from the
presented loss in Eq. 13 to each parameter. In each step
we randomly sample 8192 rays for R from a small batch
of frames. All parameter are trained using the Adam opti-
mizer [18] with a linear learning rate decay.
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RGB Frame NeRF DS-NeRF GSN Neural Point Light Fields

Figure 6: Scene Reconstruction. We present results for reconstructing images for poses seen during training of NeRF [25], DS-NeRF [8],
GSN [9] and Neural Point Light Fields. All methods were trained on the same set of scene of the Waymo Open Dataset [44]. NeRF,
even with substantially increased model capacity, and DS-NeRF show similar blurriness and other artifacts, while the depth supervision
allows DS-NeRF improve upon existing methods. GSN produces fewer artifacts, struggles to reconstruct fine details, and fails for sparsely
observed views (center scene). Neural Point Light Fields most faithfully reconstructs the image from the data set, see also Tab. 2.

4. Assessment
To assess the proposed method, we evaluate its complex-

ity and train neural point light fields on an automotive driv-
ing dataset. Specifically, we compare against state-of-the-
art neural rendering methods by generating novel views in-
terpolating between poses on the driven trajectory as well
as extrapolating to completely new trajectories. Moreover,
we analyze how architecture and parameter choices in the
proposed method affect reconstruction quality.

4.1. Complexity

Volumetric neural rendering methods require a large
number of samples per ray for accurate results. Even though
existing methods allow to speed up rendering times [17],
training often requires hundreds of ray samples. We report
the measured time and counted evaluations for a ray eval-
uation during training and inference in Tab. 1. To avoid
differences due to pre-caching of rays or similar speed-ups
in an implementation, the evaluation time is measured after
the ray sampling step for a respective PyTorch [32] imple-
mentation of the method. The measured times include the
encoding and decoding steps, e.g., point encoding (ours),
convolution refinement (GSN), but divided by the number
of pixels in an image to compute the time per ray.

In contrast to volumetric scene representations, that need
a high number of sampling points, even when supported by
local latents, Neural Point Light Fields only require a single
evaluation per ray during rendering. When measured, this
results in two times speedup, although our method incurs
overhead to extract point features.

Cost NeRF [26] DS-NeRF [8] GSN [9] Ours
No. of Evaluations ↓ 192 192 64 1
Time per ray, training (in µs) ↓ 146 146 37 34
Time per ray, inference (in µs) ↓ 49 49 17 10

Table 1: Complexity per ray during training and inference. All
volumetric approaches require multiple evaluations per ray. Neu-
ral Point Light Fields (Ours) has a complexity of O(1) per ren-
dered ray. Despite an added complexity in the feature extraction
step, this allows for shorter training and inference.

4.2. Experimental Setup

We quantitatively and qualitatively validate the proposed
method on two tasks, reconstruction and novel view syn-
thesis, where we compare against Generative Scene Net-
works (GSN), NeRF and depth-supervised NeRF (DS-
NeRF). GSN has been successfully applied to large scale
indoor scenes [9] and takes advantage of a local embed-
ding of the scene that is jointly learned with the scene. In
contrast to our sparse point features, the latent codes are lo-
cated on a sparse 2D floorplan. We evaluate NeRF [26] as
a state-of-the-art implicit scene representation. Addition-
ally we evaluate DS-NeRF [8], which takes advantage of
an additional depth supervision for the opacity prediction.
The depth images for GSN and the per ray depth informa-
tion for DS-NeRF are directly projected from the recorded
point cloud data, allowing these methods to see point cloud
data in addition to RGB images. All methods were trained
with the code, that was published by the authors and the
experimental configurations closest to the scenario of out-
door/free moving scenes. For our method we use a maxi-
mum of N = 20000 randomly sampled points, K = 8 close
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RGB Frame NeRF DS-NeRF GSN Neural Point Light Fields

Figure 7: Novel View Interpolation. We predict views for unseen poses held-out from the training data for a scene. The images shown
in the middle rows stem from the longest selected scenes ( 200 frames) and the other from shorter subselections ( 80 frames). NeRF and
DS-NeRF show blurry and over smooth results, but perform better on smaller scenes. NeRF synthesizes the details on the small scenes
better, while it fails completely on the larger scenes, even when substantially increasing the model capacity. GSN performs consistently
across all scenes, but lacks detail and shows artifacts. Neural Point Light Fields as a representation allow for high-quality synthesis for
novel view interpolation.

points, 128 dimensional point and ray embedding lk and l j,
and 8 heads in the multi-head attention module.

All methods except GSN were trained on 6 scenes from
the Waymo Open Dataset [44] with a length ≤ 200 frames,
see Supplemental Document. To train on a single GPU, we
downsample to the eighth of the original resolution result-
ing in a resolution of 240x160 pixels. For GSN, a convo-
lutional refinement step requires the models to be trained
on the full image and the code provided hard-coded settings
that required us, after consulting with the authors, to crop
to a square resolution of 64x64. Results on GSN are pro-
vided for 3 scenes and all metrics for GSN are calculated on
down sampled images of the data set, to make the evalua-
tion fair. Note that GSN has an advantage in all quantitative
evaluations as a smaller FOV at lower resolution needs to
be synthesized. All out models were trained until conver-
gence on each scene on a mixture of NVIDIA TITAN Xp
and NVIDIA V100 GPUs. Complexity evaluations were
computed on the same hardware. The lower resolution re-
quirements on GSN for over-fitting on a single scene re-
sulted in a training time of 2 days, while the other models
trained for 2 to 3 days varying with scene frame count.

Quantitative Evaluation. We evaluate the proposed
method for reconstruction of seen frames, and novel view
synthesis of unseen, held-out frames, where we average
evaluations across all scenes. We train all methods on the
same 90% of all frames of the driven trajectory. The left out
10% are used for evaluating the ability to interpolate novel
views inside the seen trajectory. Tab. 2 reports quantitative

NeRF [26] DS-NeRF [8] GSN [9] Ours
Reconstruction

PSNR ↑ 29.48 26.53 17.98 31.52
SSIM ↑ 0.815 0.778 0.512 0.882
LPIPS ↓ 0.289 0.306 0.136 0.110

Novel View Synthesis
PSNR ↑ 22.47 26.15 16.83 29.96
SSIM ↑ 0.700 0.772 0.464 0.868
LPIPS ↓ 0.389 0.310 0.174 0.119

Table 2: We report PSNR, SSIM and LPIPS results on 5 static
scenes from the Waymo Open Dataset [44] using images from
the front camera for NeRF [26], depth-supervised NeRF [8], and
generative scene networks [9] and Neural Point Light Fields. For
PSNR and SSIM, higher is better; for LPIPS lower is better. The
best values are written in bold, the next best are underlined. Our
method outperforms all methods with respect to all metrics. While
NeRF shows only slightly worse reconstruction performance, DS-
NeRF provides better novel view synthesis capabilities.

results for both tasks with PSNR, SSIM [48] and LPIPS [52]
metrics. While NeRF is close to the proposed method with
respect to the PSNR metric on the reconstruction task it per-
forms similar to DS-NERF on the SSIM and LPIPS met-
ric. GSN makes an overall worse impression than the other
methods in both tasks. The proposed method outperforms
all other methods in all metrics. While NeRF performs sig-
nificantly worse in the Novel View Synthesis task DS-NeRF
shows only a slightly worse performance compared to re-
construction results, probably benefiting from a better opac-
ity prediction when trained on a sparse set of images. Our
method shows the best results, with narrow margin to the
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Trajectory NeRF DS-NeRF GSN Ours

Figure 8: Novel View Trajectory Extrapolation. Extrapolating
views (orange) from the training trajectory(blue). NeRF and DS-
NeRF are not able to synthesize views of the scene far from the
training trajectory. The proposed method achieves similar quality
when compared to reconstruction and trajectory interpolation.

quality achieved by our method on the reconstruction task,
in contrast to NeRFs results.

Scene Reconstruction. The results shown in Fig. 6 sup-
port the quantitative evaluation from Tab. 2. While NeRF
produces inconsistent and blurry predictions for the large
scenes we address in this work, it is still able to recover
some details on straight scenes. We hypothesize, that the
blurriness arises from the requirements of an accurate pose
and the sparse set of training views on a long trajectories
through a scene. DS-NeRF shows a similar behavior, but
lacks some detail that has been reconstructed in NeRF and
produces smooth artifacts. Renderings of the depth map
of the trained scene suggest that the point cloud capture is
to smooth for DS-NeRF representation and, as such, sup-
presses high frequency features. GSN in contrast produces
an overall consistent reconstruction independent of scene
length. Nevertheless results show smoothing even in the
significantly down-scaled resolution that GSN accepts. In
contrast, Neural Point Fields allow to reconstruct all struc-
tures independent of their position and appearance across
frames. Few artifacts on very fine structures such as indi-
vidual tree branches, leafs remain. Please also see the video
in the Supplementary Materials.

Novel View Trajectory Interpolation. We next compare
views synthesized for frames left out in the training data in
Fig. 7. DS-NeRF suffers from blur and ghosting in the inter-
polation task. NeRF shows a similar, but less strong artifact
on the few scenes that it does converge on. This stability
issue for long scenes is significant, when we compare the
results in the two top scenes with the two bottom scenes,
that are only half as long as the two other scenes. The re-
sults validate that these existing methods are not able to ef-
fectively synthesize scenes just from a sparse set of images.
GSN, that uses a local support, is more consistent resulting
in similar outputs in both tasks independent of scene length.
Neural Point Light Fields encode the scenes features on a
sparse set of points and hence achieve high-quality novel
view interpolation over long sequences.

Novel View Trajectory Extrapolation. The results shown
in Fig. 8 report visual extrapolation experiments. We

Heuristic K = 0 K = 1

Self-Attn. (Ours) K = 2 K = 8 (Ours)

Naive Sum Heuristic K = 0 K = 1 K = 2 Ours

PSNR ↑ 4.84 24.56 18.88 29.83 30.95 31.52

Figure 9: Ablation studies. Qualitative and quantitative results
of ablations for the number of closest points K and different ap-
proaches for the light field interpolation module.

present a map of the novel views camera pose with respect
to the training trajectory. Our method is able to generate a
set of novel trajectories and scenes, that can hardly differ-
entiated from the interpolation and reconstruction results.
This is possible inside a certain bound of the scene at least
partially covered by the training views, see Supplemental
Material. Views into regions of a scene, that were not seen
during training, e.g., the back of a vehicle only seen from
the front result in imaginary objects from conditioned on
points similar to seen objects. In the future, including ad-
ditional cameras in a 360 surround view application, may
allow to cover even such entirely occluded scene parts.

4.3. Ablations

Next, we analyze architecture and parameter choices in
Fig. 9. The proposed self-attention to aggregate a single ray
feature is crucial. We found that a heuristic weighting or
a naive sum over all point features are not able to achieve
similar results. While the naive sum is not able to train at
all, a heuristic weighting of each point feature by the inverse
distance dk, j achieves better results. However, this weight-
ing still lacks detail, suffers from artifacts and noisy recon-
struction of the scene. We propose to index a set of points,
in contrast to methods that purely parametrize a ray. Also
the decision to use a set of points is necessary to learn the
light field of such a large scene, that can not be embedded
solely on a single or two points. We choose K = 0,1,2,8
to illustrate this effect in Fig. 9. Further ablation studies are
provided in the Supplementary Materials.

5. Conclusion

We introduce an implicit representation that encodes a
local light field on a point cloud. Departing from volumetric
representations that require querying radiance estimates at
hundreds of sample points along a ray cast into the volume,

8



we learn realistic radiance fields with only a single radiance
sample per ray. Neural point light fields are functions of the
ray direction, and local point feature neighborhood, which
allows us to interpolate the light field conditioned training
images without densely captured input views. As such, the
method allows for novel view synthesis in large-scale au-
tomotive scenarios, with only a few sparse view directions
available during a drive-by capture. We validate the pro-
posed method for novel view synthesis when interpolating
and extrapolating along unseen trajectories where existing
implicit representation methods fail. While it is typical in
automotive scenarios to have point cloud captures available,
in the future, we plan to jointly recover point positions and
local features of the proposed neural point light fields.
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