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Figure 1. Using our personalized prior tuned with images of Michelle Obama, we solve various challenging tasks while faithfully preserving her key
facial characteristic. Left to right: inpainting, super-resolution, and semantic editing (smile). Each example shows the original input image of Obama,
which may be corrupted (top left), and the output based on our personalized face prior (right), compared to a generic face prior (bottom left). The
generic face prior is learned from a diverse set of images and produces results that do not preserve Obama’s key facial characteristics.

Abstract

We introduce MyStyle, a personalized deep generative prior
trained with a few shots of an individual. MyStyle allows to
reconstruct, enhance and edit images of a specific person, such
that the output is faithful to the person’s key facial characteris-
tics. Given a small reference set of portrait images of a person
(∼ 100), we tune the weights of a pretrained StyleGAN face gen-
erator to form a local, low-dimensional, personalized manifold
in the latent space. We show that this manifold constitutes a per-
sonalized region that spans latent codes associated with diverse
portrait images of the individual. Moreover, we demonstrate that
we obtain a personalized generative prior, and propose a unified
approach to apply it to various ill-posed image enhancement
problems, such as inpainting and super-resolution, as well as
semantic editing. Using the personalized generative prior we
obtain outputs that exhibit high-fidelity to the input images and
are also faithful to the key facial characteristics of the individual
in the reference set. We demonstrate our method with fair-use
images of numerous widely recognizable individuals for whom
we have the prior knowledge for a qualitative evaluation of the
expected outcome. We evaluate our approach against few-shots
baselines and show that our personalized prior, quantitatively
and qualitatively, outperforms state-of-the-art alternatives.

Additional results and information are available on our website.

1. Introduction

Our personal digital album contains a myriad of images de-
picting ourselves in different scenery, poses, expressions, and
lighting conditions. Although each image can be very different
from the others, they all contain our unique facial characteristics.
Leveraging this property of one’s photo collection may enable
the development of editing operations that are tailored to a spe-
cific individual, providing faithful reconstruction of their key
facial characteristics in various scenarios. In particular, such
an approach may be useful in image enhancement applications
where only partial cues related to perceived identity of the cap-
tured subject are present, such as super-resolution, deblurring,
inpainting, and more.

In recent years, the domain of image editing and enhance-
ment in general, and face editing in particular, has experienced
a significant shift. From pixel-level editing approaches [6], the
field gradually shifted to latent-space editing methods that es-
sentially interpret operators that are applied in a latent space
of a generative model [19] as explicit image editing operations.
This new latent-space-based editing enables new capabilities
and demonstrates state-of-the-art performance. In particular,
StyleGAN [27] became the gold-standard and core component
for intuitive editing of face images [2, 53]. While results are
impressive, all methods operate by hallucinating information
from a general domain prior that is learned from a large and
diverse dataset containing many identities. Hence, when editing
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an image of a recognizable person, such as Michelle Obama, the
result of using a generic face prior may be a person that only
resembles Obama and does not preserve her key facial features
(see Figure 1).

In this work, we propose an approach to a new problem -
personalization of a face prior, which addresses the following
question: Given a few portrait images of an individual, can
we learn a personalized-prior that facilitates face-editing and
enhancement operations while being faithful to the unique facial
characteristics of that individual?

A naive approach to obtain a personalized generative prior,
would be to apply a few-shot training method [34, 60], on a
given set of images of a person. However, as we demonstrate in
the paper, these techniques do not adequately preserve the key
identity of an individual. We speculate that one fundamental
reason is that these methods map a distribution of a few images
into the entire latent space, and that this “smearing” effect de-
grades the quality and preservation of generated fine key facial
characteristics.

In contrast, our proposed few-shot tuning technique, illus-
trated in Figure 2(a), affects only a compact low-dimensional,
local, manifold in the latent space. Our tuning extends PTI [41]
from capturing one image with a single latent, to capturing an
individual’s identity using a manifold. The manifold embeds
the individual’s images and constitutes as a personalized prior
that enables generation of identity features that are faithful to
the individual depicted in the images. In addition, the use of a
personalized prior enables mitigation of possible biases in the
diversity of the training data towards specific attributes (e.g.,
skin tone) [13], that may lead to undesired and non-inclusive
behavior of enhancement approaches [32].

In practice, we begin with a generator pretrained on a dataset
of general, diverse, faces [27]. Such a generator constitutes a
domain prior which encapsulates understanding of high-quality
face imagery, semantic facial features, and more. We aim to
preserve these properties while tailoring the prior for a specific
person. Given a small set of images of a particular individual, we
next tune the generator’s weights, such that each image in this
set is reconstructed with a particular fixed code, coined anchor.
The anchor is calculated by projecting the image onto the latent
space using a dedicated encoder. Because our tuning is applied
to specific regions in the latent space, it only affects a low-rank
local manifold, enabling preservation of the essential properties
of StyleGAN.

Owing to the latent space being smooth and disentangled,
linear combinations of anchors are also modified to be faithful to
the identity of the individual and exhibit fusion of low-level and
high-level attributes that appear in the reference set. In particular,
we show that the convex hull defined by the anchors constitutes
a personalized prior.

Finally, we leverage this newly created personalized prior
and propose a dedicated projection method for various image
enhancement tasks, as well as a novel method for identity pre-
serving semantic editing.

Our contribution is threefold: (i) we introduce the notion of a

(a)

(b)

Figure 2. Creating a personalized, local and low-dimensional sub-space
in the latent space of a face generator. (a) Given a set of N portrait
images of an individual, we first project them into StyleGAN’sW space
with a pretrained encoder to extract a set of fixed codes we refer to as
anchors, {wi}Ni=1. The anchors correspond to the set’s nearest possible
neighbors in latent space. We then tune the weights of a pretrained
StyleGAN generator such that each anchor reconstructs its correspond-
ing image from the set. (b) The set of the anchors’ coefficients {αi}Ni=1,
defines a new space, coined α-space– a low-dimensional space that is
mapped into a personalized sub-space P ⊂W . P contains latent codes
associated with diverse head-shots of the individual, unlike samples
outside of P that may generate different identities.

personalized face prior; (ii) we present a few-shot tuning tech-
nique to obtain a personalized subspace in the StyleGAN latent
space, and (iii) we propose a unified approach that leverages it
for personalized image enhancement and editing applications
and achieves state-of-the-art identity preserving results.

We extensively evaluate our framework for several different
applications and against multiple baselines. In particular, we
evaluate our method as a few-shot generator that can synthe-
size realistic faces that are faithful to the specified identity, as
well as a personalized prior that regularizes image inpainting,
super-resolution and semantic editing tasks. Additionally, we
perform a thorough analysis of the personalized space, enabling
detailed understanding of its key qualities. With qualitative and
quantitative evaluation, and a user study, we demonstrate that
our approach excels in capturing the characteristic features of
the face identity and outperforms alternatives in all the afore-
mentioned applications.
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2. Related Work

2.1. Generative Prior

Learning image priors has been a long-standing goal of the
computer vision and graphics communities as it is essential to
solve a wide range of image inversion tasks [18, 22, 42, 48, 57].

Recently, pre-trained GANs [19] have become the image
prior of choice for many popular tasks. Specifically, methods
for image enhancement tasks such as inapinting, deblurring, and
super-resolution [12, 20, 31, 32, 35, 39, 52, 56], commonly rely
on a generative prior. These methods produce an enhanced im-
age by projecting a corrupted input into the latent space of a
GAN. Another task commonly approached using a generative
prior is semantic editing. First, a real image is inverted into the
latent space of the GAN [1, 3, 47]. Next, the resulting latent
code can be semantically edited using a wide range of meth-
ods [2, 21, 36, 43, 49]. The edited latent code is then forwarded
through the generator to produce the edited image. For a thor-
ough introduction, we refer the reader to a recent survey [8].

A substantial issue with aforementioned works is that the pro-
jection at their core is often not accurate enough. The generative
prior is inevitably unable to faithfully represent all images of the
domain. This problem is often mitigated by using an enlarged
latent space [1]. However, this is a mixed blessing, as this ap-
proach is known to weaken the prior [47], presenting a trade-off.
Recently, several works have proposed methods [4, 7, 35, 41] to
overcome this trade-off by changing the prior slightly so it would
include a representation of a given image. After the generator
has been trained on the large and diverse set, these methods tune
the generator further to reconstruct a single image on which they
operate. To prevent over-fitting, the training procedure is regular-
ized by limiting it to a small set of weights [4, 7], progressively
opening weights for training [35] and preventing the generator
from changing other outputs [41].

While the issue of expressivity received considerable atten-
tion, another fundamental issue has not yet been addressed. The
generative prior described is learned from a large and diverse
dataset, including many objects from the data domain. As such,
it is a generative prior of the entire domain, but it lacks any
notion of personalization. For example, as shown in Figure 1,
inpainting an occluded face of a person would produce a plau-
sible output, but it would not be the person who was originally
captured in the image. In this paper, we propose a new task of
creating a personalized generative prior, so such applications
can be faithfully performed. To this end, we fine-tune a genera-
tor consisting of a domain prior to form this personalized prior.
Differently from previous works [3, 7, 35, 41], we do not limit
our method to tune the prior to capture a single image, but rather
a rich distribution of appearances of an individual.

2.2. Few-Shot Generative Models

Forming a personalized generative prior first requires we
train a generative model. Many previous works have proposed
methods to train generative models with limited data. Such works
can broadly divided to two – methods that require pre-training

and methods that can be trained-from scratch, but also benefit
from pre-training. A shared goal for all method is preventing
over-fitting.

Methods that can train from scratch typically mitigate over-
fitting by burdening the discriminator during adversarial training,
for example by providing it with augmented data [26, 60] or
an auxiliary task [55]. Such methods still require thousands
of images but are fairly robust for training on a wide range of
data domains. The transfer-learning works are able to train with
extremely few images, as few as none [16]. They typically do
so by regularizing training, either with a dedicated loss [30, 34]
or by restricting which weights are trained [16, 33, 40]. We note
that such works obtain great results on ”artistic“ domains, such
as caricatures. However, when realism is key, as is the case for
human faces, these methods are unable to produce satisfactory
results.

We experiment with several few-shot methods and find that
they all fail to adequately preserve the identity of an individual
depicted in a few images. We speculate that one fundamental
reason is that these methods map a distribution of a small set of
images into the entire latent space, only enabling preservation of
coarse features from the target domain. We therefore propose a
different training method based on Pivotal Tuning [41], which
proves to be superior for our setting.

2.3. Personalization

We are all fundamentally different. This fact has led to the
production and development of items, tools and methods that are
tailored for a specific individual. Examples exist in a wide range
of domains from everyday life such as clothing, medicine and
nutrition. In recent years, personalization has also become an
important factor in some fields of Machine Learning research
such as recommendation systems [5], language models [11] and
Federated Learning [24]. Compared to these fields, personaliza-
tion has not yet made as strong of an impact on Computer Vision
and Graphics.

Facial image enhancement applications would benefit greatly
from personalizing for a specific individual. By doing so, such
methods will be able to produce more faithful and realistic results.
Recently, several facial enhancement works [14,17, 29, 51, 61]
have provided a reference image of the subject at inference to
serve as a visual cue. However, these methods are limited to
relatively simple tasks and settings and their performance does
not match those of their counterparts ignoring personalization.

In this work, we overcome this gap and bring personalization
to the forefront of image enhancement and editing. We propose
a new problem of forming a personalized generative prior and
introduce a novel method to do so. Our method produces highly
identity preserving results for a wide range of applications with
comparable image quality to state-of-the-art non-personalized
methods.

3. Method
Our objective is to create a personalized generative prior for

an individual given relatively few photos of them, roughly 100.
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To this end, we seek to adapt a StyleGAN [28] model, trained
on a large scale face dataset, such as FFHQ [27], to capture a
personalized prior on top of the domain prior.

Our approach can be divided into two main parts. First, we
propose an intra-domain adaption method based on Pivotal Tun-
ing [41] (Subsection 3.1). The tuning is applied to specific
regions in the latent space, and hence, does not transform it uni-
formly. Once applied, we identify a low-rank, local, manifold
that has been personalized while preserving the high quality typ-
ical to StyleGAN (Subsection 3.2). Second, we leverage this
newly created personalized prior and propose a generic method
for various image enhancement tasks based on latent space pro-
jection (Subsection 3.3), as well as a novel method for identity
preserving semantic editing (Subsection 3.4).

3.1. Adaptation

Given a reference set of N images depicting an individual,
Dp = {xi}Ni=1, we aim to adapt a pre-trained StyleGAN gen-
erator, Gd, constituting a domain prior into one constituting a
personalized prior, Gp. We denote Wd, Wp ⊆ Rk, to be the
learned latent spaces of Gd and Gp, respectively. Where k is the
dimension of the latent space, 512 for StyleGAN.

To obtain Gp, we propose a training scheme inspired by
Pivotal Tuning [41], shown in Figure 2(a). We aim to change
Wd as little as possible so it would encode the personalized
reference set Dp, without harming the rich semantic domain
prior previously learned. This change should incorporate the
individual’s identity without affecting other semantic attributes.
To facilitate a minimal change, we first seek for wi ∈ Wd

that when passed through Gd reconstructs xi as accurately as
possible. Due to the limited expressiveness of StyleGAN inW
space [1, 47], Gd(wi) is still different from xi, and specifically
in terms of the person’s identity. We therefore tune Gd with a
simple reconstruction objective – reconstruct xi given the latent
code wi.

In practice, we take {wi}Ni=1, which we call anchors, to be
the latent space inversions produced by a pretrained encoder [39].
For the tuning of the generator, we follow common practice and
use a combination of a pixel loss, L2, and an LPIPS loss [58],
Llpips. Formally, the reconstruction loss for a single sample is

Lrec(G, xi, wi) = Llpips(G(wi), xi) + λL2
‖G(wi)− xi‖2.

(1)
where λL2

is a hyperpatameter balancing the two losses.
Finally, we aim to find Gp that minimizes the reconstruction

loss over the dataset, namely,

Gp = arg min
G

Ei [Lrec(G, xi, wi)], (2)

where the generator is initialized with Gd.
We note that the tuning process optimizes a simple recon-

struction loss with no regularization. Nevertheless, despite being
trained on a small set, we empirically observe no over-fitting.
We speculate that the optimization goal being local, highly con-
tributes to this result. Common techniques to train a generative
model, such as adversarial training, requires the generator to

follow the data distribution from all input latent codes. The gen-
erator is thus forced to change on infinitely many, highly varying
inputs. A simple solution to such a hard task is to reproduce the
training set. Our tuning method on the other hand presents an
easier task, the generator’s weights should be changed only for a
small number of inputs.

Figure 3. A personalized neighborhood. Samples of a generator tuned
on 110 images of Kamala Harris. (i) An anchor (in the center, orange
border), (ii) images synthesized by codes residing near the anchor (first
ring, green border), (iii) Random synthesis in Z space (outer ring).
It can be seen that images sampled around the anchor resemble the
appearance and key facial characteristics of the person depicted in the
anchor while other regions in the latent space depict a diverse set of
faces.

3.2. Obtaining a Personalized Sub-Space

We have now obtained a generator Gp that reconstructs the
reference set from the anchors. Naturally, a question arises –
what is encoded in other latent codes? As we next explain, the
answer fundamentally depends on the location of the latent code
with respect to the anchors.

We empirically find that latent codes ”close“ to an anchor have
also been personalized, i.e., possess the identity of the individual
(See Figure 3). This effect is expected since a GAN’s generator
is often smooth with respect to its input. StyleGAN’s generator,
in particular, was explicitly trained for this purpose [28].

While our training is completely local, optimizing only on a fi-
nite set of anchors, it empirically appears easier for the generator
to maintain smoothness and propagate the effect to neighboring
latents than doing otherwise. This ”ripple effect“ was considered
harmful by Roich et al. [41], and they regularized training to
prevent it. On the contrary, we willingly embrace it. Such neigh-
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boring latents are implicitly trained to portray the individual’s
identity but not to reconstruct any image. Therefore, these latents
expand the personalized prior and increase its expressive power.

On the other hand, latents that are ”far“ from all anchors are
disrupted. Such latents are not constrained neither by an explicit
loss nor by smoothness constrains, and are therefore victims of
unexpected behavior. In practice, as can be seen in Figure 3,
such latents often depict a minor level of personalization but at
the cost of low image quality and realism.

Let us now consider that the latent space is not only smooth
but also highly disentangled. Therefore, the linear interpolation
between two latent codes rarely depict features that are absent
from both endpoints [27]. While identity is a high-level, ambigu-
ous feature, we find that this property still holds. Hence, identity
is preserved during a linear interpolation between two anchors, as
they depict the same identity. A simple induction then suggests
that every convex combination of anchors is identity preserving.

Given both aforementioned findings - we consider a ”Dilated“
Convex Hull defined by the anchors to be a personalized subspace
within Wp. Intuitively, by dilated we refer to expanding the
convex hull outwards to capture more neighboring latent codes.

Throughout this work, we find it convenient to represent the
convex hull using normalized generalized Barycentric coordi-
nates [15]. Simply put, let us consider V = span({wi}Ni=1).
Then, generalized Barycentric coordinates are the coordinates
with respect to the set of anchors as basis, whose sum is 1.

Using normalized generalized Barycentric coordinated, the
β-dilated convex hull is easily defined by

Aβ = {α ∈ RN |
∑
i

αi = 1,∀i : αi ≥ −β}, (3)

where β ∈ [0,∞) controls the amount of dilation.
To translate the convex hull into the standard coordinates used

forWp, a linear transformation is applied. Let M ∈ Rk×N be
the matrix with the anchors along its columns. Then the dilated
convex hull is given by

Pβ = {Mα|α ∈ Aβ}

= {
∑
i

αiwi|
∑
i

αi = 1,∀i : αi ≥ −β}. (4)

From Eqn. (4) we note that, P0 is the set of all convex combi-
nations of the anchors and is therefore by definition the convex
hull of the anchors. Intuitively, one can consider the α-space to
be the space of the coefficients of those convex combinations.
On the other hand, P∞ = V. We often omit β from the notation
and informally note Pβ as P and Aβ as α-space.

Dilating the convex hull captures more ”close“ points and
expands the personalized space. However, dilating it too much
leads to the inclusion of ”far“ points that were corrupted. Clearly,
the distinction between ”close“ and ”far“ latents is a simplifica-
tion. The actual effect of tuning is not discrete but continuous.
Therefore, as β increases, Pβ contains additional latent codes
that are more expressive and diverse but are less faithful to the
personalized prior. Meaning, β controls a tradeoff between the

prior – image quality and personalization – and expressiveness.
The value of β could be determined empirically, according to
the user’s preference between the prior and expressiveness.

We last note that Pβ differs significantly from common latent
spaces considered in literature, e.g. Z,W , S [53]. First, it
is a manifold rather than a probability distribution or simply
a Euclidean space. Second, as often the number of images,
N , is smaller than the dimension of the original latent space,
k – Pβ is of low-rank. Last, and arguably most important, it
is bounded. These differences affect several components of
our method and we are often able to leverage them to obtain
improved performance.

3.3. Personalized Image Enhancement

Having obtained and modeled a personalized prior. We next
propose a novel projection method that can be used to leverage
the prior for a variety of image enhancement tasks, such as
inpainting and super-resolution as well as GAN inversion [8].

Several recent works [31, 32] have taken similar approaches
for leveraging domain generative prior for image enhancement –
projection into latent space. These methods are given a degraded
image Id and access to a differentiable function simulating the
degradation, φ. They then devise methods to find the latent code
from which StyleGAN produces an image, that after degradation
with φ reconstructs Id, most accurately. Formally, they seek for

w∗ = arg min
w

L((φ ◦G)(w), Id), (5)

where L is some reconstruction loss. To ensure the high fidelity
of the projection, such works use theW+ space [1] which is
virtually infinitely expressive. But for that reason, they also need
to regularize the w+ code, preventing the simple solution of
degradation appearing in G(w). Finally, they take the enhanced
output image to be Ie = G(w∗).

We next devise a method for projecting an image into our per-
sonalized prior, that adopts this common approach and adapts its
different components. An illustration of the method is displayed
in Figure 4.

In order to leverage the prior, one must restrict the optimiza-
tion solution to remain on the manifold. This restriction can be
efficiently implemented in α-space, and we therefore project to
α-space, rather than to P ⊂W . We now adapt the projection
problem described in Eqn. (5) to use α-space. Adopting the re-
construction loss defined in Eqn. (1), the new projection problem
can be described as

α∗ = arg min
αβ∈Aβ

Lrec(φ ◦G, Id,Mα). (6)

The restriction for αβ to remain in Aβ is implemented in-
tuitively and efficiently using the constraints in α-space’s defi-
nition. To bound the minimal negative value of αβ to −β, we
pass an unrestricted α through a softplus function shifted by β.
Formally,

αβ =
1

s
log(1 + es(α+β))− β. (7)
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Figure 4. Personalized inpainting. Having obtained a personalized
sub-space P, we can use it as a generative prior to reconstruct occluded
parts of a person in a given image such that the output preserves the
key facial characteristics of the person. Given an input image and a
mask, our framework optimizes a code in α-space to reconstruct the
non-occluded parts of the input image.

Note that α is a vector and all operations in Eqn. (7) are element-
wise. s is a ”sharpness“ hyper-parameter.

To restrict the sum of αβ to 1, we add both a soft penalty
term to the optimization objective, given by

Lsum(αβ) =

(∑
i

αi − 1

)2

, (8)

and explicitly normalize the optimization result, as often done in
such cases [37].

We have thus far described a projection method to α-space.
Next, inspired byW+’s extended expressiveness, we similarly
define a new latent spaces A+

β , coined α+-space, that may use
a different αβ for each layer of the generator. The latent space
P

+
β , is defined similarly as before (see Eqn. (4)). The projection

described for α-space is generalized to α+-space, where Lsum
is calculated per-layer and then averaged.

To regularize the solution in α+-space, we adopt the reg-
ularization proposed in e4e [47] – to minimize variation be-
tween the latents in different layers. Technically, instead of
optimizing a different latent code in each layer, we hold a sin-
gle latent α and an additive offset for each layer, i.e. α+

β =
(αβ + ∆0, ...,αβ + ∆N ). We then regularize the norm of the
offsets ∆ = {∆i}Ni=1, via

Ld−reg(∆) =
∑
i

‖∆i‖2. (9)

Our final objective is thus given by

Lfinal(α,∆, G, φ, Id,M) = Lrec(φ ◦G, Id,Mα+
β )+

λd−regLd−reg(∆) + Lsum(α+
β ).

(10)

We optimize the objective for α and ∆

α∗,∆∗ = arg min
α,∆

Lfinal, (11)

and the final enhanced image is taken to be G(Mα∗
+

β ).

3.4. Personalized Semantic Editing

A popular application of generative priors is performing se-
mantic editing in latent space. Commonly, this is performed
by gradually moving an initial latent code, w, along a linear
latent direction, n. The edited latent code is then given by
wedit = w + θn, where θ is a scalar that determines the mag-
nitude of the edit step. The latent direction n controls a factor
of variation that exists within the training set, in a disentangled
fashion. We seek to perform personalized semantic editing. I.e.,
semantic editing that is both identity preserving as well as typical
to that individual.

Prior works [16, 38, 41, 54] have leveraged the natural align-
ment of fine-tuned generators [54] to apply editing directions
located in a parent generator in the child’s latent space. We em-
pirically find that this property holds for our generatorGp as well.
Therefore, the multitude of directions learned for generic-trained
StyleGAN can be used with Gp as well.

However, these directions are clearly learned from the entire
domain and are not personalized. Considering P is the person-
alized space, it is clear why the direction is not personalized.
First, n could be any vector inWp, and specifically not limited
to reside within V. Any small step in such a direction, would exit
V and therefore P. Second, assuming that by chance n ∈ V, in-
finitely traversing it would inevitably stray away from P, which
would lead to degredations to quality and identity. The second
issue, in fact, is not unique to our setting and generally exists in
GANs and their latent spaces. Traversing ”too far“ along such
directions inevitably leads to regions in which the probability
density is low and causes degradation [45].

We next propose a method to prevent any linear direction,
regardless of how it was obtained, from straying far from the
personalized prior. The method is composed of two simple steps,
each solving one of the issues previously discussed, and thus
ensuring the edited latent remains in P. We first aim to express
n in α-space coordinates. As n is not restricted to V, this might
be impossible. We instead express the α-space coordinates of
its projection projV(n), given by γ = (MTM)−1MTn. The
initial latent code, w, is obtained using the projection method
described in Subsection 3.3, to invert a real image. Therefore,
it is already given in α-space coordinates – αw. Now, we can
easily transform the linear editing inWp to a linear editing in
α-space,

wedit = w + θn = M(αw + θγ). (12)

This completes the first step, the editing is now restricted to V.
Next, we evaluate how far does wedit stray away from Pβ by

measuring the minimal β-dilation that includes it. This is trivially
done by computing βθ = |min(αw + θγ)|. As βθ increases, the
editing strays further from P and gradually the prior weakens.
We now give the user a choice. Assuming a maximal value
of desired β-dilation is known, one can stop editing once it is
reached. Essentially, this operation transforms an infinite linear
editing to one with endpoints. Endpoints for semantic editing
were previously promoted by Spingarn-Eliezer et al. [45] to
prevent straying from the dense regions in latent space.
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Alternatively, after the maximal β-dilation is reached, one
can continue editing and mitigate the deviation from the prior by
slightly trading-off disentanglement. Assume one had reached a
wedit outside of the desired dilation, Pβ . One can project wedit
back to Pβ , by solving a simple convex optimization problem.
While this maintains wedit with the desired prior, it also causes
it to deviate from the linear direction projV(n), and therefore
might affect other properties and degrade disentanglement. In
practice, we find the projection useful as it allows to extend
the range of editing while preserving identity and quality. Ad-
ditionally, since n is not perfectly disentangled, we often find
that the degradation to disentanglement caused by projection is
acceptable.

4. Experiments

We next turn to investigate several components and properties
of our method and data and their effect on the personalized prior.
Additional experiments appear in Section C.

4.1. Evaluating the Locality of the Prior

One of the unique and useful qualities of P is the fact that
it is local. This property is visualized in Figure 3, where it is
demonstrated that latent codes within P are personalized, while
latent codes sampled randomly fromWp are not.

We next perform a simple experiment to quantitatively sup-
port these findings. We perform a linear interpolation from P’s
center, c, to a random anchor, wi, and then further extrapolate
in that direction. Note that the interpolation is entirely within
P0 while the extrapolation is straying away from it, correspond-
ing to increasing β values. We aim to quantify how identity
preservation is effected along this traversal.

To this end, we follow common practice [58] and leverage
similarity of deep features to measure faithfulness to the per-
sonalized set. Specifically, we measure the cosine similarity
between the generated image’s features and the nearest-neighbor
features from the reference set. We refer to this metric as Max-
imal Perceptual Similarity (MAPS). The deep features may be
extracted from various deep neural networks. In our experiments,
we leverage a classifier [44] trained on the domain.

In Figure 5 we present results for several such traversals, as
well as one traversal between the same latents but in the FFHQ
generator. As expected, identity is strongly preserved for latents
in P0 and becomes stronger in the anchor’s close proximity.
After reaching the anchor, the trend changes. As the traversal
strays further away from P0, corresponding to increasing β
values, identity preservation gradually vanishes.

4.2. Latent Spaces of Gp
We next evaluate the effect the choice of latent space has on

image enhancement results. As demonstrated in Figure 6, pro-
jecting to P+

β is favorable for image enhancement. Enhancement
results inWp andW+

p are of low quality and not personalized.
This support our previous findings that the space has not been
personalized uniformly and additionally indicates that the projec-

Figure 5. Quantitative evaluation of the locality of personalization.
We perform a linear interpolation and extrapolation from P’s center,
c, to and beyond a random anchor, wi. The traversal is given by x =
θwi + (1− θ)c. We then report the MAPS score of images generated
along this traversal as a function of θ. Each solid lines represent images
generated from Gp with a different anchor. The dashed line represents
images generated by Gd and is provided for reference. As can be
seen, personalization is strong in P (0 ≤ θ ≤ 1) and degrades as
the extrapolation strays further from P. At roughly θ = 1.75, the
extrapolation reaches sparse regions of W and ceases representing
realistic faces in all generators. This effect is especially noticeable
in Gd, where until that point, the faithfulness of identity is relatively
constant.

Input Wp W+
p Pβ P

+
β

Figure 6. We demonstrate the effect of projecting degraded input im-
ages into different latent spaces for image enhancement. We find that
projecting to Wp and W+

p yields non-personalized and low quality
results. Projection to P+

β is superior to Pβ in terms of personalization
and fidelity.

tion does not converge to the personalized space without explicit
regularization.

We additionally find that for image enhancement, P+
β is su-

perior to Pβ in two manners. First, it provides more expressive
power, asW+ does with respect toW (see first row in Figure 6).
Second, we find that Pβ sometimes produces slightly less iden-
tity preserving results than P+

β (see last row in Figure 6). This
is initially surprising asW is known to provide more reliable
prior thanW+, however with Pβ and P+

β the opposite appears
to be true. We empirically find that results from Pβ often fully
leverage the allowed dilation and arrive at exactly β, while re-
sults from P+

β often converge at a smaller dilation. We speculate
that results in Pβ stray to further dilation to mitigate the limited
expressiveness.
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4.3. Effect of Dataset Size and Diversity

We now study the effect the reference set’s size and diversity
has on the quality of the personalized prior and generator. To this
end, we measure the inversion accuracy of unseen test images
into P0. Accurate inversions exists even in a non-personalized
W+. However, since we restrain the inversion to P0, its accu-
racy provides an estimate to the expressive power of the person-
alized prior.

We sample several subsets of images from the reference sets
of three individuals: Joe Biden, Emilia Clarke and Michelle
Obama. The subsets are of sizes 10, 50, 100 and 200. For each
subset, we estimate the diversity by computing the average pair-
wise LPIPS [34]. Additionally, we tune Gp and invert 20 test
images following the projection protocol in Section 3.3. We
then measure the reconstruction accuracy using LPIPS [58]. We
repeat this experiment 5 times for all set sizes other than 200,
which represents the size of the entire set in this experiment.

As can be seen for in Figure 7(a), at first, increasing the set
size improves both the set’s diversity and inversion accuracy.
However, this is not the case for 100 and 200 images where
an interesting phenomenon occurs. Although differences are
relatively minor, performance correlates to the diversity of the set,
regardless of the set size. While further experiments are required,
we speculate that adding an image that does not contribute to
diversity might add a burden to tuning and increase the dimension
of α-space, thus hurting results. Visual sample of results is
provided in Figure 7(b). One can observe the improvement from
10 to 50 and then 100, and then no major difference to 200.

(a)

Real N = 10 N = 50 N = 100 N = 200

(b)

Figure 7. The effect of reference set size and diversity on the prior’s
expressiveness. We sample subsets of different sizes from the reference
set of Joe Biden. For each subset we additionally tune a model, Gp,
and invert a set of test images to its P. (a) Reports the inversion error
using average LPIPS distance as a function of set size and diversity.
Diversity is computed using average pair-wise LPIPS distances [34]
and is reported as color in the spectrum between red (low) and purple
(high). (b) Visual examples of inverting a given real image with various
set sizes.

Table 1. Quantitative evaluation of few-shots synthesis approaches.
Ours, Ojha et al. [34], and Diff-Augment [60]. The user study values
are the percentages of images that appeared real to the users.

Method User % (↑) MAPS (↑) Diversity (↑)
Ojha et al. 1.4 0.53 ± 0.08 2.42 ± 0.16

DiffAugment 31.7 0.76 ± 0.05 2.99 ± 0.17
MyStyle (Ours) 68.9 0.79 ± 0.04 3.44 ± 0.16

Real Images 83.1 1 0

5. Applications
In this section, we demonstrate the application of our per-

sonalized prior for popular generative tasks - image synthesis
(Section 5.1), image enhancement (Section 5.2) and semantic
editing (Section 5.3). In all experiments, we tune the generator
from a pretrained FFHQ StyleGAN2 [28] on a personalized ref-
erence set. See Section A for more information regarding the
datasets.

We note that our personalization approach could be consid-
ered as solving a few-shot domain adaption task from the domain
of all faces to the domain of the face of a specific person. While
existing domain adaptation works mostly focus on synthesis,
their obtained generator can similarly be leveraged as a prior for
all discussed applications. We therefore consider such methods
as the most direct baseline and compare to them for all appli-
cations. For image enhancement we additionally compare to
state-of-the-art methods designed for the specific application.

5.1. Image Synthesis

We compare our synthesis results with existing few-shot do-
main adaptation methods - Ojha et al. [34] and DiffAugment [60].

We initialize the generator to the same StyleGAN2 [28] model
trained on FFHQ [27] and run each method’s training approach
on three personalized datasets: Adele (109 images), Kamala
Harris (110 images), and Joe Biden (206 images). We then
compare the synthesis of random images from these models.

To synthesize an image using our method, we sample a latent
code from P0 and forward it through Gp. A simple protocol for
sampling from P0 is described in Section B.1. For DiffAugment,
we truncate the sampled latent code with ψ = 0.7 [10], which
improves its results significantly.

Samples of generated images are displayed in Figure 8. Addi-
tional results are provided in the supplementary material.

We next evaluate the quality and diversity of the methods. The
term quality refers not to the visual quality of the images, but
whether their distribution is faithful to the training distribution.
Therefore, in our setting high quality synthesis should, among
other things, preserve the identity of the individual. We evaluate
quality using two complimentary approaches.

First, we use MAPS, the perceptual similarity metric pre-
sented in Section 4.1. We note that similar to other quality
metrics (e.g. FID [23]), MAPS is reported with respect to the
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Figure 8. Random images synthesized by different approaches. In
each block, (i) The few-shots method of Ojha et al. [34] (top row), (ii)
Diff-Augment [60] (middle row), (iii) Our tuned generator sampled in
the personalized sub-space (bottom row). As can be seen, our results are
more realistic and identity preserving than those of the other methods.

training set. Second, we conduct a user study. Users were pre-
sented with an image which was either real or synthesized by one
of the methods and were asked to choose whether it looks like
a real image of the specific person. We asked users to respond
to the survey only if they were familiar with what the person
looked like. We gathered 1674 responses from 45 unique users.

For diversity, we follow the protocol suggested by Ojha et al.
[34]. We synthesize 10,000 images from each model and cluster
them according to their nearest neighbor in the training set. We
then compute the mean and standard deviation of the intra-cluster
LPIPS [58] distances.

Aforementioned metrics are averaged across all individuals,
and reported in Table 1. Our model consistently outperforms
both alternatives on all metrics. Qualitative samples are pre-
sented in Figure 8 and in our supplementary material. As can
be seen, our results are significantly more realistic and identity-
preserving. We specifically point the reader to observe the di-
versity in Adele’s appearance which faithfully represents her
different appearances over the years.

5.2. Image Enhancement

We choose the tasks of image inpainting and super-resolution
as representative examples for image enhancement. We follow
the same evaluation protocol for both. As competing methods,

we use the generator obtained by DiffAugment [60] as an alter-
native prior, a state-of-the-art domain prior method and a version
of it fine-tuned on a personalized reference set. The domain prior
method serves only as a reference and represents existing meth-
ods. To compare all methods, we first present qualitative results
for the reader’s inspection, with additional results available in
the supplementary materials. Next, we evaluate quality using
MAPS and report user study results that reflect preference based
on quality and fidelity.

In the study, users were presented with an input image and
two results, one of ours and one of a baseline. They were then
asked to pick the result which better resembles the person and has
higher fidelity to the input. Results are reported as the percentage
of responses that preferred a different method over ours. The
images used in the user study are a randomly sampled subset of
those used for quantitative evaluation.

We explicitly note that we do not evaluate quality based on
reconstruction to a ground truth, neither quantitatively (e.g. L2,
PSNR and LPIPS) nor qualitatively. By definition, image en-
hancement methods hallucinate missing details, which might be
valid despite differing from a specific ground truth image. There-
fore, quantitative evaluation of reconstruction is meaningless and
including ground truth in qualitative results might bias readers.
As the individuals appearing in the experiments are most likely
recognized by readers, we believe quality can be evaluated from
the input-output pair alone.

5.2.1 Inpainting

The goal of image inpainting is to complete missing regions of an
image. The degradation transform is modeled as multiplication
of the original image with a binary mask m, i.e. φ(x) = x�m
where � is Hadamard’s product. For the state-of-the-art domain
prior method we use CoModGAN [59], which we also fine-tune
and note by “CoModGAN + FT”. Following common practice
in literature, all methods assume m is known and let the result
be a blend of the network’s output in the missing region and the
original image otherwise. We compare all methods for Barack
Obama (192 images), Lady Gaga (133 images), and Jeff Bezos
(114 images). We use β = 0.02 in all experiments.

Qualitative results are displayed in Figures 9 and 11. As
can be seen, our method generates image completions that are
more faithful to the person’s identity. Importantly, even subtle
features are restored, such as Jeff Bezos’ drooping upper eyelid
and Barack Obama’s mole to the left of his nose. This is further
supported by quantitative results reported in Table 2, where our
results obtain higher MAPS scores and are strongly preferred by
users.

5.2.2 Super-Resolution:

In super-resolution, we start from a low-resolution image I ∈
R3×H×W and generate a corresponding high-resolution image
I ∈ R3×fH×fW where f is the upsampling factor. In this case,
the degradation transform φ is downsampling the input image
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Input
CoMod-

GAN
CoMod-

GAN + FT
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Augment
MyStyle

(ours)

Figure 9. Personalized inpainting qualitative evaluation. Left to right:
input, CoModGAN [59], CoModGAN fine tuned on the reference set,
DiffAugment [60], and our method. We suggest zooming-in to notice
subtle differences in key facial characteristics.

Table 2. Quantitative evaluation of inpainting approaches: Co-
ModGAN [59] trained on FFHQ, CoModGAN fine-tuned on our per-
sonalized reference set, our proposed inpainting approach with DiffAug-
ment’s generator as a prior [60], and MyStyle (Ours). The user study
values reflect the percentages of responses (overall 430) in which the
compared method was preferred over MyStyle.

Method User % (↑) MAPS (↑)
CoModGAN 0.9 0.55 ± 0.08
CoModGAN + FT 24.9 0.71 ± 0.08
DiffAugment 9.3 0.68 ± 0.09
MyStyle (Ours) - 0.72 ± 0.08

by an f × f area kernel. We use GPEN [56] as the state-of-
the-art baseline, which we also fine-tune and note by “GPEN
+ FT”. All methods get a 32× 32 input. DiffAugment and our
method perform 32x upsampling while GPEN baselines perform
an easier 16x upsampling due to the resolution of the official
model uploaded by authors. We post-process the model output
by replacing the non-face regions in the model output, segmented
by Wadhwa et al. [50], with a Lanczos-upsampled version of the

input image. We compare all methods for Michelle Obama (279
images), Emilia Clarke (258 images) and Xi Jinping (92 images).
We use β = 0.05 in all experiments.

Qualitative results are displayed in Figures 10 and 11. As
can be seen, our results are significantly more faithful to the
person’s identity, have comparable fidelity and superior visual
quality. This is also demonstrated by quantitative results reported
in Table 3, where our results obtain higher MAPS scores and are
strongly preferred by users.

Input GPEN GPEN + FT
Diff-

Augment
MyStyle

(ours)

Figure 10. Personalized super-resolution qualitative evaluation. Left
to right: input, GPEN [56], GPEN fine-tuned on the reference set,
DiffAugment [60], and ours. Zoom-in to notice subtle differences in the
key facial characteristics.

5.3. Semantic Editing

We now evaluate the performance of our personalized prior
on semantic editing applications. Note that semantic editing is a
multi-step process involving finding semantic linear directions,
inverting a real image into latent space, applying the editing
operator on the inverted latent code, and finally generating an
image. In this section, we aim to compare only the process of
applying the editing operator in latent space. To this end, we use
the same linear directions and inversion method for MyStyle as
well as the baselines. We use two InterFaceGAN [43] directions,
for pose and smile, and PTI [41] as the inversion method.

For the state-of-the-art domain prior baseline, we apply se-
mantic editing in a StyleGAN trained on FFHQ, as done by PTI.
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Figure 11. Additional results of our personalized prior applied to inpainting, super-resolution and semantic editing, for widely recognizable individuals.
Additional results are available in the supplementary material. We suggest zooming-in to better view fine details.
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Figure 12. Personalized semantic editing. We use the same inversion method - PTI [41] and editing directions [43] with three different StyleGAN
generators - FFHQ-trained (equivalent to PTI), fine-tuned with DiffAugment [60] and that obtained with MyStyle. The reconstructed input image is
in the middle column, with smile editing to its left and pose editing to its right. Both competing approaches exhibit identity drift, caused by the
entanglement of the edited attributes to identity features. In contrast, our approach preserves the key facial characteristics of Obama throughout the
different editing outputs.

Table 3. Quantitative evaluation of super-resolution approaches:
GPEN [56] trained on FFHQ, GPEN fine-tuned on our personalized
reference set, our proposed super-resolution approach with DiffAug-
ment’s generator as a prior, and MyStyle (Ours). The user study values
reflect the percentages of responses (overall 366) in which the compared
method was preferred over MyStyle.

Method User % (↑) MAPS (↑)
GPEN 0.3 0.65 ± 0.09
GPEN + FT 2.2 0.75 ± 0.09
DiffAugment 4.6 0.75 ± 0.05
MyStyle (Ours) - 0.81 ± 0.04

Note that this method has no trained weights, other than those
of the GAN, and therefore it cannot be fine-tuned. Comparison
is made for Barack Obama (192 images) and Joe Biden (206
images).

A sample of qualitative results are portrayed in Figure 12. As
can be seen, our method preserves identity for both smile and
pose, whereas both alternative methods fail to preserve identity.
See the supplementary material for more results.

We explicitly note that similar to previous applications, se-
mantic editing using a domain prior is inherently unable to pre-
serve identity. Nevertheless, it is common for methods that lever-
age a domain prior to aim at identity-preserving editing [2,3,41].

Consider adding a smile to an individual’s face. These meth-

(a) Input (b) Domain edit (c) Personalized edit (d) Reference

Figure 13. Demonstration of the fundamental difference between edit-
ing with a domain prior and a personalized prior. The input image of
Angela Merkel (a), is edited using a domain prior learnt from a large
and diverse face dataset (FFHQ) (b). As can be seen, the edit maintains
Merkel’s coarse features. However, the smile is uncharacteristic of
Merkel. This is because the notion of a smile was learned from thou-
sands of different individuals. Conversely, when editing the expression
using our personalized prior (c), the smile is more typical of Merkel, as
demonstrated in the reference image (d).

ods point to the lack of change in any unrelated factors of ap-
pearance (e.g. eyes or hair) as a sign of identity preservation.
Even if a perfect semantic disentanglement is obtained, it is still
not truly identity-preserving. The missing piece is that the smile
itself should belong to the individual. In Figure 13 for example,
there are two images of Angela Merkel for which a smile was
added. Both edits are consistent with Merkel’s general appear-
ance. However, clearly, only one image portrays a realistic image
of Merkel smiling. This is because, the smile added to Merkel’s
face is her own, as learned by our personalized prior.

We next quantitatively evaluate the performance of the meth-
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ods for pose editing. For every input and method, we create a
large gallery of edited images with head pose varying between
(−40, 40) degrees [62]. We then sample 5 equally spaced im-
ages. Quantitative results are reported in Table 4. As can be seen,
our results are more identity-preserving and strongly preferred
by users.

Table 4. Quantitative evaluation of editing with different priors. We
compare editing of yaw angle in an FFHQ-StyleGAN domain’s prior,
DiffAugment generator’s prior, and MyStyle’s personalized prior (Ours).
The user study values reflect the percentages of questions in which the
compared method was preferred over MyStyle.

Method User % (↑) MAPS (↑)
FFHQ StyleGAN 2.3 0.60 ± 0.08
DiffAugment 10.9 0.66 ± 0.05
MyStyle (Ours) - 0.74 ± 0.04

6. Conclusions

We have presented a new problem: forming a personalized
prior, and introduced a method to achieve it through a few-shot
tuning method. Our method takes a small sized (∼100-200) ref-
erence set of photos, and learns a personalized prior represented
in a subspace of StyleGAN latent space. All style codes within
that subspace represent images containing the individual’s iden-
tity. We showed that this learned personalized prior promotes
non-trivial performance for otherwise ill-posed tasks, and devel-
oped a mechanism to project an image onto the subspace using a
novel latent space, α-space, that enable faithful reconstruction
of the key facial characteristic of the person.

One noted limitation of the current approach is a direct result
of the inherent limitation of StyleGAN that can not faithfully
reconstruct images that are out of the training set’s distribution
while simultaneously maintaining them in “healthy” regions of
the latent space, such images can include faces in extreme poses
or faces that are occluded partially by accessories. Moreover,
a mismatch between the identity of the person in the degraded
image to the person depicted by the prior may break the realism
of the output, resulting in a person that does not adequately
resemble any of the individuals as demonstrated in Figure 14.
It should be noted that automated, scalable image editing or
photo manipulation methods must be researched and developed
responsibly and consider fairness and content quality risks for
potential downstream users.

An interesting direction for future work is to fine tune the
generative prior to account for multiple individuals or for the
aging factor and the temporal axis, where say, an individual
has different hairstyles. We also believe that such restricted
sub-spaces, can be effective for more tasks, beyond identity
preservation, and can help direct or regularize various tasks,
such as articulation of human poses, expressions of face, or
shapes of chairs.

Figure 14. Failure case - enhancement of degraded images of Michelle
Obama (left) using a prior learned on Angela Merkel’s reference set. It
can be seen that due to the mismatch between the key facial characteris-
tics of the person depicted in the reference set and the attributes of the
person in the degraded image, the output images (right) contain visual
artifacts and depict a person that does not adequately resemble any of
the individuals.
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A. Dataset Curation
We collected a new dataset that contains sets of face images

of celebrities. For each celebrity, we curated a set of high-quality
images of faces of resolution 1024 × 1024. We used Amazon
Mechanical Turk to filter images that do not match the identity
of the wanted celebrity, images that contain occlusions of the
face area, images with low resolution and watermarked images.
Furthermore, to remove duplicated face images we calculated a
similarity measure for each pair of images and filtered out images
that were too close. Specifically, their deep features extracted
from a classifier had cosine similarity greater than 0.9. Finally,
the faces were aligned by the alignment process presented by
Karras et al. [25] and separated into training sets and test sets for
each celebrity. The number of images that were included in the
test set and the training set of each celebrity presented in Table 5.

Table 5. The sizes of the training sets and test sets of our dataset.

Celebrity Training set size Test set size

Adele 109 8
Angela Merkel 145 10
Barack Obama 192 13
Dwayne Johnson 97 11
Emilia Clarke 258 11
Jeff Bezos 114 3
Joe Biden 206 13
Kamala Harris 110 7
Lady Gaga 133 6
Michelle Obama 279 9
Oprah Winfrey 135 9
Taylor Swift 158 11
Xi Jinping 92 15

B. Additional Details
B.1. Sampling From P0

Commonly, sampling from generative models is trivial as the
probability density over the latent space is known. Conversely,
P0 is defined as the area enclosed by a convex hull. We therefore
require a sampling strategy to sample from P0. We propose a
simple protocol where we uniformly sample a random vector
from A0, in which there are three non-zero entries. This is
trivially done by sampling three anchors and three scalars from
[0, 1) which are then normalized. From that vector, we obtain
the latent code in P0. We note that there exists a large body of
works on sampling from convex bodies [46], which may produce
superior results. However, this investigation is out of the scope
of this paper.

B.2. Implementation Details

All projection experiments, including inversion, inpainting
and super-resolution inherit the setting and hyperparameters
from StyleGAN2 projection code [27]. This includes the opti-
mizer, number of steps, learning rate schedulers, etc. Similarly,

the tuning process inherits its hyperparameters from PTI [41].
For both tuning our model and projecting into it, we observe
no need for early-stopping. On the contrary, all projections to
DiffAugment were stopped after 200 iterations. We observe that
more iterations lead to significant degradation in their results.

Hyperparameters values used in experiments – s = 100 in
Eqn. (7), λL2 = 1 in Eqn. (1), λd−reg = 10 and applied only on
the first 12 layers in Eqn. (9).

Tuning our model takes roughly 48 seconds per anchor on a
single V100 GPU. This translates to roughly 80 minutes for 100
anchors.

Previous methods performing optimization in latent space [1]
have found it beneficial to initialize the optimization to the mean
code in latent space – w̄. Similarly, we initialize our optimization
to the center of P. This corresponds to initializing α to a vector
whose all components are equal.

B.3. Anchors’ Linear Independence

In several occasions throughout the paper, we have implicitly
assumed that the obtained anchors are linearly independent. We
first note that in practice, this was the case in all of our experi-
ments. However, this might not always be the case, specifically
as N increases and becomes close to k or surpasses it. Linearly
dependent anchors have no strong impact on our method. One
can drop the anchors that are internal to the convex hull and
obtain a linearly independent set spanning the same P. Doing
so is mostly useful as a means to reduce the dimension of α-
space and for projecting to the span of the anchors. Synthesis
and projection may seamlessly operate with a dependent set of
anchors.

C. Additional Experiments
C.1. Effect of β on Projection

Throughout our experiments, we have demonstrated that la-
tent codes on the Pβ manifold follow a personalized, high-quality
prior. We additionally demonstrated that other latent codes may
not follow the prior (see Figures 3, 5 and 6).

Specifically, in Section 4.1 and Figure 5, we have demon-
strated that the prior is local by observing gradual vanishment
of personalization from synthesized images along traversals out-
wards from the manifold. Greater β values are required for
containing further traversals, and are hence directly associated
with vanishment of personalization.

In this section, we complement this experiment, by evaluating
the effect of β on projecting given images to P+

β . We use the
projection method described in Section 3.3, to solve the tasks
of inversion, inpainting and super-resolution. Visual results are
provided in Figure 15.

The projection to P+
0 yields a highly characteristic image of

the person. However, it is also strongly conservative, i.e. relat-
ing to a common and simple appearance of the person – almost
frontal, neutral or smiling expression, simple illumination condi-
tions and no accessories. Therefore, across applications, typical
appearances are more accurately reconstructed than atypical
appearances.
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One can also observe that, in most cases, increasing β corre-
sponds to greater expressivity, indicated by better fidelity. This
is most evident for atypical images. We find that for such im-
ages, the optimization in fact converges to latent codes outside
the previous smaller dilation. On the other hand, we observe
that, ”typical“ images that were properly reconstructed with
the smaller dilation, converge to a similar dilation and do not
leverage the newly enlarged one.

This behavior is intuitive due to the optimization’s dynamic.
As a reminder – β values serve as upper-bounds in Eqn. (7),
and projection is initialized to the center of P+

0 . Therefore,
the optimization tends to converge at a smaller dilation when
possible.

While increasing β improves fidelity, we also observe it is
associated with artifacts and slight drifts to identity. Once more
this is true mostly for projections that resort to a greater effective
dilation.

We conclude that β continuously controls a tradeoff between
the prior and expressiveness. The actual dilation the optimization
converges to, depends on how conservative the input image is.

Choosing a value for β depends on user’s preference for
the balance between fidelity to quality and personalization. In
our experiments, we use the minimal β that was able to obtain
fair fidelity. We note that this simple guideline depends on the
application. For example, when solving inpainting, only a small
portion of the generated image is used by blending it to the input
image. Therefore, obtaining fair fidelity is possible with smaller
β, compared to the one needed for fair fidelity in inversion and
super-resolution.

C.2. Nearest-Neighbor Experiments

We last demonstrate that the outputs of our method are not
merely duplicates of the reference set. In Figure 16, we display
inpainting, super-resolution and synthesis results along with their
LPIPS [58] nearest-neighbor from the reference set. As can be
seen, our result resembles the nearest-neighbor which is expected
but is never a simple duplicate.

C.3. Predetermined vs Trained Anchors

When adapting the pre-trained generator Gd, we minimize
the reconstruction loss on a set of images {xi}Ni=1 with their
corresponding predetermined anchors {wi}Ni=1. We might ask,
do we need to predetermine the anchors?

If we instead let anchors train together with the generator,
the resulting process is similar to generative latent optimization
(GLO) [9]. We next evaluate the effect of replacing our tuning
approach with GLO. Figure 17 presents random images syn-
thesized with the obtained GLO generator for three individuals
- Adele, Kamala Harris and Joe Biden. As can be seen, the
synthesized images are less realistic and exhibit considerable
artifacts and blurriness as well as distortions in key-facial char-
acteristics of the person. To conclude, optimizing the anchors
along with generator causes inferior results to those obtained
with predetermined anchors as demonstrated in Figure 8.
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Figure 15. Effect of β on projection for inversion, super-resolution and
inpainting. The effect is demonstrated for both typical and atypical
images for each person and application. It can be seen that β controls
a tradeoff between the personalized prior and expressiveness. Results
produced with β = 0 are highly characteristic and conservative. These
results might be sufficient for some cases (e.g. rows 3, 5) but have
poor fidelity in many other. Increasing the allowed β, allows greater
expressivity and thus better fidelity, but at the cost of weakening the
guidance of the prior. At the extreme, β is not explicitly bounded
(Eqn. (7) not used). These results might be viable in some cases (e.g.
rows 1, 3, 6) but may also produce results containing artifacts (e.g. rows
2, 4) or slight drift in identity (e.g. row 5). We find it beneficial in
all applications to bound β to some positive small value, in order to
balance the trade-off.
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MyStyle NN

(a) Synthesis

Input MyStyle NN

(b) Inpainting

Input MyStyle NN

(c) Super-Resolution

Figure 16. Nearest-Neighbor experiments. We present images generated by our models for the tasks of synthesis, inpainting and super-resolution
along side their respective LPIPS nearest-neighbors (marked NN). For image enhancement results, the inputs are also displayed. As can be seen, in
no case are the results obtained by our method merely duplicates of their nearest neighbor in the reference set.

Figure 17. Random images synthesized by adapting the generator
using GLO [9]. The synthesized images are blurry, less realistic and
exhibit subtle distortions in the key-facial characteristics of the person,
in contrast to our results in Figure 8.
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