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Figure 1. Overview. We present a Human View Synthesis model that predicts novel views of humans from a single-view, sparse RGB-D
input. Our method renders high quality novel views of both, synthetic and real humans at 1K resolution without per-subject fine tuning.

Abstract

Novel view synthesis for humans in motion is a challenging
computer vision problem that enables applications such as
free-viewpoint video. Existing methods typically use com-
plex setups with multiple input views, 3D supervision or
pre-trained models that do not generalize well to new identi-
ties. Aiming to address these limitations, we present a novel
view synthesis framework to generate realistic renders from
unseen views of any human captured from a single-view sen-
sor with sparse RGB-D, similar to a low-cost depth camera,
and without actor-specific models. We propose an archi-
tecture to learn dense features in novel views obtained by
sphere-based neural rendering, and create complete ren-
ders using a global context inpainting model. Additionally,
an enhancer network leverages the overall fidelity, even in
occluded areas from the original view, producing crisp ren-
ders with fine details. We show our method generates high-
quality novel views of synthetic and real human actors given

a single sparse RGB-D input. It generalizes to unseen iden-
tities, new poses and faithfully reconstructs facial expres-
sions. Our approach outperforms prior human view synthe-
sis methods and is robust to different levels of input sparsity.

1. Introduction
Novel view synthesis of rigid objects or dynamic scenes

has been a very active topic of research recently with im-
pressive results across various tasks [43, 48, 65, 68]. How-
ever, synthesizing novel views of humans in motion re-
quires methods to handle dynamic scenes with various de-
formations which is a challenging task [66, 72]; especially
in those regions with fine details such as the face or the
clothes [49, 51, 71]. In addition, prior work usually relies
on a large amount of cameras [4, 43], expensive capture se-
tups [52], or inference time on the order of several minutes
per frame. This work aims to tackle each of these challenges
using a simple, compact yet effective formulation.

*This work was conducted during an internship at RL Research.
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We propose a novel framework that generates high-
fidelity rendered images of clothed humans using a single
sparse RGB-D sensor. The challenging requirements that
we impose are: i) generalization to new subjects at test-time
as opposed to models trained per subject, ii) ability to han-
dle dynamic scenes of humans in unseen poses as opposed
to animating humans using the same poses seen at training,
iii) ability to handle occlusions either from objects or from
self-occlusions, iv) capturing facial expressions and v) gen-
eration of high-fidelity images in a live setup given a sparse
RGB-D input (i.e. similar to a low-cost depth camera).

Our method takes as input a single sparse RGB-D im-
age of the upper body of a human and a target camera
pose and generates a high-resolution rendering from the
target viewpoint (see Fig. 1). A few methods have been
published recently that tackle a similar scenario: Looking-
Good [41] re-renders novel viewpoints of a captured indi-
vidual given a single RGB-D input. However, their cap-
ture setup produces dense geometry which results in a rel-
atively easy task: the target views do not deviate signifi-
cantly from the input views. Given multi-view input frames
or videos, recent works on rendering animatable humans
from novel views show impressive results [49, 51, 52, 71].
However such methods can be prohibitively expensive to
run (e.g., [49] runs at 1 minute/frame) and cannot general-
ize to unseen humans but instead create a single model for
each human that they need to render.

The first key differentiating factor of our proposed ap-
proach compared to previous approaches is that we utilize
depth as an additional input stream. While the input depth
is sparse and noisy it still enables us to utilize the infor-
mation seen in the input main view and hence simplifying
the synthesis of novel views. To account for the sparseness
of the input, we opted for a sphere-based neural renderer
that uses a learnable radius to achieve a denser warped im-
age compared to simply performing geometry warping from
one view to the other. When combined with an encoder-
decoder architecture and trained end-to-end, our approach is
able to synthesize novel views of unseen individuals and to
in-paint areas that are not visible from the main input view.
However, we observed that while this approach works well
with minimal occlusions it has a hard time generating high-
quality renderings when there are severe occlusions, either
from the person moving their hands in front of their body
or if they’re holding various objects. Thus, we propose to
utilize a single additional occlusion-free input and warp it
to the target novel view by establishing accurate dense cor-
respondences between the two inputs. A compact network
can be used for this purpose, which is sufficient to refine the
final result and generate the output prediction.

To train our approach, we rely on high-quality synthetic
scans of humans that we animated and rendered from vari-
ous views. A key finding of our work is that it generalizes

very well to real data captured by a 3dMD scanner system
with a level of detail in the face or the clothes that are not
seen in prior works. In summary, the contributions of this
work are:

• A robust sphere-based synthesis network that generalizes
to multiples identities without per-human optimization.

• A refinement module that enhances the self-occluded re-
gions of the initial estimated novel views.

• State-of-the-art results on dynamic humans of both, syn-
thetic and real-captured data.

2. Related Work
View synthesis for dynamic scenes, in particular for hu-

mans, is a well-established field that provides the basis for
this work. Our approach builds on ideas from point-based
rendering, warping, and image-based representations.
View Synthesis. For a survey of early image-based render-
ing methods, we refer to [58, 63]. One of the first methods
to work with video in this field is presented in [9] and uses
a pre-recorded performance in a multi-view capturing setup
to create the free-viewpoint illusion. Zitnick et al. [77] sim-
ilarly uses a multi-view capture setup for viewpoint inter-
polation. These approaches interpolate between recorded
images or videos, and Ballan et al. [3] coin the term ‘video-
based rendering’: they use it to interpolate between hand-
held camera views of performances.

The strong generative capabilities of neural networks en-
able further extrapolation and relaxation of constraints [22,
26, 31, 42]. Zhou et al. [75] introduce Multi-Plane Images
(MPIs) for viewpoint synthesis and use a model to predict
them from low-baseline stereo input and [21, 59] improve
over the original baseline and additionally work with cam-
era arrays and light fields. Broxton et al. [7] extend the
idea to layered, dynamic meshes for immersive video ex-
periences whereas Bansal et al. [4] use free camera view-
points, but multiple cameras.

With even stronger deep neural network priors, [69] per-
forms viewpoint extrapolation from a single view, but for
static scenes, whereas [66, 72] can work with a single view
in dynamic settings with limited motion. Bemana et al.
[5] works in static settings but predicts not only the radi-
ance field but also lighting given varying illumination data.
Chibane et al. [14] trade instant depth predictions and syn-
thesis for the requirement of multiple images. Alternatively,
volumetric representations [39, 40] can also being utilized
for capturing dynamic scenes. All these works require sig-
nificant computation time for optimization, multiple views
or offline processing for the entire sequence.
3D & 4D Performance Capture. While aforementioned
works are usually scene-agnostic, employing prior knowl-
edge can help in the viewpoint extrapolation task: this has



been well explored in the area of 3D & 4D Human Per-
formance Capture. A great overview of the development
of the Virtualized Reality system developed at CMU in the
90s is presented in [32]. It is one of the first such systems
and uses multiple cameras for full 4D capture. Starting
from this work, there is a continuous line of work refin-
ing and improving over multi-view capture of human per-
formances [15, 18, 36, 60, 77]. Recently, Relightables [25]
uses again a multi-camera system and adds controlled light-
ing to the capture set up, so that the resulting reconstructed
performances can be replayed in new lighting conditions.
The authors of [30, 67] take a different route: they find a
way to use bundle adjustment for triangulation of tracked
3D points and obtain results with sub-frame time accuracy.
Broxton et al. [7] is one of the latest systems for general-
purpose view interpolation and uses a multi-view capture
system to create a layered mesh representation of the scene.
Li et al. [37] use a similar multi-view capture system to train
a dynamic Neural Radiance Field. All of these systems use
multiple cameras and are unable to transmit performance in
real-time.
Point-based Rendering. We assume a single input RGB-D
sensor as a data source for our method. This naturally al-
lows us to work with the depth data in a point-cloud format.
To use this for end-to-end optimization, we build on top of
ideas from differentiable point cloud rendering. Some of
the first methods rendered point clouds by blending discrete
samples using local blurring kernels: [28,38,55]. Using the
differentiable point cloud rendering together with convolu-
tional neural networks naturally enables the use of latent
features and a deferred rendering layer, which has been ex-
plored in [33,69]. Aliev et al. [1] use a point renderer imple-
mented in OpenGL, then use a neural network image space
to create novel views. Ruckert et al. [56] use purely pixel-
sized points and finite differences for optimization. Dai et
al. [16] use a layered intermediate representation during the
point cloud projection. Bui et al. [8] specifically address the
resolution problem of point clouds and proposes a neural
network for densification of point cloud renderings. We are
directly building on these methods and use the Pulsar ren-
derer [33] in our method together with an additional model
to improve the point cloud density.
Warping Representations. To correctly render occluded
regions, we warp the respective image regions from an
unoccluded posture to the required posture. Debevec et
al. [19] is one of the first methods to use ‘projective texture-
mapping’ for view synthesis. Chaurasia et al. [11] uses
depth synthesis and local warps to improve over image-
based rendering. The authors of [23, 76] take view synthe-
sis through warping to its extreme: they solely use warps
to create novel views or synthesize gaze. Recent meth-
ods [48, 53, 54, 64] use 3D proxies together with warping
and a CNN to generate novel views. All these methods re-
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Figure 2. Comparison of 3D point cloud transformations. From a
single RGB-D input, we obtain the warped image using: a depth-
based warping transformation [35,41], neural point-based renderer
SynSin [69] and neural sphere-based Pulsar renderer [33]. The
novel image warped by Pulsar is significantly denser.

quire either creation of an explicit 3D proxy first, or use of
image-based rendering. Instead, we use the dynamic per-
frame point cloud together with a pre-captured, unoccluded
image to warp necessary information into the target view
during online processing.

3. Proposed method
The goal of our method is to create realistic novel views

of a human captured by a single RGB-D sensor (with sparse
depth, similar to low-cost RGB-D camera), as faithful and
fast as possible. We assume that the camera parameteri-
zation of the view to generate is known. Still, this poses
several challenges: 1) the information we are working with
is incomplete, since not all regions that are visible from the
novel view can be observed by the RGB-D sensor; 2) oc-
clusion adds additional regions with unknown information;
3) even the pixels that are correctly observed by the original
sensor are sparse and exhibit ‘holes’ when viewed from a
different angle. We tackle the aforementioned problems us-
ing an end-to-end trainable neural network with two com-
ponents. First, given an RGB-D image parameterized as its
two components RGB Iv and sparse depth Dv taken from
the input view v, a sphere-based view synthesis model S
produces dense features of the target view and renders the
resulting RGB image from the target camera view using a
global context inpainting network G (see Sec. 3.1). How-
ever, this first network can not fully resolve all occlusions
(even assuming it would be trained ‘perfectly’): informa-
tion from fully occluded regions is missing (e.g. rendering
a pattern on a T-shirt that is occluded by a hand). To ac-
count for such cases, we optionally extend our model with
an enhancer module E (see Sec. 3.2). It uses information
from a prior, an unoccluded snapshot of the same person,
estimates the dense correspondences between the predicted
novel view and prior view, and then refines the predicted
result.



Input view

Sparse depth

Feature extractor F

projection

Target camera T

Input feature M Target feature Mt

Sphere-based

renderer Ω

x N

Global Context Inpainting Model G

Predicted Mask, Confidence and Novel View GT

Fast Fourier

Convolution Blocks

ri

fi

Figure 3. Architecture of the sphere-based view synthesis network. The feature predictor F learns radius and feature vectors of the sphere
set S. We then use the sphere-based differentiable renderer Ω to densify the learned input features M and warp them to the target camera
T . The projected features Mt are passed through the global context inpainting module G to generate the foreground mask, confidence map
and novel image. Brighter colors of the confidence map indicate lower confidence.

3.1. Sphere-based View Synthesis

The goal of this first part of our pipeline is to render a
sparse RGB-D view of a human as faithfully as possible
from a different perspective. Of the aforementioned arti-
facts, it can mostly deal with the inherent sparsity of spheres
that is caused due to the depth foreshortening: from a single
viewpoint in two neighboring pixels, we only get a signal at
their two respective depths—no matter how much they dif-
fer. This means that for every two pixels that have a large
difference in depth and are seen from the side, large gaps
occur. For humans, these ‘gaps’ are of limited size, and we
can address them to a certain extent by using a model using
a sphere-based renderer for view synthesis.
Sphere-based renderer. Given the depth of every pixel
from the original viewpoint as well as the camera param-
eters, these points can naturally be projected into a novel
view. This makes the use of depth-based warping or of
a differentiable point- or sphere-renderer a natural choice
for the first step in the development of the view synthesis
model. The better this renderer can transform the initial
information into the novel view, the better; this projection
step is automatically correct (except for sensor noise) and
not subject to training errors.

In Fig. 2, we compare the density of the warped im-
ages from a single sparse RGB-D input using three differ-
ent methods: depth-based warping [35], point-based ren-
dering [69] and sphere-based rendering [33]. Depth based
warping [35] represents the RGD-D input as a set of pixel-
sized 3D points and thus, the correctly projected pixels in
the novel view are very sensitive to the density of the in-
put view. The widely-used differentiable point-based ren-
derer [69] introduces a global radius-per-point parameter
which allows to produce a somewhat denser images. This
comes, however, with a trade-off: if the radius is selected
too large, details in dense regions of the input image are
lost; if the radius is selected too small, the resulting im-
ages get sparser in sparse regions. The recently introduced,
sphere-based Pulsar renderer [33] not only provides the op-

tion to use a per-sphere radius parameter, but it also pro-
vides gradients for these radiuses, which enables to set them
dynamically. As depicted in Fig. 2, this allows us to produce
denser images compared to the other methods. Fig. 3 shows
an overview of the overall architecture of our method. In a
first step, we use a shallow set of convolutional layers F to
encode the input image Iv to a d-dimensional feature map
M = F (Iv). From this feature map, we have to create a
sphere representation that can be rendered using the Pulsar
renderer. This means that we have to find position pi, fea-
ture vector fi, and radius ri for every sphere i ∈ 1, .., N
when using N spheres (for further details about the render-
ing step, we refer to [33]). The sphere positions pi can
trivially be inferred from camera parameters, pixel index
and depth for each of the pixels. We choose the features fi
as the values of M at the respective pixel position; we infer
ri by passing M to another convolution layer with a sig-
moid activation function to bound its range. This leads to a
relatively dense projection of features into the target view,
which is the basis for the following steps.
Global context inpainiting model. The projected features
have to be converted to the final image. This remains a chal-
lenging problem, since several ‘gaps’ in the re-projected
feature images Mt cannot be avoided. To address this, we
design an efficient encoder-decoder based inpainting model
G to produce the final renders. The encoding bottleneck
severely increases the receptive field size of the model,
which in turn allows it to correctly fill more of the miss-
ing information. Additionally, we employ a series of Fast
Fourier Convolutions (FFC) [13] to take into account the
image-wide receptive field. The model is able to hallucinate
missing pixels much more accurately compared to regular
convolution layers [61]. The architecture of the G module
is described in detail in the supplementary material.
Photometric Losses. The sphere-based view synthesis net-
work S not only predicts an RGB image of the target view,
but also a foreground mask and a confidence map which can
be used for compositing and error correction, respectively.
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Figure 4. IUV-based image refinement. Using an additional
occlusion-free input, we refine the initial estimated novel view by
training the Enhancer E network. We infer the dense correspon-
dences of both predicted novel view and occlusion-free image us-
ing a novel HD-IUV module. The occlusion-free image is warped
to the target view and then refined by an auto-encoder. The refined
novel view shows better result on the occluded area compared to
the initial estimated.

It is trained end-to-end using the photometric loss Lphoto,
which is defined as: Lphoto = Li + Lm. Li is the com-
bination of an `1, perceptual [12] and hinge GAN [24] loss
between the estimated new view Ip and the ground-truth im-
age IGT . Lm is the binary cross entropy loss between the
predicted and ground-truth foreground mask. We found that
this loss encourages the model to predict sharp contours in
the novel image.

These two losses lead to high quality reconstruction re-
sults for single images. However, we find that stereoscopic
rendering of novel views requires matching left and right
images for both views and whereas the above losses lead
to plausible reconstructions, they do not necessarily lead
to sufficiently consistent reconstructions for closeby view-
points. We found a two-step strategy to address this issue:
1) Instead of predicting a novel image of a single viewpoint,
we train the model to predict two nearby novel views. To
obtain perfectly consistent depth between both views, we
use the warping operator W from Jaderberg et al. [29] to
warp the predicted image and the depth from one to the
nearby paired viewpoint. 2) In the second step, we define a
multi-view consistency loss Lc as:

Lc = ||ILp −W (IRp )||1, (1)

where ILp and IRp are predicted left and right novel views.
With this, we define the photometric loss as follows:

Lphoto = Li + 0.5× Lm + 0.5× Lc. (2)

3.2. Enhancer Network E

The sphere-based view synthesis network S predicts
plausible novel views with high-quality. However, if the
person is holding an object such as a wallet in Fig. 4 or if
their hands are obstructing large parts of their torso then the

warped transformation will result in missing points in this
region (as discussed in Fig 2). This leads to low-fidelity tex-
ture estimates for those occluded regions when performing
novel view synthesis with a target camera that is not close
to the input view. Hence, to further enhance the quality of
the novel views, we introduce two additional modules: i)
an HD-IUV predictor D to predict dense correspondences
between an RGB image (i.e., render of a human) and the
3D surface of a human body template, and ii) a refinement
module R to warp an additional occlusion-free input to the
target camera and enhance the initial estimated novel view
to tackle the self-occlusion issue.
HD-IUV Predictor D. We first estimate a representation
that maps an RGB image of a human to the 3D surface of a
body template [45–47]. We build upon DensePose [45] in
terms of how the surface correspondences are established as
well as the supervisions employed but instead we train on
synthetic data since DensePose predictions tend to be noisy
and not very accurate. We feed the initially estimated novel
view Ip to an encoder-decoder architecture which contains
three prediction heads (for the I, U and V channels).
Warping Representations and View Refinement. The
predicted HD-IUV in isolation would not be useful for the
task of novel-view synthesis of humans. However when
used along with a single occlusion-free RGB input, we are
able to warp all visible pixels to the human in the target
camera T and obtain a partial warp image Iw. We then
feed both Ip and Iw to another refinement module to fix
the rendering artifacts of the occluded regions at the tar-
get viewpoint. This refinement module is trained using the
photometric loss Lphoto between the refined novel images
and ground-truths. For all training and warping details, and
the detailed network architecture, we refer the reader to the
supplementary material.

4. Experiments
Datasets. Our proposed approach is trained solely on syn-
thetic data and evaluated quantitatively and qualitatively on
both, synthetic as well as real data. For synthetic data, we
use the RenderPeople dataset [17], which has been used ex-
tensively [2, 6, 10, 27, 34, 50, 57, 62, 74] for human recon-
struction and generation tasks. Overall, we use a subset of
1000 watertight meshes of persons wearing a variety of gar-
ments and in some cases holding objects such as mugs, bags
or mobile phones. Whereas this covers a variety of per-
sonal appearance and object interaction, all of these meshes
are static—the coverage of the pose space is still lacking.
Hence, we augment the dataset by introducing additional
pose variations: we perform non-rigid registration for all
meshes, rig them for animation and use the Mixamo mo-
tion capture dataset [44] to animate them in an automatic fa-
sion. The Mixamo dataset provides human animations from
which we collect a set of 2,446 sequences covering a wide



Method RenderPeople (static scans) RenderPeople (animated scans) Real 3dMD Data

LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑

LookingGood† [41] 0.24 0.925 25.32 0.25 0.912 24.53 0.29 0.863 25.12
SynSin† [69] 0.31 0.851 24.18 0.35 0.937 23.64 0.35 0.937 22.18
SynSin [69] 0.52 0.824 22.45 0.55 0.853 20.86 0.65 0.819 19.92
HVS-Net† 0.14 0.986 28.56 0.17 0.958 27.41 0.20 0.918 26.47
HVS-Net 0.15 0.986 28.54 0.17 0.955 27.45 0.20 0.918 26.47

Table 1. Quantitative results on synthetic and real-capture images. For all datasets, the metrics are averaged across all views. Methods
with a † symbol are using dense input depth. Both HVS-Net and HVS-Net† achieve best results compared to other view synthesis methods.

Input GT LookingGood SynSin Ours

Figure 5. Qualitative comparison. Examples of generated novel
views by HVS-Net and state-of-the-art methods on the testing
set of RenderPeople [17] dataset. While LookingGood [41] uses
denser input depth, we use a set of sparse 3D points as input to
SynSin [69] and our proposed HVS-Net.

range of action categories of daily activities and sports.
With this set of meshes and animations, we are able to

assemble a set of high quality ground-truth RGB-D renders
as well as their corresponding IUV maps for 25 views per
frame using Blender. We use a 90/10 train/test split based
on identities to evaluate whether our model can generalize
well to unseen individuals. In addition to the synthetic test
set we also assemble a real-world test dataset consisting of
3dMD 4D scans people in motion. The 3dMD 4D scanner
is a full body scanner that captures unregistered volumetric
point clouds at 60Hz. We use this dataset solely for test-
ing to investigate how well our method handles the domain
gap between synthetic and real data. The 3dMD data do
not include object interactions, but are generally noisier and
have complex facial expressions. To summarize our train-
ing set comprised 950 static scans at their original pose and
∼10000 posed scans after animation. Our test-set consisted
of 50 static unseen identities along with 1000 animated ren-

ders as well as ∼3000 frames of the two humans captured
with a 3dMD scan.
Baselines and Metrics. In this evaluation, we compare our
approach to two novel view synthesis baselines by compar-
ing the performance in generating single, novel-view RGB
images. To evaluate the generalization of HVS-Net, we
compare with LookingGood [41]. Since there is no avail-
able source code of LookingGood, we reimplemented the
method for this comparison. We followed the stereo set
up of LookingGood and use a dense depth map to predict
the novel views. Furthermore, we compare HVS-Net with
the recently proposed view synthesis method SynSin [69],
which estimates monocular depth using a depth predictor.
To create fair evaluation conditions, we replace this depth
predictor and either provide dense or sparse depth maps as
inputs directly. We report the PSNR, SSIM, and perceptual
similarity (LPIPS) [73] of view synthesis between HVS-Net
and other state-of-the-art methods.

4.1. Results

In Tab. 1 and Fig. 5, we summarize the quantitative
and qualitative results for samples from the RenderPeople
dataset. We first compare the full model HVS-Net against a
variant HVS-Net†, which utilizes a dense map as an input.
We observe no significant differences between the predicted
novel views produced by HVS-Net when trained using ei-
ther sparse or dense depth input. This confirms the effec-
tiveness of the sphere radius predictor: it makes HVS-Net
more robust w.r.t. input point cloud density.

In a next step, we evaluate HVS-Net against the cur-
rent top performing single view human synthesis meth-
ods [41, 69], which do not require per-subject finetun-
ing. Even though we use dense depth maps as input
to LookingGood† [41], the method still struggles to pro-
duce realistic results if the target pose deviates signifi-
cantly from the input viewpoint. In the 1st row of Fig. 5,
LookingGood† [41] also struggles to recover clean and ac-
curate textures of the occluded regions behind the hands of
the person. Although both SynSin [69] and HVS-Net, uti-
lize the same sparse depth input, the rendered target images
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Figure 6. Generalization to real-world examples. Our method generalizes well to real-world 4D data and shows robustness w.r.t to different
target poses. These results are produced using HVS-Net, trained solely on synthetic data without further fine-tuning.

are notably different. Synsin [69] not only performs poorly
on the occluded regions but also produces artifacts around
the neck of the person, visible in the 2nd row of Fig. 5. In
contrast, our method is not only able to render plausible and
realistic novel views, but creates them also faithful w.r.t. the
input views. Notice that HVS-Net is able to predict fairly
accurate hair for both subjects given very little information.

In a last experiment, we test the generalization ability of
our method on real-world 4D data, shown in Fig. 6. Being
trained only on synthetic data, this requires generalization
to novel identity, novel poses, and bridging the domain gap.
In the 4D scans, the subjects are able to move freely within
the capture volume. We use a fixed, virtual 3D sensor posi-
tion to create the sparse RGB-D input stream for HVS-Net.
The input camera is placed near the feet of the subjects and
is facing up. This is a realistic scenario, for example, for VR
applications in which an outside-in sensor is used to track
a subject in a limited movement area—however it compli-
cates view synthesis, since information about the hair, upper
arms and shoulders is not readily available. As can be seen
in Fig. 1 and Fig. 6, HVS-Net is still able to perform novel
view synthesis with high quality. Despite using sparse input
depth, our method is able to recover realistic textures on the
clothes of both subjects. In addition, facial expressions such
as opening the mouth or smiling are also well-reconstructed,
despite the fact that the static or animated scans used to train
our network did not have a variety of facial expressions.
The quality of the results obtained in Fig. 6 demonstrates
that our approach can render high-fidelity novel views of
real humans in motion.

We observe that the generated novel views are also tem-
porally consistent across different target view trajectories.

For additional results and video examples, we refer the
reader to the supplementary material.

LPIPS↓ SSIM↑ PSNR↑
No sphere representation 0.22 0.934 26.15
No global context reasoning 0.21 0.954 26.82
No HE-Net 0.18 0.967 27.92
HVS-Net (full) 0.15 0.986 28.54

Table 2. HVS-Net architecture ablation study. Reconstruction ac-
curacy on novel view synthesis on the RenderPeople testing set.

4.2. Ablation Studies

Model Design. Tab. 2 and Fig. 7 summarize the quantita-
tive and qualitative performance for different model variants
on the test set of the RenderPeople dataset [17]. HVS-Net
without the sphere-based representation does not produce
plausible target views which can be obvious if one looks
at the rendered face which is blurry compared to the full
model. This is due to the high level of sparsity of the in-
put depth, which leads to a harder inpainting problem for
the neural network that addresses this task. Replacing the
Fast Fourier Convolution residual blocks of the global con-
text inpainting model with regular convolution layers leads
to an improvement in the quality of the rendered face, but
the occluded region (red box) behind the hands is rendered
in an unrealistic way. Using the proposed model architec-
ture, but without the enhancer (visible in the 3rd column
of Fig. 7), improves the rendering of the occluded region
to a certain extent, however some details remain unrecog-
nizable. In contrast, the full proposed model using the en-
hancer is able to render the logo accurately.
Sparse Depth Robustness. In Fig. 8, we show novel view
synthesis results using different levels of sparsity of the in-
put depth maps. We first randomly sample several versions
of the sparse input depth and HVS-Net to process them.

Our method is able to maintain the quality of view syn-
thesis despite strong reductions in point cloud density. This
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Figure 7. Qualitative ablation study. Comparison of the ground-
truth with predicted novel views by HVS-Net without the sphere-
based representation, without Fast Fourier Convolution, without
the Enhancer module and the full model.

highlights the importance of the proposed sphere-based ren-
dering component and the enhancer module. We still ob-
serve a slight drop of performance when using 5% or 10%
of the input maps. Thus, we suggest that using 25% of the
input depth data is sufficient to achieve similar results com-
pared to using the full data.
Inference Speed. For AR/VR applications, it is important
to synthesize novel views of humans as fast as possible.
This was they key reason why we did not opt for complex
architectures such as vision transformers [20] as their infer-
ence speed would be prohibitively expensive. During test-
ing, HVS-Net infers 1024 × 1024 resolution novel images
at 21 fps using a single GPU NVIDIA V100. Note that
this speed can be further increased with more efficient data
loaders as well as optimized models that use the NVIDIA
TensorRT engine. Finally we also observed that different
levels of depth sparsity do not affect the average runtime of
HVS-Net which is a plus compared to prior work.

4.3. Discussion

Limitations. Despite producing appealing results on real-
world data, the proposed method is trained solely on syn-
thetic data. It manages to bridge the domain gap remarkably
well, however we believe its performance could be further
improved by integrating real-world data into the training set.

However, gathering such data is not trivial: generating
(close to) noise-free point clouds for training requires elab-
orate multi-view capture system, possibly enhanced with
controlled lighting to simulate varying lighting conditions.
A way to circumvent this partially is to train on a large-scale
synthetic dataset [70] and then fine-tuning on a smaller-
scale real-world dataset. This, at least, reduces the amount
of data that has to be captured. Another limitation we iden-
tified is that the warped image used as input to the enhancer
model has lower quality compared to the initial estimated
novel view. This is independent of the quality of the IUV
mapping and is an inherent problem of the differentiable
warping operation. Improving this operation could be a
promising direction for future work that could increase the

(a) (b) (c)

Figure 8. HVS-Net sparsity robustness. We randomly sample (a)
5%, (b) 10% and (c) 25% of foreground points as a input depth
map and feed it to HVS-Net to predict novel views.

upper bound in quality for the novel view synthesis of fine
structures in occlusion scenarios.
Broader Impact. View synthesis of human subjects
presents challenges worth discussing that are not present in
other view synthesis scenarios: we need to ensure that such
methods perform equally well across different demograph-
ics. Unlike real-world data, which is usually captured in
specific geographic regions, synthetic data is better suited
to avoid biases in this regard, since it is easier to engineer
it to equally represent humanity as a whole. Such an ef-
fort would enable the proposed method to work well across
clothing garments, genders and skin tones. While the de-
sign of our method is well suited to be used in this setting,
we did not explicitly take dataset bias of the RenderPeople
dataset into account in our evaluations.

5. Conclusion
We presented HVS-Net, a method that performs novel

view synthesis of humans in motion given a single, sparse
RGB-D source. HVS-Net uses a sphere-based view synthe-
sis model that produces dense features of the target view;
these are then utilized along with an autoencoder to fill-in
the missing details of the target viewpoints. To account for
heavily occluded regions, we propose an enhancer module
that uses an additional unoccluded view of the human to
provide additional information and produce high quality re-
sults. Using losses that encourage consistency across views,
our method generates hiqh quality results not only for single
views, but also for stereoscopic views and across time. Our
approach generates high-fidelity renders at new views of un-
seen humans in various new poses and can faithfully capture
and render facial expressions that were not present in train-
ing. This is especially remarkable, since we train HVS-Net
only on synthetic data; yet it achieves high-quality results
across synthetic as well as a real-world dataset.
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