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Abstract. Capturing and faithfully rendering photorealistic humans from novel
views is a fundamental problem for AR/VR applications. While prior work has
shown impressive performance capture results in laboratory settings, it is non-
trivial to achieve casual free-viewpoint human capture and rendering for unseen
identities with high fidelity, especially for facial expressions, hands, and clothes.
To tackle these challenges we introduce a novel view synthesis framework that
generates realistic renders from unseen views of any human captured from a
single-view and sparse RGB-D sensor, similar to a low-cost depth camera, and
without actor-specific models. We propose an architecture to create dense fea-
ture maps in novel views obtained by sphere-based neural rendering, and create
complete renders using a global context inpainting model. Additionally, an en-
hancer network leverages the overall fidelity, even in occluded areas from the
original view, producing crisp renders with fine details. We show that our method
generates high-quality novel views of synthetic and real human actors given a
single-stream, sparse RGB-D input. It generalizes to unseen identities, and new
poses and faithfully reconstructs facial expressions. Our approach outperforms
prior view synthesis methods and is robust to different levels of depth sparsity.

1 Introduction

Novel view synthesis of rigid objects or dynamic scenes has been a very active topic of
research recently with impressive results across various tasks [42,45,62]. However, syn-
thesizing novel views of humans in motion requires methods to handle dynamic scenes
with various deformations which is a challenging task [62,67]; especially in those re-
gions with fine details such as the face or the clothes [46,50,63,66]. In addition, prior
work usually relies on a large amount of cameras [5,42], expensive capture setups [51],
or inference time on the order of several minutes per frame. This work aims to tackle
these challenges using a compact, yet effective formulation.

We propose a novel Human View Synthesis Network (HVS-Net) that generates
high-fidelity rendered images of clothed humans using a commodity RGB-D sensor.
The challenging requirements that we impose are: 1) generalization to new subjects at
test-time as opposed to models trained per subject, ii) the ability to handle dynamic
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mans that we animated and rendered from various views. A key finding of our work
is that it generalizes very well to real data captured by a 3dMD scanner system with a
level of detail in the face or the clothes that are not seen in prior works [31,32,51]. In
summary, the contributions of this work are:

— A robust sphere-based synthesis network that generalizes to multiple identities with-
out per-human optimization.

— A refinement module that enhances the self-occluded regions of the initial estimated
novel views. This is accomplished by introducing a novel yet simple approach to
establish dense surface correspondences for the clothed human body that addresses
key limitations of DensePose which is usually used for this task.

— State-of-the-art results on dynamic humans wearing various clothes, or accessories
and with a variety of facial expressions of both, synthetic and real-captured data.

2 Related Work

View synthesis for dynamic scenes, in particular for humans, is a well-established field
that provides the basis for this work. Our approach builds on ideas from point-based
rendering, warping, and image-based representations.

View Synthesis. For a survey of early image-based rendering methods, we refer to
[56,60]. One of the first methods to work with video in this field is presented in [9]
and uses a pre-recorded performance in a multi-view capturing setup to create the free-
viewpoint illusion. Zitnick et al. [70] similarly use a multi-view capture setup for view-
point interpolation. These approaches interpolate between recorded images or videos.
Ballan et al. [4] coin the term ‘video-based rendering’: they use it to interpolate between
hand-held camera views of performances. The strong generative capabilities of neural
networks enable further extrapolation and relaxation of constraints [18,22,28,41]. Zhou
et al. [69] introduce Multi-Plane Images (MPIs) for viewpoint synthesis and use a
model to predict them from low-baseline stereo input and [17,57] improve over the
original baseline and additionally work with camera arrays and light fields. Broxton et
al. [8] extend the idea to layered, dynamic meshes for immersive video experiences
whereas Bansal et al. [5] use free camera viewpoints, but multiple cameras. With even
stronger deep neural network priors, [64] performs viewpoint extrapolation from a sin-
gle view, but for static scenes, whereas [62,67] can work with a single view in dynamic
settings with limited motion. Bemana et al. [6] works in static settings but predicts
not only the radiance field but also lighting given varying illumination data. Chibane
et al. [14] trade instant depth predictions and synthesis for the requirement of mul-
tiple images. Alternatively, volumetric representations [38,39] can also being utilized
for capturing dynamic scenes. All these works require significant computation time for
optimization, multiple views or offline processing for the entire sequence.

3D & 4D Performance Capture. While the aforementioned works are usually scene-
agnostic, employing prior knowledge can help in the viewpoint extrapolation task: this
has been well explored in the area of 3D & 4D Human Performance Capture. A great
overview of the development of the Virtualized Reality system developed at CMU in
the 90s is presented in [29]. It is one of the first such systems and uses multiple cameras
for full 4D capture. Starting from this work, there is a continuous line of work refining
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and improving over multi-view capture of human performances [1,15,35,70]. Relighta-
bles [21] uses again a multi-camera system and adds controlled lighting to the capture
set up, so that the resulting reconstructed performances can be replayed in new lighting
conditions. The authors of [27] take a different route: they find a way to use bundle ad-
justment for triangulation of tracked 3D points and obtain results with sub-frame time
accuracy. Broxton et al. [8] is one of the latest systems for general-purpose view inter-
polation and uses a multi-view capture system to create a layered mesh representation
of the scene. Many recent works apply neural radiance fields [42,65] to render humans
at novel views. Li et al. [360] use a similar multi-view capture system to train a dynamic
Neural Radiance Field. Kwon et al. [31] learn generalizable neural radiance fields
based on a parametric human body model to perform novel view synthesis. However,
this method fails to render high-quality cloth details or facial expressions of the human.
Both of these systems use multiple cameras and are unable to transmit performance
in real-time. Given multi-view input frames or videos, recent works on rendering ani-
mate humans from novel views show impressive results [46,50,51,60]. However such
methods can be prohibitively expensive to run ([46] runs at 1 minute/frame) and cannot
generalize to unseen humans but instead create a dedicated model for each human that
they need to render.

Human View Synthesis using RGB-D. A few methods have been published recently
that tackle similar scenarios: LookingGood [40] re-renders novel viewpoints of a cap-
tured individual given a single RGB-D input. However, their capture setup produces
dense geometry which makes this a comparatively easy task: the target views do not
deviate significantly from the input views. A recent approach [48] uses a frontal input
view and a large number of calibration images to extrapolate novel views. This method
relies on a keypoint estimator to warp the selected calibrated image to the target pose,
which leads to unrealistic results for hands, occluded limbs, or for large body shapes.
Point-based Rendering. We assume a single input RGB-D sensor as a data source
for our method. This naturally allows us to work with the depth data in a point-cloud
format. To use this for end-to-end optimization, we build on top of ideas from dif-
ferentiable point cloud rendering. Some of the first methods rendered point clouds by
blending discrete samples using local blurring kernels: [25,37,54]. Using the differ-
entiable point cloud rendering together with convolutional neural networks naturally
enables the use of latent features and a deferred rendering layer, which has been ex-
plored in [33,64]. Recent works on point-based rendering [2,30] use a point renderer
implemented in OpenGL, then use a neural network image space to create novel views.
Ruckert et al. [55] use purely pixel-sized points and finite differences for optimiza-
tion. We are directly building on these methods and use the Pulsar renderer [33] in our
method together with an additional model to improve the point cloud density.
Warping Representations. To correctly render occluded regions, we warp the respec-
tive image regions from an unoccluded posture to the required posture. Debevec et
al. [16] is one of the first methods to use “projective texture-mapping” for view syn-
thesis. Chaurasia et al. [!1] uses depth synthesis and local warps to improve over
image-based rendering. The authors of [19] take view synthesis through warping to
its extreme: they solely use warps to create novel views or synthesize gaze. Recent
methods [45,53,61] use 3D proxies together with warping and a CNN to generate novel
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we have to find position p;, feature vector f;, and radius r; for every spheres € 1,.., N
when using N spheres (for further details about the rendering step, we refer to [33]).
The sphere positions p; can trivially be inferred from camera parameters, pixel index
and depth for each of the pixels. We choose the features f; as the values of M at the
respective pixel position; we infer r; by passing M to another convolution layer with
a sigmoid activation function to bound its range. This leads to an as-dense-as-possible
projection of features into the target view, which is the basis for the following steps.
Global context inpainiting model. Next, the projected features are converted to the fi-
nal image. This remains a challenging problem since several “gaps” in the re-projected
feature images M, cannot be avoided. To address this, we design an efficient encoder-
decoder-based inpainting model G to produce the final renders. The encoding bottle-
neck severely increases the receptive field size of the model, which in turn allows it
to correctly fill in more of the missing information. Additionally, we employ a series
of Fast Fourier Convolutions (FFC) [13] to take into account the image-wide receptive
field. The model is able to hallucinate missing pixels much more accurately compared
to regular convolution layers [58].

Photometric Losses. The sphere-based view synthesis network S not only predicts an
RGB image I, of the target view, but also a foreground mask I,,, and a confidence
map I, which can be used for compositing and error correction, respectively. We then
multiply the predicted foreground mask and confidence map with the predicted novel
image: I, = I, xI,, *I.. However, an imperfect mask I,,, may bias the network towards
unimportant areas. Therefore, we predict a confidence mask 1. as a side-product of the
G network to dynamically assign less weight to “easy” pixels, whereas “hard” pixels
get higher importance [40].

All of the aforementioned model components are trained end-to-end using the pho-
tometric 1oss Lpot0, Which is defined as: Lypoto = L; + L. L; is the combination of
an {1, perceptual [12] and hinge GAN [20] loss between the estimated new view I, and
the ground-truth image IG7. L, is the binary cross-entropy loss between the predicted
and ground-truth foreground mask. We found that this loss encourages the model to
predict sharp contours in the novel image. The two losses lead to high-quality recon-
struction results for single images. However, we note that stereoscopic rendering of
novel views requires matching left and right images for both views. Whereas the above
losses lead to plausible reconstructions, they do not necessarily lead to sufficiently con-
sistent reconstructions for close-by viewpoints. We found a two-step strategy to address
this issue: 1) Instead of predicting a novel image of a single viewpoint, we train the
model to predict two nearby novel views. To obtain perfectly consistent depth between
both views, we use the warping operator W from [26] to warp the predicted image and
the depth from one to the nearby paired viewpoint. 2) In the second step, we define a
multi-view consistency loss L. as:

Lo =Ly = WL, (1)

where sz and If are predicted left and right novel views. With this, we define the
photometric loss as follows:

Lphoto = Li + 0.5 x Ly, + 0.5 x L. )
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4 Experiments

Datasets. The proposed approach is trained solely on synthetic data and evaluated quan-
titatively and qualitatively on both, synthetic and real data. For training, we use the
RenderPeople dataset [52], which has been used extensively [3,7,10,23,47,49,59] for
human reconstruction and generation tasks. Overall, we use a subset of 1000 watertight
meshes of people wearing a variety of garments and in some cases holding objects such
as mugs, bags or mobile phones. Whereas this covers a variety of personal appearances
and object interaction, all of these meshes are static—the coverage of the pose space is
lacking. Hence, we augment the dataset by introducing additional pose variations: we
perform non-rigid registration for all meshes, rig them for animation and use a set of
pre-defined motions to animate them. With this set of meshes and animations, we are
able to assemble a set of high-quality ground-truth RGB-D renders as well as their cor-
responding IUV maps for 25 views per frame using Blender. We use a 90/10 train/test
split based on identities to evaluate whether our model can generalize well to unseen
individuals.

In addition to the synthetic test set, we also assemble a real-world test dataset con-
sisting of 3dMD 4D scans of people in motion. The 3dMD 4D scanner is a full-body
scanner that captures unregistered volumetric point clouds at 60Hz. We use this dataset
solely for testing to investigate how well our method handles the domain gap between
synthetic and real data. The 3dMD data does not include object interactions, but is
generally noisier and has complex facial expressions. To summarize: our training set
comprises 950 static scans in their original pose and ~10000 posed scans after anima-
tion. Our test set includes 50 static unseen identities along with 1000 animated renders
and 3000 frames of two humans captured with a 3dMD full-body scanner.

Novel Viewpoint Range. We assume a scenario with a camera viewpoint at a lower
level in front of a person (e.g. , the camera sitting on a desk in front of the user). This is
amore challenging scenario than LookingGood [40] or Volumetric Capture [48] use, but
also a realistic one: it corresponds to everyday video conference settings. At the same
time, the target camera is moving freely in the frontal hemisphere around the person
(Pitch & Roll: [—45°,45°], L, : [-1.8m,1.8m], L, : [1.8m,2.7m], L, : [0.1m, 2.7m]
in a Blender coordinate system). Thus, the viewpoint range is significantly larger per
input view than in prior work.

Baselines. In this evaluation, we compare our approach to two novel view synthesis
baselines by comparing the performance in generating single, novel-view RGB images.
To evaluate the generalization of HVS-Net, we compare it with LookingGood [40].
Since there is no available source code of LookingGood, we reimplemented the method
for this comparison and validated in various synthetic and real-world settings that this
implementation is qualitatively equivalent to what is reported in the original paper (we
include comparison images in the supp.mat.). We followed the stereo set up of Looking-
Good and use a dense depth map to predict the novel views. Furthermore, we compare
HVS-Net with the recently proposed view synthesis method SynSin [64], which esti-
mates monocular depth using a depth predictor. To create fair evaluation conditions,
we replace this depth predictor and either provide dense or sparse depth maps as in-
puts directly. While there are several recently proposed methods in the topic of human-
view synthesis; almost all are relying on either proprietary data captured in lab environ-
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Method Input depth Run-time?

Variant LPIPS| SSIM{ PSNR1 %) (ips)  LPIPSL SSIMTPSNRT
No Sphere Repres. 022 0.934 26.15 5 25 0.17 0.985 2827
No Global Context 0.21 0.954 26.82 10 22 0.15 0.98 28.54
No Enhancer 0.18 0967 27.92 25 21 0.14 0986 28.55
HVS-Net (full) 0.15 0.986 28.54 100 20 0.14 0.98 28.56

Table 2. Left: Ablation study. Reconstruction accuracy on the RenderPeople testing set. Right:
Reconstruction accuracy and inference speed using different levels of input depth sparsity.

are also well-reconstructed, despite the fact that the static or animated scans used to
train our network did not have a variety of facial expressions. The quality of the results
obtained in Fig. 7 demonstrates that our approach can render high-fidelity novel views
of real humans in motion. We observe that the generated novel views are also tempo-
rally consistent across different target view trajectories. For additional results and video
examples, we refer to the supplementary material.

4.2 Ablation Studies and Discussion

Model Design. Tab. 2 (left) and Fig. 8 summarize the quantitative and qualitative per-
formance for different model variants on the test set of the RenderPeople dataset [52].
HVS-Net without the sphere-based representation does not produce plausible target
views (see, for example, the rendered face, which is blurry compared to the full model).
This is due to the high level of sparsity of the input depth, which leads to a harder
inpainting problem for the neural network that addresses this task. Replacing the Fast
Fourier Convolution residual blocks of the global context inpainting model with regular
convolution layers leads to a drop in render quality in the occluded region (red box).
Using the proposed model architecture, but without the enhancer (5*" column of Fig. 8)
leads to a loss of detail in texture. In contrast, the full proposed model using the En-
hancer network renders the logo accurately. Note that this logo is completely occluded
by the human’s hands so it is non-trivial to render the logo using a single input image.
Sparse Depth Robustness. In Fig. 9, we show novel view synthesis results using differ-
ent levels of sparsity of the input depth maps. We first randomly sample several versions
of the sparse input depth and HVS-Net to process them. Our method is able to main-
tain the quality of view synthesis despite strong reductions in point cloud density. This
highlights the importance of the proposed sphere-based rendering component and the
enhancer module. As can be seen in Tab. 2 (right), we observe a slight drop of perfor-
mance when using 5% or 10% of the input maps. To balance between visual quality
and rendering speed, we suggest that using 25% of the input depth data is sufficient to
achieve similar results compared to using the full data.

Inference Speed. For AR/VR applications, a prime target for a method like the one pro-
posed, runtime performance is critical. At test time, HVS-Net generates 1024 x 1024
images at 21FPS using a single NVIDIA V100 GPU. This speed can be further in-
creased with more efficient data loaders and an optimized implementation that uses the
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local and global branches. The local branch utilizes conventional convolution
layers to obtain local features. In contrast, the global branch includes a Spectral
Transform block [?] which uses channel-wise Fast Fourier Transform [?] to en-
able image-wide receptive field. The output of both branches are then summed,
aggregated before adding to the residuals.

Outputs. The view synthesis model S not only predicts an RGB image I, of the
target view but also a foreground mask I,,, and a confidence map I.. We employ
three different 3 x 3 convolution layers to predict those outputs using the output
of the final layer of the G module. Thus, we apply the predicted foreground mask
and confidence map to the predicted novel image as follow: I, = I, x I, x L.
We train the model S using the photometric loss Lyhoto as defined in the main

paper.

A.2 Enhancer model E

Ground-truth Data: We use the RenderPeople dataset [?] to train all our
models; which comprises of 1000 watertight raw meshes. To obtain IUV ground-
truth we first fit an SMPL-like parametric body model to the scans and then
perform non-rigid registration for all meshes and rig them for animation. In that
way we obtain 1000 rigged models to which we can apply the same IUV map
during rendering with an emission shader in Blender Cycles and thus obtain per-
pixel perfect ITUV ground-truth given an RGB input. This process is depicted in
Fig. 3.

HD-IUV predictor D: Now that we have generated pairs of RGB images
and ground-truth TUV maps the next step is to train a network that given
an RGB image of a human, can establish accurate per-pixel correspondences
for each pixel corresponding to the clothed human (see Fig.4). Note that the
key difference between this approach and what methods such as DensePose [?]
or CSE [?] are doing which is dense correspondence estimates to the unclothed
human body. In addition because most approaches are trained on the DensePose-
COCO dataset [?] which comprises sparse (only ~100 discrete points per human)
and noisy annotations such predictions are usually inaccurate and not applicable
to our application that targets clothed humans. This is also depicted in Fig. 5 of
the main paper where its clear that DensePose IUV estimates result into poor
texture warpings.

To train our model which we term as HD-IUV (that stands for High-Definition
TUV) we employed an encoder-decoder architecture with four and
upsampling convolution layers along with skip connections between them while
the bottleneck comprises 3 residual blocks. This design is justified by the fact that
our input-output pairs are always well aligned due to the dense correspondences
established by HD-IUV which is not the case with prior work. For HD-IUV, we
utilize instance normalization [?] and the ReLU activation function in all layers
of the network besides the 3 output branches for each task (I, U, V outputs).
The UV branches have 256 output channels (since the UV predictions can take
any possible value), whereas the I channel has 25 channels which correspond to
24 body parts and background. In all branches a 1 x 1 convolution is applied and
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its output is an unnormalized logit that is then fed to the cross-entropy losses.
Each task’s scores are fed to their respective classification losses which are used
to train the network as:

Liyv =Arx L+ Ay * Ly +Av * Ly (1)

where \;, L; are the respective weighting parameters and loss functions for the
I,U,V channels. Framing this problem as a multi-task learning problem (3 tasks)
where the U,V and I tasks are (256D, 256D, 25D) per-pixel classification prob-
lems respectively, ended up being a very effective approach to enforce strong
supervisions for the surface correspondences that other losses we experimented
with could not achieve. In addition we employed a silhouette loss to ensure that
dense correspondence estimates are provided for each pixel of the foreground
clothed human. Finally, using the predicted IUV, we can warp the occlusion-free
input image to the target camera using the texture transfer technique® from
DensePose [?].

Refinement module In this section, we utilize the warped image I, from
previous step to enhance the initially estimated target view I, using a refinement
module R. Based on the predicted confidence of the view synthesis network, we
combine both images as follows: I = I, + (1 — 1) % I,, where I is fed to a
encoder-decoder network for the refinement purposes. In this work, we try to
generate humans at the novel viewpoints so rendering realistic human body
parts is required. We observe that the predicted semantic I contains valuable
information about the semantic information of the human in the target camera.
Therefore, we use the SPADE normalization [?] to inject the semantics I to the
decoder of the refinement module. As can be seen in the qualitative results, the
refined image is photo-realistic compared to the ground-truth image. Note that,
we use the same discriminator with [?] to perform adversarial training between
both before and after refined images and the ground-truth novel views.
Discussion Here we discuss the effectiveness of our proposed HD-IUV over
DensePose [?] representations to refine the target views. As can be seen in the
Fig. 8 of the main paper, our Enhancer model can handle heavy occlusions using
just a single photo. We emphasize that the HD-IUV representation is crucial for
this refinement step because we can obtain pixel-aligned warped images at the
target viewpoints compared to the ground-truth data. Therefore our warped
images have higher quality compared to those produced by DensePose.

B Implementation Details

The models were trained with the Adam optimizer using a 0.004 learning rate for
the discriminator, 0.001 for both the view synthesis model R and the enhancer
module F and momentum parameters (0, 0.9). The input/output of our method
are 1024 x 1024. We implement HVS-Net in PyTorch and the training across
our large-scale dataset with all identities and views took 2 days to converge on
4 NVIDIA V100 GPUs.

3 Texture Transfer Using Estimated Dense Coordinates
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C Limitations

Despite producing appealing results on real-world data, the proposed method
is trained solely on synthetic data. It manages to bridge the domain gap re-
markably well, however we believe its performance could be further improved by
integrating real-world data into the training set.

However, gathering such data is not trivial: generating (close to) noise-free
point clouds for training requires elaborate multi-view capture systems, possibly
enhanced with controlled lighting to simulate varying lighting conditions. A way
to circumvent this partially is to train on a large-scale synthetic dataset [?] and
then fine-tuning on a smaller-scale real-world dataset. This, at least, reduces the
amount of data that has to be captured.

Another limitation we identified is that the warped image used as input to
the enhancer model has lower quality compared to the initial estimated novel
view. This is independent of the quality of the IUV mapping and is an inherent
problem of the differentiable warping operation. Improving this operation could
be a promising direction for future work that could increase the upper bound in
quality for the novel view synthesis of fine structures in occlusion scenarios.
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Fig. 3. Process for IUV ground-truth generation Given a raw synthetic scan of a clothed
human (top left) we perform non-rigid registration with 2D keypoints as additional
constraints (top-middle) and obtain the registered scan to the body template (bottom
left) and the rigged scan (top right) which is animation ready. Using the corresponding
UV map we can now obtain accurate IUV ground-truth (bottom right) that we use to
train the proposed HD-IUV model. We provide the corresponding DensePose estimate
to demonstrate the stark difference between the two in terms of quality as well as
coverage.






