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Abstract: Watching a real teacher in a real environment from a good distance and with a clear viewing angle has a
significant effect on learning physical tasks. This applies to physical-task learning in a mixed-reality environment as
well. Observing and imitating body motion is important for learning some physical tasks, including spatial collabora-
tive work. When people learn a task with physical objects, they want to try and practice the task with the actual objects.
They also want to keep the referential behavior model close to them at all times. Showing the virtual teacher by using
mixed-reality technology can create such an environment, and thus has been researched in this study. It is known
that a virtual teacher-model’s position and orientation influence (a) the number of errors, and (b) the accomplishment
time in physical-task learning using mixed-reality environments. This paper proposes an automatic adjustment method
governing the virtual teacher’s horizontal rotation angle, so that the learner can easily observe important body motions.
The method divides the whole task motion into fixed duration segments, and seeks the most important moving part of
the body in each segment, and then rotates the virtual teacher to show the most important part to the learner accord-
ingly. To evaluate the method, a generic physical-task learning experiment was conducted. The method was revealed
to be effective for motions that gradually reposition the most important moving part, such as in some manufacturing
and cooking tasks. This study is therefore considered likely to enhance the transference of physical-task skills.
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1. Introduction

The use of Mixed-Reality (MR) technology facilitates stimu-
lating training, in which users can actively explore new ideas and
skills without the help of experienced instructors. In addition,
trainees are actively involved in the education process, and thus
remember more than without the use of MR [5]. Finally, MR use
enhances users’ perception of, and improves their intuitive inter-
action with, the real world [1].

Physical-task learning that utilizes virtual reality and/or MR
technology has been actively researched. The use of actual equip-
ment in a real environment in physical-task learning is known to
be very effective. In light of this, a host of studies have inves-
tigated the support of physical-task learning in such an environ-
ment by using sensors and virtual reality [15], [17]. The results
suggest that MR is suitable for supporting physical-task learning.
Thus, we have developed a physical-task learning-support sys-
tem using MR [8]. The system visualizes a real-world 3D virtual
teacher model placed in front of the learner.

Previous research has shown that a virtual teacher-model’s po-
sition and rotation angle have significant effects on learning [8].
The results show that the virtual teacher’s close side-view is the
optimal view for physical task learning that involves one-hand
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motion. However, when the virtual teacher uses both his/her
hands, or rotates around, then rotation-angle adjustment becomes
necessary.

In this paper, we introduce a novel method of automatically ad-
justing the virtual teacher-model’s rotation angle during run time.
The automatic adjustment method is based on the virtual teacher’s
behavior, more specifically on his/her upper-body movements.
The purpose of this method is to ensure that the virtual teacher’s
most important moved body part in one motion segment is visi-
ble to the learner. This is likely to enhance the learning outcome
and the learner may feel more comfortable and assured during
learning. The outcome was measured in terms of the number of
committed errors during a simple physical-task learning experi-
ment.

We chose a simple, generic, push-button physical task as a
learning model in this research. This task is considered very sim-
ple to perform, because the learner needs only move his/her hand
and push one of the buttons. Despite its simplicity, however,
the task involves the essential aspects of physical-task learning
necessary to prove our hypothesis. To perform such a task, the
learner must watch carefully and perform the same actions, in the
same exact order, as presented by the virtual teacher. This kind
of generic motion can apply to a wide variety of physical tasks,
such as using some kinds of musical instruments and machines,
performing simple dance movements and sports, building mod-
els from sub-models in a predefined order, and constructing new
material by mixing sub-materials in a predefined order, etc.

A generic physical-task learning experiment that compares
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the automatic adjustment method with some fixed viewing-angle
conditions was conducted to evaluate the method. The experi-
ment results showed that using the automatic adjustment method
significantly decreased the number of committed errors.

The remainder of the paper is organized as follows: In Sec-
tion 2, we discuss related work in greater detail. In Section 3, we
present the physical-task learning-support system design spec-
ifications. In Section 4, we discuss the automatic adjustment
method implementation. In Section 5, we present the conducted
experiment specifications. In Section 6, we present the statistical
results and the error discussion. Finally, in Section 7, we summa-
rize the paper and discuss future research.

2. Related Work

There have been various studies done on virtual reality and
MR-based skill/task learning support, and a number of systems
have been developed which employ a virtual teacher to perform
the physical task in front of the learner [4], [6], [14], [16], [19].
Some of these systems enhance the learning experience by virtu-
ally displaying related information and providing necessary feed-
back. Such systems have proven useful in various domains, in
particular for learning cooking skills, dance skills, sport skills,
etc.

Horie et al., for example, proposed an interactive learning sys-
tem for cooking in an MR environment, using video data ex-
tracted from TV cooking programs [7]. The respective videos
contain cooking experts performing cooking tasks, and the ex-
perts are displayed at a cooking table when needed in a fixed
location. Another cooking-navigation system was proposed by
Miyawaki et al., and here, a virtual agent that performs actions
corresponding to the current cooking step is displayed in a fixed
location at a table as well [13].

Regarding dance skills acquisition, Chua et al. proposed a
wireless virtual reality system for teaching Chinese ‘Tai Chi’ [4].
The learner’s avatar and the teacher model were rendered in a
generated virtual environment, and displayed via a light wireless
head-mounted display (HMD). Here, five interaction techniques
were tested: one teacher, four surrounding teachers, four side by
side, and two superimpositions. All of these techniques were
implemented with a fixed teacher’s location and rotation angle.
However, the results suggested that the techniques employed had
no substantial effect on learning physical tasks. In another study,
by Kimura et al., four basic visualization methods were tested in
a generic body-movement learning system: face to face, face to
face with mirror effects, face to back, and superimposed [9]. The
results confirmed that the superimposed method is the most ef-
fective for repetition of partial movements, while the others are
effective for whole body movements.

In conventional task learning with a real teacher, the teacher
observes the learner and intervenes when the learner makes a mis-
take. To achieve such interactive information feedback for the
learner, sensing mechanism of the learner’s behavior is adopted
in virtual reality-based learning support systems [14], [15], [17].
Feedback information for the learner is also needed in MR-based
task-learning support systems, and capturing the learner’s motion
is very important in providing such feedback information [17].

Such motion-capture technology is used in a dancing training
system developed by Chan et al. [3]. Here, the virtual teacher
is projected on a wall screen, and the learner’s motions are cap-
tured and analyzed by the system with feedback provided. To
facilitate the observation of moves, the learner can change the
demonstration speed and the viewpoint. But, during the prac-
tice sessions, the teacher is displaye d into a fixed location, and
this might cause some ambiguity in the movements during run
time. A similar study by Komura et al., proposed a martial arts
training system based on motion capture [11]. The learner wears
a motion-capture suit and a HMD. The virtual teacher appears
alone in front of the user through the HMD. The virtual teacher
location and rotation angle are fixed as well. This system analyzes
the learner’s motion and offers suggestions and other feedback.

Collaborative physical task learning using mixed reality sys-
tems has been investigated in many fields as well. The results sug-
gest such systems do enhance the task performance. In the dance
learning field, Zhenyu et al. presented a collaborative dancing
between remote dancers in a tele-immersive environment [20].
Here, a 3D representation of the dancers is captured in real time,
then streamed, and rendered in a shared virtual space. This sys-
tem also features a multi-surrounding display to help the dancers
conveniently view the display from an arbitrary angle. In another
study, Kirk et al. demonstrated how remote gestures influence the
structure of collaborative discourse [10]. The results suggest that
the use of remote gesture technologies does influence the struc-
ture of language used by the collaborating parties. In this system,
only the helper hands’ view is projected into a fixed location on
the worker’s desk area. The worker can’t mo ve or control the
projected view.

On the other hand, our system focuses on how the virtual
teacher should be presented when it moves several body parts.
Some of the motions can be difficult to watch from a fixed view-
ing angle relative to the virtual teacher. However, this problem
has not been pointed out very often and the solution has not been
provided. The method presented in this paper provides a solu-
tion to this problem by automatically rotating the virtual teacher’s
body in appropriate horizontal angle. Learners of physical-task
movement can improve learning result by this method.

3. MAVT System’s Design Specification

A MAVT (Motion Adaptive Virtual Teacher) MR learning-
support system has been built to test our automatic adjustment
method. The system physical workspace is shown in Fig. 1. The
system consists of two subsystems: the motion-capture system
and the mixed-reality system (Fig. 2). The motion-capture sys-
tem is used to track and record a person’s motions, and save them
to files, while the mixed-reality system is used to process the
recorded motion files and prepare the respective task’s motion
sequence for the learner to practice.

3.1 The Physical-Task Learning Platform
The physical-task learning platform contains eight buttons [B0-

B7] of 85 mm in diameter and 10 mm in height, placed on a table,
as shown in Fig. 3. The buttons diameter was determined accord-
ing to the average person’s hand width, to minimize uncertainty
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Fig. 1 The physical workspace of the physical-task learning-support sys-
tem.

Fig. 2 The physical-task learning-support system’s configuration overview.

Fig. 3 The button distribution on the table.

in the view. For the learner to access the target buttons com-
fortably, the distance between each of the eight buttons and the
learner’s hands was set to 250 mm. The buttons were arranged
as seen in the figure so that the physical motions are distributed
over the learner’s entire front space. In order to engage both the
learner’s hands in the physical-task learning, four buttons [B0-B3]
were operated by the learner’s right hand, and four other buttons
[B4-B7] were operated by the learner’s left hand. This generates
the kind of motions that cover a wide range of real physical tasks.

In our push-button physical-task learning platform, the learner
was seated in a fixed location in front of the table. The virtual
teacher appeared at the learner’s horizontal level. In such a setup
the virtual teacher’s lower body movements could be ignored, and
all motions were carried out by the upper body, more specifically
by the hands. The learner watched the teacher’s upper-body mo-
tion and performed a similar motion in real time.

The push-button task was adopted as a simple generic example
of physical-task motion whose errors can be measured quantita-
tively. Displaying the body motion in such tasks might not be
necessary in general. In our experiment, the body motion was
not considered as long as the learner used the correct hand to
push the correct button. However, displaying the buttons and the
upper-body together had the effect of making the task’s instruc-
tion clearer and predictable [18]. Thus, displaying the upper body

Fig. 4 The 3D virtual teacher’s appearance.

motion in our experiment was considered appropriate.

3.2 Motion-Capture System Specification
The motion-capture system is a computer system connected

to six NaturalPoint OptitrackTM (FLEX: V100) optical motion-
tracking cameras through a hub (OptiHub). These cameras are
used to capture a person’s motion by tracking visible reflective
markers that are placed on his body.

The main features of the V100 camera are: shutter time, 1 ms;
resolution, 640 × 480 pixels; latency, 10 ms; accuracy up to 2D
sub mm; operating range from 15 cm to 6 m; frame rate, 100 Hz;
and viewing angle, 45◦ field of view (FOV). The motion-
capture computer system’s main specifications are: hardware:
CPU 2.2 GHz, RAM 1 GB; software: Windows Vista SP1 OS,
Optitrack Baseline SDK, and Visual Studio 2008 (C#).

3.3 Mixed-Reality System Specification
A C++ program was developed to combine the real scene from

the webcam, with the computer generated 3D virtual teacher,
and display it through a HMD. We used the HMD iWear R©
VR920TMTM in our system. The main features of the VR920TM

are: resolution, 640×480 pixels (equivalent to a 62 inches screen
viewed at 2.7 m); weight, 90 g; frame rate, 60 Hz; and viewing
angle, 32◦ FOV. The webcam employed is the clip-on iWear R©
CamARTM that mounts above the face of an iWear VR920 vir-
tual reality system whose main features are: resolution up to
800 × 600 pixels; frame rate, 30 Hz; and viewing angle, 75 di-
agonal FOV. The mixed-reality computer system’s main spec-
ifications are: hardware: CPU 2.8 GHz, RAM 2 GB; software:
Windows XP SP3 OS, iWear R© VR920TM SDK, OpenCV1, and
Visual Studio 2008 (C++).

3.4 The Virtual Teacher’s Appearance and Motion
A recent study found that men’s decisions are strongly affected

by certain aspects of the appearance of the virtual avatar, while
women’s are not [12]. Another study found that attractiveness
(and gender) has an effect on the way that virtual interactions
occur on both sides [2]. Therefore, to minimize any effects of
the virtual teacher-model’s appearance on the task performance, a
plain cylindrical 3D model was used in the experiment, as shown
in Fig. 4.

Sub-motion units, which show the virtual teacher pushing one
of the eight buttons, were prepared in advance by tracking and
recording a real person’s motion while he performed these ac-
tions. This created a smooth and realistic computer graphic avatar
movement when the motion data was animated by the free soft-
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Table 1 Sample motion-capture data (mm).

Fig. 5 The marker locations on the teacher’s body.

ware RokDeBone *1.
To adequately capture and animate the teacher’s upper-body

motions, a minimum of eight unique reflective markers were
placed on the teacher’s upper body, as shown in Fig. 5. The
motion-tracking software ‘OptiTrack c© Rigid Body Toolkit’
was used to capture the teacher’s motions. The markers’ 3-
dimensional coordinate data (X, Y , and Z) were recorded at a 100
frame-per-second rate. Table 1 shows samples of motion-capture
data. Each line in the motion-data file represents one frame of
motion data, and each frame contains the eight markers’ loca-
tion data. The recorded sub-motion unit’s duration was 1.1 sec-
onds on average (110 frames recorded at a 100 frame-per-second
rate). Since there were eight buttons in our physical-task learn-
ing platform, eight recording sessions were conducted to produce
eight unique sub-motion units; four sub-motion units were right-
handed motions, and the remaining four sub-motion units were
left-handed motions.

3.5 Producing Physical-Motion Tasks
In our MR system, the virtual teacher performs a gradual

physical-motion task in front of the learner. Therefore a distinc-
tive set of physical motion tasks had been produced at run-time.
By using all the prepared basic sub-motion units, we systemati-
cally created a chain of sub-motions according to the following
aims:
• We combined the prepared sub-motion units into variable-

sized similar-motion blocks. In order to ensure that the user
would not memorize the number of sub-motions within each
block, we randomly employed a variable block size of 3, 5,
or 7 sub-motion units.

• To avoid distracting the learner by frequently switching the
used hand, we decided to create the physical-motion task out
of two balanced parts. The first part was composed of four

*1 http://www5d.biglobe.ne.jp/˜ochikko/rokdebone.htm

Fig. 6 (A) The motion task divided into eight blocks, where n represents
the block size and has the value 3, 5, or 7. BR is one of the right-
handed sub-motion units. BL is one of the left-handed sub-motion
units. (B) A sample motion task.

randomly-defined right-hand blocks, and the second part of
four randomly-defined left-hand blocks.

Based on these aims, a total of 40 sub-motion units were com-
bined to create a one-motion task. This produced a movie of 44
seconds’ length (Fig. 6).

4. Automatic Adjustment Method Design

The automatic adjustment processing flow chart is shown in
Fig. 7. The system is divided into two main processes: an initial-
ization process and a run-time process. During the system ini-
tialization, the virtual teacher’s captured motion data is retrieved
from a file system. Next, the task motion data is split into small
fixed-duration segments. For each motion segment, the teacher’s
optimal rotation angle is calculated. During system run time, the
viewing angle of the each segmented teacher-task motion is au-
tomatically adjusted according to the pre-calculated angle, which
is the side-view of the main virtual teacher’s movement, and dis-
played.

4.1 The Virtual Teacher’s Rotation Angles
Our method assumed that the virtual teacher is located (seated)

at a specific fixed location and not moving; i.e., not completely
moving from one location to another. Therefore we fixed the vir-
tual teacher’s location to the point of origin at the same learner’s
horizontal level. To adequately assess the automatic adjust-
ment method using our generic physical-task motions, the virtual
teacher’s environment must be divided into a sufficient number
of sectors in such a way that the following motion scenarios are
enacted:
• Having a virtual teacher’s physical motion move from a sec-

tor governed by the right-hand to another sector also gov-
erned by the right-hand; i.e., we need at least two sectors
governed by the right hand in front of the learner. Similarly,
we need at least two sectors governed by the left hand in
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Fig. 7 The automatic adjustment processing flow chart.

Fig. 8 The virtual teacher’s environment divided into eight sectors.

front of the learner.
• Having a virtual teacher’s physical motion move from a sec-

tor governed by the right-hand to a neighboring sector gov-
erned by the left-hand, and vice versa.

Based on these motion scenarios, the virtual teacher’s environ-
ment was divided into eight equal sectors as shown in Fig. 8. Each
sector covers a 45◦ range, and each has an associated counter (C1-
C8). These counters were used to record the count of the virtual
teacher’s maximum moved marker in each sector during the au-
tomatic adjustment process. The sector with maximum counter
value is considered the sector that contains the most important
movements. Accordingly, the virtual teacher is rotated to the sec-
tor’s predefined rotation angle (θ). The sector’s predefined rota-
tion angle (θ) had been calculated so that the sector’s center angle
faces the learner when selected using the following equation:

Θ = 360 − S C (1)

where S C is the sector’s center angle.

Fig. 9 The normal (fixed) learner’s view compared to the adjusted view.

4.2 Calculating the Optimal Segment’s Adjustment
Rotation Angle

The automatic adjustment process starts by reading the seg-
ment’s motion data frame by frame. For each marker’s 3-
dimensional coordinate data in the frame, the absolute marker’s
movement amount Mj in any direction is calculated based on the
previous frame’s marker data:

M j =
√

(Xc j − Xp j)2 + (Yc j − Y p j)2 + (Zc j − Zp j)2 (2)

where j is the marker number ranging from 1 to 8; Xc j, Yc j, and
Zc j are the current frame j-marker’s position data; and Xp j, Yp j,
and Zp j are the previous frame j-marker’s position data.

After calculating the frame’s eight markers’ absolute move-
ment amounts, the maximum marker’s movement MMi is deter-
mined:

MMi = Max (M1,M2, . . . ,M8) (3)

where i is the current frame number.
For this marker, which has the maximum absolute movement,

we calculate the marker slope angle Oi with respect to the XY
plane:

Oi = Arctan

(
Yi

Xi

)
(4)

Based on the calculated Oi angle, the counter of the sector that
includes this angle is increased by 1. Once all the segment’s
frames are processed in the same manner, the maximum sector’s
counter value Cmax is determined:

Cmax = Max (C1,C2, . . . ,C8) (5)

The resulting sector with Cmax is assumed to be that wherein
the most important motion has occurred. Accordingly, the virtual
teacher’s rotation angle in the entire segment will be set according
to the selected sector’s predefined rotation angle (θ).

Figure 9 shows the resulting views during the first two seg-
ments of a preliminary test of the method. The virtual teacher’s
initial rotation angle was 180◦. During the first segment, the vir-
tual teacher used mostly his/her right hand over Sector 3. There-
fore the virtual teacher’s rotation angle was automatically ad-
justed to −112◦. In the second segment, the virtual teacher used
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mostly his/her left hand over Sector 6, and in this case the virtual
teacher’s rotation angle was adjusted to 112◦. In each of these
cases, the learner confirmed that he was able to clearly see the
critical elements of the virtual teacher’s motion.

5. MAVT Experiment

To evaluate if the automatic adjustment method produces a bet-
ter view, a comparative generic physical-task learning experiment
was conducted. The first part of this learning experiment was per-
formed using three predefined and fixed virtual-teacher rotation
angles. The second part was performed using the virtual teacher’s
automatic adjustment method. The experiments were videotaped.
A questionnaire was completed by the participants after each ses-
sion. The error rates were compared and analyzed to find out any
significant improvements between the conditions.

5.1 Participants
A total of 21 participants took part in this experiment as learn-

ers, 9 females and 12 males. The participants’ ages ranged from
20 to 33 (mean = 24, s.d. = 3.5), and they were mostly undergrad-
uate or postgraduate students. The participants were divided into
two groups. One group performed the first part of the experiment,
while the other group performed the second part. There were 11
members in the first group, comprised of 6 males and 5 females;
and 10 members in the second group, comprised of 6 males and
4 females. All the participants were right-handed and had normal
or corrected-to-normal vision.

5.2 Training Sessions
Because the participants were using this system for the first

time, it was expected that they would become overly accustomed
to the system after a while. To avoid this effect, training sessions
involving the mimicking of simple physical task motions were
first conducted. The training session’s motion task consisted of
10 random-motion units. Each motion unit consisted of pushing
one of the eight buttons. The virtual teacher appeared in front of
the learner through the HMD. The learners were asked to cor-
rectly copy the virtual teacher’s motions as quickly as they could.
The virtual teacher performed one motion unit and waited until
the learner performed the same motion. When the learner cor-
rectly performed the same motion, the system displayed the next
motion unit. The training session ended once the learner cor-
rectly performed the 10 motions. The virtual teacher’s rotation
angle was fixed to 180◦ for the first group. For the second group,
the virtual teacher’s rotation angle was automatically adjusted for
every motion unit. At the end of each session, the session’s time
and number of errors were calculated. Based on these values, the
researcher decided whether the learner needed to conduct more
training sessions or not.

The training sessions’ results showed that learners became ac-
customed to the system after an average of 5 sessions for the
first group and an average of 4.5 sessions for the second group,
where no significant changes in the task’s accomplishment time,
or the number of errors, were reported. Figure 10 shows the first
group’s average accomplishment time and average error rate per
session. Figure 11 shows the second group’s average accom-

Fig. 10 The first group’s average accomplishment time and error rate per
training session.

Fig. 11 The second group’s average accomplishment time and error rate per
training session.

Fig. 12 The three fixed rotation-angle conditions: A) 180◦ B) 105◦
C) −105◦ rotation angle.

plishment time and average error rate per session.

5.3 Fixed Rotation Conditions
It has been shown in a previous study that a virtual teacher-

model’s position and rotation angle have significant effects on
physical-task learning [8]. That study suggested that the close
side view of the virtual teacher is the optimal view for physical-
task learning that involves one-hand motion. Based on this, we
decided to assess the top three fixed rotation-angle conditions
from that study (Fig. 12). The first condition has a 180◦ rotation
angle, the second condition a 105◦ rotation angle, and the third
a −105◦ rotation angle. The first condition represents a normal
setup wherein the teacher is located in front of the learner, the
second condition represents a teacher’s left-hand focused view,
and the third condition represents a teacher’s right-hand focused
view. In the three conditions, the virtual teacher was placed at one
meter’s virtual distance away from the learner. Figure 13 shows
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Fig. 13 The virtual teacher’s appearance with: A) 180◦ B) 105◦ C) −105◦
rotation angle.

the resulting virtual-teacher view in the three fixed rotation-angle
conditions.

Each participant in this part of the experiment performed
three physical-task learning attempts by mimicking the virtual
teacher’s motions. The virtual teacher appeared in front of the
learner through the HMD with a fixed rotation-angle. Each
learner performed the experiment in each of the three fixed
rotation-angle conditions, one by one. The virtual teacher con-
tinuously performed one of the pre-generated motion tasks for 44
seconds in front of the learner. The learners were asked to watch
and simultaneously push the correct button, and as many buttons
as the virtual teacher pushed. The experimental sessions were
recorded on tape. Afterward, the sessions were reviewed and the
task’s error rate was calculated for each condition.

5.4 Automatic Adjustment Condition
This part was similar to the fixed rotation-angle conditions

experiment, except that here the participants performed one
physical-task learning attempt only. In this part of the experi-
ment, the virtual teacher’s rotation angle was automatically ad-
justed during the run time. The learners were asked to watch and
simultaneously push the correct button and as many buttons as the
virtual teacher pushed. The experimental sessions were recorded
on tape. Afterward, the sessions were reviewed and the task’s
error rate was calculated.

6. Results and Discussion

Our primary goal was to find out whether or not the automatic
adjustment method would minimize the number of committed er-
rors when providing a better view. Minimizing the number of er-
rors was assumed as one factor in improving physical-task learn-
ing. The statistical results of the two experimental groups were
analyzed to determine whether using the automatic adjustment
method significantly reduced the number of errors or not.

6.1 Experiment’s Statistical Results
The fixed rotation-angle experiment’s results are shown in

Fig. 14. The average error rate in each condition was calculated
to be: for the first condition (180◦), 12.27% (s.d. = 6.9%); for
the second condition (105◦), 12.5% (s.d. = 4.6%); and for the
third condition (−105◦), 12.5% (s.d. = 7.1%). First, we tested the
error rate’s results of the three fixed rotation-angle conditions us-
ing ANOVA. The analysis confirmed no significant difference be-
tween the three conditions’ average error rate (F(2,30) = −0.0047,
p < 0.01). Therefore we summed up all the fixed-rotation condi-
tions’ data to be used as the fixed condition’s data. This was to be
used to compare with the automatic-adjustment condition’s data.
On the other hand, Fig. 15 shows the automatic-adjustment exper-

Fig. 14 The fixed rotation-angles’ error rate per participant.

Fig. 15 The automatic adjustment’s error rate per participant.

Fig. 16 The average error rate per condition.

iment’s result. The average error rate was calculated to be 6.0%
(s.d. = 2.7%). The t-test (assuming unequal variances) was used
to compare the means of the two conditions (the automatic adjust-
ment and the joined fixed rotation condition). We found that us-
ing the automatic adjustment method decreased the average error
rate, and the average error rate was significantly different (t(31) =
5.1, p < 0.01) (Fig. 16).

6.2 Errors
We found that the errors observed in the experiment could be

categorized into three types, as follows (Note that the learner was
supposed to watch the virtual teacher and simultaneously push the
correct button in any manner he/she preferred as long as he/she
used the correct hand; the learner’s body motion itself was not
considered.):
• Type A error: When the learner pushes a different button

than the intended one.
• Type B error: When the learner pushes a correct button but
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Fig. 17 The percentage of the experiment’s error types.

with the wrong hand.
• Type C error: When the total number of learner’s button

pushes does not match the exact number performed by the
virtual teacher. This covers the following two cases:

– When the total number of learner’s pushes is more than the
correct performed number. In this case, the extra pushes are
considered errors.

– When the total number of learner’s pushes is less than the
correct performed number. In this case, the missing pushes
are considered errors.

Figure 17 shows the error details. The Type A error, pushing
the wrong button, was found to be the most common error across
all the conditions with 83% of the total errors. This error typi-
cally seemed to occur when the learners could not see the virtual
teacher’s motion clearly. The Type B error, using the wrong hand,
made up 6% of the total errors. In this regard, we found that some
of the learners tended to use their right hands more than their left
hands. The Type C error, pushing more/less buttons, made up
11% of the total errors. In this type of error, most of the learners
failed to push a button when they became confused and could not
decide which one of the buttons was the correct one. On the other
hand, few learners pushed the button extra times.

A thorough analysis was conducted in order to determine what
had caused some of the repeated errors in our experiment, and
whether or not the automatic adjustment method had resolved
those problems. In the fixed rotation-angle conditions, we no-
ticed that some of the learners spent extra time at the beginning.
This might be because they needed this time to figure out the ex-
periment’s initial setup, and which hand they were supposed to
use, despite the pre-session instructions, and the fact that the time
before the first motion unit was displayed was the same in each
session. Nonetheless, this may have caused some of them to miss
the first motion unit in some cases. On the other hand, the auto-
matic adjustment method provided a close and direct view of the
initial virtual-teacher motion, which in turn minimized the con-
fusion that occurred under the fixed-rotation conditions.

Our generic experiment involved pushing the same button 3, 5,
or 7 times. It was observed that the number of buttons pushed was
sometimes one more than the correct number, when the correct
numbers were 3 or 5. Six cases were found in the fixed rotation-
angle conditions, and two cases were found in the automatic ad-
justment condition. Although the result was not statistically sig-
nificant because of the small number of cases, the automatically
adjusted view might alleviate this type of error.

Table 2 The questionnaire results.

The learners seemed to have some difficulty in recognizing
the farthest two buttons in the view (B0 and B1) in the sec-
ond fixed rotation-angle condition (105◦). The same difficulty
was observed in the third fixed rotation-angle condition (−105◦),
wherein the farthest two buttons were B7 and B6. The Type A
error occurred 9 times in these conditions, and only 3 times in the
automatic adjustment condition.

There was a case in which the current proposed method could
not provide a good view. When the motion segment contained
buttons from both the far ends (B0 and B7), the minority of mo-
tions suffered a bad view because the method gives the majority
a good view .

6.3 Participant Feedback
The questionnaire consists of the four questions shown in Ta-

ble 2 as well as a free-feedback field. Table 2 shows the answers
to the questions. Though the number of participants was 21, we
excluded a few incomplete questionnaires and used 18 as the re-
sult.

We noted a number of tendencies in the answers, and con-
firmed the appropriate design of the experiment. Although only
a three-point scale was used for answering the questions, and an-
swers were not analyzed statistically given their small number.

Regarding the HMD, many participants felt it was somewhat
troublesome to wear. They mentioned that the HMD’s weight was
rather cumbersome, which is a common reaction to the HMD in
general. Some participants noted that the HMD’s resolution was
adequate but that they had expected better. The score here seemed
somewhat less for the fixed rotation-angle conditions. This might
be because the relatively crude resolution makes it more difficult
to see the more distant, and thus smaller, motions of the virtual
teacher in the fixed conditions. The majority reported some feel-
ings of anxiety, as this was the first time they had used an aug-
mented reality system. Regarding the virtual teacher’s view and
motion, the participants seemed to feel somewhat easier in fol-
lowing the virtual teacher’s motion with the proposed method.
Some participants felt that the motion task was too simple, but
the motion speed was confirmed as appropriate for the task. Re-
garding the last question, on the sessio n’s duration, it was con-
firmed that the experiment was not too long to have an effect on
the result.

6.4 System Limitations
Our proposed method assumed that the learner will sit and see
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the virtual teacher in front of him at the same horizontal sight
level as if in a real situation. The method only controls the view’s
horizontal rotation angle. The vertical rotation and orthogonal
view were not considered in this study. Having this assumption,
the method still can provide a good viewing angle even for cross-
sectional motion. If a motion segment ends up with multiple sec-
tors with the same maximum motion counters, the method will
select the most central sector among them.

The method also assumed a gradual slow physical motion. To
support fast motions more aspects would need to be considered,
such as the segment length. In this evaluation we considered
only fixed-length segments, however a more dynamic, variable-
segment length, based on the amount of motion, may improve the
method outcome. In the future, we will consider implementing a
dynamic automatic adjusting method in some real physical-task
learning experiment.

7. Conclusion

In this paper, we proposed a method for automatically adjust-
ing the virtual teacher’s rotation angle when the virtual teacher
is demonstrating physical-task motion. This method will ensure
that the learner sees most of the teacher’s motion from an optimal
close-viewing angle.

To determine whether the automatic adjustment method would
produce a better view, a physical-task learning experiment was
conducted. The first part of the learning experiment was per-
formed using three predefined, fixed-rotation angles for the
teacher view. The second part was performed using the teacher’s
automatic adjustment method. The result showed that the auto-
matic method scored a lesser error rate compared to the fixed-
rotation angle method.

The former method is significant for physical-task learning be-
cause such learning is mainly done by observation. The method is
also useful for remote collaborative physical tasks involving full-
body motion. Moreover, when the learner has his/her own physi-
cal objects in hand, it might be difficult for him/her to control the
viewing angle at the same time, even if the system provides an
angle-control function to the learner. The proposed method helps
the learner in this situation; and is, again, valuable for similar
situations involving collaborative physical tasks.

Acknowledgments This research was partially supported by
the JSPS Grant-in-Aid for scientific research 22500104,
23500158, the Telecommunication Advancement Founda-
tion, and Research Projects of Graduate School of Library,
Information and Media Studies, University of Tsukuba.

Reference

[1] Azuma, R.: A Survey of Augmented Reality, Presence: Teleoperators
and Virtual Environments, pp.355–385 (1997).

[2] Banakou, D. and Chorianopoulos, K.: The Effects of Avatars’ Gen-
der and Appearance on Social Behavior in Virtual Worlds, Journal of
Virtual Worlds Research, Vol.2, No.5 (2010).

[3] Chan, J., Leung, H., Tang, J. and Komura, T.: A Virtual Reality Dance
Training System Using Motion Capture Technology, IEEE Trans.
Learning Technologies, Vol.99 (2010).

[4] Chua, P.T., Crivella, R., Daly, B., Hu, N., Schaaf, R., Ventura, D.,
Camill, T., Hodgins, J. and Pausch, R.: Training for Physical Tasks in
Virtual Environments: Tai Chi, Proc. IEEE Virtual Reality, pp.87–94
(2003).

[5] Haller, M.: Mixed Reality @ Education, Multimedia Applications in
Education Conference, MApEC (2004).

[6] Honjou, N., Isaka, T., Mitsuda, T. and Kawamura, S.: Proposal of
Method of Sports Skill Learning Using HMD, Trans. Virtual Reality
Society of Japan, Vol.10, No.1, pp.63–69 (2005).

[7] Horie, A., Mega, S. and Uehara, K.: The Interactive Cooking Support
System in Mixed Reality Environment, IEEE International Confer-
ence on Multimedia and Expo, pp.657–660 (2006).

[8] Inoue, T. and Nakanishi, M.: Physical Task Learning Support Sys-
tem Visualizing a Virtual Teacher by Mixed Reality, Proc. 2nd Inter-
national Conference on Computer Supported Education, pp.276–281
(2010).

[9] Kimura, A., Kuroda, T., Manabe, Y. and Chihara, K.: A Study of Dis-
play of Visualization of Motion Instruction Supporting, Japan Journal
of Educational Technology, Vol.30, pp.45–51 (2007).

[10] Kirk, D., Rodden, T. and Fraser, D.: Turn It This Way: Grounding
Collaborative Action with Remote Gestures, CHI ’07 Proc. SIGCHI
Conference on Human Factors in Computing Systems, pp.1039–1048
(2007).

[11] Komura, T., Lam, B., Lau, R. and Leung, H.: E-Learning Martial
Arts, Advances in Web Based Learning ICWL, Vol.4181, pp.239–248
(2006).

[12] MacDorman, K.: Virtual Appearance Matters to Men (2010),
available from 〈http://futurity.org/society-culture/
virtual-appearance-matters-to-men/〉.

[13] Miyawaki, K. and Sano, M.: A Virtual Agent for a Cooking Navi-
gation System Using Augmented Reality, IVA ’08 Proc. 8th Interna-
tional Conference on Intelligent Virtual Agents, pp.97–103 (2008).

[14] Nakamura, A., Niwayama, T., Murakami, T., Tabata, S. and Kuno,
Y.: Analysis of Motions and Development of Application Systems
for Traditional Dances, IPSJ SIG Technical Reports, Vol.2003, No.36,
pp.85–92 (2003).

[15] Ohsaki, J., Matsubara, Y., Iwane, N. and Nakamura, M.: VR-Based
Learning Support System for Operator Training-Design and Evalua-
tion of Basic System, IEIC Technical Report, Vol.105, No.336, pp.1–6
(2005).

[16] Jung, S.H. and Bajcsy, R.: Learning Physical Activities in Immersive
Virtual Environments, 4th IEEE International Conference on Com-
puter Vision Systems (ICVS’06), pp.5–5 (2006).

[17] Watanuki, K.: Knowledge Acquisition and Job Training for Fun-
damental Manufacturing Technologies and Skills by Using Immer-
sive Virtual Environment, Japanese Society for Artifcial Intelligence,
Vol.22, No.4, pp.480–490 (2007).

[18] Yamashita, N., Kuzuoka, H., Hirata, K., Aoyagi, S., Shirai, Y., Kaji,
K. and Harada, Y.: Effects of Showing User’s Upper Body in Video-
Mediated Collaboration, Trans. IPS Japan, Vol.51, No.4, pp.1152–
1162 (2010).

[19] Yang, U. and Kim, G.J.: Implementation and Evaluation of “Just Fol-
low Me”: An Immersive, VR-Based, Motion Training System, Pres-
ence: Teleoperators and Virtual Environments, Vol.11, No.3, pp.304–
323 (2002).

[20] Zhenyu, Y., Bin, Y., Wanmin, W., Ross, D. and Ruzena, B.: Col-
laborative Dancing in Tele-Immersive Environment, MULTIMEDIA
’06 Proc. 14th Annual ACM International Conference on Multimedia,
pp.723–726 (2006).

Mamoun Nawahdah is a Ph.D. student
in the graduate School of Library, In-
formation and Media Studies at Univer-
sity of Tsukuba. After he received his
M.S. degree from Birzeit University in
2005, he worked at the same university
as an instructor from 2006 to 2008. His
current research interests include human

computer interaction, Mixed Reality, and remote communication.

c© 2012 Information Processing Society of Japan 285



Journal of Information Processing Vol.20 No.1 277–286 (Jan. 2012)

Tomoo Inoue is Associate Professor of
the Faculty of Library, Information and
Media Science at University of Tsukuba.
His research interests include understand-
ing and supporting human interaction,
CSCW, and advanced learning support
systems. He received his Ph.D. from Keio
University in 1998. He has authored 200

papers and is a recipient of awards including Best Paper Award,
Activity Contribution Award and SIG Research Award from In-
formation Processing Society of Japan (IPSJ). He has served a
number of academic committees, currently including IEICE SIG
Human Communication Science, VRSJ SIG Cyberspace, IEEE
TC CSCWD, and IEEE TC HCI.

c© 2012 Information Processing Society of Japan 286


