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Abstract— We consider the problem of estimating high-
quality color models of 3D meshes, given a collection of
RGB images of the original object. Applications of a database
of high-quality colored meshes include object recognition in
robot vision, virtual reality, graphics, and online shopping.
Most modern approaches that color a 3D object model from
a collection of RGB images face problems in (1) producing
realistic colors for non-Lambertian surfaces and (2) seamlessly
integrating colors from multiple views. Our approach efficiently
solves a non-linear least squares optimization problem to jointly
estimate the RGB camera poses and color model. We discover
that incorporating 2D texture cues, vertex color smoothing,
and texture-adaptive camera viewpoint selection into the opti-
mization problem produces qualitatively more coherent color
models than those produced by competing methods. We further
introduce practical strategies to accelerate optimization. We
provide extensive empirical results on the BigBIRD dataset [15],
[21]: results from a user study with 133 participants indicate
that on all 16 objects considered, our method outperforms com-
peting approaches. Our code is available for download online
at http://rll.berkeley.edu/iros2015colormodels.

I. INTRODUCTION AND RELATED WORK

The advent of consumer-grade depth sensors such as the
Kinect has led to widespread interest in 3D scanning. Shape
reconstruction in particular has witnessed rich exploration. In
reconstructing shape, variants on the KinectFusion algorithm
have gained popularity [17], [24] due to the algorithm’s
realtime reconstruction ability. Researchers have also ex-
plored alternative methods, notably multiview stereo-based
approaches, which particularly emphasize the importance of
color and local features in reconstruction [12], [6], [5], [10].
Recent work has also proposed techniques to produce higher
quality models by amalgamating information provided by
both depth sensor and color information [15].

Recovering accurate color models given a shape model and
a collection of color images has also been keenly explored.
Accurate color models of 3D objects have been shown to play
major roles in object and instance recognition, particularly
for cluttered scenes [25], [22], [4], [14]. These approaches
automatically annotate reconstructed shape models with
color and texture features computed from calibrated RGB
images. Other than robot vision, applications of high quality
color models include virtual reality, computer graphics, and
online shopping. In this paper, we propose a color model
reconstruction method that outperforms competing methods.

Representing the reconstructed shape model as a mesh,
a collection of triangles on a given vertex set, several
widely used methods typically involve variants on volumetric
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Fig. 1. Arm & Hammer Detergent (top) and Softsoap Aloe Vera (bottom),
reconstructed using our method and PCL’s volumetric blending [17]. The
BigBIRD 3D scanning rig (Figure 8) captures 600 DSLR RGB images per
object [21]; we show two per object here. Our color models can recover
very fine textural details: in the Aloe Vera soap, the “5.5 FL OZ” text is
3 mm tall; the numbers under the barcode are just over 1 mm tall. PCL’s
volumetric blending smooths away these details.

blending, i.e., assigning an averaged color to each mesh
vertex [5], [7], [17], [24], [16], [26], [23]. These approaches
assume provided calibration information; in tandem with
the provided mesh, these approaches establish corresponding
points across the images and compute weighted averages
for each mesh vertex. While some approaches advocate
employing averaging with uniform weights [17], others rec-
ommend assigning greater weight to views that observe the
vertex more frontally [24]. In an effort to combat specularity
problems and the lack of frontal views for vertices, some

http://rll.berkeley.edu/iros2015colormodels


approaches disregard viewpoint extrinsics and instead give
higher weights to views with greater color saturation [8],
[5]. Given initial camera poses, a different set of methods
explores how to locally optimize camera poses so as to
maximize color agreement [19], [27], [18].

We jointly recover camera poses and a color model by
efficiently solving a non-linear least squares optimization
problem. While Zhou et. al. detail a similar approach [27],
we observe that in practice (Section IV), their recovered color
models suffer from specularities in RGB images and often
contain ghosting and smoothed away textures. Although Her-
nandez et. al. [5] provide a remedy to eliminating specular
highlighting artifacts, their method does poorly in recovering
sharp textures.

Contributions. We demonstrate that incorporating 2D
texture cues, vertex color smoothing, and texture-adaptive
camera viewpoint selection into the optimization problem
qualitatively ameliorates these problems. Ultimately, we
demonstrate that our method produces qualitatively more
coherent color models than those produced by competing
methods. Results from a user study with 133 participants
indicate that our method outperforms competing approaches,
advancing the state of the art.

II. PROBLEM FORMULATION

We take in as input a 3D mesh M, whose representation is
a collection of triangles in 3D space. Mesh M consists of a
vertex set P, where each p ∈ P neighbors vertices N(p)⊂ P.
We additionally take in a collection of RGB images, {Ii},
that observe the original object; each image has an associated
intrinsics matrix Ki ∈R3×3 and initial extrinsics matrix T0

i ∈
SE(3). For each p ∈ P, we wish to estimate ~C(p), vertex
p’s color.1 The collection of vertex colors, which we denote
C = {~C(p)}, constitutes the color model we aim to learn.

We estimate the color model C by minimizing a non-
linear least squares objective that refines the original camera
extrinsics T0 = {T0

i } so as to maximize each vertex’s color
agreement. Concretely, denote V (p) ⊂ {Ii} as the subset of
images that observe vertex p without occlusion, Ti as the
updated extrinsics matrix for image Ii, and ~Γi(p,Ti) as the
color obtained by projecting p onto image Ii using extrinsics
Ti and intrinsics Ki. For each Ii ∈ V (p), we would like the
error residual ‖~C(p)−~Γi(p,Ti)‖2 to be small. This reasoning
suggests that we minimize the following objective:

J (C,T) =
1
2 ∑

p∈P
∑

Ii∈V (p)
‖~C(p)−~Γi(p,Ti)‖2 (1)

where T = {Ti}. The only variables to minimize are C and
T. We compute ~Γi(p,Ti) by composing extrinsics matrix Ti,
(fixed) intrinsics matrix Ki, and a color evaluation from Ii,
which can be written as ~Γi(ui(g(p,Ti))). The functions g

1All color vectors in this paper are 4-vectors whose entries all lie between
0 and 1. The first entry is a grayscale intensity while the second through
fourth are scaled RGB intensities.

(a) Iteration 0 (b) Iteration 200

Fig. 2. Mesh coloring (a), before, and (b), after, optimization using our
implementation of the approach employed by Zhou et. al. [27]. Although this
method improves texture coherence, the textures are still faded (particularly
the Arm & Hammer logo). Further, solid yellow regions are still blotchy.

and u are defined as:

g(p,Ti) = Tip (2)

u([gx,gy,gz,gw]
T ) = (cx +gx fx/gz,cy +gy fy/gz) (3)

where fx, fy are the focal lengths of Ii and (cx,cy) denotes
the principal point of Ii; we obtain these values from Ki.
The function ~Γi([ux,uy]

T ) computes the bilinearly interpo-
lated intensity at coordinates (ux,uy) in Ii. In the following
sections, we explore objective variants that successively
improve reconstructed color models qualitatively. We delve
into concrete optimization details in Section III.

A. Accounting for Color Constancy and Specularities

In practice, specularities and the non-Lambertian nature of
objects prevent us from achieving perfect color agreement,
even after refining T. Equation (1) asks for ~C(p) to agree
with projected colors ~Γi(p,Ti) for all views Ii ∈ V (p): as
such, recovered colors in regions with white specularities
may be heavily faded away, because residuals corresponding
to images with high specularities will draw ~C(p) towards
white. Indeed, we observe this behavior empirically. Zhou
et. al. minimize a similar objective to Equation (1) [27].2

As an example, applying this optimization problem to the
Arm & Hammer detergent bottle drawn from the BigBIRD
dataset [21] (692K vertices, 600 camera views), Figure 2
reveals that although the textures become clearer, they remain
faded.

Rather than asking for color agreement from all views
V (p) for vertex p, we consider selecting a subset. Images
that present the most accurate colors for p typically have
the most head-on, frontal views: i.e., the cosine of the angle
subtending Ii’s optical axis and p’s normal is close to −1 (the
optical axis and normal vectors point in opposite directions).
We consider sorting V (p) by this “foreshortening value”

2The primary difference is that during optimization, Zhou et. al. set
color vectors to only contain grayscale values and set final RGB colors
by computing a weighted average per color channel, where the weight for
Ii is the cosine of the angle subtending Ii’s optical axis and p’s normal.



(a) N = 1 (b) N = 10 (c) N = 30 (c) N = 50 (d) N = 100 (e) N = 200 (f) N = 600

Fig. 3. The effect of N = |V ′(p; tp)| on the sharpness of textured regions and the smoothness of non-textured regions: smaller (larger) N yield sharper
(faded) textures, but blotchy (smooth) non-textured regions. When N = 1, we observe white regions on the detergent handle because these colors incorrectly
bleed onto the white turntable background in the best viewing image; larger N rectify this problem.

and retaining at most the top N images per p. Figure 3
summarizes the results for N ranging from 1 to 600 (total
number of views) for the Arm & Hammer detergent bottle.

Interestingly, we discover that N offers a tradeoff between
sharp textures and smooth non-textured regions. Shown in
Figure 3, smaller N leads to rough colors on the handle
while larger N smooths out this noise. For example, when
N = 1, we observe white regions on the detergent handle
because the most frontal views incorrectly bleed onto the
white background in the best viewing image (see Figure 1
for sample viewing images); larger N rectify this problem.
Across many objects, we found that setting N beyond 30
does not produce visibly smoother non-textured regions. As
originally conjectured, smaller N leads to crisper textures
while larger N leads to faded, washed out textures. Looking
carefully at N = 1 reveals noisy boundaries for the Arm
& Hammer logo while N = 10 provides cleaner results by
averaging away this noise.

We wish to take the best of both worlds by setting N’s
value depending on whether p is considered “textured.” To
do this, we consider assigning a label tp to each p, where
tp = 1 when p is textured and 0 otherwise. With this, we
employ the objective:

J (C,T) =
1
2 ∑

p∈P
∑

Ii∈V ′(p;tp)
‖~C(p)−~Γi(p,Ti)‖2 (4)

where V ′(p; tp) retains the top N = 30 views when tp = 1
and the top N = 10 views otherwise. Although interpolation
between N = 10,30 based on tp is possible, we found that
this produced less smooth color models. We discuss how to
compute tp in Section III-D; until then, for easier exposition,
we assume that these labels have already been computed.

B. Smoothing Speckled Regions

Although adapting N = |V ′(p, tp)| alleviates faded textures,
we expect boundary artifacting due to the difference in
the number of cameras employed in adjacent textured and
untextured regions. Figure 4(a) (please use digital zoom in
a PDF reader to view details) shows the colored detergent

(a) No smoothing, λ = 0 (b) Smoothing, λ = 10
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Fig. 4. Detergent bottle’s color model, optimized using Equation (4).
Without smoothing, solid regions remain blotchy. Also, the difference in
the number of cameras employed in textured and untextured regions leads
to texture artifacts, as shown by the patchy “HH2118,” “A2,” and “1415” in
(a). Optimization using Equation (5), which includes smoothing, eliminates
blotchy regions while preserving textured regions; it further removes the
patchy boundaries between textured and non-textured regions. Please use
digital zoom to view details.

after optimizing Equation (4); the red dotted box reveals
anticipated artifacts, while the blue and green boxes reveal
slightly blotchy textures that still remain.

We ameliorate both problems by encouraging color agree-
ment between pairs of vertices lying along edges of M. We
need to be careful to not blur away sharp textures, however:
so, we only smooth edges where (1) both vertices are non-
textured or (2) exactly one vertex is textured. The first case
allows us to eliminate blotchiness while the second smoothly
connects non-textured and textured vertices. Concretely, we
consider optimizing the new objective

J (C,T) =
1
2 ∑

p∈P
∑

Ii∈V ′(p;tp)
‖~C(p)−~Γi(p,Ti)‖2+

λ

2 ∑
p∈P

∑
p′∈N(p)

(1− tptp′) · ‖~C(p)−~C(p′)‖2
(5)



where λ is a hyperparameter that allows us to trade off
the contribution between the smoothing and original color-
agreement terms. Figure 4(b) shows the detergent bottle after
incorporating smoothing – shown in the blue and green
boxes, non-textured regions are much smoother and the
boundary artifacts have disappeared. Because we smooth
only untextured regions and “texture to non-texture” bound-
aries, the detergent bottle’s serial number is not smoothed
away during optimization.

III. OPTIMIZATION

We now discuss optimization algorithms to minimize the
objective discussed in Section II-B. First, we discuss a naive
optimization method based on the Gauss-Newton algorithm.
Demonstrating that this is computationally intractable, we
introduce an alternating optimization method which tractably
minimizes the same objective. Section III-C concludes our
discussion on optimization by discussing several practical
improvements including (1) fixes to poor Hessian condition-
ing and (2) accelerating learning via multiscale optimization.

A. Gauss-Newton Optimization

Since J (C,T) is a non-linear least squares objective, we
consider using the Gauss-Newton method for minimization.
Equation (5) features two types of residuals:

~r(1)i,p = ~C(p)−~Γi(p,Ti) (6)

~r(2)p,p′ =
~C(p)−~C(p′) (7)

Let Ck and Tk denote the values of C and T at iteration
k, and xk = [Ck,Tk]. We initialize the optimization with
x0 = [C0,T0] where (1) T0 is set to the provided initial
calibrated extrinsics and (2) C0(p) is set to the average
of {~Γi(p,T0

i )}Ii∈V ′(p;tp). The Gauss-Newton procedure pre-
scribes taking steps xk+1 = xk +∆xk where we solve for ∆xk

in the following linear system:

JT J∆xk =−JT r (8)

where r = [r(1),r(2)] is the residual vector and J = [Jr(1) ,Jr(2) ]
is the Jacobian of r, both evaluated at xk:

r(1) = [~r(1)i,p (x)|x=xk ](i,p) (9)

r(2) = [~r(2)i,p (x)|x=xk ](i,p) (10)

Jr(1) = [∇~r(1)i,p (x)|x=xk ](i,p) (11)

Jr(2) = [∇~r(2)i,p (x)|x=xk ](i,p) (12)

We notice that J has a number of rows and columns that
are both linear in |P|; this renders solving Equation (8)
intractable, since we typically operate on meshes with 100K+
vertices.

B. Alternating Optimization

We consider optimizing J (C,T) by alternating between
minimizing C and T. First, we discuss how to minimize the
objective with respect to C. We initialize the optimization
method with x0 = [C0,T0], computed as in Section III-A.

Optimizing C. In minimizing J (C,T) with respect to
C after fixing T, we are left with minimizing a quadratic
objective. There exist many approaches to do this – we
found that employing gradient descent with momentum and
the adaptive learning rate method described in [9] offers a
good tradeoff between speed and accuracy. Computing each
gradient takes time linear in the number of edges in the mesh:

∇~C(p)J (C;T) = ∑
Ii∈V ′(p; tp)

[~C(p)−~Γi(p,Ti)]+ (13)

λ ∑
p′∈N(p)

(1− tptp′) · [~C(p)−~C(p′)] (14)

Optimizing T. We minimize J (C,T) with respect to T
after fixing C via Gauss-Newton. Ignoring terms that do not
depend on T, we rewrite Equation (5) as:

J (C,T) =
1
2 ∑

Ii
∑

{p:Ii∈V ′(p; tp)}
‖~r(1)i,p ‖

2 (15)

Decomposing this sum of squares across all Ii, we can now
compute separate Gauss-Newton updates for each image Ii,
since r j,p does not depend on T j for i 6= j. We now discuss
how to perform updates for a single image Ii. Defining xk =
[Ck,Tk] where Ck is fixed, we compute J and r as follows:

r = [~r(1)i,p (x)|x=xk ](i,p) (16)

J = [∇~r(1)i,p (x)|x=xk ](i,p) (17)

We compute r using Equation (6). Computing J entails
computing the partial derivatives of each entry in ~ri,p with
respect to T. For notational simplicity, let r(1)i,p denote the

first entry of ~r(1)i,p and Γi(p,Ti) denote the first entry of
~Γi(p,Ti). We parameterize Ti by locally linearizing around
Tk

i ; specifically, letting ξi = (αi,βi,γi,ai,bi,ci)
T represent an

incremental transform3, we set:

Ti ≈


1 −γi βi ai

γi 1 −αi bi

−βi αi 1 ci

0 0 0 1

Tk
i (18)

We have that:

∇Tir
(1)
i,p =− ∂

∂ξi
(Γi(p,Ti)) =−

∂

∂ξi
(Γi(ui(g(p,Ti)))) (19)

=−∇Γi(u)Ju(g)Jg(ξi)|x=xk (20)

We use Equation (18) to compute Jg(ξi) and Equation (2)
to compute Ju(g). We evaluate ∇Γi(u) numerically: recall
that we compute Γi(u) via bilinear interpolation, so gradients
are valid when u lies within Ii. After solving for ∆xk, we
map the resulting ξi back into SE(3) and compute Tk+1

i
via this update. By employing an alternating optimization
strategy, optimizing all T reduces to solving a total of |{Ii}|
linear systems with 6 variables each, which we perform in
parallel; Zhou et. al. employ a similar method in camera pose
optimization [27].

3We use the bundle adjustment technique discussed in our previous work
for initialization [21], so initializations of Ti are close to optimal – as such,
incremental transforms are valid.



(a) Level 1, optimized (b) Level 2, optimized (b) Level 3, optimized

Fig. 5. Multiscale optimization: level 0 optimizes a Lindstrom-Turk-
decimated mesh, level 1 optimizes the original mesh, and level 2 optimizes
a
√

3-subdivided mesh.

C. Coarse-to-Fine Levenberg-Marquardt Optimization

In making updates to each Ti, the Hessian JT J may be
poorly conditioned, leading to updates that cause some mesh
vertices p to project outside the bounds of an image Ii. As
a remedy, we employ damped Hessians JT J + ηI during
optimization (a.k.a. Levenberg-Marquardt optimization). In
updating a single Ti, we first initialize η to 0. Upon making
an update, we project all {p|Ii ∈ V ′(p; tp)} onto Ii; if any
vertices fall outside Ii, we increase η to 0.001. We repeat
this projection check and continue increasing η by a factor
of 1.1 until all vertices fall within Ii; if we have not found a
satisfactory update after 5 such trials, we do not update Ti
during the current iteration.

In practice, we find that resolving small texture features
such as text requires us to increase the density of vertices
in M before optimization. As such, after reconstructing
M using Narayan et. al.’s method [15], we employ

√
3-

subdivision [11] without smoothing to increase the mesh’s
surface resolution while not altering M’s geometry. We then
apply the Levenberg-Marquardt procedure described above.

We empirically accelerate convergence without sacrificing
solution quality by employing a coarse-to-fine optimization
scheme. Rather than immediately use M in optimization,
consider constructing the series of meshes: M0,M1,M2.
Here, M1 is the original unaltered mesh obtained from [15]
and M2 is obtained by a single application of

√
3-

subdivision. In the other direction, we apply Lindstrom-
Turk polygon simplification [13] to M0: specifically, M−1
has at most 50% the number of edges in M0. We use
implementations for both

√
3-subdivision and Lindstrom-

Turk polygon simplification provided in the open source
Computational Geometry Algorithms Library (CGAL) [2].

We proceed by running Levenberg-Marquardt optimization
on M0. Upon convergence, we initialize a new optimization
problem on M1; because the vertices have changed, we re-
initialize C. However, we warm-start this new optimization
problem using the converged T from M0. We repeat this up to
M2. Figure 5 visualizes optimization progress. Multiscale op-
timization typically yields speedups of 2−3× over directly
optimizing over M2 (larger speedups for larger meshes); we
did not find any noticeable differences between color models
produced with and without multiscale optimization.

(a) Before depth 
filtering

(b) After depth 
filtering

(c) Before SLIC 
smoothing

(d) After SLIC 
smoothing

Fig. 6. (a) shows a sample response map for a single image after applying
the technique in Section III-D, before depth discontinuity filtering; white
regions denote higher responses. (b) shows the updated map after depth
discontinuity filtering. (c) visualizes all tp, without SLIC smoothing. (d)
visualizes the updated tp after SLIC smoothing.

D. Texture Label Assignment

Before presenting empirical results, we discuss how to
compute texture labels tp for p∈P. Algorithm 1 provides the
details. We first turn the camera images {Ii} into grayscale
images {I(gray)

i } via the luminosity method. We convolve
each I(gray)

i with 10 kernels of size 10× 10, whose entries
are uniformly sampled from [−1,1] and sum to 0. Taking
the element-wise-maximum over these filtered images then
gives us a response map, where higher responses correspond
to textured regions in the image (see Figure 6(a)). We let
this resulting response map be I′i . Convolving with random
filters is known to reveal high-frequency spatial patterns in
images, e.g., edges [20]; as such, examining the maximum
responses from an ensemble of such filters typically yields
regions of high spatial frequency, i.e., textured regions.

As marked in Figure 6(a), depth-discontinuities can trigger
high responses in the response map near object boundaries,
which are not necessarily textured. To combat this, we (1)
compute a z-buffered depth map using the intrinsics Ki and
extrinsics Ti matrices associated with each image Ii and
(2) compute a depth discontinuity map; a depth value is
considered to be a discontinuity if, within a centered square
window of 9 pixels, there is a difference in depth of more
than 1 cm. We zero out entries in I′i that are at a depth
discontinuity. To average away sensor noise per image Ii, we
(1) compute SLIC superpixels [3] of Ii and (2) set the value of
each pixel in Ii to the average of all values in the superpixel
that the pixel lies in. We apply a linear transform to ensure
that entries of I′i lie between 0 and 1. Figures 6c, d show the
values of tp with and without this noise-reduction step. The
smoother consistency of Figure 6 yields color models with
fewer blotchy regions.

Computing tp entails projecting p onto all images where
p is visible; let Pi ⊂ P denote the subset of vertices which
is visible in image Ii. We efficiently compute each Pi using
a z-buffer technique; additionally, vertices within 9 pixels of
a depth discontinuity are discarded from Pi. We proceed by
projecting p onto each response map I′i for which p ∈ Pi,
accumulating the lookup values into a list. We set tp to a
weighted mean of this list of values. The weight for image
Ii is the absolute value of the cosine of the angle subtending
image Ii’s optical axis and vertex p’s normal. We finally
assign tp to 0 or 1 by simply rounding its value.



Original [21] Ours [27] [8] [17] Original [21] Ours [27] [8] [17]

aunt_jemima_original_syrup mom_to_mom_butternut_squash_pear

white_rain_sensations_apple_blossomdetergent

palmolive_green pepto_bismol

cholula_chipotle_hot_saucecoca_cola_glass_bottle

softsoap_whitepop_secret_butter

listerine_greencrest_complete_minty_fresh

crystal_hot_saucewindex

v8_fusion_peach_mango3m_high_tack_spray_adhesive

Fig. 7. Juxtapositions of original BigBIRD images [21] with color model reconstructions from (1) our method, (2) Zhou et. al. [27] without deformation
grid optimization, (3) Hernandez et. al. [8], and (4) PCL’s volumetric blending [17]. Note that we do not employ Zhou et. al.’s deformation grid optimization,
since this leads to divergence. Please use a PDF reader’s digital zoom to view details.



Algorithm 1 Compute Texture Intensities
Require: Mesh M with vertex set P, calibrated grayscale

images {I(gray)
i }, associated intrinsics {Ki} and extrinsics

{Ti} matrices
F← a list of 10 kernels of size 10×10, whose entries are
uniformly sampled from [−1,1] and sum to 0
I′←{}
for I(gray)

i ∈ {I(gray)
i }, in parallel, do

I′i ← matrix of zeros, with size of Ii
for f ∈ F do

C← convolve f with I(gray)
i

I′i ← element-wise-max of I′i and C
end for
Z← depth map for I(gray)

i , computed with M,Ki,Ti.
D← depth discontinuity map computed from Z (see
Section III-D)
I′i ← zero I′i where depth discontinuities exist in D.
I′i ← (I′i −min(I′i ))/(max(I′i )−min(I′i ))
S← compute SLIC superpixels for Ii
for s ∈ S do

p← average value of I′i in superpixel s
Replace all values in I′i corresponding to pixels in s
with value p

end for
I′[i]← I′i

end for
t←{}
for p ∈ P, in parallel, do

v← list of values obtained by projecting p onto each
I′i where p is visible in I′i
tp← weighted mean of values in v (see Section III-D
for weights)
tp← 0 if tp ≤ 0.5, otherwise 1

end for
return t

IV. EXPERIMENTS

We conduct experiments using objects drawn from the
BigBIRD dataset, which we discussed in our previous
work [21]. The dataset consists of high-quality scanned data
for 125 household objects. Described in [21], 5 high resolu-
tion (12.2 MP) Canon Rebel T3 cameras and 5 PrimseSense
Carmine 1.09 short-range depth sensors comprise our setup.
We mounted each Carmine to a T3 using a platform from
RGBDToolkit [1] and each T3 to an arm, the Ortery
MultiArm 3D 3000 (Figures 8b, c).

All experiments are run on an Intel i7-4930K with 64 GB
of memory. We provide timing information on the source
code page (see abstract); in general, the optimization process
typically takes 1-5 minutes per object, depending on the
number of object vertices.

Data collection Scanning a single object consists of
placing an object on the Ortery Photobench 260 turntable
(Figure 8a) and running a UNIX command; otherwise, the
process is automated and takes 5 minutes to scan a single

(a) Ortery Photobench, Perspective

(b) Canon and Carmine Unit

(c) Ortery Photobench, Side

Fig. 8. Our scanning setup consisting of (a), (c) the Ortery Photobench and
(b) 5 Canon Rebel t3i + Carmine 1.09 units mounted together. We described
a method to jointly calibrate all 10 sensors in [21].

object. As the turntable rotates in increments of 3 degrees,
each of the Canon Rebel T3/Carmine units captures RGB-
D images. We ultimately capture 600 point clouds, high-
resolution and low-resolution RGB images from 5 polar
×120 azimuthal views.

Calibration Calibrating the sensors involves placing a
chessboard in multiple orientations, detecting chessboard
corners, and running a bundle adjustment optimizer [21].

We display 64 reconstructed color models in Figure 7:
16 objects ×4 methods we consider: (1) ours, (2) Zhou
et. al’s [27], (3) Hernandez et. al.’s [8], and (4) PCL’s
volumetric blending [17]. We do not employ the deformation
grid optimization that Zhou et. al. discuss, as the resulting
LM updates are not small, leading to divergence.

A. Evaluation Methodology

To quantitatively compare our method with competing
approaches, we conducted an online user survey (https://
goo.gl/forms/Feo2OqOdw4), where each participant
was given 16 multiple choice questions, one per object in
Figure 7. Each question asked the participant: “Which of the
following images matches ‘Reference’ most closely?” The
reference image displayed the original BigBIRD image; we
juxtaposed the reference image with color models estimated
from our method and competing methods. We randomized
the order in which the color models appeared within a
question. Participants were allowed to answer with a tie,
electing two methods as the best for a question. Participants
were given as much time as needed to complete the 16
questions; we advertised the survey primarily via department
emails. There were a total of 133 participants in the survey.

In creating Table I, for each question asked per par-
ticipant, we assigned 1 point for a single elected method
and 0.5 point to two elected methods when the partic-
ipant chose a tie. To ensure that we did not receive
overwhelming amounts of spurious data, we included two
objects whose color models were difficult to distinguish
in quality – O13 (cholula chipotle hot sauce) and O15
(white rain sensations apple blossom); in the former case,
our method was voted the best by 49.1% of participants

https://goo.gl/forms/Feo2OqOdw4
https://goo.gl/forms/Feo2OqOdw4


User Study Summary (n = 133): Which Method Matches the Reference Most Closely?
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

Our Method 0.872 0.841 0.882 0.985 0.587 0.735 0.855 0.655 0.802 0.774 0.859 0.925 0.491 0.894 0.581 0.917
Zhou et. al. [27] 0.005 0.019 0.000 0.008 0.049 0.027 0.021 0.031 0.054 0.117 0.080 0.016 0.019 0.033 0.018 0.004

Hernandez et. al. [8] 0.106 0.111 0.109 0.008 0.320 0.239 0.119 0.304 0.126 0.100 0.044 0.055 0.472 0.065 0.353 0.063
Volumetric blending [17] 0.018 0.029 0.009 0.000 0.044 0.000 0.004 0.010 0.018 0.009 0.016 0.004 0.019 0.008 0.048 0.016

TABLE I
O1 THROUGH O16 REPRESENT OBJECTS IN FIGURE 7: 3M HIGH TACK SPRAY ADHESIVE IS O1, WINDEX IS O2, ETC.

while Hernandez et. al.’s method received a close 47.2%. In
the latter case, our method received 58.1% while Hernandez
et. al.’s received 47.2%. Most of the other color models had
fairly distinguishing features.

B. Analysis

Our method received the highest votes in all objects
we considered, in most cases, by more than 30%, and
often by more than 75%. Because Zhou et. al’s method
averages in all images that view a vertex [27], it provides
ghosted, faded textures. Examples include front faces for
pop secret butter and mom to mom butternut squash pear as
well as caps for pepto bismol and listerine green. Other
objects with Zhou et. al. are often faded, as seen with the
3m high tack spray adhesive and v8 fusion peach mango.
PCL’s volumetric blending [17] suffers from similar prob-
lems, although in most cases, ghosting is more severe.

Per vertex, Hernandez et. al.’s approach averages the
top 3 camera views that have the highest saturation
on an HSV scale; they do not jointly optimize camera
poses [8]. This model can produce vibrant, but highly
distorted color models. Examples include front faces for
pop secret butter, detergent, crystal hot sauce, and palmo-
live green and caps for listerine green, pepto bismol, and
mom to mom butternut squash pear.

Despite the highly specular nature of our objects, our
approach can reconstruct very fine textural details. In
pepto bismol, we clearly see the “digestive relief” text on
the cap. In coca cola glass bottle, we observe that Coca
Cola created the bottle on 15 Sep 14 at 7:40 AM.4 In
listerine green, the white plastic holding down the cap as
well is crisp, as is the text “listerine” on the black cap.

Our method is not perfect. v8 fusion peach mango reveals
blotchiness above the V8 symbol. palmolive green shows
ghosting around the green logo. detergent’s barcode is not
perfectly crisp and has few splotches of yellow.

V. CONCLUSION

We recover high-quality color models from the BigBIRD
dataset by jointly optimizing a non-linear least squares
objective over camera poses and a mesh color model. We
incorporate 2D texture cues, vertex color smoothing, and
texture-adaptive camera viewpoint selection into the objec-
tive, which allows us to outperform competing methods. We
also discuss strategies to accelerate optimization speeds.

4Due to file size limits, to clearly see such tiny details, we recommend
visiting the online survey: https://goo.gl/forms/Feo2OqOdw4
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