
Temporal Event Sequence Simplification

Megan Monroe, Rongjian Lan, Hanseung Lee, Catherine Plaisant, Ben Shneiderman

Fig. 1: In EventFlow, the original LABA dataset, consisting of over 2700 visual elements (left), was quickly pared down to the events most critical to the study. The
simplified dataset (right) consists of only 492 visual elements, an 80% reduction in visual complexity. From this simplified figure, aligned by the patients’ “new”
LABA prescription, researchers were immediately able to notice the data sparsity on the left side of the alignment point, indicating that patients had not received other
treatments in the months leading up to their LABA prescription (i.e. not following the recommended practices).

Abstract—Electronic Health Records (EHRs) have emerged as a cost-effective data source for conducting medical research. The
difficulty in using EHRs for research purposes, however, is that both patient selection and record analysis must be conducted across
very large, and typically very noisy datasets. Our previous work introduced EventFlow, a visualization tool that transforms an entire
dataset of temporal event records into an aggregated display, allowing researchers to analyze population-level patterns and trends. As
datasets become larger and more varied, however, it becomes increasingly difficult to provide a succinct, summarizing display. This
paper presents a series of user-driven data simplifications that allow researchers to pare event records down to their core elements.
Furthermore, we present a novel metric for measuring visual complexity, and a language for codifying disjoint strategies into an
overarching simplification framework. These simplifications were used by real-world researchers to gain new and valuable insights
from initially overwhelming datasets.

Index Terms—Event sequences, simplification, electronic heath records, temporal query.

1 INTRODUCTION

Temporal event data is at the forefront of today’s Big Data boom.
Across the world, sensors and forms and spreadsheets are capturing
and storing every aspect of our existence as sequences of categorized,
timestamped events. The motivating question is simple: how can we
best leverage the things that have already happened to inform our fu-
ture actions?

To this end, researchers approach these datasets with the goal of
gaining understanding on two different levels:

• Intra-Record Understanding: Knowledge is gained about the
sequence of events that comprises a single record (i.e. a patient
record or a shipment record): Why was this patient transferred
from the Emergency Room to the Intensive Care Unit (ICU)?

• Inter-Record Understanding: Knowledge is gained about
population-level trends and patterns across an entire group of
records: Of all the patients who were transferred to the ICU,
what was the most common outcome?

• Megan Monroe, Rongjian Lan, Hanseung Lee, Catherine Plaisant, and
Ben Shneiderman are with the Department of Computer Science &
Human-Computer Interaction Lab, University of Maryland.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 27 September 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Two years ago, our effort to help researchers achieve these two lev-
els of understanding resulted in the LifeFlow visualization tool [31].
LifeFlow was primarily used for analyzing point-based process log
data. It combined the list-based display of its predecessor, LifeLines2
[28], with an aggregated display that summarized the entire dataset
in a single view. The aggregated display (discussed in further detail
in Section 3) was extremely effective at revealing inter-record trends,
while the list-based display allowed users to explore the intra-record
patterns.

LifeFlow caught the attention of researchers at the U.S. Army
Pharmacovigilance Center (PVC). They were conducting a long-term
study on asthma treatment, and the prescription of Long-Acting
Beta Agonists (LABAs). This type of medication should only be
prescribed when alternate treatments have proven ineffective. It is
meant to be both preceded and followed by prescriptions for other,
less-potent asthma medications [2]. The question researchers were
trying to answer, given a sample dataset of 100 patients, was whether
this recommended practice was actually being followed. Their request
was that LifeFlow be given the capability to handle not only point
events such as a heart attack or a surgery, but also interval events
such as medication prescriptions and hospitals stays. This required an
extensive remodeling of LifeFlow’s data structure, display rendering,
and the mechanisms for exploring and querying the data [17]. Happy
to oblige, however, the application was restructured and redubbed as
EventFlow [18](see Figure 2). Our work, it would seem, was finished.

Then the PVC researchers loaded their LABA dataset...



The resulting display, shown in Figure 1-left, was so visually com-
plex that it was initially described as “confetti.” EventFlow’s aggre-
gated display is generated by grouping records with the same event se-
quence, however, the patient records in the LABA dataset were so long
and varied that the chances of two records having the same sequence
were extremely small. In this case, EvenFlow cannot effectively group
records, and the aggregated display defaults to rendering each record
individually. The ability to leverage the visualization for inter-record
understanding is lost.

This visual complexity became less of an isolated incident and more
of a theme as we took on additional case studies in the medical do-
main. The complexity of raw EHR data, manifests itself on both the
intra-record and inter-record fronts. For example, it is not always clear
which symptoms motivate which treatments. Relationships between
events have to be inferred from the raw data alone. A single patient
record may contain simultaneous treatments for multiple conditions
(intra-record complexity). Additionally, EHR data is collected under
real-world conditions, where variables cannot be meticulously con-
trolled. The strategy for boosting the signal through this noise then, is
to use increasingly larger datasets (inter-record complexity).

Despite the size and heterogeneity of EHR datasets, however, the
questions being asked of them typically only revolve around a subset
of patients and events. Furthermore, due to the nuances of data entry
and extraction, the event sequences in an initial dataset are frequently
more complex than the real-world events that they represent. There is a
huge opportunity to discard irrelevant data points, bearing in mind that
relevance changes on a study-by-study or even a question-by-question
basis. This paper reports on the design of a series of intuitive and ef-
fective controls that allow users to quickly simplify an event record
dataset down to its most meaningful elements and most accurate rep-
resentation. This process was structured around a design study frame-
work as described in [21]. Not surprisingly, the effort focused on two
different strategies for simplifying a dataset:

• Intra-Record Simplification: Altering the events within an
event record.

• Inter-Record Simplification: Altering the subset of records in
the dataset.

These simplifications were evaluated in multiple long-term case
studies including:

• LABA Study with the U.S. Army Pharmacovigilance Center.

• Opioid Misclassification with the U.S. Army Pharmacovigi-
lance Center.

• The Diabetic Foot with the University of Florida College of
Medicine.

• Attention Deficit Disorder Treatment with the University of
Maryland School of Medicine.

• Pediatric Trauma Procedures with MedStar Health Facilities.

The LABA study will serve as an overarching example throughout
this paper, and the Opioid Misclassification study will be presented, in
greater detail, in Section 7. We also describe the use of simplification
on an experimental dataset of basketball statistics to demonstrate the
generalizability of these approaches. Across all of these studies, we
found that complex datasets could consistently be simplified by around
80%, and that extraneous records and events could be both removed
and re-inserted in only a few clicks. The resulting visualizations al-
lowed researchers to generate novel insights through both hypothesis
generation and hypothesis testing, and communicate these results to
their peers in clean, readable figures.

These new simplifications required extensive software engineering
efforts with novel data structures, but more importantly, they required
fresh ways of thinking for both our users and ourselves. This involved
defining a clear language of simplification, as well as metrics for eval-
uating its success. Our filter and transformation-based simplifications,

and the open-ended possibilities of a universal, Find-and-Replace sys-
tem of simplification dramatically expand the potential to extract sig-
nal from noise in large datasets.

This paper is organized as follows: Previous work on event se-
quence simplification is presented in Section 2. A discussion of visual
complexity, and our novel metric for measuring it, follows in Section
3. The process of designing simplifications, and the evolution from
filter-based simplifications to a universal, Find & Replace interface is
described in Sections 4 through 6. The effectiveness of these methods
and our work on two different datasets is presented in Sections 7 and
8. Finally, we discuss future work and conclude in Section 9.

2 BACKGROUND

Solutions for dataset simplification have been explored for many dif-
ferent data types, including graphs and maps [19, 9, 6]. For event se-
quences, however, current solutions revolve around two primary tech-
niques: filtering and clustering.

Filtering keeps control in the users’ hands, allowing them to remove
events and records based on preexisting attributes. These strategies
are discussed in detail in Section 4. Filter options can be found in a
wide range of tools for analyzing temporal event sequences. They are
a principal component of the Align, Rank, and Filter framework for
visualizing temporal data [29], employed by numerous applications
[11, 27, 20]. Filtering is also relatively straightforward to perform
using command-based tools [22, 10, 4]. However, there are no exist-
ing applications that extend filtering into an overarching framework of
data simplification that gives users precise control over how their data
is represented.

Clustering entrusts data mining algorithms to find meaningful pat-
terns, despite noisy data, in order to group similar patients. However,
this method brings about a new set of difficulties. First, the definition
of what constitutes similarity between two patients can change on a
study-by-study, or even question-by-question basis. In one study, the
paramount metric of patient similarity may be the duration of time
that a patient was taking a medication. For another study, it may be
the number of emergency room visits. Because of this, the underly-
ing clustering models must be constantly tuned and recalibrated. Even
with supervised machine learning techniques [24, 23, 32], the extent to
which rules can be effectively carried over between studies is unclear.
Additionally, medical researchers are not likely to have expertise in
data mining or clustering. This makes it difficult for these front-end
users to evaluate the success of the clustering and provide meaningful
feedback to the back-end developers. Finally, even when these meth-
ods achieve an effective grouping, the problem remains of generating
a meaningful display from which inter-record hypotheses can be con-
firmed or refuted.

3 COMPLEXITY AND AGGREGATION

It is impossible to address simplification without first defining some
notion of complexity. Unfortunately, there is no single, universal met-
ric for defining and measuring visual complexity. The topic has been
extensively discussed in psychology [5, 26, 5] and, more recently,
computer science [30, 15, 7]. The lack of a consensus suggests that
the scale of visual complexity depends, to some extent, on the style
and structure of the visualization itself.

To further complicate matters, the complexity of the visualization
becomes irrelevant if the dataset has been simplified beyond use. This
is a fine line to walk when the visualization is being used for both
hypothesis testing and hypothesis generation. For hypothesis testing,
there is a specific question to be answered, and users typically have
a clear idea of what events and records are relevant to that question.
In this case, the visualization can be simplified until only those ele-
ments remain. Hypothesis generation, however, is a more open-ended
process. Users run the risk of oversimplifying their data, and missing
potential insights. Thus, while complexity metrics are presented here
and utilized in the following sections, we emphasize that these met-
rics must be tempered with some subjective notion of maintaining the
integrity of the dataset.



Fig. 2: EventFlow consists of three panels: the control panel (left), the aggregated record display (center), and the individual record display (right). Here, a sample dataset is aligned by
the Stroke event in each patient record, creating mirrored alignments in both the individual and aggregated displays. In EventFlow, record filtering is done using the “Remove” buttons
at the top of the control panel. Category filtering is done using the checkboxes in the legend. Time and Attribute filtering is done using the “Window” and “Attribute” tabs respectively.

As mentioned previously, EventFlow creates an aggregated view
of a dataset by grouping records with the same event sequence. This
grouping is done using a tree-structure that branches as the event se-
quences diverge from each other (see [31] for a detailed description
this process). Events are represented using vertical bars, where the
height of each bar is dictated by the number of records grouped at that
branch. The default behavior is to root the aggregation at the begin-
ning of each record, however users can also root the aggregation at
any alignment point of interest. For example, in the LABA study, pa-
tients were frequently aligned by their first LABA prescription. In this
case, two aggregations are done: one for the events that led up to this
alignment point, and one for those that followed it (see Figure 1-right).

Because of this aggregation strategy, metrics such as the number
of patient records, or even the number of total events in the dataset are
not reliable predictors for the complexity of the resulting visualization.
For example, Figure 2 depicts over 250 patient records in a clean and
easily readable display. Ultimately, the complexity of EventFlow’s
visualization is dictated by how frequently, and the extent to which the
records in the dataset share the same event sequence.

As such, visual complexity will be defined and measured by two
different metrics: the number of visual elements in the display, and
the average size of these elements. The first metric, proposed in [7], is
simply a count of each vertical, colored bar in EventFlow’s aggregated
display. This metric gives a sense of how difficult it will be for users
to weave the unique elements in the display into a holistic impression
of their dataset. The number of visual elements should decrease as the
dataset is simplified.

The second metric, defined more specifically as the average height
of each vertical bar (as a percentage of the display height), provides
insight into how well the individual records are being aggregated to-
gether into a summarizing display. Though this metric is specific to
EventFlow, it draws on two of the oldest notions of visual complex-
ity: separability and information density. Separability, introduced by
Garner in 1974 [8], describes how larger items are easier to distinguish
from one another, thus reducing the perceived complexity. Information
density, proposed by Edward Tufte [25], relates to the amount of in-
formation conveyed by each visual element. In EventFlow, the height
of each vertical bar represents the number of records aggregated at
that branch. Thus, the average height across all these elements should
increase as the dataset is simplified.

The initial LABA dataset began with over 2700 visual elements,
each averaging only 1.14% of the total display height (Figure 1-left).
From this display, the PVC researchers found it virtually impossible to

visually parse out any meaningful trends. In the following three sec-
tions, we will describe the simplifications that these researchers used
to ultimately gain novel insight from this dataset using EventFlow.

4 FILTER-BASED SIMPLIFICATIONS

Filter-based simplifications allow users to remove events and records
from the dataset based on the fundamental features of the data type.
They have been implemented, in some form, across a wide range of vi-
sualization and command-based tools and are an essential component
of visual analytics. We discuss them here for the sake of completeness,
but more importantly, to demonstrate that in real-world data analy-
sis, filter-based simplifications are most effective when they can be
interleaved with more advanced simplifications. In EventFlow, filter-
based simplifications are designed to be readily accessible and easily
reversible (see Figure 2).

The use of EventFlow’s filter-based simplifications can be demon-
strated by an initial question that the PVC researchers had while re-
viewing the LABA dataset. The dataset was set up such that one
LABA prescription in each patient record had been flagged with an
attribute to indicate that this was the patient’s “first” LABA prescrip-
tion. It was around this prescription that they planned to look for the
intended pattern of less-potent asthma medications.

To make this attribute visible in EventFlow’s aggregated display,
the researchers converted it into a marker event that was inserted into
each record (see the full description of marker events in Section 5).
When the dataset was then aligned by this marker, they noticed that,
for many patients, their so-called “first” LABA prescription was actu-
ally preceded by other LABA prescriptions.

The researchers determined that this was occurring because the cri-
teria used for identifying the “first” LABA prescription was only con-
tingent on there being no other LABA prescriptions in the preceding 3
months. However, the original data extraction was done by selecting
all prescriptions for the entire year preceding the “first” LABA, result-
ing in the inclusion of LABA prescriptions that were greater than 3
but less than 12 months prior. Their question, was whether this in-
consistency would be eliminated if they updated the extraction script
to require that the “first” LABA be preceded by 6 months without an-
other LABA prescription.

By Record
Filtering by record allows users to remove a subset of records,
either through query (described in further detail in Section 6), or by
simply clicking any element in the individual or aggregated display.



Removing a large subset of uninteresting records can free up a
substantial amount of screen space to render the interesting elements
at a larger scale. For example, out of the entire LABA dataset, the
question of whether or not it would be necessary to do a new data
extraction could be answered by examining the relationship between
only two event points in a subset of the patient records. To isolate the
critical records, the researchers used EventFlow’s query system [17]
to identify patients whose “first” LABA prescription was preceded
by another LABA prescription. Records not matching this search
were filtered from the dataset, narrowing 100 records down to 26 (see
Figure 3, Steps 1 → 2).

Step 1: 2724 elements, 1.14% of display height per element
Step 2: 993 elements, 4.69% of display height per element

By Category
EventFlow’s most fundamental form of intra-record simplification,
is the ability to remove event categories from the display using the
category check boxes in EventFlow’s legend. Reducing the number
of event categories can significantly increase the chances that two
records will have the same event sequence and thus aggregate into
fewer and larger visual elements. Returning to the question of whether
to perform a new data extraction, the PVC researchers narrowed the
LABA dataset down further by filtering out all of the event categories
except LABA and “first” LABA events (see Step 3 of Figure 3).
Some of these filtered categories, in fact, remained excluded from the
dataset for the duration of the study.

Step 3: 99 elements, 15.01% of display height per element

By Time
Filtering by time allows users to limit EventFlow’s aggregated display
to a certain window of time around the current alignment point. Since
the chances of two records having the same event sequence decreases
as you get further and further away from the alignment point, the vi-
sual elements at the far ends of the display will be the smallest. The
time filter allows users to limit the display to only the largest, most
information dense elements.

The final step in simplifying the LABA dataset to answer the
“first” LABA question was to filter out all events more than 6 months
prior to the alignment point. In doing this, researchers could clearly
see that only one patient had their actual first LABA prescription
within 6 months of their “first” LABA event. All of the other patients
had LABA prescriptions prior to this cutoff point. This meant that
only one patient would have been excluded from the dataset if the
extraction were changed to require that the “first” LABA be preceded
by 6 months without another LABA prescription. Based on this
information, the PVC researchers decided that it was not worth doing
a new data extraction. The “first” LABA prescription, from this point
on, was referred to as a “new” LABA prescription. This simplification
process can be seen in its entirety in Figure 3.

Step 4: 35 elements, 22.75% of display height per element

By Attribute
EventFlow allows attributes to be assigned to both records and individ-
ual events. For example, a patient record might have the attribute “gen-
der,” and a prescription event might have the attribute “dosage.” Users
can perform both intra-record simplification and inter-record simplifi-
cation by removing events or records based on their attributes. Again,
this serves to either increase the chances of aggregation, or free up
screen space for the records of interest. While this filtering technique
was not used as part of the LABA study, it was used extensively on
many of the other datasets.

5 TRANSFORMATION-BASED SIMPLIFICATIONS

While the filter-based simplifications in the previous section can sig-
nificantly reduce large datasets, they are designed only to remove in-
formation. However, real-world datasets are not only messy with re-

Fig. 3: Should a new data extraction be done to exclude patients who had LABA prescrip-
tions prior to their “first” LABA prescription? - Step 1: The original LABA dataset is
aligned by the “first” LABA marker event (in black). Step 2: Patients without a LABA
prescription before their “first” LABA are filtered out. Step 3: Categories other than
LABA prescriptions (in red) and the “first” marker are filtered out. Step 4: Data is filtered
to 6 months around the alignment point.

spect to volume, but also with respect to the logical translation between
the event data, and the real-world events that transpired. Users fre-
quently need to manipulate their data, not just by removing events, but
by transforming the way it’s represented, a process typically known as
data wrangling [12, 13].

To discover the types of data transformations that were needed be-



yond filtering, we spent extensive time with all of our collaborators as
they explored their datasets. Based on their difficulties and feedback,
we designed a series of transformation-based simplifications that met
universal demands across all five research groups. These simplifica-
tions were deployed, one by one, in order to gain an initial under-
standing of whether they were effective at reducing complexity.

Interval Event Merging

In many cases, a given dataset is not only unnecessarily complex, but it
is more complex than the events that actually transpired. For example,
in the LABA dataset, prescription intervals were calculated based on
the dispensing date and the intended duration of the prescription. The
start and end date of each prescription then, was dictated substantially
by the behavior of the patient: Perhaps it was convenient for the patient
to refill their asthma medication a few days before the previous one ran
out. In the raw event data, this presents as a series of overlapping and
disjoint medication intervals.

When researchers at the PVC analyze medication use, however,
they are primarily concerned with exposure. That is, the time dur-
ing which the patient was actually taking a medication and exposed to
its effects. Exposure can only be roughly inferred from a series of pre-
scriptions, but it can generally be assumed that if a patient receives a
series of thirty-day prescriptions, with each prescription starting a few
days before or after the previous one ends, that this indicates a con-
tinuous, steady exposure. Short gaps and overlaps between successive
prescriptions do not necessarily imply that the patient stopped taking
the medication or took a double dose during those few days. It is im-
portant to distinguish this scenario, which results from an obvious and
common behavior, from situations where a combined dose of a single
medication is a critical and interesting phenomenon.

In order to better represent exposure, and not to clutter the display
with clinically uninteresting information about the exact dates of pre-
scription refills, EventFlow provides a simple interface that allows for
multiple interval events of the same category to be merged into a single
interval event (see Figure 4). This can be done in two ways: eliminat-
ing gaps of a certain duration, and eliminating overlaps of a certain du-
ration. This feature was designed to serve as a shortcut to two subsets
of Allen’s 13 interval relationships [1]: disjoint intervals and overlap-
ping intervals. Much like Morchen’s hierarchical interval model [16],
interval merging focuses on duration and coincidence, rather than the
exact sequence of interval end-points.

For the LABA study, any prescriptions within 14 days of each other
(a standard allowance) were merged into a single exposure interval.
This simplification was performed for nearly every medication cate-
gory in the dataset. Interval merging can be easily undone, or saved
permanently as a new dataset.

Fig. 4: A series of disjoint and overlapping intervals are merged into a single interval.

Category Merging
Category merging allows for multiple event categories to be combined
into a single meta-category. This feature is particularly useful when
individual medication types can be merged into an overarching drug
class, or when drugs are prescribed in tandem. In the LABA study,
three different medications were considered to be similar, low-dose
treatment strategies that could serve as a valid precursor to a LABA
prescription. These medications were merged into a single event cate-
gory entitled “Low-Dose.”

Unlike category filtering, category merging does not reduce the
number of events being displayed. However, these meta-categories
increase the chances that two records will have the same event se-
quence, and thus be merged into larger bars in the aggregated display
(see Figure 5).

Marker Event Insertion
In many datasets, certain event types repeat over and over again
throughout a single record. However, for a particular question, only
one of these occurrences may be of paramount interest. Marker events
allow users to insert a new event at any alignment point within the
data. For example, in the LABA study, the PVC researchers aligned
their dataset by the LABA event flagged with the “first” attribute, and
inserted a marker event at this point in each record that was (even-
tually) called “New LABA” (see Step 1 of Figure 3). For questions
pertaining only to the “new” LABA prescription then, the entire cate-
gory of LABA prescriptions could be filtered from the dataset, leaving
only the single “New LABA” marker. Swapping an entire category for
one event decreases the number of visual elements in the display and
increases the chances of larger, more information dense elements.

6 A UNIVERSAL SIMPLIFICATION SYSTEM

EventFlow’s filter and transformation-based simplifications proved to
be extremely effective in simplifying datasets, both by removing un-
necessary records, and by re-representing the events in the remaining
records. So effective, in fact, that their deployment was immediately
followed by a barrage of requests from our users for increasingly cus-
tomized simplifications. In some cases, the feature being requested
was specific to a single study, or even a single research question. It did
not make sense to continue to implement these features on an ad hoc
basis, as separate interfaces within EventFlow. The result would have
been an extremely cluttered and complex application. Upon further re-
flection, however, it became apparent that all of these simplifications
had the same general objective: users wanted to find a certain event
of pattern of events, and replace it with a more meaningful representa-
tion.

In addition to EventFlow’s simplification features, development had
just been completed on a graphic-based, advanced query system. The
advanced query system allowed users to draw out their query using the
same icons that are used to represent events in the individual record
display. The goal of this query system was to give users more pre-
cise control over inter-record simplification, offering access to the full
range of Allen’s interval relationships [1], as well as a host of other
temporal features. Users could select either the records that matched
their query, or the records that did not match their query, and then
remove the selected records from the dataset. The system had been
extensively tested both in lab settings and with users to evaluate accu-
racy and usability, including the clarity of query specification language
and the handling of false positives/negatives[17]. The question then,
was whether we could leverage this existing system to also perform
intra-record simplification.

Find & Replace
To perform intra-record simplification, EventFlow’s advanced query
system was augmented to include a replace feature [14]. This allows
users to not only find a sequence of events, but to replace it with an
event sequence of their choosing. The replacement sequence is spec-
ified using the same graphical language that is used to specify the
search sequence (see Figure 6), and can include existing event cat-
egories or new event categories. Find & Replace capitalizes on the



Fig. 5: Four different event permutations (left) involving an inhaled corticosteroid (ICS - in blue) and a leukotriene-receptor antagonist (LTRA - in pink) are aggregated into a single
grouping (right) when these two categories are merged together.

fact that users are typically very familiar with this functionality based
on their experience with a wide range of other applications including
word processing and spreadsheet manipulation.

In the LABA study, Find & Replace was used when the researchers
observed that LABAs are typically prescribed in tandem with an In-
haled Cortical Steroid (ICS). The result, in the aggregated display, is a
sequence of four event points that essentially represent one treatment.
This pattern was simplified by replacing it with a single interval, rep-
resenting the combined prescription of LABA + ICS (see Figure 6).
Furthermore, as described previously, each record contained a point
event that marked the start of a “new” LABA prescription. This marker
and the interval it tagged were replaced, by representing it as simply a
“New LABA” interval. In total, the following sequence of simplifica-
tions were performed on the LABA dataset:

Fig. 6: Concurrent LABA (in bright red) and ICS (in blue) prescriptions are replaced by a
single interval representing the combined treatment of LABA + ICS (in dark red).

1. Add marker event for “new” LABA prescriptions.
2724 elements, 1.14% of display height per element

2. Filter out extraneous categories.
2694 elements, 1.15% of display height per element

3. Replace concurrent LABA and ICS prescription with single
LABA + ICS interval.
2061 elements, 1.16% of display height per element

4. Replace LABA prescription marked as “new” with a single New
LABA interval.
1993 elements, 1.15% of display height per element

5. Merge intervals to reflect exposure.
1450 elements, 1.19% of display height per element

6. Aggregate similar medications into single category.
1332 elements, 1.25% of display height per element

7. Align by point of interest.
1123 elements, 1.56% of display height per element

8. Filter display to the six months on either side of the alignment.
491 elements, 2.08% of display height per element

The resulting, aggregated display is shown in Figure 1-right. This
simplified display consists of only 492 visual elements, each averag-
ing 2.08% of the display height per element. This constitutes an 81%
reduction in visual elements, and an 82% increase in the average size
of each element. It becomes possible to visually extract meaningful in-
formation from the display. For example, the PVC researchers imme-
diately observed that a significant number of patients had not received
any other treatment in the six months prior to their LABA prescription,
which is not the recommended practice. This was a new and valuable
insight that generated countless other questions.

It is critical to point out that this series of simplifications to the
LABA dataset was only an initial pass to narrow the data down to
the general theme of the research objective. As questions get more
specific, the dataset can be further simplified. Find & Replace can
also be used to insert new events (without removing existing events),
which allows users to see exactly which events are being selected by
the “find” component of this feature. The system can also be used to
delete events (by replacing a search sequence with an empty replace
sequence). Modified records can be saved as a new dataset, and all
replacement sequences are catalogued, allowing users to undo them if
need be.

Most importantly, Find & Replace can be used to replicate the func-
tionality of both filter and transformation-based simplifications in a
single interface. As a result, the overall application can be trimmed
down to a much simpler set of interfaces and controls without com-
promising any functionality. Alternatively, the more specialized sim-
plification interfaces could remain in the application to serve as intro-
ductory training for the more complex, Find & Replace interface.

7 OPIOID MISCLASSIFICATION

In addition to the LABA study, the researchers at the PVC were in-
vestigating opioid use as part of a second long-term study. Opioids,
a class of medications that are typically prescribed for pain manage-
ment, can be habit-forming when taken improperly and are blamed for
an increasing number of drug related deaths [3]. In the most recent
phase of this work, researchers were trying to determine within a sam-
ple dataset of 1000 records if patients that had been previously clas-
sified as acute users were actually misclassified chronic users. These
classifications are determined by reviewing a series of prescriptions,
which could be for either high or low dose opioids, and consolidat-
ing them into “episodes” that are then classified as acute, intermediate
or chronic. The question was whether patients with repeated acute
episodes should be classified as chronic users.



The first step of the simplification process was for the researchers
to take the raw prescription data (1064 visual elements, with each ele-
ment averaging only .49% of the total display height), and restructure
it into acute, intermediate, and chronic episodes. An episode was de-
fined as any consecutive prescriptions within 14 days of each other. To
account for this, they first merged the high and low dose prescriptions
into a single event category, and then used the Find & Replace system
to mark the first prescription in each episode (see Figure 7).

Fig. 7: The first prescription in each episode, defined as any prescription preceded by 14
days without another prescription, is replaced with a marker interval (in red). A second
replacement was also done to replace the first prescription of each record, which would
also be considered the start of an episode, with the same marker interval.

From here, they replaced episodes with acute, intermediate, and
chronic events based on the duration of the episode and the number
of prescriptions. For example, acute episodes were any episodes
under 60 days and consisting of two or fewer prescriptions. These
were identified by first replacing one and two prescription intervals
with a placeholder interval. Then, placeholder intervals lasting less
than 60 days were replaced by a new event representing an acute
interval. Similar strategies were use to identify chronic episodes,
and any remaining episodes were replaced as intermediate episodes.
The resulting dataset consisted of only 180 visual elements, each
averaging 1.96% of the total display height, an 83% reduction in
visual elements and almost a 300% increase in the average element
height (see Figure 8 - Steps 1 → 2).

Step 1: 1064 elements, .49% of display height per element
Step 2: 180 elements, 1.96% of display height per element

Using this simplified dataset, it was immediately apparent from the
aggregated display that the majority of acute users had been classified
correctly. These patients had only one, acute episode, and were easily
distinguishable from the rest of the population that consisted of more
varied episodes. Using selection, these patients were removed from
the dataset, reducing the number of patients by over 60% in a single
click (see Figure 8 - Steps 3). This filtering did not significantly
reduce the number of visual elements, but increased the average
height of the remaining elements to 3.04% of the total display height.

Step 3: 180 elements, 3.04% of display height per element

The researchers then narrowed the dataset down further, using
query, to include only the patients who had consecutive acute
episodes. From here, they could scroll over the time lapse between
each pair of acute episodes to see the distribution of when each patient
started their second episode in relation to ending their first. If these
patients were exhibiting chronic behavior, the distribution would have
been heavily front-weighted. That is, patients would be starting their
second acute episode very soon after their first.

Fig. 8: Were chronic opioid users misclassified as acute users? - Step 1: The original
Opioid dataset consists only of raw prescription data. Step 2: The dataset is restructured
into acute (red), intermediate (in blue), and chronic episodes (in red). Step 3: Patients
that only had one acute episode are removed. Step 4: Patients without consecutive acute
episodes are removed.

Step 4: 156 elements, 3.79% of display height per element

However, this was not the case. The lapse of time between when
patients started their second episode, relative to the end of their first
episode, was uniformly distributed. This indicated that there was no



obvious reason to believe that a significant portion of these patients
had been misclassified. The final consensus was that patients had been
accurately classified as either acute or chronic users. Figure 8 summa-
rizes the opioid simplifications.

8 BASKETBALL PLAY-BY-PLAY BREAKDOWN

To demonstrate that EventFlow’s simplification capabilities can be ap-
plied to datasets outside of the medical domain, we created a dataset
(or, more accurately, two datasets) based on the play-by-play statistics
from the University of Maryland men’s basketball team. Play-by-play
data consists of the events that took place over the course of a game
(shots, rebounds, steals), timestamped against the game clock. The
play-by-play breakdown of every college and professional basketball
game is freely available online. For this study, we looked at the March
16th, 2013 game against the University of North Carolina (UNC), a
game that Maryland ultimately lost by three points. The goal of this
experimental analysis was to try to determine what went wrong.

Fig. 9: Moving through time, left to right, the game can viewed as a series of alternating
possessions (Maryland in red, UNC in blue.

A basketball game can be thought of as a series of disjoint, alter-
nating possessions between the two teams (see Figure 9). The two
phenomenon that we can look at, using EventFlow, is how events af-
fect each other within possessions, and how events affect each other
across possessions. The latter of these objectives comes in the form of
two questions:

• How well does Maryland transition from offense to defense?

• How well does Maryland transition from defense to offense?

These questions were addressed by splitting the play-by-play data
into two overlapping datasets. The first dataset takes the entire game of
possession changes, and segments it into two-possession increments
of a Maryland possession followed by a UNC possession. The sec-
ond dataset does the same thing, but in increments of a UNC posses-
sion followed by a Maryland possession. In both datasets, each two-
possession increment is treated as a record. Thus, the three-possession
sequence shown above would be segmented such that the first and
second possessions constituted one record in the Offense→Defense
dataset, and the second and third possessions constituted one record in
the Defense→Offense dataset.

From a simplification standpoint, the primary challenge of the play-
by-play data was the granularity of the event categories. Nearly ev-
ery category had sub-categories that could be useful for certain ques-
tions, but irrelevant for others. Shots could be 3-point jumpers, 2-point
jumpers, or layups. Rebounds could be offensive or defensive. Time-
outs could be called by either team or the officials. Without some
degree of category merging, there would be too many categories, re-
sulting in too many colors in the display for users to visually discern
between.

Our strategy in analyzing this dataset then, was to begin by merging
the event categories as much as possible, to produce the least visually
complex display. The Offense→Defense dataset, loaded into Event-
Flow’s aggregated display and aligned by the possession change, is
shown in Figure 10. At this level of aggregation, it is easy to pick out
the notable dynamics of the game, such as the events that caused the
possession change, and the various scoring attempts. Essentially, the
initial simplification strategy was to oversimplify.

From there, complexity could be reinserted only when it was needed
for a particular question. This could be done by simply un-merging
the meta-category, however, it frequently proved more effective to

Fig. 10: The initial aggregated display of the Offense→Defense dataset. The data is
aligned by the possession change, with the Maryland possession to the left of the alignment
and the UNC possession to the right.

reinsert complexity using the Find & Replace interface, as it offered
more fine-tuned control over how much complexity was being added.
For example, offensive and defensive rebounds were merged into the
meta-category, ”Rebound.” One of the questions we had of this dataset
was, ”Did UNC capitalize on their offensive rebounds?” This question
could be answered by un-merging all of the rebound events across both
possessions. However, since a defensive rebound results in an imme-
diate possession change, we could use Find & Replace to isolate only
the rebounds in which UNC had possession and maintained posses-
sion, and replace them as “Offensive Rebound” (see Figure 11).

Fig. 11: Rebounds (in black) in which UNC had possession and maintained possession are
replaced as “Offensive Rebounds” (in pink).

The big question remained then: ”What could Maryland have done
in order to win?” It’s an interesting question, given that the final score
differential was only one basket. In fact, using various different filter-
ing, merging and un-merging, and Find & Replace, the two datasets
produced almost identical aggregations of how each team performed.
However, there was one glaring difference:

We can think of an offensive possession as starting either actively
(via a steal or a rebound) or passively (via an opponent’s score or a
dead ball). In both datasets, we can isolate the passive possession
changes by removing the possessions that began with either a steal or
a rebound. The remaining possessions can be further simplified by
removing dead ball events, such as timeouts or jump balls. Finally,



since the datasets are already filtered by the type of possession
change, we can remove the preceding possession entirely (using
Find & Replace). This process, being done to the Offense→Defense
dataset, is shown in Figure 12.

Step 1: 183 elements, 5.32% of display height per element
Step 2: 106 elements, 9.26% of display height per element
Step 3: 92 elements, 10.46% of display height per element
Step 4: 39 elements, 9.98% of display height per element

Figure 13 shows both of the resulting simplifications. Both teams
had roughly the same number of offensive possessions coming out of
passive possession changes (Maryland - 38, UNC - 37). However,
UNC was clearly executing their offense more efficiently. Their most
common outcome was a score which, on average, occurred much faster
than the first event in any of the Maryland possessions. In passive
possession change scenarios, UNC scored on twice as many posses-
sions as Maryland did. It would be reasonable then, to conjecture
that the game was ultimately decided by UNC’s ability to quickly exe-
cute their half court sets. Defensively, Maryland could have improved
their chances by scouting these plays, and practicing to defend them at
speed.

9 CONCLUSIONS AND FUTURE WORK

Event sequence simplification is critical to obtaining population-level
overviews and more accurate representations of real-world events.
This paper describes the design process for targeted simplifications
that allow users to precisely and iteratively pare down complex tem-
poral event datasets to the key visual elements that reveal meaning-
ful patterns. Our work draws on techniques from both temporal event
query and data mining, as well as countless hours with domain experts,
working to understand how temporal relationships can be accessed and
transformed within complex datasets.

We believe that these innovative simplifications could benefit many
developers of temporal analysis systems as well as the researchers who
use them. Working with 5 real-world user teams, these simplifications
could reduce the visual complexity of initially overwhelming datasets
by over 80%. This reduction allowed researchers to quickly and suc-
cessfully generate and test hypotheses, as well as produce comprehen-
sible figures for communicating their results. While validation with
other datasets and in other domains is needed to further support this
work, these simplifications appear to be a powerful and generalizable
approach for solving problems with temporal datasets.

While EventFlow has been successful thus far in allowing users to
eliminate complexity, it is important to remember that these capabili-
ties make it equally possible for users to remove or obscure important
features of their datasets. This can occur either accidentally or as a de-
liberate attempt to mislead others. To prevent this from occurring, we
are working to better couple EventFlow’s logging system with the data
input files, so that new datasets cannot be generated without including
a complete history of the modifications performed.

As mentioned previously, EventFlow currently allows users to save
modified records as a new dataset. We are currently working to ex-
tend this capability by allowing users to save their progress on a given
dataset, and then apply that progress to a new dataset. That is, Event-
Flow will allow users to save a series of simplifications as a stored
procedure that can be applied to a new dataset before it is loaded into
the visualization. Users can skip over the “confetti” stage of visual
complexity and arrive immediately at a visualization from which they
can glean meaningful insight. These stored procedures could be saved
and shared, allowing the individual progress on one dataset to be ap-
plied to new datasets quickly and easily.

An additional benefit that will stem from our on-going work on
stored procedure simplification, is how it can affect EventFlow’s abil-
ity to scale to increasingly larger datasets. When a dataset is reduced
by 80%, then intuitively, application should be able to load a simpli-
fied dataset that is 5 times larger. This could have a significant impact
on the extremely large datasets that put a strain on memory usage and
rendering times, and will be the focus of EventFlow’s development

Fig. 12: How did the UNC offense perform off of passive transitions? - Step 1: Active
possession changes are selected from the original Offense→Defense dataset based on re-
bounds (in black) and steals (in orange). Step 2: These possessions are removed. Step 3:
Dead ball events are filtered out. Step 4: The Maryland possession is removed.

moving forward.

ACKNOWLEDGMENTS

We appreciate the partial support of the Oracle Corporation and NIH-
National Cancer Institute grant RC1-CA147489, Interactive Explo-
ration of Temporal Patterns in Electronic Health Records. We would
like to thank Jeff Millstein from Oracle and Seth Powsner from Yale



Fig. 13: The UNC offense, coming off of passive possession changes (top) vs. the Mary-
land offense, coming off of passive possession changes (bottom). UNC executed their
offense visibly faster than Maryland (the horizontal axis is time), converting most of these
possession into points (in green).

School of Medicine for their continued input and feedback. We appre-
ciate the collaboration of researchers at the US Army Pharmacovigi-
lance Center and the Univ. of Maryland Human-Computer Interaction
Lab.

REFERENCES

[1] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.
In Journal of Logic and Computation, volume 4, pages 531–579, 1994.

[2] BestPractice. Asthma in adults. http://bestpractice.bmj.com/best-
practice/monograph/44.html, January 2013.

[3] CDC. QuickStats: Number of Deaths From Poisoning, Drug
Poisoning, and Drug Poisoning Involving Opioid Analgesics.
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6212a7.htm, March
2013.

[4] A. K. Das and M. A. Musen. A temporal query system for protocol-
directed decision support. In Methods of information in medicine, vol-
ume 33, pages 358–70, 1994.

[5] D. C. Donderi. Visual complexity: A review. In Psychological Bulletin,
volume 132, pages 73–97, 2006.

[6] C. Dunne and B. Shneiderman. Motif simplication: Improving network
visualization readability with fan and parallel glyphs. In Proceedings of
the 2013 Annual Conference on Human Factors in Computing Systems
(CHI’13), page to appear, 2013.

[7] S. G. Eick and A. F. Karr. Visual scalability. Technical Report 106,
National Institute of Statistical Sciences, Research Triangle Park, NC,
2002.

[8] W. R. Garner. The processing of information and structure. Wiley, New
York, NY, 1974.

[9] F. Haag, S. Lohmann, and T. Ertl. Simplifying filter/flow graphs by sub-
graph substitution. In Visual Languages and Human-Centric Computing
(VL/HCC), volume 20, pages 145–148. IEEE, 2012.

[10] C. S. Jensen, J. Cliord, and S. K. G. et al. The tsql benchmark. In Pro-
ceedings of the International Workshop on an Infrastructure for Temporal
Databases, pages QQ1–QQ28, 1993.

[11] J. Jin and P. Szekely. Interactive querying of temporal data using a comic
strip metaphor. In 2010 IEEE Symposium on Visual Analytics Science
and Technology (VAST), pages 163–170. IEEE, 2010.

[12] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research directions in
data wrangling: visuatizations and transformations for usable and credi-
ble data. In Information Visualization - Special issue on State of the Field
and New Research Directions, volume 10, pages 271–288, 2011.

[13] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: interactive
visual specification of data transformation scripts. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI’11),
pages 3363–3372. ACM, 2011.

[14] R. Lan, H. Lee, A. Fong, M. Monroe, C. Plaisant, and B. Shneiderman.
Temporal search and replace: An interactive tool for the analysis of tem-
poral event sequences. Technical Report HCIL-2013-TBD, HCIL, Uni-
versity of Maryland, College Park, Maryland, 2013.

[15] M. Lima. Visual Complexity: Mapping Patterns of Information. Princeton
Architectural Press, 2011.

[16] F. Moerchen. Algorithms for time series knowledge mining. In KDD
’06 Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 668–673, 2006.

[17] M. Monroe, R. Lan, J. M. del Olmo, B. Shneiderman, C. Plaisant, and
J. Millstein. The challenges of specifying intervals and absences in tem-
poral queries: A graphical language approach. In Proc. of ACM Confer-
ence on Human-Computer Interaction, page TBD, 2013.

[18] M. Monroe, K. Wongsuphasawat, C. Plaisant, B. Shneiderman, J. Mill-
stein, and S. Gold. Exploring point and interval event patterns: Display
methods and interactive visual query. Technical Report HCIL-2012-06,
HCIL, University of Maryland, College Park, Maryland, 2012.

[19] N. Mustafa, S. Krishnan, G. Varadhan, and S. Venkatasubramanian. Dy-
namic simplication and visualization of large maps. In International Jour-
nal of Geographic Information Systems, volume 20, page 273302, 2006.

[20] S. J. Nordb. Information visualisation and the electronic health record. In
Masters Thesis: Norwegian University of Science and Technology, 2006.

[21] M. Sedlmair, M. D. Meyer, and T. Munzner. Design study methodol-
ogy: Reflections from the trenches and the stacks. In IEEE Transactions
on Visualization and Computer Graphics, volume 18, pages 2431–2440,
2012.

[22] R. Snodgrass. The temporal query language tquel. In ACM Transactions
on Database Systems (TODS), volume 12, pages 247–298. ACM, 1987.

[23] J. Sun, F. Wang, J. Hu, and S. Edabollahi. Visual cluster analysis in
support of clinical decision intelligence. In AMIA Annual Symposium
Proceedings, page 481490, 2011.

[24] J. Sun, F. Wang, J. Hu, and S. Edabollahi. Supervised patient similarity
measure of heterogeneous patient records. In SIGKDD ACM Special In-
terest Group on Knowledge Discovery in Data, volume 14, pages 16–24.
ACM, 2012.

[25] E. Tufte. The Visual Display of Quantitative Information. Graphic Press,
1983.

[26] P. C. Vitz. Preference for different amounts of visual complexity. In
Behavioral Science, volume 11, page 105114, 1966.

[27] K. Vrotsou, J. Johansson, and M. Cooper. Activitree: Interactive visual
exploration of sequences in event-based data using graph similarity. In
IEEE Transactions on Visualization and Computer Graphics, volume 15,
pages 945–952, 2000.

[28] T. D. Wang. Interactive visualization techniques for searching temporal
categorical data. In Ph.D. Dissertation from the Department of Computer
Science, University of Maryland, 2010.

[29] T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, B. Shneiderman, and
S. Murphy. Aligning temporal data by sentinel events: Discovering pat-
terns in electronic health records. In Proc. of ACM Conference on Human
Factors in Computing Systems, pages 457–466, 2008.

[30] C. Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, 2004.

[31] K. Wongsuphasawat, J. A. G. Gómez, C. Plaisant, T. D. Wang, M. Taieb-
Maimon, and B. Shneiderman. Lifeflow: Visualizing an overview of
event sequences. In Proceedings of the 2011 Annual Conference on Hu-
man Factors in Computing Systems (CHI’11), pages 1747–1756. ACM,
2011.

[32] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shirato, and D. Kaeli.
Subsequence matching on structured time series data. In SIGMOD ’05
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 682–693. ACM, 2005.


	Introduction
	Background
	Complexity and Aggregation
	Filter-Based Simplifications
	Transformation-Based Simplifications
	A Universal Simplification System
	Opioid Misclassification
	Basketball Play-By-Play Breakdown
	Conclusions and Future work

