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A B S T R A C T

Foveated rendering adapts the image synthesis process to the user’s gaz
ploiting the human visual system’s limitations, in particular in terms o
acuity in peripheral vision, it strives to deliver high-quality visual ex
at very reduced computational, storage, and transmission costs. De
very substantial progress made in the past decades, the solution lan
still fragmented, and several research problems remain open. In this
present an up-to-date integrative view of the domain from the point of v
rendering methods employed, discussing general characteristics, comm
differences, advantages, and limitations. We cover, in particular, te
based on adaptive resolution, geometric simplification, shading simp
chromatic degradation, as well spatio-temporal deterioration. Next, w
the main areas where foveated rendering is already in use today. We fina
out relevant research issues and analyze research trends.

© 2021 Elsevier B.V. All rights

ction

past decade, both the display resolution and
have rapidly increased in response to the de-

ariety of application setups, including immer-
reality (VR), augmented reality (AR), mixed
, and large high-resolution displays (LHRD).
impressive improvements witnessed in the

t displays are still far from matching human
and growth in pixel counts and density is still
For instance, the densest commercial near-
can offer an angular resolution on an aver-
cycles per degree, with exceptions such as

achieving angular resolution of 35 cycles per
45], while humans can perceive over 60 cy-
ee in the fovea centralis [200, 169]. Moreover,
lays are also viewing-angle restricted, e.g., on
displays are limited to a field-of-view (FOV)
◦ [45] whereas a human can perceive a much
(see Sec. 3.2). Moreover, while some com-

porting wide FOVs together with high resolution i
research problem[251]. Specific setups, like stereo
light field displays, further increase the needed pix

Interactive and immersive applications must a
the important constraints on refresh rates impos
human perceptual system. Nowadays, 90 Hz has
tablished as a standard VR frame rate, while in
gaming monitors maintain ≥ 120 Hz [88]. Nev
according to Cuervo et al. [50], the refresh rate m
to be increased up to 1800 Hz for life-like VR im

The need to generate a large number of pixel
high frequencies is only partially matched by th
rent increase in the performance of graphics h
First of all, the hardware capabilities are typi
ploited to improve the visual realism of rendered
by increasing scene complexity or rendering quali
data sets, including large simulation data [104], C
els [257], or production-quality 3D scene descript
are often exceedingly large and costly to rende
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lays have appeared that significantly increase
StarVR reaches a 210◦ horizontal FOV), sup-

the simplest modality. Moreover, while global illumina- 41

tion algorithms, such as ray tracing and path tracing have 42
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e chart is depicting the outstanding foveated rendering research included in this survey report.
described different peripheral degradation techniques. The latest papers are still unpublished in

is survey.

ificantly accelerated in the recent years by the
of programmable GPUs with general-purpose

ing capabilities and dedicated raytracing cores,
photorealistic image synthesis remains extremely
n current graphics platforms because of the in-

plexity of accurately computing light propaga-
plex and possibly dynamic environments. Scal-

ote rendering systems is only a very partial solu-
video transmission matching human visual field
ency constraints consumes over 100 Gbps [22],
nfeasible over the current network standard.
sult, generating high-quality interactive experi-
ains an elusive target that we cannot expect to
he foreseeable future by hardware performance
ent alone. For this reason, the last decades have
urishing of methods that strive to improve ren-
rformance in time and resource-constrained set-
, 6]. The underlying idea of all these techniques
oit various characteristics of our visual system

approximate images that can be computed or
ed with the available resources and timing con-
hile being perceived identical, or marginally dif-
the high-quality target.
cular, on displays that uniformly cover a reason-
FOV, much of the visual information is wasted

e space-variant nature of human vision, which
resolution only in a small central region. In
to the highest cone density, the color and visual
ception are higher in a smaller retinal region,
[106, 38, 80]. Aside from the fovea, vision in
ery quickly diminishes. As a result, in current
s, only 4% of the pixels are visible at a fixa-
173]. Likewise, Wei et al. [238] report foveated
ers roughly 8% of the whole 60◦ of a desktop

ing specialized image synthesis methods that ex-
human visual system’s limitations, in particular
f reduced acuity in peripheral vision, to deliver
ty visual experiences at very reduced computa-

goal have been introduced in the past unde
of “foveated rendering” [80, 173], “gaze-conting
ing” [61, 56, 34, 60, 163, 151, 218, 203, 204, 9, 2
or, in more general context, “perception dri
ing” [164, 27]. However, “foveated renderin
prevalent in the literature. Thereby, in this sur
stick to this terminology. Over the years, ma
rendering techniques have been introduced
rendering fidelity, frame rate, compression, tr
and power consumption (Fig. 1). In this conte
damental tasks are the identification of the use
the exploitation of this knowledge to perform th
tion. Many variations have been proposed, w
solutions dependent on specific gaze tracking,
rendering algorithms.

In the recent past, several surveys have bee
in foveated rendering research (Sec. 2). How
studies were mainly limited to particular displa
gies (mostly VR), applications, as well as on
issues. On the other hand, our survey provide
date integrative view of foveated rendering, in
the entire research spectrum from the point of
rendering methods employed, showing their com
differences, and specialization to specific setups
sion and transmission are covered as they form
technology for distributed rendering. The targ
of our survey includes computer graphics rese
practitioners in relevant application fields.
will find a structured overview of the field, whic
the various problems and existing solutions, c
existing literature, and indicates challenging
lems. Practitioners and domain experts will, i
a presentation of the areas where foveated re
already been applied in practice, as well as an
applications and settings that still pose major

After summarizing the related survey literat
we present an overview of relevant properties
man visual system (HVS) and explain the d
minologies required to comprehend the foveate
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rage, and transmission costs is thus a poten-
effective approach. Techniques to achieve this

(Sec. 3). Following that, we provide an abstract character- 81

ization of the techniques that can be applied for foveated 82
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Fig. 2. A visual index of this survey.

troducing our proposed classification (Sec. 4).
solutions proposed in the literature, their fun-
ments, key problems, as well as promising po-
rch directions are then analyzed according to
tion (Sec. 5 - 8). We then provide an overview
applications in which foveated rendering has

(Sec. 9). We finally discuss the identified
es and research trends (Sec. 10) and con-
general summary of the findings of this study

visual index of this survey is depicted in

surveys

of foveation effects has a very long history.
ations were mostly in psychophysical research,

ents centered around studying the effects of
ented when the participant’s gaze is fixated
efined location. Such a concept was first pro-
ubert and Foerster in 1857 [15]. Later, in
en Reader [185] was among the first to de-
terized gaze-contingent imagery. Following,
knowledge was exploited in a variety of ap-

iving birth to the foveated rendering research
sive surveys on different facets of foveated
ve been conducted over time, such as eye-
0, 190, 107, 191, 33, 119], latency require-
8, 135, 221], foveated display classification

1, 171], gaze-contingent rendering [229], pe-
on [206], peripheral limitations [83], periph-
tion effect [235], peripheral visual artifacts
s quality constraints [40], foveated path trac-
veated VR and AR optics [45, 95]. However,
te overall characterization and study of the

In an eye-tracking and interaction survey, Duc
al. [215] propose a taxonomy for gaze-based intera
plications in which foveated rendering has been
as a passive interaction that manipulates the sc
tent in response to eye movement. The taxonom
is classified into model and image-based renderi
model-based approaches pre-manipulate graphic
try before even the rendering process starts, e.g.
of triangles reduction. In contrast, the image-b
proaches reduce spatiotemporal complexity of p
just before rendering with convolution filter, e.g.
[34], Gaussian [223, 42, 140], and Kalman filter [9
worthy, the Gaussian filter is widely used as it is m
patible with the human visual system [42]. This t
has been well adopted in several other studies
Furthermore, Hunter et al. [163] combine bo
and model-based rendering as a hybrid approa
is more appropriate for GPU implementation on
hardware. In another survey on gaze-contingen
Duchowski et al. [61] classify screen-based fove
dering into focus plus context and screen-based
Spjuit et al. [102, 202] provide a classification of
along two axes. The first one characterizes a di
cording to how angular resolution varies as a funct
centricity. The second axis, addresses how a syste
to changes in user gaze direction. As each of the
divided in four categories (from none to full), a t
display categories are identified.

Among the most relevant surveys, Swafford et
investigate four foveated rendering methods: p
resolution, variable per-pixel depth buffer sam
screen-space ambient occlusion (SSAO), GPU-lev
lation for the fovea, and variable-per-pixel ray cas
sures throughout the field of view. Weier et al. [
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hniques employed for optimization purposes cisely surveyed foveated rendering in the context of the 69

more general field of “perception-driven rendering”. In 70
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y, foveated rendering has been classified into two
ith and without an active gaze tracker, and fur-
ed into scene simplification and adaptive sam-
he work has been further extended in Martin
h.D. thesis [239], which extends the previous
e-art report [244] discussing pre-filtering, sam-

ptation, temporal coherence, and post-filtering
current perception-driven methods. Our work
clusively on foveated graphics and provides a

verage of this field. Most recently, Matthews et
ublished a brief report on a few seminal foveated
research, with existing research challenges and

earch directions. Noteworthy, most of these sur-
trictly limited to VR displays.
ast to previous studies, our survey does not tar-

ticular display technology or application. This
s to investigate the entire foveated rendering

pectrum, focusing on characterizing the classes
ation methods employed and showing their spe-
s to different settings, from near-eye displays to
-resolution displays and application domains.

round

d rendering, similarly to other approximate ren-
hniques, aims to optimize various aspects of the
process by exploiting the peculiar characteristics
an visual system. In this section, we provide rel-
ground information to create a common ground
ts and conventions used in the rest of the paper.

an eye and vision

an visual system (HVS) is a complex biological
at contains 70% of all photoreceptors and four
rons. Almost half of the primary visual cortex
in vision [48] in which 25% is devoted to pro-

ta from central visual angle (2.5◦) [101]. The
as a vision sensor that allows light rays to pass
na through an adjustable iris, being refracted by
and a crystalline lens using six different muscle

s [45, 244]. The retina consists of three types
ceptors: rods, cones, and retinal ganglion cells,
vert the light signal into an electrical signal. The
rves work as information bus which transmit vi-
ls from the retina to the visual cortex with an
bandwidth of 10 Mbps [22]. The rods are highly
tive and even can be activated by a single pho-
s are, on the other hand, less light-sensitive but
and detailed visual cues to the visual cortex for
ocessing.
re approximately 120 million rods, six million
24-60 thousand photosensitive retinal ganglion

Noteworthy, these numbers may vary in differ-
s, e.g., Kaplanyan et al. [106] suggest 4.6 million

mm in diameter [198]. Different studies have r
tinct foveal angles in between 2◦ − 5.2◦ aroun
cal axis [80, 156, 173]. The HVS processes
acuity of contrast, color, and depth informa
fovea [26]. The neighboring regions in a circ
8◦ is called parafovea, and up to 17◦ perifove
ing that begins the peripheral region [190, 121
be further classified as near, mid, and far per
Fig. 3) [16]. Most foveated rendering solutio
tiate among the central foveal region, where
rendering effort is concentrated, and the rest
of-views [80, 156, 173].

Fig. 3. The foveal angle varies between studies
most studies mention from ±2◦ to ±5.2◦ around
axis [80, 156, 173]. Neighboring regions in a c
of 8◦ is called parafovea, and up to 17◦ perifov
ing that begins the peripheral region [190, 121
be further classified into near (until ±30◦ around
axis), mid (from ±30◦ to ±60◦), and far (from ±6
periphery [16]. Human vision roughly spans ±1
tally around the gaze direction when the head i

.

3.2. Field of view

The human vision spans roughly 210◦ × 135
ever, this measure with a steady focus of the
stereoscopic vision is composed of two monocu
which the brain stitches together. Each eye
162◦ − 165◦ monoscopic field of view (FOV),
overlap region [80]. Nonetheless, with head r
mans can see almost 270◦ − 290◦ horizontal ar
physically, humans can roughly observe only
in as little as 1/10 second during saccades and
moving objects at speed up to 180◦/s [50]. Un
eye VR display, the immersion consistently b
(≈ 80◦) FOV and steadily grows up with higher
whereas higher eccentricity raises the risk of m
ness. Furthermore, there is an existing researc
between FOV and angular resolution. The in
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he cones have a high density around the cen-
optical axis known as the fovea; around 1.50

FOV lowers the angular resolution which may easily per- 82

ceivable by the viewers. 83
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vement estimation
ovements, such as saccades, smooth pursuit,
accommodation, and vestibulo-ocular move-

ly affect human perception [142]. The sac-
rapid ballistic eye motions that suddenly dis-

ls of fixation and lead the fovea to the scene’s
terest (ROI), and lasts 10-100 ms exceeding
81, 142, 150]. Perceptual changes during brief
barely detectable by humans [187]. Smooth
tive during eyes track a moving object with
elocity. Vergence and accommodation refer
fixation process, in which the ciliary muscles
rystalline lens’s refractive potential to reduce
of a blur for the fixated depth of the scene
ulo-ocular movement occurs while the eye is

ROI, but the head moves. For more details
ovements, see [181]. However, eyes only cap-
timuli during fixations that stand 200-400 ms.
phase, the eyes stay stationary in the ROI.
follows two oculomotor functions: rotation of
uch the ROI falls on the two eyes’ fovea, and
e the crystalline lens adjustment so that the
es become sharp [121]. Moreover, the image
updated within 5 ms of fixation; otherwise,
may detect the low-resolution image due to

radation [134, 38].

cking
ng is a technique that detects user’s eyes
es where or what they are looking at. The
the user is looking is referred to as the gaze

rn eye trackers mainly rely on an infrared light
ideo cameras to track black pupil circles and
rneal glint, which is a projection of infrared
e outer surface of the cornea. During eye

he pupil follows the gaze direction, while the
ction remains unaffected. The camera-based
systems can be categorized as near-eye vs.

xis vs. off-axis, model vs. regression-based,
ulti-camera input (see [110]). Duchowski et
sify gaze tracking into active, passive, single,
odal. Besides, the accuracy of eye trackers is
he average distance between the real-stimuli
the measured gaze position [16, 142].

requirement
r precision and lower latency are of utmost
for an optimized foveated rendering. Higher
ases discomfort (i.e., simulation sickness, fa-

eptional degradation visibility, and artifacts
otion-to-photon (MTP) delay, a.k.a., end-to-

consists of tracking latency and frame latency;
e time between capturing an eye/gaze move-
e frame reflection associated with the display
frame reflection is the duration between the

for stereo VR and 16-33 ms for gaming PCs are a
[105].

Guenter et al. [80] suggest that VR has an op
tency of 23 ms or less, but 40 ms or more is a de
tency. Similarly, Albert et al. [8] recommend 20-
the most suitable value for latency for VR, while
is somehow tolerable, and 80-150 ms or more is u
able. On the contrary, Stengel et al. [203] report,
is the tolerable threshold. Li et al. [129] strongly
for foveated rendering, the MTP delay should be
50 ms. Likewise, Stengel et al. [204] recommen
tency should never exceed 60 ms. Arabadzhiyska
report that HVS sensitivity is fully restored wit
ms after the saccade ends. Therefore, the fram
be updated within that time frame. In contrast,
thors [38, 105] report that the image should be
within 5 ms after a saccade to avoid artifacts. R
al. [189] also suggest, for 360◦ video streaming
tency should be approximately 20 ms. Similarly
et al. [118] report the latency for immersive app
should be less than 20 ms, which is further supp
the experiment [116] that use 14 ms latency un
However, Patney et al. [173] use 20-37 ms trackin
in addition to the frame latency in their experim
figure 4 shows an overview of MTP delay which
observed in multiple studies for VR applications

Besides the MTP delay, pixel-row-update add
siderable amount of latency to the desktop mo
the early 1990s, the MTP delay of 100-150 ms w
common for volumetric visualization [127]. How
recent progress of processing power can remarka
that latency. Thunström’s [218] study suggests t
42 ms latency is tolerable for 95% of the subject
ies with desktop monitors, whereas Loschky et
report 60 ms should be the standard. To sum up
mersion, the best MTP delay should be < 5 ms
average ≤ 20 ms. Moreover, the MTP delay sho
cross 50 ms regardless of display technologies. In
researchers have determined that the peripheral
tion at longer latencies (80-150 ms) must be redu
respect to the amount considered acceptable at s
tencies (50-70 ms), since the additional latency
the likelihood of the viewer noticing visual artifa
peripheral area [135].

3.6. Visual acuity

Visual acuity or clarity of vision is describ
as the Snellen value or Minimum Angle of R
(MAR). The normal visual acuity is defined
Snellen value, equivalent to 1 arc minute in MA
fovea [204, 206, 85]. Current foveated rendering
considers this normal visual acuity as a standar
play design. However, since, in realty, average vie
barely achieve half of the maximum visual acuity,
readable visual contents are designed for visual
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e display, is generally half of the MTP delay.
raphics pipelines, 5 ms or less frame latency

20/40. Spjut et al. [102] suggest that 20/40 visual acuity 110

should also be the standard for foveated rendered displays. 111
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[204]

[8]

[203]

References →

erview of Motion-to-photon (MTP) observed in
tudies on VR applications. The studies are ar-
m left to right from the smallest to the largest
elay. In blue (5-20ms), we depict the best cases,
he average case (around 40ms), and in red the
s (above 50ms). These thresholds are the aver-
ted thresholds indicated in the literature.

Behnam et al. [22] report that commercial VR
t the time of their survey (2017) hardly provide
al acuity.
tried to establish a relation (see Equation 1) of
ity fall-off from the visual axis [80]:

ωcpd = ω0 + m · e (1)

e, and m denote the smallest resolvable angle in
degree (cpd), eccentricity in degrees, and slope
ly. The MAR model has been shown to fit low-
n task findings as well as anatomical characteris-
e retina. Inverting the visual acuity results in

as a linear model [245]. The minimum dis-
AR increases linearly with eccentricity 20◦ −30◦

43, 238]. However, according to few other stud-
06, 36, 67] visual acuity is subject to hyperbolic

rast sensitivity function (CSF)
visual acuity, contrast sensitivity (CS) charac-
erent aspects of visual function. Clinical trials
ot include CS in addition to visual acuity tests.
is a difference in luminance, typically the dif-
reflected light levels between adjacent points.

on (CSF), expressed in cpd units, refers to the
f samples that can be discerned at a particular
om the foveation point. It is defined as the recip-
e minimum contrast threshold (CT) to perceive
of spatial frequency f, at different eccentricities

, 260] (see Equation 2):

1

Humans can perceive with a resolution of 6
the fovea [200, 169, 7], gratings as fine as 1 arc
pixel [216, 8] or equivalent of 120 pixels per d
[98]. Interestingly, Cuervo et al. [50] report t
with corrected vision have better than norma
the visual acuity ranges between 0.3-1 arc-m
200 ppd). However, clinically 30 cpd has been
as standard [110, 247].

Researchers have different views about the v
tivity fall-off with eccentricity. Weier et al. [2
acuity reduces by 75% at an eccentricity 6◦, w
studies recommend, after 20◦, the sensitivity
ten times [201, 143]. Similarly, Watson et al. [2
that by 20◦ eccentricity, the human visual sys
longer resolve gratings narrower than 7.5 arc
pixel. According to Akşit et al. [7], after 35◦,
resolution drops to about 2.5 cpd, although R
[184] recommend, the minimum visual acuity
perceive in the periphery is 8 cpd.

3.8. Adaptation effects
It is often reported that the HVS is sensitive

in luminance ranging from 10−6cd/m2 (obj
under illumination from the stars) to 108cd/
viewed on a bright sunny day) [186]. However,
taneous dynamic range is much lower, as it i
4 orders of magnitude, with lower luminance p
noise, and higher luminance as over saturated
eas [146]. This is because humans extend the
range by adapting to changes in the ambient
by moving as detailed vision windows along th
axis. Interestingly, adaptation is performed a
the luminance perceived in an area covering
degree around the gaze direction, which is, h
quently changing, also because of saccades [86
process of luminance adaptation is slower than
tion changes, as noted by Mantiuk et al. [146],
uations the HVS is permanently in a maladapta

4. Overview and classification

As discussed in detail in Sec. 3, the fovea ce
tures finer details than those captured in the
By exploiting this, foveated rendering techniq
optimization by nonuniformly distributing th
effort, in particular by lowering the renderin
noncentral areas.

Researchers have classified the foveated te
different categories, e.g., experimental cognitiv
mic, and hardware approach [90]. Regarding
degeneration, Watson et al. [233, 235] recom
metric model, lighting-shading, texture, and
ferent resolution. Accordingly, Swafford et al
gest four possible quality degradations in per
olution, screen-space ambient occlusion, tesse
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CS(f, e) =
CT (f, e) (2) ray-casting steps. Similarly, Arabadzhiyska et al. [14] pro- 67

pose spatial resolution, level of detail, and color can be 68
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Adaptive
resolution

Static

Ray-based (Sec. 5.1) [227, 69, 177, 238, 253]

Raster-based (Sec. 5.3) [42, 258, 176, 140]

Hardware-oriented
(Sec. 5.5) [77, 78, 3, 24, 23, 199,
123, 100, 247, 247]

Dynamic

Ray-based (Sec. 5.2) [127, 260, 201, 192, 1
242, 68, 223, 36, 200, 117, 10, 175

Raster-based
(Sec. 5.4) [235, 72, 174, 73, 34, 80,
27, 51, 138, 226, 148, 156, 154, 1
128]

Hardware-oriented (Sec. 5.6) [28, 213, 214, 169, 110,

Geometric
simplification

Static Raster-based (Sec. 6.2) [149, 70, 136, 184]

Dynamic
Ray-based (Sec. 6.1) [241, 240, 163]

Raster-based
(Sec. 6.2) [167, 137, 162, 44, 170, 1
27, 131, 262, 219]

Shading
simplification

and
chromatic

degradation

Shading
simplification Dynamic Raster-based

(Sec. 7.1) [60, 144, 225, 82, 27, 1
172, 248, 143]

Chromatic
degradation

Static Raster-based (Sec. 7.2) [194, 132]

Dynamic Raster-based
(Sec. 7.2) [235, 59, 157, 252, 146,
142, 259]

Spatio-temporal
deterioration Dynamic

Ray-based (Sec. 8) [243]

Raster-based (Sec. 8) [80, 63, 56, 248, 97, 65]

verall landscape of foveated rendering techniques (Sec. 5–8). The table focuses on methods, while ap
distinctly in Sec. 9

eference is assigned to the main class of technique. We further differentiate on whether it was originally applied for
dynamic gaze tracking and implemented for a ray tracing or ray casting pipeline.

he periphery. Wang et al. [229] report that
plification, filter, and multi-resolution can be
e periphery; however, this study is limited to
ession.
fication depicted in Figure 5 strives to seek
among rendering approaches. The main dif-

is among the types of degradation that are per-
. 4.1). For each of these main classes, we fur-
tiate on whether the technique was originally

a situation in which the gaze was assumed
amic (Sec. 4.2). Finally, we also differentiate

the technique was originally implemented for
or a raster-based pipeline (Sec. 4.3).
owing, we first provide general information on
ation. In the following sections, we will build
fication to provide an in-depth analysis of the
ods that have been proposed in the literature.

lasses of peripheral degradation

ndering method point of view, the fundamen-

four groups, depending on the type of peripheral
tion that is performed:

• adaptive resolution techniques work mainl
age space to reduce image density in the p
(Sec. 5); these techniques include general-pu
proaches, as well as techniques tightly boun
cific display designs (called Hardware-orient
survey);

• geometric simplification techniques work in
model space, by adapting the complexity of
3D models contributing to different areas o
play (Sec. 6);

• shading simplification and chromatic deg
techniques reduce, by contrast, the work p
simplifying the quality of illumination simu
chromatic fidelity (Sec. 7);

• spatio-temporal deterioration, finally, improv
mance by adapting the refresh rate of pixels a
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iation is the type of adaptation that is per-
this basis, we classify foveated rendering into

image, eventually reusing information from previous 40

frames for less important areas of the display (Sec. 8). 41
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c versus dynamic gaze point

dently from the type of peripheral degradation
foveated rendering assumes that there is knowl-
e gaze point, which determines how the effort
distributed across the image. While the spe-
of solution used for obtaining this knowledge

primary importance for the rendering methods,
rentiation may exist among techniques that as-
tic gaze point (e.g., at the center of the display),
ues where the gaze point may dynamically vary
mes (e.g., on the basis of eye-tracking or other

ation). For this reason, we distinguish between
using a static gaze point and methods using a
ne. While we classify the presented techniques
the setting in which they were originally intro-

e of the static ones may adapt to dynamic set-
vice-versa, with few adaptations. We will point
situations during the discussion. Nonetheless,
this classification also provides a view of the
of foveated rendering that shows the relative
e, and the historical evolution of static and dy-

ups.
oveated rendering schemes attempt to perform
l optimization without any additional tracking
owever, without gaze tracker, the typical as-
is that the user is looking at the center, and
dation might be applied at the periphery of the

3]. However, this is not a full-fledged technique,
vision simultaneously involves saccades and fix-
he scene. Nonetheless, static foveated rendering

s are still in widespread use, since they can be
a wide range of situations. Commercial near-

ys, e.g., Oculus Rift and StarVR, have adopted
sampling different regions with variable rates. It
noted that this variable-rate sampling is also im-

optimize rendering performance for these dis-
it leads to throwaway peripheral pixels hardly
e to pincushion distortion.
other hand, more and more foveated rendering
ake into account a dynamic variation of gaze.
thods relying on dynamic gaze variation can be
out trackers, e.g., by assuming that the viewer is
a particularly salient object, the large majority
chemes are developed in conjunction with some
echnology. Matthews et al. [150] differentiate eye
rom gaze tracking by stating that eye tracking
ures eye movement, while gaze tracking tracks
er’s head position to determine the actual gaze
e virtual world. In our work, we are not making

entiations, as we are interested in how the gaze
s exploited by optimized rendering algorithms.
eason, we cover a wide range of trackers, e.g.,
racker, optical tracker, face tracker under the
er umbrella term.
ing on the purpose, the latest tracking hardware

rendering, high frequency is more significant th
curacy [16, 80]. Although few studies sugges
tracking is adequate for noncritical purposes,
man eye focuses closely on the head orientatio
dius [20]), Lawrence et al. [64] report that, in V
tions, inaccuracies and latencies may lead to m
ness and nausea. For this reason, applications
sion, cloud-based gaming explicitly require ac
low latency tracking; hence, for foveated rende
tracker appears as the best option for such case
due to the viewing distance and relative moti
the viewer and the display, eye-tracking is inco
large high-resolution display walls [26]. As an
for such setups, position and optical-tracker
proximate gaze position considering the obse
with higher latency.

4.3. Ray-based versus raster-based techniques
Finally, the implementation of the degrad

niques may also vary depending on the render
employed. In particular, while a large variety
tions exist, ray-based techniques make it sim
form per-pixel adaptations, raster-based techn
cally favor model-space solutions. We, therefo
tiate between ray-based and raster-based met
based and raster-based pipelines are directly
modern programmable graphics hardware. Sin
rendering requires real-time graphics, sever
specific approaches have been implemented.

Typically, in foveated rasterization, the gaze
be used to select geometric levels of detail for th
models, as well as an input for a fragment s
shader code will run a simplified fragment if it
the user is not looking at the current target p
approaches make foveation easy to integrate
ization pipelines. Complications, however, ari
implementation of realistic shadows, reflection
caustic effects, and global lighting, which often
tuning of shadow mapping, reflection mapping
rendering techniques to cope with variable-res
dering [68].

On the other hand, the ray-based approach
ter applicable to photo-realistic graphics rend
the path of the rays is computed pixel by pixe
timization for foveated rendering is most oft
by reducing the number of rays in non-foveal
based techniques have shown the ability to eas
complex illumination patterns, but, in real-tim
such techniques require important resources, e
dynamic objects, due to the need of recomputin
dexing to achieve logarithmic complexity [160
has shown to be an effective optimization tec
to the massive potential reduction in the num
For foveated path tracing, Koskela et al. [118]
theoretical estimation of performance gains av
calculated that 94% of the path rays can be o
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high accuracy and lower update frequency, or
. Studies suggest that for optimizing foveated

this reason, they identified foveated rendering as an essen- 113

tial technique to use path tracing within VR applications. 114
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evolution of graphics pipelines, however, the
tween rasterization and ray tracing is becom-
d more blurred. Ray-casting or even ray-
be performed in fragment shaders, while ras-
often used for the view rays in a ray tracing
ing solution. In our classification, we will,
conserve this distinction by presenting the

niques in the setting in which they were origi-
ced, eventually cross-linking similar ray trac-

erization techniques. By doing so, we aim to
ew of the evolving landscape of foveated ren-
mentation frameworks.

e resolution

group of methods in our classification (Fig-
s to reduce the peripheral resolution to ac-
rendering process. This is the most com-

ch in foveated rendering. Over time a wide
niques has been developed, such as adaptive
sk, multi-resolution pyramid, discrete cosine
CT), wavelet transform, log-polar transform,

r transform. The adaptive resolution is appli-
U, GPU, and even on a hybrid architecture.
h ray-based and rasterize graphics pipelines
sed to reduce resolution, few techniques even
h pipelines. Unconventional approaches in-
dual display setup, e.g., inset-based projec-

ped region, and focus plus context. Recent
R displays, especially holographic, varifocal,

d displays rely heavily on the adaptive resolu-
e rendering load. However, flickering, pop-up

sual artifacts are often visible that require ad-
processing.
ction, we will survey the adaptive resolu-

ues according to our classification. A general
the surveyed methods is presented in Table 1
al-purpose techniques, and in Table 3 for the
tly bound to a specific hardware setup. In the

e will first discuss each of the subclasses (see
, before summarizing our findings (Sec. 5.7).

ay-based techniques

rendering techniques (see Table 1), such as
path tracing, and ray casting, are well adapted
rendering because of the adaptive sampling
the frame, high-quality shadows, reflections,

ranslucency, caustic effects, and other visual

-time foveated ray tracing systems reduce spa-
g by imitating the human non-uniform and

characteristics, typically assuming that the
king at the center of the display. This ap-
ten used for near-eye displays. Fujita and

with θ−2/3, where θ is the angular distance from
play center. To avoid artifacts due to sparse s
pixel colors are computed by averaging a set of n
ing samples in the image plane.

Pohl et al. [177], in a head-mounted display
combined density reduction due to foveation with
that lenses in modern consumer HMDs introduc
tions like astigmatism, in which only the cente
the displayed content can be perceived sharp wh
increasing distance from the center, the image get
ingly blurred. This reduction is encoded in displa
precomputed static sampling maps, which are im
encode the number of sampling rays per pixel (2
the maximum of allowed supersampling). Moreo
achieve considerable speed-up by combining den
trol with image quality control. In particular, in
to lowering density inside areas, they employ hig
CPU ray tracing in the display center, and fast
accelerated rasterization in the periphery. Moreo
els that are very far from the center are not rende
head motion, reusing pixels from previous frames
illumination changes [178]. This hybrid techniqu
cantly improves the graphics quality at higher fra
with user-specific calibration, the demonstrated r
speedup reached up to 77% on several benchmar
This method was later extended to dynamic gaze
using an eye tracker [179] (Sec. 5.4). Recently, Y
[253] varied the ray tracing rate based on scene sp
formation to reduce the number of shading samp
particular use case is the usage of path tracing
puting illumination in a deferred shading pipeline
rate is reduced by combining a foveation terms w
depending on BRDF complexity and distance t
Results demonstrate speed-ups of up to 30%.

Static foveation has also been used for other typ
plays. For instance, Wei and Sakamoto [238] us
reduction to optimize rendering speed for an ex
tal holographic display. Such a display technolo
lates the recording part of traditional optical ho
by using a computer, saving light information as e
data called an interference pattern. This approa
ever, requires a large amount of calculation. Ther
foveated rendering, instead of adapting pixel den
reduce the angular resolution of these calculations
ing on the distance from the look-at point, assum
center of their display. Only the area within 5◦ to
ter is rendered at full resolution, while the rest
on their experimental display) uses a lower angu
pling rate. The static setup makes it possible t
the precomputation of sampling patterns.

5.2. Dynamic ray-based techniques

Dynamic techniques receive new gaze inform
each frame and must update the display with low

The first group of techniques in this area is pu
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for instance, developed a foveated ray tracer
, in which the sampling pattern is distributed

based and achieves optimization by reducing the number 108

of rays and reconstructing images from sparse samples. 109
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mmary of different techniques developed to achieve adaptive resolution, similar approaches are group
ightly bound to a specific hardware setup are presented separately in Table 3

hm used References Static Dynamic P
Eye-
tracker

Gaze-
tracker

Ray
base

ray tracing Fujita and Harada [69], Wei and
Sakamoto [238], Yang et al. [253]

• ◦ ◦ •

ray tracing Levoy and Whitaker [127], Siekawa et
al. [201], Peuhkurinen and Mikkonen
[175]

◦ • ◦ •

elerated ray tracing Weier et al. [242], Siekawa et al. [200] ◦ • ◦ •
ce aware rendering Tursun et al. [223] ◦ • ◦ •
sampling map Pohl et al. [179] ◦ • ◦ •

pproach Pohl et al. [177] • ◦ ◦ •
pproach Pohl et al. [180], Friston et al. [68] ◦ • ◦ •
path tracing Roth et al. [192] ◦ ◦ Head •

acing in log-polar Koskela et al. [117] ◦ • ◦ •

ray casting Viola et al. [227] • ◦ ◦ •
ray casting Zhang et al. [260], Bruder et al. [36] ◦ • ◦ •
ray casting Ananpiriyakul et al. [10] ◦ ◦ Face •

ead-tracker Face = face-tracker

Whitaker [127] developed the earlier volumet-
ing with adaptive ray tracing, getting the gaze
h an eye tracker. In the algorithm, depending
tance to the gaze point, three regions of a scene
ally sampled at 1, 1/2, and 1/4 of the native res-
d then blended for generating a continuous final
image. Similar approaches have been later used
d-style ray tracing of simple scenes [201].
the introduction of programmable graphics
several more elaborate approaches were intro-

th the goal of having a finer control of ray gen-
d reducing artifacts, especially at the periphery.
t al. [200] use GPU-accelerated ray tracing with
ent sampling masks for a nonuniform distributed
ls to reduce the number of traced rays. To reduce
artifacts in the periphery, which is very coarsely
strong temporal anti-aliasing (TAA) is applied.
en and Mikkonen [175], instead, distributed rays
to a log-polar transformation rather than dis-
s and demonstrated ray-tracing for simple sinces
reality application. Likewise, Weier et al. [242]
PU-accelerated ray tracing with a depth of field
F). The ray-tracing step in the algorithm sam-
mage sparsely based on a visual acuity model,
the temporal stability of peripheral image re-
hanced using reprojection-based TAA. Finally,

ete image is computed from sparse samples using
interpolation, and gaze-contingent DOF is com-
postprocessing. Although the model was origi-
loped for foveated artifact reduction, it also re-
ded samples up to 70%.

tricity, human visual sensitivity is also strongly
by the displayed content. They thus studied
tion requirements at different eccentricities as
of luminance patterns, deriving a low-cost pa
model. The model is used in a multipass rend
nique, which predicts the parameters from a low
version of the current frame. As a result, the m
to be capable, on benchmark scenes, to use only
rays to render the foveated region, without vis
like pop-up effects and tunnel vision. For fur
up, variable-rate shading [205], which distribu
samples over time, is also employed. The overa
benefits from the flexibility of the CUDA block
tecture.

The second category of algorithms is hybrid
which both ray tracing and rasterization have
bined for faster computation. Pohl et al.
that when the user is not looking at the cente
mounted display, not all of the image is seen.
showed that, in their particular configuration,
57% pixels were typically invisible in the entir
a fully ray-traced pipeline, they skipped rays
invisible, while in a rasterization pipeline the in
els are stenciled out, avoiding shading compu
study was then extended by combining rasteriz
periphery with ray-tracing at the center [179],
ing dynamic sampling maps and lens astigm
For performance reasons, dynamic sampling m
computed per frame depending on the current g
resolution and interpolated to get the required
rays per pixel. Taking into account the gaze po
in a speedup of 20% with respect to the static
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reduce resolution purely as a function of eccen- Since multipass approaches are prone to introduce la- 66
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n et al. [68] introduced a single-pass rendering
sed on a single perceptual rasterization pass.

ach combines two solutions. First of all, they
asterization into a frame buffer with a non-
el density that peaks at the fovea. Each raster-
mputes illumination with ray tracing. Second,
every column of pixels at different times. The
e can be used on HMDs with rolling displays,
lus Rift DK2, that illuminate different spatial
different times. As a result, they achieve a
similar to warping solutions, without the lim-
respect to disocclusions, object motion, and

ent shading, while reducing the aliasing arti-
ated techniques based on sparse ray sampling

e.
of approaches generalize the above concepts
ath tracing, the third category in our classi-
hich performance gains are achieved by con-
hading complexity through the reduction in a
aced paths. As for the typical real-time path-
ion, the final image is generated by a denois-
m the noisy result of path tracing. A notable
s been proposed by Roth et al. [192], based
IA OptiX framework. Their implementation

-resolution displays in which the user’s FOV
ted, with more dense rays traced in the fovea
sparser rays traced in the periphery, where a
er is also applied to blur the image to mask
lems. This third category is currently less ex-
ly due to the difficulty of computing global
in a very time-constrained setting with strict
ds. A recent study by Koskela et al. [117]
real-time path tracing in log-polar space. In
arks, both rendering and denoising achieved
R setup. However, jittering effects could be

both the fovea and periphery.
h set of techniques is based on foveated ray
monly used to render massive 3D models or
y casting is used here due to its flexibility and
visibility computation in combination with
acceleration structures. The techniques used

do not significantly differ from the previously
lutions. Zhang et al. [260] present real-time
casting base on adaptive sampling mask and

gnificant frame-rate improvement. Similarly,
l. [36] develop ray casting technique derived
uzo Gray sampling [54] and natural neighbor
that leverages visual acuity fall-off to speed

endering. Without any perceptible changes in
y, this technique achieved speed up to 3.2 fold
ented benchmarks. Likewise, Ananpiriyakul
daptive ray casting on vector and volume vi-
n which the step size increases along with ec-
sulting in faster computation and interaction
ine. Interestingly, the approach uses a face-

are a well-researched and still very active area, wh
of the literature in the 2014-2020 time frame w
duced. This is because these techniques make i
to finely and rapidly adapt sampling rates based
tricity and other measures. However, due to decr
density, artifacts like flickering are often visible i
riphery. Therefore, additional postprocessing, e.g
antialiasing [200, 242], and denoising [242] are es

5.3. Static raster-based techniques

Rasterization based techniques produce image
jecting the scenes on a regular grid. This reg
exploited by several foveation methods to design
ized adaptive sampling and reconstruction techni
Table 2).

The wavelet transformation is, in particular, at
of the major rasterization-specific approaches to f
In the wavelet domain, the images are decomp
different components and frequencies [141] in w
level can represent the different scales of inform
the context of foveation, wavelet representations
used to control the sampling rate both in ima
to control the number of samples, and in obje
to control the sampling. In particular, variable r
for foveated volumetric representations can be ac
controlling the number of wavelet coefficients. Ch
[42] employ the Gaussian smoothing function as a
operator and analyze its kernel for achieving spac
degradation. Piccand et al. [176] develop volu
visualization technique based on 3D Haar wave
formation. In this approach, the ROI is rendere
resolution, while contextual areas at coarser resol
rendered through wavelet splatting. One main d
of this method is that the contextual region pixe
to the combination of Haar wavelets with splat
et al. [258] render volume data using wavelet co
under selected tracked rays. This is a two-step
rapid reconstruction of the super-voxels from wav
ficients, and then render the super-voxels by trac
with different thicknesses. To reduce staircase ar
space-variant smoothing filter is applied.

Variable spatial resolution is also achieved by us
dard rasterizers with different configurations in th
areas of the screen. A prominent example is the r
framework proposed by Malkin et al. [140], that a
the final image from square fragments rendered se
each of which has been blurred according to the
from its midpoint to the point of fixation. Such a d
sition into tiles allows for an efficient parallel CUD
implementation.

Rasterization-based techniques are also often
conjunction with nonconventional display setups
near-eye displays or light-field display. Since mos
methods have been specifically designed to take
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ad of conventional gaze-trackers.
ray-based techniques for adaptive resolution

count display-specific features, they are described in a sep- 111

arate section on Hardware-oriented techniques (Sec. 5.5). 112
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Table 2. S roaches are
grouped t

Algorit ipeline
-
d

Raster-
based

Wavelet •

CUDA o •
Adaptive •
Adaptive •

Adaptive •
Adaptive •

Adaptive •
Multi-lay •
Spatiote •
Log-pola •
Log-rect •
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ummary of different raster-based techniques developed to achieve adaptive resolution, similar app
ogether.

hm used References Static Dynamic P
Eye-
tracker

Gaze-
tracker

Ray
base

transformation Chang et al. [42], Yu et al. [258], Pic-
cand et al. [176]

• ◦ ◦ ◦

pt. architecture Malkin et al. [140] • ◦ ◦ ◦
sampling Vieri et al [226] ◦ • ◦ ◦
sampling (3 layer) Guenter et al. [80], Finch et al. [63],

Marianos [148]
◦ • ◦ ◦

sampling Cuervo and Chu [51] ◦ ◦ Head ◦
sampling (2 layer) Swafford et al. [209], Bektas et al. [27],

Lungaro and Tollmar [138]
◦ • ◦ ◦

sampling (2 layer) Watson et al. [235] ◦ ◦ Mouse ◦
er pyramid Perry and Geisler [72, 174, 73] ◦ • Mouse ◦

mporal filtering Bohme et al. [34] ◦ • ◦ ◦
r transform Meng et al. [156, 154, 155] ◦ • ◦ ◦
ilinear transform Li et al. [128] ◦ • ◦ ◦
ead-tracker holo = holographic display

mic raster-based techniques

ost explored foveated rendering research area
dynamic raster-based techniques that vary lo-
resolution in response to gaze changes (see Ta-
ue to the need for low-latency and high fre-

splay, these techniques must employ several op-
schemes that permit fast adaptivity in con-

with moving ROIs. In this section, we dis-
ampling [80, 63, 148, 226, 51, 209], multi-layer
72, 174, 73, 34], and log-polar transformation
250, 128] which are used to achieve adaptive

.
t set of techniques is based on compositing dif-
lution images to quickly produce a foveated dis-
most classic technique is to use a multi-pass ap-
which several image layers around the tracked

t are rendered at progressively higher angular
wer sampling rate, and then rescaled and com-
produce the final multi-resolution image. For

Guenter et al. [80] introduced a multipass ras-
pipeline for 3D graphics based on the acuity
del proposed by Levoy et al. [127], in which the
ndered on three nested and overlapping render

ntered around the current gaze point. The inner
allest in angular diameter and rendered at the

play resolution, while the two peripheral layers
ogressively larger angular diameter but are ren-
progressively lower resolution and bilinearly up-
efore merging them with the others. Note that

m also used coarser scene LODs for peripheral
Sec. 6) and updated them at half the tempo-

ee Sec. 8). Through this approach, half of the
ost was saved with a 5-6 times overall graphics

LCDs, demonstrating up to 10-15 times less ren
with 6-8 times average speedup [63]. The redu
density of peripheral layers leads to distracti
and crawling artifacts and makes anti-aliasin
super-sampling harder. For this reason, the c
aliasing is also amortized over multiple fram
combination of multisample antialiasing (MSA
ral reverse reprojection [165], and temporal j
spatial sampling grid [49].

Many follow-ups used the same architectu
stance, Marinos [148] use three layers: 100%
40% resolution which depends on the Euclide
from ROI. Likewise, Cuervo and Chu [51] inv
panoramic stereo video and likelihood-based
which the video is subdivided into three reg
medium, and low resolution. An integrated
optimizer adapts to real-time head movement
cates pixels according to the motion. In contr
of three layers, Swafford et al. [209] use two
ers, full resolution in the fovea and 25% resolu
periphery. Lungaro and Tollmar [138] also e
resolution on the video delivery framework by
optimized foveal mask to each frame. Such a
chitecture was also used in early user studie
demonstrated that lowering resolution in the p
HMDs did not affect user performance on com
search tasks. This multiple-image rendering
is also used to drive recent VR displays, e.g
high-resolution display by Vieri et al. [226], a
display with 18 megapixels/eye, and 120 Hz r

Since reducing resolution is prone to intro
artifacts, other authors have presented archite
improve image quality by supporting composi
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ce improvement demonstrated on a desktop HD
he system was later extended for a 3 × 3 tiled

tering of multiple images. The second group of methods 69

is used to create a space-variant resolution to the periph- 70
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n as Multi-Layer Pyramid (MLP). Geisler et
bine CSF with MLP for faster video commu-
r low bandwidth networks. In this procedure,
ene is divided into six levels, and each level
on-compensated, multi-resolution coded, and
ased on HVS. Finally, lossless encoding and
eo quality assessment metrics have been in-
o foveated compression algorithm. Similarly,
eisler [174, 73] use MLP with filtering at each
n, achieved by interpolation between levels
id using the resolution map. Derived from
cted spatial resolution function developed by
eisler [174, 73], Böhme et al. [34] employ

ngent spatiotemporal filtering technique that
tion map to specify the optimal temporal res-
e ROI. As a result, the authors claim smooth,
free real-world video output.
above techniques partition the image into

of discrete areas that are then composited,
ve approach is to directly produce a seam-
-rate image by warping the angular distribu-
hird category of algorithms is based on log-
nsformation. Meng et al. [156] develop the
ed rendering (KFR) technique in log-polar co-

the method, first, a log-polar transforma-
lied in the buffer memory, and then inverse
nsformation with anti-aliasing has applied to
esolution. However, in the presented bench-
technique achieves 2.0-2.8 times speedup for
meshes and 2.9-3.2 fold better performance
sting rendering on a 4K-UHD. In an exten-
et al. [155] use eye dominant feature that
a lower foveation rate for the dominant eye
n-dominant. In comparison with KFR [156],
l 1.06-1.47 times speedup was achieved. In
y, Meng et al. [154] extend the KFR to 3D
splay. The 3D-KFR is parameter-dependent,
olynomial kernel functions in the classic log-
ng. Nonetheless, there are two key research
KFR methods, first, the user-dependent opti-
eters that make it difficult for practical imple-
nd second, artifacts such as flickering are fre-
le. To reduce artifacts, Li et al. [128] use log-
veated rendering. Results from this research
log-rectilinear transformation with summed-
ampling against log-polar transformation ef-
uces flickering artifacts and saves bandwidth.
amic rasterization-based techniques have been
ed to take into account the special character-
conventional displays. Those methods are de-
separate section on Hardware-oriented tech-
5.6.

ardware-oriented techniques
approaches discussed so far are general-

niques for achieving variable resolution across

include, e.g., dual displays [77, 78, 3], varifocal
[247, 256], and holographic displays [85, 139, 1
Here and in the following section, we cover such h
oriented approaches to achieve adaptive resolutio
ing in particular on how raster-based and ray-ba
niqeus have been adapted to those configuration (
3). In this section, we will first focus on static c
tions with a fixed gaze point, while in the nex
cover the dynamic case.

The first set of techniques uses a physical dua
setup to achieve variable resolution. A typical
the earlier foveated dual display approaches, wh
mainly inset-based, with higher resolution at t
and coarser resolution elsewhere. On these disp
dering techniques typically need to perform two re
and take into account continuity between the p
images. Godin et al. [77, 78] designed a dual-r
foveated stereoscopic projection setup that supe
images with opposing polarization that is suitab
ploring large models and environments consists o
ometric and texture complexity (the display setup
over 10 megapixels). However, there are few d
e.g., color, resolution, brightness variation, and th
tween different projectors. Therefore, image warp
plied as a part of the rendering pipeline to overco
challenges. Ahlborn et al. [3] introduce a multi-
wall where the coarser-resolution is projected fro
projector. To modify the OpenGL pipeline with
ifying application code, they implemented the i
troller as a Chromium SPU. Another front proje
a mechanical pan-tilt mirror projects small thou
resolution images overlapped. Baudisch et al. [2
velop a focus plus context (FPC) display in which
is possible during image acquisition. Besides,
[199] develops an advanced wide-angle foveated (
model that uses an especial lens to distort the
image geometrically into four regions by combin
Cartesian and logarithmic coordinates. As comp
log-polar model, the AdWAF model minimizes im
by more than 13%.

The second set of techniques is explicitly d
for near-eye image presentation. Sometimes, di
this category are explicitly designed taking into
foveation in their design, but no particular render
nique is required, besides taking into account
variable angular resolution of the display. One
is the varifocal AR display of Wu and Kim [24
allows retrofitting a medically prescribed lens wi
focal lens for vision correction. Remarkably the p
can achieve angular resolution up to 22 cpd for th
image at the center (6◦) where the rest see-throug
has a uniform 32 cpd resolution. Another typic
ple in this category is the near-eye display of Y
[256], which uses a fixed high resolution at the fov
lower resolution in the periphery, exploiting pola
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ral methods have been designed for partic-
s with unconventional characteristics. These

dependent doublet geometric phase lens and temporal po- 113

larization multiplexing methods to produce the images. 114
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Dual dis •
Dual lay •
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ummary of different hardware-oriented techniques developed to achieve adaptive resolution, similar
ed together.

hm used References Static Dynamic P
Eye-
tracker

Gaze-
tracker

Ray
base

er point cloud (holo) Hong et al. [85], Hong et al. [100] • ◦ ◦ ◦
ly (holo) Maimone et al. [139] • ◦ ◦ ◦
er with PSF (holo) Lee et al. [123] • ◦ ◦ ◦
er (var) Wu and Kim [247] • ◦ ◦ ◦
ic phase lens Yoo et al. [256] • ◦ ◦ ◦
jector Godin et al. [77, 78], Staadt et al. [3] • ◦ ◦ ◦
us context Baudisch et al. [24, 23] • ◦ ◦ ◦
gle lens Shimizu [199] • ◦ ◦ ◦
ic circuit board Park et al. [169], Bae et al. [18] ◦ • ◦ ◦

resolution (var) Kim et al. [110] ◦ • ◦ ◦
play Benko et al. [28] ◦ • ◦ ◦
play Tan et al. [213, 214] ◦ • PBPD ◦
er LCDs Gao et al. [71] ◦ • ◦ ◦
Pancharatnam-Berry Phase Deflector var= varifocal display holo = holographic display

phic displays, with respect to standard binoc-
wavefront modulation to offer full depth cues.

plays require large amounts of computation to
he diffraction patterns, and using adaptive reso-
ssential. The first set of solutions perform holo-
thesis in real-time from 3D point clouds using
igh-Sommerfeld diffraction formula. To achieve
the data is represented as a multilayered point

which each layer has a different density accord-
R[85]. This model was then adapted to combine

raphic and two-dimensional displays to provide
s near the fovea and 2D images at the periph-
Moreover, the point cloud is upsampled in the
to avoid holes. Maimone et al. [139] concen-

stead of the design of a phase-only holographic
with a spatial light modulator, showing how
olograms can be generated directly from the
the standard graphics pipeline through a post-
step. In particular, they introduce a real-time

ion method based on linearly separable convo-
achieve spatially variant focus and aberration
for eye-tracked displays. The prerequisite for
computation is a spatially invariant lens phase

which implies that the focus and aberration cor-
constant over the image. Foveation is exploited
ing the correct lens function where the user is
ther than computing or approximating the full
ariant solution.

yered displays, by contrast, can provide continu-
cues within a working range by decomposing 3D
o 2D layer images, that can be presented through
of optical designs. Lee et al. [123] use for that
light guide and a holographic lens. The major

or such displays is to compute the layer images

blended, per-image weights are optimized by
perceived retinal images with target retinal ima
ing to the focal depth of the eyes. Foveation an
ment are taken into account by minimizing the
of contrast within the fovea while considering
box enlarging the eye box that takes into acco
eye movements. Contrast ratio curves and v
ences (HDR-VDP2) [145] are used for that pu
method has the drawback of being very sensitiv
tion and requires important computation reso
the prototype achieving 10Hz for a 700×350 re
on an NVIDIA board.

5.6. Dynamic hardware-oriented techniques
A number of specialized hardware solution

displays that adapt resolution based on user’s
first set of techniques is based on physical du
complementing the dual display solutions prese
tion 5.3 with components dedicated to dynamic
ing. As for the static case, the only notable v
terms of rendering algorithms are related to asp
to cope with particular display features. A ty
ple is given by Benko et al. [28], who coupl
optical see-through display with a projector-b
AR display. Their multipass approach render
five times: twice for the glasses (once for each
for the projected periphery, once for the proj
and once for the projection mapping and comp
cess for the projector view. The projected in
occlusion shadows for the glasses content or
the surface shaded content that is not view
Visual discontinuities are reduced by applyin
transition between the periphery and the ins
multi-pass rendering techniques can be applied
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utationally optimizing them to provide appro-
us cues. Instead of using simple depth-weighted

play design of Tan et al. [213, 214], who achieve the re- 70

alization multi-resolution foveated display panel with a 71
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of two separate OLED panels and a beam
h is used as an optical combiner. The first
a wide FOV but low resolution, while the

ay has super high resolution in the central
. For dynamic foveation, a switchable liquid

Pancharatnam-Berry Phase Deflector is ap-
ifts the high-resolution regions with contents.
Pancharatnam-Berry Phase Deflector can be

h an eye tracker. As for Benko et al. [28], each
lay is handled by a different rendering pass.
d set of techniques is developed to achieve
olution through electronics circuit. Park at
sumes that the renderer performs a vertical
duction depending on the Euclidean distance
e point, while keeping the horizontal resolu-
specialized circuit using multiple line driving

then decompresses the image for display. Sub-
sment, PSNR, and SSIM indexes proved that
n-based driving scheme can be used without

noticeable deterioration. Since the display
chniques must be aware of display resolution
istribute pixel samples. Bae et al. [18] per-
an adaptation in both horizontal and vertical

proposing a variable clock generation circuit to
output waveforms of shift registers for OLED
e electromagnetic circuit, which is made up
film transistors and one capacitor, generates
ariable widths that correspond to twelve res-
he display region. The above-mentioned ren-
od can be directly employed to speed up the
r these variable resolution displays.
group of foveated techniques is designed for

nal displays, such as light field, and varifocal
contrast to conventional near-eye displays,

s can create better visual cues and an immer-
ce. Gao et al. [71] combine dual-layer LCDs
ing lenses to develop a light field display. In
Hadamard product [112] of two-layer patterns

store the light field scene. Besides, the LCDs
flipped vertically, and the optical distortions
d in post-processing. Kim et al. [110] design a
art foveated varifocal AR display in which the
d focal depth cues are driven by eye-tracking.
display combines a traveling microdisplay, a

-mirror magnifier, and a laser projector-based
view display. Since the overlap between the
riphery is visible, a stencil mask to the outer
foveal image is used.

ion

adaptive resolution through foveated render-
research domain. One common use of foveated
to subsample various regions of a scene to dif-
tions and blend them. The number of layers
us studies varies, for example, two [209, 51],

However, the 1, 1/2, 1/4 sampling rate for three
[127] have been widely adopted in [80, 238]. Non
these techniques are not free from artifacts like
and require strong TAA in post-processing. Amo
algorithms, the wavelet transformation [42, 258,
fers from sudden pixelation, and consequently sm
filtering like Gaussian is required. Along with
pects, the log-polar transformation [156, 155, 250
tion is parameter-dependent, and a time-consum
study is prerequisite for optimization.

Since ray-based methods allow arbitrary samp
terns in screen space, foveated techniques can ap
easily than rasterization. Due to the GPU ro
and affordable price, the foveated ray tracing ha
much interest in recent years [69, 238, 201]. M
the CUDA architecture that supports the implem
of both ray tracing [223], and rasterization [140
general-purpose parallel programming techniqu
large flexibility. In recent years, the boundary
rasterization and ray tracing is becoming more a
blurred, and hybrid approaches are emerging [68

While foveation can be applied to standard
it is increasingly employed in conjunction with n
nologies such as varifocal, light field, and hologra
plays. There are several advantages of these disp
achieving continuous visual cues, and solutions
gence and accommodation conflict that lead to fa
near-eye 2D displays with OLED/LCD. Among
vantages, the varifocal AR display can reach lar
(e.g., 85◦ ×78◦) coupled with high angular resolut
60 cpd angular resolution in the fovea [110, 24
more traditional displays are typically much mor
(e.g., achieving a maximum 40◦ FOV and 10-15 c
gular resolution). However, several key research c
exist in unconventional displays. In particular, m
holographic, varifocal, light field display researc
ited to static foveation, however, and dynamic
solutions have started to appear only recently [1
The rendering complexity for these displays (espe
holographic ones) is also very high, and most pres
lutions are limited typically to simple scenes usin
shading models, most of the time demonstrated
dard rasterization pipelines (see table 1). Extend
displays to the photorealistic rendering of compl
is an open research challenge.

Dual-display setups are a very common solution
foveated rendering. Projection-based dual displa
emerged as a viable solution to achieving higher r
through projection on large screens. However, at
this solution is being employed more and more f
for near-eye displays, which use the technique to
a large resolution at the fovea with a wide FOV
213, 214].

6. Geometric simplification
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, 148], and even six layers [72] have been used.
stinct subsampling ratio also has been applied.

The second group of methods in our classification (Fig- 111

ure 5), instead of, or in addition to, reducing image res- 112
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strives to improve performance by adapting 3D
complexity. This approach is essential since the
complexity of detailed scenes heavily impacts
ing time. Model simplification, or level of detail
as among the earliest techniques used in con-
ith foveation. It is based on the observation
of the complexity in a realistic 3D model is
when rendering the model from a given per-

ince individual details may become too small to
ed [137]. Standard adaptive rendering technique
ity based on factors such as distance, size, veloc-
centricity [149], as well as semantics, and frame

Foveation techniques may be employed in isola-
conjunction with these other approaches. Nowa-
-tracked geometric simplifications are among the
ely used techniques to accelerate the rendering
9]. Table 4 provides an overview of the differ-
tric simplification techniques used in foveated

. In the following, we will summarize the vari-
sses of geometric simplification techniques and
general discussion of the state-of-the-art in this

based techniques

sed techniques typically use acceleration struc-
ich achieve a rendering time that depends log-
lly on scene complexity. For this reason, geo-
plification is typically used only on very large
d only a few studies explored ray-based meth-
ucing geometric complexity in conjunction with
especially in the case of dynamic gaze tracking.

ntative example is given by the work of Weier et
240], proposing a ROI-based geometric simplifi-
del for large high-resolution display. The focus
ected by tracing rays from the detected user po-
intersecting the central viewing cone with the

ince the display plane is seen at an angle, the
odel the focus area as an ellipse rather than a
lti-resolution rendering is implemented by using

nodes of a sparse voxel octree data structure [122]
imate representation, and the polygonal nodes of
al scene as a high-detail approximation. Due to
lty of rebuilding the sparse voxel octree on the
stem is tested only on static scenes. To indi-
ecide when to stop traversing, a metric based

stance of the ray to the central ellipse is used.
d transitions between levels are disturbing, the
the periphery is blurred with a Gaussian filter
ed width. Similar user position-based LOD is
in a rasterization pipeline by Scheel et al. [195]
iscussed in the next section. Other solutions,

roduce continuous images by continuously vary-
y density and geometric LODs as a function of
y. A representative example is given by the ap-
Murphy and Duchowski [163]. In their approach,

by a Contrast Sensitivity Function (CSF). Th
generates an intermediate mesh, which is then
fined to preserve silhouette edges and rendered
the original geometry. One notable finding from
is that the search time decreases with the fovea
size increment (up to 10◦ eccentricity).

6.2. Raster-based techniques
Raster-based techniques that adapt geometr

ity at each frame to meet performance con
the most classic approach for time-critical rend
Early approaches (e.g., [70, 149]), already us
functions based on eccentricity with respect
gaze point (typically the screen center) to de
level of detail. Use of the CSF for view-depend
nal simplification is also well established (e.g.,
The acuity fall-off models used in these early
later extended to dynamic gaze situations, in
with eye trackers.

In an early geometric simplification model d
Ohshima et al. [167], six different levels from
hierarchical geometric models are selected to
according to the Euclidean distance from the
dition, this model exploits HVS subdividing th
gions into central, peripheral, kinetic, and fu
It is interesting to note that, since discrete L
causes notable artifacts, the updating is post
ing saccade movements. While the method is d
eye-tracking, the presented results were only
tracking situation. Later approaches switched
ous LODs to provide a much finer adaptation
and reduce LOD switching artifacts. Luebke et
particular, used a multi-resolution mesh model
view-dependent-simplification to propose gaze-
ometric simplification technique based on cont
ing function and Kelly’s temporal contrast sens
tion [108]. Results demonstrate good quality i
only one-third of the total number of polygon
mark scenes. However, in their implementatio
contrast sensitivity is not considered. Murphy
also used a multi-resolution mesh representat
der objects in a gaze-contingent manner. This
by recursively subdividing triangles that are
the local resolution provided by an acuity-bas
depending on eccentricity with respect to the
This is the first study to use binocular eye tra
a head-mounted display. These general LOD
proaches were later applied, with minimal var
variety of different applications, including rend
els coming from 3D scanning [44] or large ter
In a visual search study using an eye tracker
top display, Parkhurst and Niebur [170] rende
at the point of gaze in more detail than ob
periphery. They found that, while search tim
with decreasing LODs beyond a critical thresh
sulting increase in frame rate facilitates virt
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geometry is sampled by ray casting, with a ray
n conforming to the angular frequency dictated

tion. Later studies found that contrast is a better pre- 112

dictor of the overall search performance and perceptibility 113
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4. List of different geometric simplification techniques; similar techniques have been clustered togeth

used References Static Dynamic Pip
Eye-
tracker

Gaze-
tracker

Ray-
based

lification Ohshima et al. [167] ◦ ◦ Head ◦
esh simplification Luebke et al. [137] ◦ • ◦ ◦
plification Luebke and Hallen [136] • ◦ ◦ ◦

mplification with Funkhouser and Sequin [70] • ◦ ◦ ◦

tail (LOD) Reddy [149, 184] • ◦ ◦ ◦
Murphy and Duchowski [162],
Parkhurst and Niebur [170]

◦ • ◦ ◦

Scheel et al. [195] ◦ ◦ Optic ◦
Bektas et al. [27] ◦ • Mouse ◦

) Ju and Park [103] ◦ ◦ Mouse ◦
essellation Papadopoulos and Kaufmann [168] ◦ ◦ Head ◦
essellation Lindeberg [131], Zheng et al. [262] ◦ • ◦ ◦
essellation Tiwary et al. [219] ◦ ◦ Mouse ◦
3D simplification Cheng [44] ◦ • ◦ ◦
el octree Weier et al. [241, 240] ◦ ◦ Optic •
ray mask Murphy et al. [163] ◦ • Head •
-tracker Optic = Optical-tracker

size, and, thus, variable resolution rendering
neficial if detail is added to low contrast re-
34]. LOD rendering is also used in conjunction
ventional displays. For instance, Ju and Park
ed levels of detail to speed-up the generation
generated holograms for AR applications on a
ographic display. The algorithm computes the
trum of individual meshes, aggregates them

plane, and then Fourier transforms them to
complex wave field of the entire scene. LODs
adapt the density of meshes so that they are
e fovea. Adapting the mesh density through
tion improves over the prior point-based ap-
85, 84, 100] that simply adapts point density,
nt areas between points.
main limitations of early LOD techniques was
ularity of LOD approaches and the limited
of continuous LOD solutions, which made

t to apply in the very time-constrained setting
endering. Several of the later methods started
account the evolution of GPUs by amortiz-
putation efforts on groups of primitives (e.g.,
es), rather than computing the required level-

the single triangle or point level [47, 75, 76].
proach, CPU utilization was minimized, and
could very quickly adapt the resolution even
g with massive scenes. This solution was
., for view-dependent rendering on a light-field

ernative to batching, several solutions have
loited GPU tessellation to achieve the fast

lation, in which in conjunction with the reductio
sellation levels our of the focus plane, there is an
of blurring with eccentricity. Importantly, the u
shows that pop-up artifacts significantly decrease
increase in blur level, suggesting that the techniq
used to hide the pop-up effect. An alternative solu
posed by Tiwary et al. [219], instead, is to perform
tions of tessellation levels only during saccadic mo
to adapt the mesh only at fixations. Swafford et
propose a method in which imperceptible tria
culled and then a tessellation shader parameter
the acuity fall-off model is applied. A similar
was also proposed by Zheng et al. [262]. Und
tiled LCDs, Papadopoulos and Kaufmann [168
acuity-driven 2D gigapixel imagery visualization
GPU-tessellation scheme for high-quality focus
text lens and virtual texture rendering. The te
level of the context area of the image and of the le
culated differently, taking into account both the p
the viewer with respect to the screen and the def
applied by the lens. The results indicate that
high-quality focus plus context lens significantly
visual artifacts while accurately capturing the u
lens function. Moreover, their parallel system sa
70% of the bandwidth and achieves frame rates o
compared to less than 2 fps for naive pre-tessella
does not take into account the user’s gaze.

6.3. Discussion
All systems dealing with complex scenes to be

within stringent real-time constraints must integr
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ime required by foveation applications. Linde-
or instance, introduced a depth of field tessel-

niques for filtering out as efficiently as possible the data 64

that is not contributing to a particular image. The goal is 65
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ndering complexity proportional to the bounded
le image size rather than to the potentially un-
cene size. View-dependent geometric simplifica-
een one of the major building blocks of real-time

this particular context [257]. In the context of
the general solutions are adapted to the partic-

itions in which these techniques must operate.
all, several approaches include the definition of
etrics that drive simplification refinement based

tual measures specific to foveation. Currently, no
roach has emerged as a de-facto standard, and

s range from using just pre-determined simplifi-
els at the center or the periphery (e.g., [241]) to
apting sampling rates based on perceptual func-

[137, 163, 168]). Many of the methods adapt
tions to display-specific situations.

while typical adaptive rendering solutions
d smoothly vary tessellation as a function, e.g.,
e to the viewer, foveated solutions tend to be
hen simplification is applied in a much more
way, with a sharp decrease in details outside

us area. The low level of detail in the periph-
ver, is prone to introduce visible flickering ar-
or these reasons, geometric simplification tech-
seldom used alone, but are often combined with
pace technique that blurs the low-detail areas
, 240, 131]).
knowledge of gaze provided by high-frequency

precision trackers can be exploited to schedule
ions and adaptation during the saccade and/or
eriods, with the purpose of reducing costs and
visual fidelity (e.g., [167, 219]).

ng simplification and chromatic degrada-

he previously discussed classes achieve optimiza-
ducing the number of rendered pixels or geomet-
ives, the third group of techniques in our clas-
(Figure 5) achieves optimization by adaptively
the work or data required per pixel. We dedi-
r simplification (Sec. 7.1), and chromatic degra-

ec. 7.2) under one single category, because the
sued in these categories have the common goal

sing the computation load of computing a photo-
epresentation. However, while shader simplifica-
es the computational load of color computation,
degradation takes into account variable color

, e.g., to reduce bandwidth or complexity of tone

ollowing subsections, we first present an analysis
iterature on different shading simplification mod-
7.1), and then investigate different techniques
for chromatic degradation (Sec. 7.2).

ing simplification

pixel may consume a significant proportion
ing resources, even for geometrically simple sc
cent years, several real-time graphics solution
employed for reducing rendering loads throu
duction of shader costs. A notable example
Rate Shading (VRS), introduced in DirectX
pipeline [205]. In foveated rendering, shader
tion optimizes the rendering time by using h
racy, but slower, methods in the focus area and
but faster, ones in the periphery. The techniq
coarse shaders, multi-rate shaders, lighting, an
simplification. In this section, we provide an
the literature in this area.

7.1.1. Methods
In the context of shading simplification, th

sharp difference between ray-based and raster-
niques, since most works use hybrid approache
common configuration consists in ray-based s
cuting within a raster-based pipeline.

The fact that shaders can be used to natura
general gaze-contingent stimuli was recognize
In particular, Duchowski and Coltekin [60] de
first gaze-dependent fragment shader in which
uli, such as color and luminance values were d
the periphery. This approach was designed, h
foveation simulation, and not for optimizatio
used in a variety of applications. For instan
space-variant visualization framework, Bektas
implement the degraded quality using pixel sh
language). This gaze-contingent display also
the level of detail (LOD) using a weighted Eu
tance between any pixel and the gaze point in

Later, shader techniques were also employe
workload in addition to simulating foveation eff
shader simplification works well when the h
shader must do complex computations, the tech
ten applied when using global illumination mo
must perform integration to aggregate realistic
formation. Moreover, due to the inherent real
tation features, these methods adapt well to dy
tracking.

For instance, global illumination with the
clusion shader model improves photorealism th
owing the ambient light of nearby objects. M
Janus [144] propose a gaze-dependent hybri
which the ROIs are rendered with ambient occ
a number of ambient occlusion sampling ra
ing with eccentricity, and areas outside the R
cal Phong shading. On the presented bench
method achieved a performance boost up to 2
best-case scenario, and on average 140.07% wi
tively affecting user performance. The approa
extended by the same authors to gaze-depend
space ambient occlusion (SSAO) [143]. In the i
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nced photorealistic rendering, as well as in il-
rendering, computing the final color of each

tion, ROIs have 32 samples per pixel, while the sampling 110

rate is gradually decreased with higher eccentricity accord- 111
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5. List of different shading simplification techniques; similar techniques have been clustered togethe

used References Static Dynamic Pip
Eye-
tracker

Gaze-
tracker

Ray-
based

ngent occlusion Mantiuk and Janus [144] ◦ • ◦ ◦
ce ambient occlu- Mantiuk [143] ◦ • ◦ ◦

el shader Vaidyanathan et al. [225], He et al.
[82], Xiao et al. [248]

◦ ◦ Virt. ◦

el shader Patney et al. [173, 172] ◦ • ◦ ◦
shader Stengel et al. [203] ◦ • ◦ ◦
r degradation Duchowski et al. [60] ◦ • Mouse ◦

ngent pixel shader Bektas et al. [27] ◦ • ◦ ◦
al camera

SF.
the number of samples has then been gener-
trol variable shading rates (VRS) in a GPU

their seminal study, Vaidyanathan et al. [225]
he first coarse pixel shader (CPS), derived
ample anti-aliasing (MSAA) [5]. Generally,
a fixed number of visible samples; however, the
predefined varied shading samples across the
result, the number of shading computations
d quads saved is about 50% than Guenter et
ilarly, Patney et al. [173] apply variable-rate
ifferent resolutions which enable coarse render-
eccentricity. In addition to shading reduction,
or each 4 × 4 pixel-block, blur mask, contrast
t, and temporal anti-aliasing (TAA) is used to
pheral visual artifacts. As an improvement,
h decreases the shading rate by up to 70% in
to Guenter et al. [80]. Furthermore, Patney et
onstrate a set of perceptual-based methods to
ersion experience and alleviate the computa-

n of VR using 8× MSAA to ensure temporal
oveated rendering. He et al. [82] demonstrated
ipeline mechanisms present in programmable

are used in conjunction with adaptive shad-
es that select whether to use 2 × 2 coarse or
ts for shading can reduce the cost of shading
ring by at least a factor of two in most bench-
e complex pipeline scheduling enables using
fragments (up to 4 × 4 groups of pixels, re-

ing costs, on average, to more than three and
p to a factor of five. Nowadays, VRS [205] is
are-implemented solution available in graph-

. For instance, the Turing architecture from
bines VRS [205] with adaptive resolutions

-up rendering. This approach can be exploited
endering by decreasing the shading rate in the
rough perceptually guided measures [82].
e decoupled sampling techniques, such as
shading, is that they reduce costs by lowering

This is a major advantage with respect to sever
sparse visibility sampling methods of Sec. 5 or
metric simplification techniques of Sec. 6. Howev
texture details can produce visible blocking arti
temporal jittering in the periphery. For this reas
et al. [248] propose to combine coarse shading
supersampling, i.e., jittering frames and combin
ples from multiple frames together. While not
applied to foveation, this method is at the bas
eral spatio-temporal techniques (Sec. 8). Sten
[203] generalized the concept of multirate shadi
corporating shading rate adaptation in a flexible
ferred rasterization. In their approach, several p
of the sampling scene are accumulated in buffe
the geometry pass. These include, in addition to
depth, normal, and material information, also vel
semantic information. A perceptual pass combine
ity falloff function with several other hints, suc
motion, texture adaptation, silhouette, eye adap
luminance, to produce a sampling probability m
which a sparse sampling pattern is generated.
tern is stored in the depth buffer, and early-dept
to stop processing unselected fragments. The fin
are produced by applying an inpainting process.
proach is very general and has been shown to dec
number of shaded fragments by 50%-80% in co
to the prior works (e.g., [225, 82, 80]).

7.1.2. Discussion
Shader simplification is an extremely effective t

to reduce the overall cost of rendering on high-r
displays since the pixel shader is often the domina
Modern shader simplification performs coarse ren
the periphery with either stochastic sampling and
ing [203], or reduced shading rate [82] followed by
filtering [173, 172]. The implementation of gaze-d
shader optimization has been simplified with t
duction of CPS and VRS as common features in
GPUs, such as NVIDIA Turing and Intel Gen 11
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rate while resolving visibility at the full res-
eby preserving details along geometric edges.

tures. Specialized solutions need; however, to be devised 80

to aggressively apply CPS in a foveation setting. First, 81
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is unmatched with the visible samples, jittering
ring are frequently generated in the overly sim-
a at the periphery of foveated renderings. These
rtifacts are known to be visible and require the
n of strong temporal-anti-aliasing methods. Sec-
endered scene has lower shading quality in the
d regions, especially as it is more visible during
n or dynamic shading.

matic degradation
atic (luminance) spatial acuity in the HVS is
be better than chromatic spatial acuity [161].
image codecs have exploited this fact by sepa-

nals into luma and chroma components and re-
e amount of color information in a signal in fa-
inance data [246]. Color sensitivity also rapidly
in the peripheral region like any other type of
uli. It is thus possible to perform chromatic

on in the non-focal areas without negatively af-
e perceptual quality of the images. This process
ploited to, e.g., to perform gaze-dependent tone
r reduce the required bandwidth for the storage

mission of images, especially high dynamic range

tion comprises different techniques developed for
degradation in the periphery. Table 6 lists sev-

iques used for chromatic degradation.

thods
hading simplification, there is not a sharp differ-
een ray-based and raster-based techniques, since
degradation happens at the level of color com-

works in these areas are centered around user
find the tolerable color degradation in the pe-
Among other techniques, Zhang et al. [259]
peripheral color tolerance model based on the

color difference formula. In this technique, the
chromatic discrimination models at parafovea

hery are stored in a look-up table for future use.
i et al. [59] develop color degradation maps by
each pixel’s gray value to its corresponding con-
. Apart from the original resolution degradation
atson et al. [235] also use chromaticity degra-
applying grayscale in the periphery. Bektas et
ply modified color degradation mask developed
wski et al. [59], and integrate it in a general
ndent framework for testing user performance on
lysis tasks.
of the earlier studies on chromatic degradation,
t al. [194] investigate color zone map, in which
has three primary colors, and unique hue compo-
correspond to temporal, upper nasal, and lower
in the visual field. One most striking finding is
eccentricity, the hue changes and saturation of

e components decreases. Likewise, the hue reso-

Hua [132] design spatial CSF-based chromat
mask, and hue resolution foveation metric. In
this method has been shown to save bandwidt
in image transmission.

When dealing with colors, it is important t
tone mapping has to be used used for reprod
dynamic range (HDR) colors coming out of th
pipeline to the color gamut of the display. K
gaze information has been shown to be impor
prove this process. As noted in Sec. 3.8, the HV
slowly adapting to a target luminance measure
of approximately 1 degree around the gaze dir
gaze is; however, not static, but follows saccad
Mikami et al. [157] introduced a gaze-depende
based on a parameterization of Reinhard’s p
operator. They measure the local adaptation
by examining ROIs of 2◦, 4◦, and 10◦ around
angles, and take as the final adaptation lumina
arithmic average from the original compressio
Experimental results demonstrated, however,
sults are very scene-dependent [252].

Mantiuk and Markowski [146] generalized t
by proposing a gaze-dependent global tone m
HDR images. In their approach, for every pix
put HDR image, which may be the output o
rendering process, a map of the background
luminance is computed. This is done in a G
that analyzes a one-degree area around each p
fines the local adaptation luminance to the m
quantized luminance value in that area. This w
only when the rendered image changes. At each
gaze direction is captured, filtered, and used
the temporary adaptation luminance, which co
fetched background adaptation luminance wit
ous temporary adaptation luminance using a
tial function. The model describes adaptati
e.g., when the observer moves his gaze from
to bright areas of the display. This adaptation
is then used to compute the tone compression
compress the HDR image. The work was later
videos [142]. In this latter work, to avoid the ar
lar Modulation Transfer Function [52] in linear
and two Gaussian pooling filters in the nonlin
have been applied. Similarly, in a user study
et al. [152] gradually degrade color using to
to see the color discrimination effect in the pe
though this method improves color discriminat
eye-tracking frequency may generate flickering

7.2.2. Discussion
While early methods, and many current w

color degradation in the context of psychophys
more recent work has started to exploit it fo
tion purposes. The first area of interest is ba
duction (e.g., [132]), which takes into accoun
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can be defined by the total number of gray lev-
each RGB channel. Correspondingly, Liu and

compression models can use gaze-dependent color sensi- 111

tivity information to optimally allocate bitrates across a 112
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6. List of different chromatic degradation techniques; similar techniques have been clustered togeth

used References Static Dynamic Pip
Eye-
tracker

Gaze-
tracker

Ray-
based

one mapping Mikami et al. [157], Yamauchi et
al. [252], Mauderer et al. [152], Man-
tiuk [146, 142]

◦ • ◦ ◦

mapping Duchowski et al. [59] ◦ • ◦ ◦
mapping Sakurai et al. [194] • ◦ ◦ ◦
ance model Zhang et al. [259] ◦ • ◦ ◦
increment Watson et al. [235] ◦ ◦ Mouse ◦
n color mask Bektas et al. [27] ◦ • Mouse ◦
omatic mask Liu and Hua [132] • ◦ ◦ ◦

e. The second area of interest emerging is tone
ich, in the most general case, must definitely
endent. While research has mostly targeted
endent presentation of HDR content (e.g.,
2]), such information can also be exploited to
ive computation by combining it with shader
n (see Sec. 7.1).

emporal deterioration

and fourth group of techniques in our classifi-
re 5) strives to improve performance by adapt-
sh rate of pixels across the image, eventually
mation from previous frames for the less im-
ls.
poral deterioration is a feature found in many

ulti-rate, and multipass rendering algorithms,
to amortize rendering costs over multiple

foveated rendering, these techniques need to
pdated, as they need to take into account the
sitivity in the foveal region, in the periphery,

s

coherence strives to reuse the intermediate or
tion computed during the course of one frame

the rendering of the following frames. As such,
nts the previously seen approaches, that fo-
ving the performance of individual rendering

ually by lowering the accuracy at which one
puted. This general approach dates from the

f graphics [208], and has led to a wide variety
s [196].

rendering has also used spatio-temporal dete-
proaches since its early days as a component

eworks. Dorr et al. [56] were among the first
gaze-contingent system capable of modulat-

o-temporal contents of a high-resolution real-
ut adapting the spatial multiresolution pyra-

methods (e.g., [80, 63]) applied a combination o
compensated temporal reprojection [79] and tem
ter on a spatial sampling grid [49] to decrease fra
by recomputing a smaller number of pixel per
the periphery (Sec. 5.4). Since then, a wide v
foveated spatio-temporal solutions were integrate
ray-casting and rasterization pipelines.

Several approaches adapt classic optimizatio
as amortized supersampling [254, 248] an rep
caches [165]. Weier et al. [243] presented a fovea
time ray tracer combined foveated rendering bas
namic eye tracking with reprojection rendering u
vious frames to drastically reduce the number of
age samples per frame. A smooth image is the
ated by combining these sparse samples with dat
from previous frames. First, a coarse depth mesh
structed from the previous frame samples, and a c
age is rendered from the current frame perspecti
the parts of the image that are considered not
to occlusions/disocclusions/missing data or poor
tions are identified. This is done by detecting i
a depth or luminance difference between a curren
pixel and its direct neighborhood in the reproject
that is larger than a user-defined threshold or if
is on a silhouette edge. Finally, the high-resoluti
is generated, reusing reprojected pixels from the
frame whenever possible, and recomputing inva
by ray-tracing. Reflections and refractions are re
well handled if present in small areas of the ima
those pixels are likely to be recomputed. Movin
however, tend to drastically degrade performanc

Franke et al. [65] used similar approaches in
ization pipeline. Since in rasterization redrawi
pixels cannot be done efficiently, their focus is to d
proaches to reduce expensive redrawing operatio
out visible impact on image quality. In their a
the last frame’s color and world position image
projected into the current frame and hole-filled
push-pull filter [203]. A confidence map is then
by combining an eccentricity confidence factor,
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ous approaches [72, 174] to a temporal pyra-
ver, several early peripheral pixel reduction

the falloff in the eye’s visual acuity with two factors that 79

measure the confidence in hole-filling result. The first fac- 80
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Table 7. List of different spatio-temporal techniques; similar techniques have been clustered togethe

hm used References Static Dynamic P
Eye-
tracker

Gaze-
tracker

Ray
base

l raytracing Weier et al. [243] ◦ • ◦ •
l pyramid Dorr et al. [56] ◦ • ◦ ◦
rped rendering Linus et al. [65] ◦ • ◦ ◦
mporal filtering Jiang et al. [97] ◦ • ◦ ◦
l supersampling Xiao et al. [248] ◦ • ◦ ◦

rsely proportional to contrast, while the second
y proportional to the hole size. Moving objects
ed by lowering confidence of pixels where object
detected. All pixels whose confidence is below a
shold are then redrawn. This is done by redraw-
ene, culling out objects that are totally covered
nfidence pixels. Before displaying the final im-
A and motion smoothing pass is applied. The
roves very efficient, but is less capable to handle
ncy and reflection than the fine-grained raytrac-
ch [243], while still being incapable to efficiently
oving lights.

ssion

the main problems in adopting temporal degra-
thods is that, unlike the spatial resolution as a
f eccentricity, the peripheral temporal charac-
f the HVS are still not totally understood [56].
es it difficult to have reliable models that pre-
ffect of spatio-temporal degradation. Recently,
he et al. [120] proposed the first experimentally
mprehensive model for spatio-temporal aspects
etina under conditions close to VR applications.
sting to note that temporal sensitivity has been
to peak in the periphery, somewhere between
eccentricity [224, 120]. This means that foveated
solutions cannot limit themselves to just focus

ing high-quality rendering for the fovea, spend-
tle resources as possible in the periphery, but
o combat peripheral flickering. While those ef-
be significantly amortized by spatiotemporal fil-
, 63, 248, 97], these solutions are only partial,
nd to overly reduce local contrast. Loss of con-
large area of the periphery region can result in
ion artifacts [39]. For this reason, other authors
, with variable success, to produce flicker-control
hat strive to preserve contrast [173, 97]. An im-
onsideration to make is that the sensitivity to
artifacts also depends on fixation types. Weier
], for instance, noted that fewer visual artifacts
ced when users concentrated their attention on

9. Applications

Foveated rendering may be viewed as a g
mization technique, which could be applied
case in which interactive images are present
ers. Nonetheless, in the past years, foveation h
plied more extensively in a few selected areas t
broadly classified into visualization (Sec. 9.1
sion (Sec. 9.2), and transmission (Sec. 9.3). C
and transmission are included here as they off
technology for remote rendering and collabor
for maximum efficiency, end-to-end systems req
ful integration of all components. Table 8 dis
surveyed literature among these selected areas

9.1. Foveated visualization

In this application class, we broadly classi
tions in which the main application of foveat
sualize data, either to improve application per
to display some effects to emulate particular v
ditions.

9.1.1. Immersive visualization
According to Cuervo et al. [51], three par

essential for a truly immersive virtual experi
ity, responsiveness, and mobility. The quality
natural and real-world visual experience, res
represents rapid visual feedback to motion, a
allows moving untethered in physical space.
[169] also suggest that a display requires high
without screen door effects, wide FOV, high
without motion artifact, and minimum tolera
for an immersive experience. Similarly, Fujita
[69] report fast, low-latency, smooth, and reali
ing methods are crucial for immersion. Weier
support this statement by exploring the neces
frame rate, and low latency.

The higher demand on pixel density alon
stereo display increases the complexity of th
rendering process, making foveated rendering v
ing. With the emergence of robust eye-track
low individual vision, immersive VR has now b
ered the main application domain of foveated
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target, a fact that could be exploited in future
ther considerations are presented in Sec. 10.1.

Seminal foveated rendering research for immersive expe- 83

rience are based on adaptive sampling [80, 243, 69, 156], 84
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erent application domains of foveated rendering, most of the research engage in rendering and visu
and transmission are included as they offer enabling technology for remote rendering and collabora
efficiency, end-to-end systems require a careful integration of all components.

visualization Application in visualization (Sec. 9.1) Foveated
compression
(Sec. 9.2)

Foveated trans
(Sec. 9.3)

resolution (Sec.
5)

[127, 235, 174, 24, 23, 227, 77, 176, 3, 34, 78,
199, 260, 80, 63, 69, 201, 177, 27, 28, 209, 179,
180, 243, 85, 139, 123, 115, 116, 242, 156, 213,
100, 84, 226, 148, 214, 103, 169, 238, 68, 154,
36, 223, 110, 200, 117, 155, 247, 10, 256, 140,
253, 18, 175]

[72, 42, 198,
90, 106, 255]

[72, 258, 2, 15
138, 51, 92, 9
109, 156, 154, 1
211, 155, 94, 12

c simplification
ec. 6)

[70, 167, 149, 137, 137, 136, 162, 184, 44, 170,
236, 163, 168, 241, 240, 195, 131, 262, 219]

[168, 195]

simplification
chromatic
tion (Sec. 7)

[164, 60, 144, 225, 82, 27, 192, 173, 172, 143,
248] [235, 194, 59, 145, 69, 27, 259, 152, 142]

[132] [203]

o-temporal
ation (Sec. 8)

[80, 63, 56, 243, 248, 97, 65]

shading [225, 82, 173, 172], rolling rasteriza-
d contrast aware foveation [223]. Due to pe-
adation, immersion is not free from flickering,
anti-aliasing algorithm is required. There is

nside of conventional VR displays. Because of
ce, the vergence and accommodation conflict
eated window from acquiring accurate depth
However, the modern near-eye displays, e.g.,
varifocal, and light field can overcome this

hich will increase the level of immersion, but
computation. In a recent review on near-eye
display, Chang et al. [45] concisely explore the
of foveated rendering in holographic displays.
o the authors, foveated rendering is possible
multiple display panels or on rendering tech-
potential rendering approaches can be point
0], polygon mesh [103] and multi-plane mod-
123]. Besides, Chang et al. [41] recommend
two approaches rely on complicated geometry
r graphics processing. Nonetheless, the multi-
is much simpler and more efficient, in which
is rendered as multiple planar 2D images.

etric visualization
c data visualization has become more common
e to the advances in 3D data acquisition and
ulations on modern displays with an interac-
te. Due to the enormous complexity of semi-
volume rendering, which requires the compu-
egrals per pixel, maintaining interactive per-
very hard, and much research has focused on
ific optimization techniques [19, 32]. In this
eation promises to be extremely effective, as

they need to be computed. For this reason, many
tions have been studied. Among the various out
foveated volumetric rendering methods it is imp
mention applications to importance-driven med
visualization [227], arbitrary geometric object
tion [163], large scale geometric dataset interact
general volume data visualization [36], depth peeli
data visualization [260], and large scale scientific
sualization [10]. Foveated volumetric approaches
been introduced over 15 years ago in the context
visualization (e.g., [258, 176]).

9.1.3. Large-scale visualization
Many important application domains, inclu

scanning, computer-aided design, and numerica
tion, require the interactive inspection of extrem
sive models. Despite the continuing and rapid
ment in GPU hardware performance, the interac
dering of these models using brute force techniq
tinues largely overloading state-of-the-art hardw
forms. For this reason, researchers have devised
of adaptive techniques for rendering approximate
tations, filtering out as efficiently as possible the
is not contributing to a particular image [257]. F
promises to be extremely effective in this cont
this reason, foveation was used very early on for
of massive-model rendering use cases in a variet
figurations. These include foveated terrain rend
very large high-resolution displays [184, 195], visu
of voxel data on tiled displays [241, 240, 192], fo
context visualization and large image data visu
on multi-projector systems [3, 27, 26], projectio
of cultural heritage artifacts [77, 78], as well as inf
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ically reduce both the number of pixels for
pute these integrals and the quality at which

visualization on large high-resolution displays [13] visual- 67

ize large scale information. 68
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ion defection mapping
ys, a large population suffers from vision de-
myopia, hyperopia, glaucoma, presbyopia, and
m. Therefore, considering the space-variant vi-
cteristics, an accurate simulation of an individ-
l field can educate students, patients, and family
about the perceptual defects. Foveated render-
ds are the basic enabling technology for this ap-
use-case. Perry and Geisler [174, 73] design a
lution pyramid based vision simulation frame-
can visualize the resolution map of a glaucoma

n the same way, Labhishetty et al. [121] inves-
ommodation conflict on myopia patients. Inter-
his study suggests that, unlike fovea and peri-
parafovea to higher eccentricity is affected by

ince rendering the resolution of non-foveal simu-
affect user accommodation, the authors suggest

g foveated rendering algorithms for such medi-
ions. Fridman et al. [66] simulate observer vi-
gaze point. Likewise, Deza et al. [55] visualize
metameric image using foveation. Correspond-
sky [21] demonstrate computer-generated images
porate the characteristics of an individual’s en-
al system based on the optical wavefront aber-

easured using a Shack-Hartmann aberrometer.
is study can also be used for efficient interface
ability, safety, and behavioral evaluation. Re-
and Kim [247] develop an AR display in which
image combiner allows embedding prescribed

ovide vision-corrected augmented object with an
e-through display.

view systems
algorithms are too slow to fully produce full-
rge FOV images at an interactive rate. Pro-

endering has been employed for decades in this
to quickly provide coarse approximations to the
a very short time [74]. Foveated rendering can
neficial in this area, by concentrating image im-

ts on areas that are currently viewed by the user.
t al. [115] use the first approach developing a
ted guided preview with the quadratic denomi-
al acuity model. In this algorithm, more rays are
around the ROIs using unidirectional path trac-
rprisingly, this foveated preview system performs
faster than the conventional uniform sampling

whole 360◦ image area, with little degradation
ct to uniform refinement [116].

ted compression
al situations, rendering applications must work
buted setting. In that case, reducing the band-
ransmitted rendering images is particularly im-
Foveation has been demonstrated to improve

on by considering gaze in bit allocation methods.

few representatives of foveated compression
Sheikh et al. [198] developed gaze-contingent
tering on standard video compression algorit
and MPEG4). Likewise, Wilson and Jeffrey [7
a multi-resolution image compression for low
communication. It has, however, been noted t
erable savings are obtained only by aggressive
the quality outside the ROI, which can cause
artifacts in the periphery. More conservative a
resolve these problems but provide only mod
with respect to non-foveated compression [172
less, Frieß et al. [67] have successfully used th
by proposing different parameterized macrob
on an H.264 encoder, considering an acuity fall-
approach, the hardware encoder and foveate
have been merged to enable high-quality scr
between two displays over a standard Ethernet
(100-400 Mbps) for supporting remote collabo
alization on large high-resolution displays with
44 megapixels. Recently, it has been demons
the quality limitation problems of standard tr
coders may be overcome by deep learning app
which deep networks are trained to reconstruc
areas from very sparse samples [106]. These
extremely promising, especially in the context
360◦ video formats [255]. As hardware-accel
time video codecs integrated with GPUs have n
an essential enabling technology for many real-
ics applications running over the network, e.g.,
ing [197], it is expected that future foveated co
be of even larger importance in VR settings [94
imum benefits, it is important to integrate c
solutions with renderers, so as to avoid spend
pixels on which few bits will be allocated.

9.3. Foveated transmission

Foveated transmission attempts to conserve
by sending only detailed information in the RO
ering it to the periphery. Video transmissio
most of the bandwidth over the internet. For
2019, 72% of the total mobile data traffic ha
for video transmission [138]. For this reason, m
work concerning foveation has concentrated
ing general video transport for streaming ser
In this context, notable video transmission m
signed to concentrated effort on the fovea an
in the periphery are gaze-dependent multimed
sion [138], log-polar transformation [156, 154
rectilinear [128] transformation, gaze crop filte
likelihood-based foveation [51]. A notable resu
presented by Kim et al. [109], who develop
foveated video player based on MPEG Dyna
tive Streaming (DASH) over HTTP and Spati
ship Description for high definition 360◦ video
In this approach, the scene is first subdivided
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98, Geisler et al. [72] were among the first to ad-
eation for lossy video compression. Among the

ent regions. After the decoding of the regions, bit-stream 110

stitching and 3D texture mapping are applied. Finally, a 111
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ion rendering is used where the center view-
ered with full resolution, four sides with 1/2,
with 1/4 of the resolution. However, while the

that frame rates can be improved by 10%-
s no solid evidence to back up this assertion.
ndon et al. [189] designed a client-server sys-
n bilayer resolution and MPEG-DASH prin-
reams only high-resolution 360◦ videos over
e implementation, generating a one-second-

t of 30 frames, server delay is approximately
segment, or ca. 23 ms per frame, closer to
ency.
imizing end-to-end latency and maximizing
ency and image quality is essential for VR.
ted transmission is also becoming a basic
ote and collaborative interactive applications,
e a very close cooperation between rendering
ssion components.
visualization, there are two techniques possi-
ocal and render remote [30]. For the first ap-
entire data volume is sent to the client device

which requires high bandwidth. Aside from
the requisite computation power is mostly un-

many low-end devices (e.g., tablets, smart-
he second technique where data can be ren-
server and then sent to the low-end devices, is
in that case. With an additional gaze-tracker,
ering has opened a whole new application do-
eated cloud gaming, that allows playing high-

n low-end devices, where low system latency is
92, 93, 46]. Illahi et al. [94] recently demon-
using a parameterized Foveated Video En-

eal-time interaction in cloud gaming reduced
p to 10%.
foveated rendering, large-scale collaborative
zation in a remote server has been demon-
standard bandwidth [258, 67]. In this context,
s and Kaufman [168] designed a 1.5 gigapix-
e display that can visualize both 360◦ videos
cientific data set over an internet browser. In

transmission, Syawaludin et al. [211] develop
ra setup for 360◦ video-based remote interac-

the two cameras, one is a pan-tilt-zoom cam-
ther is an omnidirectional camera but with

me rate.
has also been applied for the interactive cap-
nsmission of volumetric videos taking into ac-
l 3D display characteristics. In particular, the
ing and transmission load for light field dis-
an exceedingly large bandwidth and compu-

rces. Adhikarla et al. [2] developed the first
ata compression algorithm for a telepresence
n a large-scale light field display. The method
count display geometry and viewer positioning
g unused parts of the images from a camera

whole data stream without introducing temporal
artifacts. The approach was later extended to pe
targeting to different light field displays through
depth range compression [113]. As the method ge
depth map, it can be used to combine both synth
and captured video. Thumuluri and Sharma [2
designed a light field data reconstruction techn
claims faster data transmission.

10. Discussion

Foveated rendering has witnessed substantial
in the past decades, growing from early metho
mainly at psycho-physical testings or proof-of-con
derers to a variety of solutions for optimizing the r
process in a variety of very demanding settings. M
many of the proposed technical solutions have b
in a wide variety of realistic applications.

Our survey has provided an integrative view
wide array of methods, highlighting the strengths
itations that currently exist in the field. On the
this analysis, we provide a view of open problems
rent and future works.

10.1. Improving current foveated rendering techn
Foveated rendering is a potentially a very effe

proach to jointly optimize rendering fidelity, fra
compression, transmission, and power consum
adaptively varying peripheral image quality. M
niques have been proposed in the past, that
classified into four main peripheral degradation c
(Sec. 5-8). While the survey clearly demonstrates
vances in each of these categories, various bottlen
exist, leaving large space for further research. Th
in particular, to the fact that, in most situations,
provides significant benefits especially when the f
is maintained as small as possible, and very aggre
plifications are applied. Under these conditions,
best available techniques are prone to introduce v
tifacts on non-trivial scenes.

Spatial artifacts due to insufficient density of
images are an obvious outcome of foveated rend
proaches, especially on several display kinds th
to offer a wide FOV coverage. For instance, m
ing high pixel density is crucial for minimizing s
visual artifacts, especially for near-eye displays.
stance, it is now common to combine two disp
with high pixel density and another with low p
sity a near-eye AR display that reduces both p
and screen door effect (e.g., [213]). However, un
moderate degrees of foveation, the low-pixel de
plays in the periphery often suffer from staircase
and motion aliasing (flickering). In addition, ma
spatial artifacts may arise from the individual te
employed to reduce rendering complexity. For
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acquisition site before transmission. For a
otage, this compression used only 20% of the

spatial edges are often visible in between layers created 110

by the foveation [72], pupil swim effects may be the result 111
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ues that decompose a 3D scene into 2D layers
23] and haloing and occlusion/disocclusion prob-
arise from adaptive sampling approaches [144].
temporal artifacts remain among the most com-

lems arising in foveated rendering, independently
eripheral degradation technique employed. This
the HVS is particularly vulnerable to tempo-

ility. In fact, peripheral vision is particularly
o contrast changes and movements as the rods
concentrated at the periphery (maximum den-

out 17◦ of the viewing direction) [65]. Periph-
, like the fovea, is also essential for intuitively
the surroundings and reacting to changes and

. Moreover, when motion starts, for instance:
tion, eye movement, or animation, any visible
ects (e.g., a lower spatial resolution) can create
e temporal artifacts, a.k.a., flickering. Surpris-
peripheral vision is more flicker sensitivity than
oscopic depth perception [224, 8]. For this rea-
ring is possibly the most common visual artifact
d rendering that often breaks the seamless vi-
rience. A wide number of solutions have been
to combat these problems, including blur map-
06, 150], depth of field filters [242, 91], temporal
filters [36], phase-aligned rendering [25, 222], as

play designs that strive to eliminate illumination
[68]. All these solutions, though effective, have
and cons. For instance, blur also diminishes

contrast [22, 106, 150]. This contrast reduction
to further visual artifacts, such as screen-door
-up effect, spatial-edge artifacts, temporal alias-

ring), and pupil swim effect [172, 97]. Moreover,
filters are also prone to contrast reduction and
o combine with many of the adaptive rendering
s [118, 36, 155, 97].

loiting machine learning for foveated rendering

t foveation techniques must quickly determine
point with the minimum latency and exploit it
present a suitable approximation. This requires

advances in tracking and display hardware but
ces in models for predicting eye motion to reduce

nd for determining image approximations that
e best quality within the available resource bud-

le many first-principle solutions have been pro-
h various degrees of success (see Sec. 5-8)), one
erging research directions is to learn these mod-
xamples (see Table 9). Replacing or augmenting
ith an accurate gaze prediction model can reduce
puting complexity and latency (see Section 3.5).
in this area is only starting. For instance, Lemley
] attempted to predict eye-motion through CNN
res trained on the PoG dataset [153], and later
the approach using use an appearance-based CNN
6] on MPII-Gaze dataset [261]. Arabadzhiyska

experiments prove that the user-specific mod
better saccade landing prediction than the gene
model, highlighting the difficulty of devising
proaches. Similarly, Mohammed and Staadt
gaze-movements on a 4×6 multi-LCD high-res
play with two reinforcement learning models, t
testing them on the Microsoft Salient Object d
and York University Eye Fixation dataset [35]
proaches show the interests of the approach, bu
light that current solutions are not robust to u
and display-specific.

Learning techniques are also starting to de
also in the area of rendering. In particular, Fri
[66] developed the first Foveated Generative N
an online tool, SideEye for peripheral vision
and Deza and Jonnalagadda [55] proposed an
learning-based framework to construct visua
NeuroFovea in real-time. Moreover, Kaplanyan
explored the usage of generative adversarial
works to reconstruct a plausible peripheral v
small fraction of pixels provided every frame. T
fast enough to drive gaze-contingent head-m
plays in real-time on modern hardware, is sho
to produce visual experiences with no noticea
degradation using only 10% of the pixels. Lik
muluri and Sharma [217] designed generative
neural networks for light-field reconstruction, a
times less light field data than the existing stat
work.

These early results show that the use of ma
ing to improve foveated rendering is a promis
not a fully explored research domain. Matt
[150] suggest that, in general, multi-rate sha
restricted to foveation and can be robustly im
using a neural network model. However, amon
ing research challenges is the relative shortfall
databases, which are not easy to synthesize.

10.3. Supporting multiple users

Foveated rendering is a view-dependent ren
mization technique, and foveated algorithms a
designed for single-view only. The near-eye
mounted displays are the most convenient for
However, in several situations, multiple users
taneously watch a display, and single-user tec
not directly applicable.

Regular small-sized displays makes it very
take advantage of multiview foveation, since
multiple users, much of the area of the display
focus. Even for large high-resolution displays,
most of the time confined to the presenter’s
241, 240], and per-user foveation is still rare
increase in size and resolution of display sur
combined with touch interfaces, and the need
and co-located collaboration makes multi-user
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4] present another end-to-end amplitude-based
fic saccade prediction model; however, two user

very appealing alternative [67], and can be identified as a 111

very interesting area for future research. 112
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9. Notable foveated machine learning approaches, relevant platforms, applications, and used databa

Platform Applications Technique Database

R/VR Gaze prediction Generative adversarial
networks PoG dataset [153]

R/VR Gaze prediction CNN MPII-Gaze dataset [261]
HRD User gaze model MaxEntropyIRL, FIRL MS Salient Object [133], Yor

versity Eye Fixation dataset

esktop Saccade landing pre-
diction

Parameterize amplitude
model In-house dataset

R/Desktop Video reconstruction Generative adversarial-
NN YouTube-8M [1]

ight field
isplay

Foveated reconstruc-
tion and view synthesis

Convolutional Neural Net-
work DeepFocus [249]

esktop Object detection HOG feature, latent-
SVM-like framework PASCAL VOC 2007 [62]

esktop Peripheral vision simu-
lator generative-NN Places dataset [263]

esktop Visual metamers simu-
lation Deep learning In-house dataset

ntional displays, which typically require much
el, are also offering important research oppor-
instance, a light field display allows multiple

ch a single scene from different perspectives,
d by Spjuit et al. [102], efficient multi-user

essential to avoid the computation of the very
r of rays not directed towards a viewer. De-
lable and efficient techniques in these cases re-
erable research and engineering efforts, com-

se multi-user tracking with scalable, and of-
specific, low-latency parallel rendering meth-
to account foveation.

ting the visual quality of foveated rendering
cement in foveation technology cannot be dis-
dvancements in methods for evaluating the
y of results. With foveated rendering, the
lity should be persistent and acceptable re-

pplication specifications. While several efforts
rgeting evaluation, no consistent and standard
ethod yet for assessing the foveated rendering
subjectively or objectively.
evaluation is, in principle, very appealing,

ectly considers humans as the end-user of
output [80, 173, 210]. However, it is also
ased, scene-dependent, and observer-biased.
is time- and resource-consuming, since the re-
s need to be calculated from a decent amount
over multiple viewing sessions in which the
nfirm the foveated rendering is impercepti-
ceptible. A few authors have also suggested
tive measures than the pure ability to perceive

perceptual ratio will converge with higher per
and lower experiment costs, such as shorter as
time or fewer judgments. Consistency, on the oth
seeks to assess the firmness of individual Quali
perience (QoE) ratings. Only a few studies all
ing eyeglasses during the evaluation [9]. There
several testing approaches and statistical model
the literature to evaluate qualitative result, such
[223, 184, 65], MOS [138, 238, 219, 144, 143],
[27, 243, 152, 59, 9, 182, 235, 163], T-test [20
wise [163], and chi-square. Few other studies,
[163, 243, 111] use multiple statistical models to
their algorithms.

Objective evaluation based on quantitative
ments is often preferred by researchers because
corporation of models that predict outcomes for
leads to simpler ways to use the outcomes of th
tion to drive adaptive methods. However, due
variant nature, the traditional perception-based
quality matrices [130] is debilitated in foveated
ing. A few research use conventional graphic
metrics [40], e.g., SSIM [68, 169], DSSIM [154
[225, 169], but measure the foveal and peripheral
quality separately. Others, attempt to consider f
specific measures, for instance, the foveated wa
age quality metric [230], that considers the spa
ance of CSF, local visual cut-off frequency, the Fo
nal to Noise Ratio (FSNR), and Foveal Weight
Noise Ratio (FWSNR), that consider the distor
bility decrement in the periphery [124], and the
Point Signal to Noise (FPSN) and Foveated Imag
(FIQ) metrics for holographic displays [123].
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tions, such as efficiency and consistency [88].
cy of an experiment defines how quickly the

Other authors have also proposed to adapt full-reference 66

image quality metrics to foveated rendering. For instance, 67
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Journal Pre-proof
iu [220] sub-divides the scene into different win-
, measures window scores using traditional and
scores together for an overall performance re-
er authors extend the the acuity fall-off model

te foveated variations on standard scores, such
d Mean Squared Error (FMSE) [188], Foveation
Root Mean Squared Error (FARMSE) [228], or
perceptual metric [12]. Noteworthy, such full-
graphics quality evaluation is impractical due
ative lack of reference in the graphics rendering
Recently Mantiuk et al. [147] proposed a full-
visual quality difference metric, FovVideoVDP.
c can predict visual differences for different types
ons: blur, JPEG compression, flicker, and Gaus-
ive noise at different eccentricity levels, tested
ing dataset, FOVDOTS. This metric is more ef-
higher FOV displays, such as AR/VR displays.
color, glare, inter-channel masking, and eye mo-
not included in the model, which requires further

al. [98] created the first compressed 360◦ video
LIVE-FRL that can be used for foveated image
quality assessment. This database consists of

s with 8K quality, including 10 reference videos
istorted or foveated videos which are also gener-
the reference videos. Moreover, Jin et al. [99]
a study on both subjective and objective qual-
ent of VR video compression, along with a 2D
3D video database. The complexity of foveated
quality evaluation and the high sensitivity to
d tracking characteristics makes it a very active
irection [210].

ying the effects of foveation artifacts on user
ormance
ideally, the goal of foveation is to produce images
ishable from non-foveated ones, in practice some
ay appear in the rendered images. These arti-

result from imperfections in tracking or displays,
various stages of the pipeline, or approximations
ng methods or guiding metrics. Moreover, even
e in which imperceptible images could be gen-
is often useful for applications to have the op-
to trade image quality with speed, to come for
omplex models or vary spatiotemporal realism
on tasks.

set of studies in cognitive psychology have iden-
interrelated classes of visual processing, referred
ttentive and attentive vision, respectively [87].
odel, preattentive vision scans large areas not-
es that represent changes in pattern or motion.
ures include color, size, luminance, motion, pat-
pe, orientation, curvature but not closure, gaps,
tors. Attentive visual processes refer, instead, to
required to recognize details about objects and
ips in scenes. In an early study, Watson et al.

task-dependent. As a result, during operations
sual search, the observer necessitates more g
information, leading to less foveation. Mult
have, thus, studied various forms of degrada
visual search tasks, to find how imperfect fo
plays affect visual performance. Other author
centrated their efforts on finding good centra
in which models have to be rendered at full re
gaze-contingent displays. Results vary from
around 10◦ [163] to less than 2◦[26, 134] de
the display, frequency of update, and image co
same experiments performed on a desktop mo
near-eye VR display also show a wide variation
2◦-5◦ for the monitor to 30◦ for the near-eye V
As noted very early by Watson et al. [233], how
ers are more sensitive to how degraded are L
periphery than the reduction of the central ar

While much of the research has concentra
degradation of resolution and geometric detail
sensitivity has also been shown to have impor
(see Sec. 7.2). Due to the complex inter-re
tween physiological and psychophysical factors
shown that color sensitivity is task-dependen
for search tasks, color precision cannot be red
same way as visual acuity [59]. For instance
spatial detail is lowered by 50% after a 5◦ vie
the chromatic reduction should not be dropped
otherwise, deterioration may become visible. T
pendence is also emphasized by the differences
of several user studies. Hansen et al. [81] recom
the color sensation becomes more dichromat
25◦-30◦, due to the lack of L and M cones, a
absent at eccentricity after 40◦ for weak stimul
Ayma et al. [17] conduct color zone mapping w
experiments in which the results prove that co
tion is even better above 20◦ eccentricity; bu
mid-periphery (≈ 40◦), the red-green hue ap
less chromatic than yellow-blue due to the pos
cortical process. Similarly, Buck et al. [37] s
the fovea-like color vision still exists out to a
eccentricity. Besides the eccentricity, the stim
also a critical and crucial parameter for color
Noorlander et al. [166] analyze that under s
tial and temporal conditions, such as a large
and low temporal frequency (1 Hz), different
perceived at the eccentricity of up to 90◦. How
perception is not constant across the life span.
al. [237] prove that the color degradation eve
after near periphery (8◦) because of aging.

The high variability in reported results and
dence on display, content, and degradation tec
dicates that considerable research is still requ
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est that, due to these human visual system char-
, dynamic LOD control has to be content and

good ways to aggressively degrade quality in the center 110

and periphery without impacting search performance. 111
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