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Abstract
After the introduction of smartphones and smartwatches, Augmented Reality (AR) glasses

are considered the next breakthrough in the field of wearables. While the transition from

smartphones to smartwatches was based mainly on established display technologies, the dis-

play technology of AR glasses presents a technological challenge. Many display technologies,

such as retina projectors, are based on continuous adaptive control of the display based on

the user’s pupil position. Furthermore, head-mounted systems require an adaptation and

extension of established interaction concepts to provide the user with an immersive experi-

ence. Eye-tracking is a crucial technology to help AR glasses achieve a breakthrough through

optimized display technology and gaze-based interaction concepts. Available eye-tracking

technologies, such as Video Oculography (VOG), do not meet the requirements of AR glasses,

especially regarding power consumption, robustness, and integrability. To further overcome

these limitations and push mobile eye-tracking for AR glasses forward, novel laser-based

eye-tracking sensor technologies are researched in this thesis. The thesis contributes to a sig-

nificant scientific advancement towards energy-efficient mobile eye-tracking for AR glasses.

In the first part of the thesis, novel scanned laser eye-tracking sensor technologies for AR

glasses with retina projectors as display technology are researched. The goal is to solve the

disadvantages of VOG systems and to enable robust eye-tracking and efficient ambient light

and slippage through optimized sensing methods and algorithms.

The second part of the thesis researches the use of static Laser Feedback Interferometry (LFI)

sensors as low power always-on sensor modality for detection of user interaction by gaze

gestures and context recognition through Human Activity Recognition (HAR) for AR glasses.

The static LFI sensors can measure the distance to the eye and the eye’s surface velocity with

an outstanding sampling rate. Furthermore, they offer high integrability regardless of the

display technology.

In the third part of the thesis, a model-based eye-tracking approach is researched based on

the static LFI sensor technology. The approach leads to eye-tracking with an extremely high

sampling rate by fusing multiple LFI sensors, which enables methods for display resolution

enhancement such as foveated rendering for AR glasses and Virtual Reality (VR) systems.

The scientific contributions of this work lead to a significant advance in the field of mobile

eye-tracking for AR glasses through the introduction of novel sensor technologies that enable

robust eye tracking in uncontrolled environments in particular. Furthermore, the scientific

contributions of this work have been published in internationally renowned journals and

conferences.
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Zusammenfassung
Nach der Einführung von Smartphones und Smartwatches gelten Augmented Reality (AR)-

Brillen als der nächste Durchbruch im Bereich der Wearables. Während der Übergang von

Smartphones zu Smartwatches weitgehend auf etablierten Displaytechnologien beruhte,

stellt die Displaytechnologie von AR-Brillen eine technologische Herausforderung dar. Viele

Display-Technologien, wie z. B. Retina-Projektoren, basieren auf einer kontinuierlichen ad-

aptiven Steuerung des Displays in Abhängigkeit der Pupillenposition des Nutzers. Weiterhin

erfordern kopfgetragene Systeme eine Anpassung und Erweiterung etablierter Interaktions-

konzepte, um dem Nutzer ein immersives Erlebnis zu ermöglichen. In beiden Fällen stellt

Eye-Tracking eine Schlüsseltechnologie dar, um AR-Brillen durch optimierte Displaytechnolo-

gie und blickbasierte Interaktionskonzepte zum Durchbruch zu verhelfen. Verfügbare Eye-

Tracking-Technologien, wie z.B. die Video- Okulographie (VOG), erfüllen die Anforderungen

von AR-Brillen insbesondere in Bezug auf Stromverbrauch, Robustheit und Integrierbarkeit

nicht. Um diese Einschränkungen zu beheben und mobiles Eye-Tracking für AR-Brillen weiter

voranzutreiben, werden in dieser Arbeit neuartige laserbasierte Eye-Tracking Sensortechnolo-

gien erforscht. Die Beiträge dieser Arbeit tragen zu einem bedeutenden wissenschaftlichen

Fortschritt in Richtung energieeffizientes mobiles Eye-Tracking für AR-Brillen bei.

Im ersten Teil der Arbeit werden neuartige gescannten Laser Eye-Tracking Sensortechnologien

für AR-Brillen mit Retina-Projektoren als Displaytechnologie erforscht. Ziel ist es, die Nachteile

von VOG-Systemen zu lösen und energieeffizientes, Umgebungslicht- sowie gegenüber Verrut-

schen der Brille robustes Eye-Tracking durch die Einführung von optimierten Messmethoden

und Algorithmen zu ermöglichen.

Der zweite Teil der Arbeit erforscht den Einsatz von statischen Laser Feedback Interferometrie

(LFI) Sensoren als stromsparende kontinuierlich verfügbare Sensormodalität für die Detek-

tion von Benutzerinteraktion auf Basis von Blickgesten sowie Kontexterkennung durch die

Erkennung von menschlichen Aktivitäten für AR Brillen. Die statischen LFI-Sensoren sind

in der Lage, den Abstand zum Auge und die Geschwindigkeit der Augenoberfläche mit einer

herausragenden Abtastrate zu messen. Weiterhin weisen sie unabhängig von der Displaytech-

nologie eine hohe Integrierbarkeit auf.

Im dritten Teil der Arbeit wird basierend auf der statischen LFI-Sensortechnologie ein mo-

dellbasierter Eye-Tracking-Ansatz erforscht. Der Ansatz führt durch die Fusion mehrerer

LFI-Sensoren zu einem Eye-Tracking System mit einer äußerst hohen Abtastrate, was Metho-

den zur Verbesserung der Displayauflösung wie z.B. foveated rendering für AR-Brillen und

Virtual Reality (VR) Systeme ermöglicht.
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Zusammenfassung

Die wissenschaftlichen Beiträge dieser Arbeit tragen durch die Einführung neuartiger Eye-

Tracking Sensortechnologien, die insbesondere robustes Eye-Tracking in unkontrollierten

Umgebungen ermöglichen, zu einem wesentlichen Fortschritt auf dem Gebiet des mobilen

Eye-Trackings für AR Brillen bei. Die wissenschaftlichen Beiträge dieser Arbeit wurden in

international renommierten Fachzeitschriften und Konferenzen veröffentlicht.
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1 List of Publications

The research conducted within this thesis was published in renowned international peer-

reviewed conferences (such as ETRA or CHI) and high-impact journals (such as IMWUT

or IEEE Sensors) and paves the way for novel energy-efficient and highly integrated sensor

solutions for human-computer interaction as well as eye-tracking within AR glasses. The

full-text publications are included in the appendix of the thesis. Furthermore the technology

developed in this thesis lead to granted patents[10, 11].
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1.1 Scientific Contribution

This section summarizes this thesis’s contributions and most essential results to enable energy-

efficient mobile eye-tracking for AR glasses. Contributions within this thesis focus mainly on

the mobile eye-tracking sensor technology field. They are split into three parts, which are

summarized in the following.

Scanned Laser Eye Tracking

The main contribution in this part of the thesis is a series of novel methods to a scanned

laser eye-tracking sensor system in which 2D images of the eye are captured via a single-pixel

camera sensor. The scanned laser beam is directed by an Holographic Optical Element (HOE),

integrated into the glasses lens, to the eye, resulting in a broad coverage of the user’s Field of
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View (FOV). The single-pixel sensor used to capture the 2D image is fully integrated into the

frame temple, leading to outstanding integrability of the sensor system. With redirection of

the laser beam over the HOE, the virtual camera observes the eye from a frontal perspective

through the glasses lens, which leads to a superior perspective compared to mobile VOG-

systems. To solve the limitations of VOG-systems in terms of robustness to ambient light and

power consumption, the integration of an LFI-sensor is proposed as the coherent detection

scheme of the LFI sensor is immune to ambient light. In addition, the LFI sensor detects a

bright pupil signal, which eliminates the pupil segmentation stage known from VOG algo-

rithms, reducing the power consumption due to the algorithm’s execution on an embedded

platform. The sensor operates robustly regardless of iris color or partially occluded pupils, e.g.,

by the eyelid or eyelashes, leading to an outstanding pupil detection and thus eye-tracking

robustness compared to VOG systems. Finally, an approach to limit the degradation of gaze

accuracy due to glasses slippage known from VOG systems is presented. The HOE is spatially

multiplexed to generate images from two perspectives, leading to a highly integrated virtual

single-pixel stereo camera system. The stereo camera system enables 3D reconstruction of the

pupil disc, which significantly reduces the calibration effort of the system and thus improves

usability, especially for consumer AR glasses, as well as solves the glasses slippage issue, which

is mandatory for everyday consumer devices. To summarize contributions within this part of

the thesis, novel scanned laser eye-tracking sensor approaches are derived, which solve well-

known limitations of VOG systems concerning sensor integration, power consumption, pupil

signal robustness, ambient light robustness as well as slippage robustness. Therefore, this part

of the thesis paves the way for integrating eye-tracking sensor technology in consumer-grade

retinal projection AR glasses.

Static LFI Human Computer Interaction

In this second part of the thesis, static LFI sensors are introduced as a novel sensing modality

in a near-to-eye setting. The sensors allow measuring the distance between the sensor and the

eye and the eye’s surface velocity with an outstanding update rate of 1 kHz by operating the

laser sensors in a Frequency Modulated Continuous Wave (FMCW) modulation scheme. Com-

pared to VOG systems, the static LFI sensors require only a fraction of the power consumption.

Therefore, they enable novel applications for consumer-grade AR glasses, which always require

eye-tracking. As the first application, gaze gesture interaction for hands-free control of the

User Interface (UI) is presented. Due to the high update rate, a negative latency between

gaze gesture execution and classification of the gaze gesture is achieved, allowing rendering

systems to react to user inputs before it is finished. The second application presents context

awareness for AR glasses by recognition of human activities. Within this application, eye- and

head movements were fused to recognize a wide range of activities from the physical as well

as the cognitive domain. Two data sets are collected during this part of the thesis, one data set

with a system containing the LFI sensor and an Inertial Measurement Unit (IMU) sensor, and

one data set containing a VOG sensor and an IMU sensor. The second data set is published as

an additional contribution to emphasize research within the area of context-aware AR glasses.
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Static LFI Eye Tracking

The third and final part of this thesis, six static LFI-sensors are combined into a high-speed

gaze estimation sensor system. The approach outperforms VOG systems with its outstanding

update rate of 1 kHz by magnitudes while consuming less power, showing higher integrability,

and being robust to ambient light. Therefore the sensor technology introduced in this part of

the thesis enables applications such as foveated rendering or saccadic endpoint prediction

for mobile AR and VR devices. Furthermore, since the sensors work independently of the

display technology, this approach contributes to mobile eye-tracking in general and thus is

applicable for AR-glasses with, e.g., waveguide or micro-LED displays as well as VR-glasses.

The essential contribution besides the sensor system is the sensor fusion algorithm used to

estimate the user’s gaze from the LFI sensor readings. A hybrid model-based sensor fusion

algorithm that combines a geometric model of the eye tailored to the LFI sensor modalities

with a machine learning approach is proposed. The algorithm is robust to glasses slippage.

Furthermore, the system works purely based on distance and velocity information. It thus

does not capture privacy-related information such as images from the iris region, thus paving

the way for privacy-preserving high-speed gaze estimation for AR as well as VR.
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2 Introduction

The launch of the first iPhone in 2010 opened the market for smart wearables, such as smart-

watches and smart headphones. After the success of smartphones and smartwatches, the

next smart wearables to be considered are smart glasses. The term smart glasses summa-

rizes different types of head-worn intelligent wearables, ranging from simple audio glasses

with integrated speakers to AR glasses with lightweight, transparent HMD. Unlike VR, whose

display technology has mainly been adopted from smartphones, AR glasses require novel

display technologies such as retinal projection displays to provide high visual comfort while

minimizing the system’s weight. The main disadvantage of retinal projection displays is the

small eye box, as there is only a single exit pupil from which light must hit the retina to display

an image. Therefore mobile eye-tracking is a crucial technology for retinal projection AR

glasses to steer the exit pupil based on the pupil position in a closed loop.

Part one of the thesis presents novel sensor technology approaches to enable mobile eye-

tracking within retinal projection AR glasses. To better understand the integration of the

presented sensor technology approaches, the building blocks and the system design of a retinal

projection display are introduced in Section 2.1. To further motivate the research towards

novel sensor technologies for mobile eye-tracking, the subsequent section, Section 2.2, gives

an overview of eye-tracking applications for AR glasses. The applications and the literature

requirements for mobile eye-tracking sensors are derived in Section 2.2.5.

In order to place the contributions of this thesis in state-of-the-art, Section 2.3 gives an

overview of mobile eye-tracking sensor technologies with a focus on established VOG sensor

technology and algorithms. In addition to VOG sensor systems, related scanned laser eye-

tracking sensors, and other emerging non-intrusive mobile eye-tracking sensor approaches

are introduced. Finally, the limitations of the different sensor technologies are discussed in

the section.

Part two and three of this thesis’s main contribution introduces the LFI sensor technology as

an eye-tracking sensor. For this purpose, the sensing principle of the sensor is introduced in

Section 2.4 together with a brief description of the building blocks of the sensor system.
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2.1 Retinal Projection AR Glasses

Although the retinal projection display technology itself was already described by Viirre et al.

[12] back in 1998, the technology was first introduced by Sugawara et al. in 2017 [13, 14] in the

domain of AR glasses. Figure 2.1 shows a sketch of a retinal projection HMD.

Steering mirror

Steering mirror

Eye

Cornea

Laser

Beamcombiner

G B

Free space combiner

Retina

R

Lens

Figure 2.1: Working principle of a retinal projection HMD.

Retinal projection HMDs writes an image directly onto the human eye’s retina. The image’s

pixels are created by a set of Red Green Blue (RGB) laser diodes, which are combined using a

beam combiner and collimated to a tiny light source. The optical power of the laser diodes is

modulated in their amplitude at a high frequency to control the color and brightness of the

individual pixels. A set of two one-dimensional steering mirrors or a single two-dimensional

steering mirror are used to deflect the light source vertically and horizontally to form a two-

dimensional image. The two-dimensional image is combined to form a uniform ray bundle,

the so-called exit pupil, using a free space combiner. The exit pupil is deflected towards the eye,

and after all the beams crossed in the eye’s lens, an image is built up at the retina [14]. Current

retinal projection systems use Micro-Electro-Mechanical System (MEMS) micro mirrors to

direct the laser beam and HOEs as free-space combiners because they provide high visual

comfort. In addition, system efficiency is very high as almost all the light from the laser diodes

is directed to the human eye, reducing thus power consumption compared to waveguide

combiners. The direct projection onto the retina also results in a focus-free image projection

with a large FOV, which is independent of the accommodation state of the eye lens. Despite

these advantages, the tiny exit pupil is a significant drawback of retinal projection HMDs. A

small deviation of the eye’s position, e.g., due to a slipping of the glasses or a large rotation of

the eyeball, leads to a complete disappearance of the projected image, as the laser beams do

not enter the pupil anymore. To solve this limitation, the exit pupil must be adjusted according

to the current pupil position. This limitation motivates using mobile eye-tracking sensors

for AR glasses to track the pupil and steer the exit pupil in a closed loop to ensure high visual

comfort.

6



2.2. Eye Tracking for AR glasses

2.2 Eye Tracking for AR glasses

The term eye-tracking in AR glasses summarizes different approaches to recognizing a user’s

visual state. These approaches mainly rely on representing the Point of Gaze (POG) in a

corresponding coordinate system. For example, in the exit pupil control approach, the pupil

position is mapped in head-fixed coordinates onto the display coordinate system to control

the exit pupil and ensure that the image is projected correctly onto the retina.

Eye0

Display0
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Wc

Eye1

Display1Ec1

y

z

x

y

z

x

Dc0

y

z

x
yx
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Figure 2.2: Overview of the different coordinate spaces in a mobile eye-tracking AR glasses

Figure 2.2 gives an overview of the different coordinate systems in mobile eye-tracking AR

glasses. Each eye has its local coordinate system Ec0,Ec1 typically originated at the eye’s

rotational center. These coordinate systems are referred to as the head-fixed coordinate system,

and the gaze vector per eye is described as a head-fixed gaze vector. The second coordinate

system Gc originated in the glasses frame. It is loosely coupled to the eye’s coordinate system

EC determined by the positioning of the glasses on the head. The correspondence between

the coordinate systems is individual for each user as the Intra Pupillary Distance (IPD) and

the head geometry vary across different users. Therefore dependent on the application, a

mapping between the individual coordinate systems is necessary.

2D eye tracking applications map the POG from the corresponding eye coordinate system Ec

to the corresponding display coordinate system Dc . The POG is described by the intersection

of the individual gaze vector with the 2D display plane.

3D eye tracking applications map the eye coordinate system of both eyes (Ec0,Ec1) to the

glasses coordinate system Gc and thus the POG is described by the intersect of both gaze

vectors.

3D gaze tracking applications map the POG to the world coordinate systems Wc by adding a

reference sensor to the glasses linked to the glasses coordinate system Gc .
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2.2.1 Eye Movement Pattern Recognition

Eye movement pattern recognition applications rely on relative eye movement or position

sequences, and therefore, a complete description of the relationship between Gc and Ec is not

required. Eye movement pattern recognition is mainly used to derive contextual information

of the user by detection of specific eye movement patterns. Most of the applications in

this context belong to gaze-based Human Computer Interaction (HCI) [15], such as gaze-

based control of the UI of the AR glasses [16, 17, 18], gaze-based HAR [19, 20, 21], expertise

identification [22, 23, 24, 25, 26, 27, 28], or user identification [29, 30, 31]. In addition, medical

features can be derived from a sequence of pupil dilation measurements, which can be used

to estimate the user’s cognitive load [32, 33, 34, 35, 36] or to detect mental disorders [37].

2.2.2 2D Eye Tracking

2D eye-tracking applications cast the individual gaze vector to its corresponding display

coordinate system and thus describe the POG in 2D display coordinates. 2D eye-tracking

applications are used to enhance the display quality based on the users POG on the display.

Applications are mainly divided into approaches to improving the image resolution and

applications to increase the displays FOV. Foveated rendering is a common application

enabled by 2D eye-tracking to improve image resolution. Foveated rendering adapts the

display resolution based on the POG on the display by rendering content with high image

quality around the POG on the display. This dynamic rendering scheme increases the image

quality of AR systems or reduces the displays power consumption while keeping the image

resolution [38, 39, 40]. Further 2D eye-tracking applications like pupil duplication [41] or

exit pupil steering [42, 43] are used to increase the displays FOV of AR glasses [44]. In pupil

duplication systems, the exit pupil is duplicated to cover a wide range of pupil positions to

project display content across a large FOV. To prevent image degradation, e.g., by double

images formed by two exit pupils reaching the retina, 2D eye-tracking is required to disable

not matching exit pupils. In pupil steering systems, content is projected through a single exit

pupil into the eye. This exit pupil is steered, e.g., by a mirror in a way that the exit pupil of the

display follows the pupil to provide image content over a wide FOV. To correctly steer the exit

pupil, 2D eye-tracking information is necessary.

2.2.3 3D Eye Tracking

In 3D eye-tracking applications, the gaze vectors of both eyes are calculated and mapped to

the glasses coordinate system Gc to estimate the POG based on the intersect of both gaze

vectors. 3D eye-tracking allows the estimation of the depth of focus of a user, which allows to

estimate the depth of field of AR content accurately and thus enables gaze-contingent stereo

rendering [45]. Furthermore, 3D eye-tracking is used to solve the Vergence Accomodation

Conflict (VAC) of head-mounted displays by estimation of the vergence [46] to allow adaption

of the display focus plane e.g., in a multi-focal display [47], or an auto-focus display [48].
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2.2.4 3D Gaze Tracking

In 3D gaze tracking applications, the POG is mapped to the world coordinate system Wc . The

relationship between Gc and Wc is known by an additional visual sensor such as a world

camera sensor or Light Detection and Ranging (LIDAR) sensor attached to the glasses. By

casting the POG to Wc and gathering additional information by the world camera sensor,

contextual information such as the object (e.g., the butterfly) the user is fixating on can be

derived. The contextual information can be used, i.e., for advertisement [49]. In addition, 3D

gaze tracking enables applications like gaze adaptive AR. Gaze adaptive augmented reality

summarizes approaches to adapt the projected content of AR glasses based on the POG and

an object in the real world [50].

2.2.5 Requirements for Mobile Eye Tracking Sensors in AR glasses

As discussed previously, mobile eye-tracking enables a wide range of applications in AR glasses

and is therefore mobile eye-tracking sensors are a key technology for AR glasses [51].

However, the adaption of eye-tracking into AR glasses adds new requirements to eye-tracking

sensors such as robust operation for a large portion of the population e.g. with different

head and face geometries or different iris colors, robust operation under a variety of lightning

conditions as well as robust operation during different scenarios while wearing the glasses e.g.

while performing physical activities like cycling [52].

Derived from the application, which the eye-tracking sensor signal should support, further re-

quirements arise for the sensor update rate and gaze accuracy [52]. In addition, the lightweight

system design of AR glasses further adds requirements to the sensor integration to be highly

integrated into the space constraint glasses frame without interfering with the user’s FOV [51].

Finally, like other wearable devices, AR glasses must operate for a whole day. Therefore a

low power consumption of the eye-tracking sensor is mandatory as battery capacities are

limited due to space and weight constraints of the glasses [51]. These different requirements

are addressed in more detail during the next subsections.

Gaze Accuracy

The gaze accuracy of an eye-tracking sensor describes the average angular offset between

a fixation location and the corresponding location of the reference target of fixation [53].

The required accuracy is given by the application the eye-tracking sensor needs to fulfill e.g.

gaze gesture recognition applications have rather low accuracy requirements. In contrast,

display enhancement applications like foveated rendering or exit pupil steering require a gaze

accuracy of 1◦ [39].
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Power Consumption

AR glasses are battery-powered like other wearables, and the weight of the glasses is directly

related to the wearing comfort, which is why the battery capacity is limited. For this reason,

the power consumption of the eye-tracking sensor must be as low as possible. Hong et.al. [54]

stated that the power consumption of eye-tracking sensors for battery-powered AR- and VR

glasses should not exceed 100 mW.

Update rate

The update rate describes the number of successive measurements of the eye pose per second.

A high update rate above 300 Hz is required to precisely reconstruct the eye position during

fast eye movements [55], which is especially required for display enhancement applications

like foveated rendering or exit pupil switching [54].

Robust Operation

AR glasses are everyday devices where eye-tracking functionality needs to operate robustly

for various users and in various environmental conditions [56, 57]. They need to cover a wide

range of users with their eye and face properties and thus be robust to different iris color

[58], eyelashes covering the eye [59], mascara [59], partially occluded pupils by the eyelids

[59], as well as specular reflections on the eye surface caused by contact lenses or the glasses

lens. Furthermore, the eye-tracking sensors are exposed to uncontrolled ambient lighting

conditions ranging from bright sunlight to darkness [15].

Sensor Integration

The eye-tracking sensor must be integrated into the temple of the spectacle frame or the

spectacle lens without restricting the user’s field of vision and thus not distracting the user.

From an integration point of view, the sensor should be fully integrated into the temple so

that ideally, no components are integrated into the glasses lens, as components in the glasses

lens require more difficult wiring via the glasses hinge. A low number of required components

facilitates the integration of the eye-tracking sensor into the glasses, which is particularly

advantageous for a high-volume product such as AR glasses.

2.3 Mobile Eye Tracking Sensor Technologies

To motivate this thesis, an overview of state-of-the-art eye-tracking sensor technology con-

cerning the requirements introduced in Section 2.2.5 is given. Before diving into the details of

eye-tracking sensor technology, a brief introduction to anatomical and optical features of the

eye is given to ease understanding of the working principle of the different approaches.
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2.3.1 Anatomical and Optical Features of the Eye

Figure 2.3: a) Section through the human eye to describe the anatomical structure in a simpli-
fied form. b) Emsley’s reduced eye model according to [60] c) Visualizing the bright- and dark
pupil effect in the presence of IR illumination.

Figure 2.3 a) shows a section through the human eye to describe the anatomy and physiology

in a reduced form. The human eye consists of the retina, a light-sensitive layer of tissue that

converts incident light into a two-dimensional image, and an optical system that focuses the

incident light onto the retina using an adjustable lens. Inside the retina, the fovea is embedded,

a region with a high density of cones responsible for sharp central vision. The fovea has an

individual angular offset χ of ~5◦ between the visual and the optical axis of the eye [61].

The optical system of the eye consisting of the lens and the pupil, is protected by the transpar-

ent cornea. The eye’s depth of focus is adjusted by a set of muscles attached to the lens. The

iris covers these muscles. In the iris, the pupil is centered. The pupil serves as an aperture of

the optical system to control the amount of ambient light entering the optical system. The

human eye can operate in a high dynamic range by variation of the pupil diameter between

7.5 mm in the dark and 2 mm in bright sunlight. The outer structure of the iris, also referred to

as limbus, connects the iris with the white eyeball, the sclera [61].

The normal vector of the pupil plane or the limbus plane directly correlates with the eye’s

visual axis and thus with the user’s gaze. Therefore limbus and pupil features are used in most

imaging applications to inferring gaze information from images.

The advantage of the limbus feature is that the diameter does not vary in the presence of

varying ambient light and that, especially for dark-colored eyes, the limbus is characterized by

a stark contrast to the white sclera, which eases its detection in images. The main drawback of

the limbus as a feature of the human eye is that it is often partially occluded by the eyelid or

lashes. As the pupil is centered inside the iris, it is less prone to occlusion. Especially with dark

eye colors, the contrast between iris and pupil is rather low, which hamper pupil detection

in images. To overcome this drawback, the dark- and bright pupil effect is used to increase

its contrast. Figure 2.3 c) shows images of an eye taken by an IR camera sensor while the

eye was illuminated with active IR illumination. Suppose the illumination source is off-axis

w.r.t the camera sensors. In that case, the pupil appears dark (Figure 2.3 c) 1) while the pupil
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appears bright when the axis of the camera sensor and IR illumination are aligned (Figure 2.3

c) 2) [62]. Besides this effect, the use of active IR illumination has several advantages as IR

illumination is invisible to the human eye and therefore does not influence the pupil diameter

while improving pupil detection based on images in low lighting conditions.

Aside from illuminating the eye, IR illumination sources are also used to create bright spots

on the eye’s surface, also known as glints, which are used as a feature in various eye-tracking

sensor technologies to infer the user’s gaze. To illustrate the occurrence of glints, Figure 2.3 a)

shows a red laser beam that hits the cornea as well as the lens of the eye. At each boundary

surface of the different tissues characterized by a change in refractive index n, a portion of

the incident light is reflected according to the Fresnel equation, resulting in four reflections

(P1-P4), also called Purkinje images. The first reflection P1 is brightest due to the refractive

index jump at the cornea and is further referred to as a glint.

Finally, especially model-based eye-tracking methods incorporate the geometrical structure

of the eye. A commonly used eye model e.g., by Gustrin et al., is the Emsley’s reduced eye

shown in Figure 2.3 b). The eye model is a first-order approximation based on a sclera sphere

and a cornea sphere with its centers Sc and Cc and its corresponding radii rs and rc . An offset

ds shifts the centers of the spheres. According to Guestrin et.al. [63], the cornea sphere rotates

around the sclera sphere with an offset ds of 6.1 mm and the radius of the cornea sphere rc is

7.8 mm while the curvature of the sclera sphere rs is 12 mm.

According to [60] the Emsley’s reduced eye, which is shown in Figure 2.3 b) is widely used to

describe the human eye in a first-order approximation not including optical properties. The

eye model is constructed based on two spheres describing the sclera with its center at Sc and

the cornea Cc . According to Guestrin et.al. [63], the cornea sphere rotates around the sclera

sphere with an offset ds of 6.1 mm and the radius of the cornea sphere rc is 7.8 mm while the

curvature of the sclera sphere rs is 12 mm.

2.3.2 Videooculography Mobile Eye Tracking

State of the art in mobile eye-tracking systems are VOG systems. They rely on IR-sensitive

camera sensors attached to the eyeglass frame to capture eye images to improve the image

quality and allow operation in low lighting conditions, VOG systems are equipped with IR

Light Emitting Diodes (LEDs) to illuminate the eye region. The user’s gaze is estimated from

the appearance of the eye in the captured images utilizing the anatomical and optical features

as introduced in Section 2.3.1.

In general VOG systems incorporate a per-user calibration to gather a mapping between the

different coordinate systems, capturing camera images to extract features, and a gaze estima-

tion step [64]. Feature extraction from images and the gaze estimation step are active areas

of research, and thus a brief overview of state-of-the-art methods is given in the upcoming

Sections [65, 64].
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2.3.3 2D Regression based Approach

A standard method of estimating the gaze is using a 2D regression-based approach is the Pupil

Center Corneal Reflection (PCCR) method. In this method, a set of IR LEDs is used to produce

glints on the surface of the cornea as described in Figure 2.3 a). Afterward, images are captured

from the eye, and the glint centers, as well as the pupil center, are extracted. For each glint,

the glint vector between the pupil center and the corresponding glint center is calculated [63].

This set of glint vectors is used as input features for a 2D regression approach to map the input

features to a gaze vector to 2D display coordinates Dc using a polynomial mapping function

and a set of calibration markers within the display coordinate space [63].

2.3.4 3D Model based Approach

In model-based approaches a 3D model of the eye (e.g. Figure 2.3 b)) is constructed based on

the observations of features of the eye. Dependent on the utilized features, either a corneal

reflection model or a geometric eye model is used to construct an eye model and derive the

gaze vector.

Corneal Reflection Model

Sc
x x x

Cc Pc

Visual axis
Sclera Cornea

Pupil plane

Gaze vector

dp

rc n

Figure 2.4: Eye model to calculate the POG using corneal reflection methods according to [8].
The model parameters are the radius of the cornea rc , the distance between the pupil plane
and the center of the cornea dp and the refractive index n of the aqueous humor.

The corneal reflection model estimates the point of gaze-based on the vector between the

cornea center Cc and the center of the pupil Pc based on observations of the pupil center and

glints created by IR LEDs through an IR camera sensor. Under the assumption that the glasses

frame is a rigid body, the pose of the IR LEDs w.r.t. the camera center is fixed. Furthermore,

the refractive index n of the cornea as well as the radius of the cornea rc , and the distance

between the cornea center and the pupil plane dp are fixed optical and geometric properties

of the human eye, which can be derived e.g. from Emsley’s reduced eye model as presented in

Figure 2.3 b).

Based on the known geometry of the system and the known optical and geometric properties

of the human eye, Hennessey et al. [8] showed that two glints are sufficient to construct

an over-determined system of equations to calculate the corneal center Cc in 3D space. To
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construct the gaze vector, they extract the pupil center Pc as a second reference point from

the camera image. To increase robustness of the pupil extraction they apply the bright pupil

effect as shown in Figure 2.3 c) by adding an additional on-axis IR LED to their system [8].

Geometric Eye Model

Figure 2.5: Construction of a geometric eye model by projection of the pupil as cone from the
2D image plane to the 3D space according to [9].

Geometric eye models use a single-camera VOG system without additional glint LEDs. The

3D eye model is derived from a sequence of pupil observations in the 2D image plane.

Considering a calibrated camera sensor and assuming a pinhole camera model, in a first

step the 2D projection of the pupil in the image coordinate space is unprojected to its 3D

representation by constructing a cone using the 2D pupil ellipse as a base and the focal point

of the pinhole camera model as the vertex, as shown in Figure 2.5. The cone is propagated

towards the eye in the 3D space. Considering a fixed pupil diameter, two possible pupil

candidates (red and green) along the cone remain valid solutions, leading to a disambiguity.

By adding additional observations from the sequence of images and adding the constraint that

the normal vector of the pupil must be directed towards the camera sensor, the disambiguity

can be resolved. From a set of observed pupils and their corresponding unprojections, the

center of the eye Sc in 3D space is estimated assuming a fixed eyeball radius rs . Based on the

eyeball center and the pupil observations, the gaze vector is calculated as the vector from the

eyeball center towards the pupil center [9]. To further improve the accuracy of geometric eye

models, Dierkes et al. [66] extend the initial geometric eye model by Swirski et al. [9] to handle

refraction effects to estimate the pupil contour correctly.

2.3.5 Pupil Detection Pipeline

A key challenge for all mentioned gaze vector estimation approaches is a robust extraction

of pupil features from camera images, either the center of the pupil, e.g., for 2D regression

approaches, or the entire pupil contour. Thus the pupil ellipse, e.g., for the geometric eye

model approach. Figure 2.6 a) visualizes the different steps of the pupil detection pipeline

using classic computer vision methods while Figure 2.6 b) visualizes the pupil detection
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Figure 2.6: Exemplary pupil detection pipeline of different VOG systems. a) shows a pupil
detection pipeline comparable to the pupil labs approach using classic computer vision
methods [56] while b) shows the pupil detection approach using a CNN model for pupil
segmentation as proposed by [67]

pipeline of deep learning-based pupil detection approaches.

Classic computer vision-based pupil detection methods perform several steps to extract the

pupil features. In the first step, a coarse pupil region is estimated, and the captured image

is cropped to the pupil region to reduce distortions, e.g., by eyelashes [68, 53]. Afterward,

the pupil candidate pixels are estimated, e.g., by using histogram-based methods. The pupil

candidate pixels are either the dark pixels if dark pupil tracking is used or the bright pixels if

the bright pupil effect is exploited to increase the contrast between pupil and iris as described

in Section 2.3.1. In the next step, possible pupil edges are extracted from an image, e.g., by

using the canny edge detector as shown in Figure 2.6 a) 3 [56]. Next, the detected edges are

converted into pupil contours using, for example, connected component analysis. Then, the

pupil contour candidates are filtered based on a set of extracted features such as straightness,

the intensity value, or elliptical features such as ellipse aspect ratio or ellipse outline contrast

of the pupil contour candidates [69, 70, 71, 72]. Finally, based on this extracted pupil, the most

likely pupil contour is selected as shown in Figure 2.6 a) 5. Next, the candidate pupil pixels

are used to estimate the pupil ellipse, using, e.g., the Random sample consensus (RANSAC)

algorithm, and calculate the pupil center as shown in Figure 2.6 a) 6.

To get rid of handcrafted features e.g., for pupil candidate ellipse selection, and thus im-

prove the robustness of extracting pupil features from images, most recent pupil detection

approaches apply machine-learning methods [73, 74, 75, 67, 76, 77]. Figure 2.6 b) shows the

pupil detection pipeline of the DeepVOG method [67]. Most of the classical pupil detection

steps are replaced by a Convolutional Neural Network (CNN) model to segment the pupil and

robustly estimate the pupil contour afterward. The segmented pupil contour is used as an

input to a geometric eye model, e.g., by Swirski et al.. Kim et al. [78] replace the geometric eye

model and present NVGaze, an end-to-end gaze estimation approach including gaze vector

regression. Most recently, Harsimran et al. [79] proposed to further incorporate learned eye

model parameters to improve the accuracy of end-to-end gaze estimation solutions.

15



Chapter 2. Introduction

2.3.6 Technological Challenges of VOG Systems for AR Glasses

Figure 2.7: Visualization of technological challenges of VOG systems for mobile eye-tracking.
a) Limited FOV coverage due to highly off-axis camera integration. b) Loss of pupil detection
due to ambient light and limited dynamic range of camera sensors c) False pupil contour edge
detection caused by mascara d) False pupil detection due to partial pupil occlusion by the
lower eyelid. The images were taken with a Pupil Core eye tracker.

Figure 2.7 highlights some of the technological challenges of VOG systems for use in uncon-

strained mobile eye-tracking scenarios, which arise from the sensing technology (Complementary

Metal-Oxid Semiconductor (CMOS) image sensors) and the pupil detection. The following

discusses the main technological challenges of VOG systems and possible solutions.

Power Consumption

A state of the art IR CMOS image sensor (Python300 series [80]) with a in VOG systems com-

monly used image resolution of 0.3 MP, consumes ≈ 90 mW at a frame rate of 120 Hz. As CMOS

image sensors mainly consist of digital logic, the power consumption scales linearly with the

frame rate. It thus will further increase as according to Juhola et al. [55] for detecting saccadic

eye movements, at least 300 fps are required. To reduce the sensor’s power consumption,

Mayberry et al. [81] proposed to capture only a subset of pixels selected by a neural network

and infer gaze information from the particular subset.

Additional power consumption is added by the pupil detection algorithm as well as the

gaze estimation algorithm to VOG systems as these algorithms need to be executed on an

embedded system on the glasses. Furthermore, to achieve a robust pupil detection and

thus a high gaze estimation accuracy, pupil detection algorithms robust against errors due

to mascara or partially occluded pupils, as shown in Figure 2.7 c) and d), are mandatory.

These robustness requirements lead to the need for machine learning-based pupil detection

algorithms, as discussed in Section 2.3.5, which significantly impacts the power consumption

of VOG systems. Approaches to reduce the power consumption added by the algorithms are

either in the direction of using optimized hardware like Tensor Processing Units (TPUs) or

Neural Processing Units (NPUs) to execute the algorithms [82, 83] or by optimization of the

pupil detection models as proposed by Fuhl et al. [84].
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Ambient Light Robustness

Figure 2.7 b) illustrates the effects of bright ambient light, e.g., sunlight during outdoor activi-

ties, on VOG systems. Due to the limited dynamic range of CMOS image sensors, overexposure

makes pupil detection and thus gaze estimation impossible [56] and has been considered as a

limiting factor in many outdoors studies [85, 86, 87]. According to Geissler et al. [88] this effect

also appears for glint-based methods as the glints are not reliably detected in bright sunlight.

Camera Sensor Integration

A highly off-axis integration of the camera sensor into the eyeglass frame restricts the FOV in

which the pupil can be reliably detected. Therefore, gaze estimation deteriorates if the camera

sensor and the eye’s optical axis are far apart, as shown in Figure 2.7 a). Narcizo et al. [89]

shows that the highest gaze estimation accuracy of VOG systems is achieved if the camera

sensor is centered in front of the eye. However, this camera sensor position infers with the

user’s FOV and therefore leads to user distraction and reduces the comfort of VOG systems. To

overcome user distraction by camera integration and still cover a wide FOV, Tonsen et al. [90]

propose using several low-resolution camera sensors arranged around the lens frame and fuse

information of all cameras for gaze estimation.

A second aspect to consider is the size of the camera sensors and imaging optics in front of the

image sensors, which limit sensor integration options and increase the weight of AR glasses,

which also results in reduced user comfort [91].

Glasses slippage

Especially during physical activities, glasses tend to slip on the user’s head, resulting in a

change in the relationship between the head-fixed coordinate system and the glasses coor-

dinate system and thus the camera coordinate system. Since the relationship between the

head-fixed coordinate system and the glasses coordinate system in 2D regression-based meth-

ods is learned during initial calibration, as described in Section 2.3.3, the 2D regression-based

methods are prone to glasses slippage as the learned relationship between the coordinate

systems mismatches after slippage. Thus the gaze estimation is erroneous [92], [93].

Geometric model-based approaches, as described in Section 2.3.4, derive the relationship

between the head-fixed coordinate system and the glasses coordinate system from a set of

observations of the pupil ellipse. Therefore they are, to some extent, vulnerable to slippage

as the coordinate system mismatch needs to be detected, and a new mapping needs to be

learned from new observations [93].

To approach the degradation of gaze accuracy due to glasses slippage, several methods have

been applied to estimate the relationship between the coordinate systems, e.g., by reconstruc-

tion from landmarks like eye corners [94] or the eyelids [95]. More recently, Santini et al. [92]
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proposed the Get a Grip method to extract slippage robust features for geometric model-based

gaze estimation approaches to minimize the impact of slippage after calibration.

Other solutions to improve this technological challenge are proposed by Kohlbecher et al. [96],

and Tobii [97], which address the problem by adding additional camera sensors to construct a

stereo camera setup to reconstruct the pupil in 3D space.

Update Rate

The update rate or frame rate of VOG system is limited by the trade-off between image resolu-

tion, system bandwidth, and power consumption of the camera sensor and the pupil detection

pipeline. Therefore update rates above 120 Hz is rare for highly integrated mobile eye-tracking

sensors. Limitations in update rate further have a negative influence on the system latency.

Calibration

Depending on the chosen gaze estimation method and the hardware equipment of a VOG

system, a more or less complex calibration procedure is required to achieve a high gaze

accuracy of the system. 2D regression-based methods require one calibration per session,

limiting the user experience and adoption of VOG systems for AR glasses [98]. For model-

based approaches, either glint-based models or geometric models, the calibration is reduced

to one calibration per user since only the offset between the visual and the optical axis of the

user’s eye has to be calibrated once [99].

Calibration-free approaches e.g., as proposed by Tonsen et al. [100], avoid calibrating the

system at the cost of lower gaze accuracy.

2.3.7 Scanned Laser Mobile Eye Tracking Technologies

Due to the technological challenges of VOG systems as summarized in Section 2.3.6, particu-

larly in the areas of power consumption and update rate, laser eye-tracking approaches have

emerged in recent years. These methods are characterized by using a scanning unit, e.g., a

set of MEMS micro mirrors to deflect a laser beam towards the eye and a photodetector to

detect reflected IR light to estimate the gaze vector. In general, the approaches can be divided

into corneal reflection tracking methods and retinal tracking methods. Figure 2.8 visualize the

system design of both approaches.

Corneal Reflection Tracking

Corneal reflection tracking methods utilize the glint feature similar to VOG systems. Instead

of a divergent light source and a 2D array of photodetectors (e.g. a CMOS sensor), they scan a

focused laser beam in a 2D pattern over the surface of the eye and use a single photodetector
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Figure 2.8: System concepts of scanned laser mobile eye-tracking approaches. a) Corneal
reflection tracking method with an off-axis alignment of laser and photo diode b) Retinal
reflection tracking method with an on-axis alignment of laser sources and photo diodes

to detect the corneal reflection, which occurs for a mirror poistion [101]. Figure 2.8 a) shows

a corneal reflection tracking method as proposed by Sarkar et al. [101]. They integrated a

resonant 2D MEMS micro mirror into the glasses frame to scan an IR laser beam with a scan

frequency of 5 kHz over the cornea and track the corneal reflection with a photodiode inte-

grated into the nose pad. Suppose the photodiode detects a peak due to a corneal reflection.

In that case, the corresponding mirror deflection angles are captured and used as input fea-

tures for a regression-based approach to estimate the gaze vector [102]. As regression-based

methods tend to be vulnerable to slippage, as discussed in Section 2.3.6, Sarkar et al. added

three additional photodiodes to their system in more recent work reconstructed the position

and orientation of the cornea from four corneal reflections. This approach led to an accuracy

of ≈ 1 ◦ at an output rate of 500 Hz [103]. Instead of additional photodiodes, Holmqvist et al.

[104] added a stereo camera to correct for glasses slippage. This hybrid eye tracker combines

the high update rate of a corneal reflection MEMS-based tracker and the absolute reference of

a stereo camera setup.

Retinal Reflection Tracking

Retinal reflection tracking methods utilize the high reflectivity of the retina under IR illumi-

nation, which also causes the bright pupil effect, as mentioned in Figure 2.3, to construct a

feature that somehow corresponds to the pupil center. To detect this feature, a collimated IR

laser beam is scanned in a 2D pattern over the eye’s surface. If the laser beam hits the pupil, it

enters the eye and gets backscattered from the retina, leading to a strong on-axis backscatter-

ing of IR light Lout1. This is detected by a photodetector, which is integrated into the IR laser

beam path [105]. Figure 2.8 b) shows a retinal tracking method proposed by Greenberg et al.

[105] according to [106]. They used a set of two lasers with different wavelengths λ1 and λ2

to simultaneously track the bright pupil response from retinal center Lout1, corresponding
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to the pupil center, and the glint on the vertex point of the cornea Lout2. To detect the two

reflections, two photodiodes D1 and D2 are integrated into the system on-axis w.r.t. to the

laser beam via a beamsplitter. Under the assumption of a known and fixed system geometry,

the gaze vector can be estimated from the detected pupil center and the vertex point [105].

Technological Challenges

While scanned laser eye-tracking approaches solve issues of VOG systems regarding the update

rate and reduce the power consumption, technological challenges remain mainly in sensor

integration. For example, the final approach of Sarkar et al. [103] requires extensive wiring

for the four photodiodes across the glasses hinge while the approach of Greenberg et al. [105]

adds complexity due to the high amount of required optical components. In addition, ambient

light could lead to an accuracy degradation of the system, especially for cornea reflection

tracking methods, since the photodiodes are mounted outside the temple and are directly

exposed to ambient light. However, according to Sarkar et al. and Greenberg et al., both

methods are on par with VOG systems in terms of slippage robustness.

2.3.8 Other Mobile Eye Tracking Technologies

Aside from VOG systems and scanned laser eye-tracking systems described in Section 2.3.2 and

Section 2.3.7 respectively, several other eye-tracking sensor technologies have been introduced

in the past. The following Photo Sensor Oculography (PSOG) and neuromorphic camera-based

eye-tracking methods are introduced as they fit to some extent the requirements of AR glasses

as mentioned in Section 2.2.5. Other mainly intrusive approaches such as the sclera search

coil technology [107] or Electro Oculography (EOG) [108] are not described here as they are

not applicable for unobtrusive mobile eye-tracking.

Photosensor Oculography

PSOG systems, initially introduced by Torok et al. [109], use a set of photodetectors and

IR illumination sources to estimate gaze by examining the scattering behavior and reflec-

tivity of ocular tissues, particularly of the sclera and iris. The IR illumination sources are

arranged around the glasses lens to illuminate different parts of the ocular tissue. Similarly,

photodetectors are arranged around the glasses lens to receive the backscattered light of the

corresponding illuminated part. The measured reflectivity is used as an input feature for 2D

regression-based eye-tracking methods [110]. Since this technology is based on 2D regression

methods, it has similar weaknesses in terms of glasses slippage as the 2D regression methods

of VOG systems. Rigas et.al. [111] propose combining a camera sensor at a low sampling rate

with a PSOG system to address the limitation of glasses slippage. Katrychuk et al. address the

limitations of the PSOG system concerning glasses slippage by simulating the PSOG outputs

of a set of 15 pairs of IR illumination sources and corresponding photodetectors aligned in a
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2D array over the entire eye region. They used the simulated data combined with machine

learning methods to correct for glasses slippage after an initial system calibration [112].

While PSOG systems provide a high update rate and low power consumption due to their

simplicity, the sensor integration into an AR glasses system is a technical challenge. In addition,

the PSOG systems are sensitive to ambient light because the reflected light detected by the

photodetectors, and thus the detected ambient light, is directly related to gaze estimation.

Finally, a PSOG system requires a per session calibration because a 2D regression-based

method is used to estimate gaze, which also induces a reduction of gaze estimation accuracy

due to glasses slippage.

Neuromorphic Camera

Neuromorphic cameras, also called event-based cameras, are a new bio-inspired camera

sensor technology that mimics the behavior of the human retina to overcome the limitations

of classic CMOS camera sensors. Instead of capturing images with a fixed global shutter, pixels

in neuromorphic camera sensors act independently to brightness changes and send out digital

events. As the events operate asynchronously, event cameras reach equivalent update rates

above 10 kHz while consuming only a fraction of power (about 10 mW on die level) compared

to CMOS sensors. Furthermore the dynamic range of neuromorphic camera sensors is very

high (above 120 dB) compared to CMOS sensors ( 60 dB) [113].

From a sensor point of view, event cameras overcome drawbacks with respect to power

consumption, update rate, and ambient light robustness of classic VOG systems as discussed

in Section 2.3.6. Angelopoulos et al. [114] were the first to adopt this technology to the

eye-tracking domain. They used a classic camera sensor to initialize a geometric eye model

consisting of a parametric ellipse, a parabola, and a circle model for the pupil, eyelid, and

a single corneal glint. Afterward, the events of the event camera are used to interpolate the

geometric model with an update rate of 10 kHz between successive full camera frames. Finally,

a 2D regression-based method is proposed to estimate the gaze vector with the pupil and

the glint model features as input features. Stoffregen et al. [115] advances the approach of

Angelopoulos et al. by removing the classic camera sensor and relying solely on an event

camera sensor combined with a set of IR LEDs to produce a circle of glints on the cornea.

Toggling the IR LEDs with a predefined pattern leads to an event pattern in the neuromorphic

camera sensor. These events correspond to corneal glints, which can be tracked over time to

estimate the center cc as well as the orientation of the cornea in space using a regression-based

approach.

While neuromorphic cameras solve some limitations of classic camera sensors used in most

VOG systems, especially in the area of power consumption and update rate, algorithm ap-

proaches to robustly estimate the gaze vector from a set of events are still not fully solved.

Additionally, the same technological challenges from VOG systems arise with respect to sensor

integration as discussed in Section 2.3.6.
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2.3.9 Summary on Eye Tracking Sensor Technologies

The different eye-tracking sensor technologies are rated according to the requirements for

mobile eye-tracking sensors for AR glasses as summarized in Section 2.2.5 to summarize the

different technology approaches introduced within this part of the thesis.

Since most of the works lack an accurate description of the system-level power consumption,

as the power consumption of the gaze estimation algorithms is usually not considered, power

consumption is compared on sensor level including all components required to track a single

eye. To allow a fair comparison between the setups, the power consumption is set similar to

[115] of IR LEDs to 5 mW and the power consumption of photodiodes including the TIA to

15 mW, which is reasonable for state of the art integrated circuit solution like the THS4567

[116].

The sensor integration requirement is evaluated based on the number of components that

need to be integrated into the glasses lens as they restrict the user’s field of view and require

more complex wiring than components integrated into the frame temple. In addition, the

robustness against ambient light is compared by the dynamic range of the receiver circuit

(single photodiode circuit or CMOS sensor).

As a robust operation in the presence of glasses slippage is mandatory for AR glasses, only

approaches that tend to be robust against glasses slippage are taken into account in the

following comparison.

VOG system

The latest TobiiPro Glasses 3 is chosen as a state-of-the-art reference to compare other VOG

systems. The eye-tracking hardware consists of a stereo camera setup and eight IR LEDs,

which are integrated into the glasses lens. The setup allows slippage robust gaze estimation

with up to 100 Hz and a gaze accuracy of 0.6◦ [97].

As no information regarding the power consumption of the camera sensors is available, the

power consumption is estimated from the Python 300 CMOS camera sensor [80] by scaling the

dynamic power linearly according to the frame rate. In addition, we scale down the dynamic

power consumption linearly by the pixel difference to match the sensor size of the cameras

used by the Tobii 3 glasses. For a single camera sensor, this leads to

PC amer a = Pst ati c +Pd ynami c · f ·pi xeldi f f

= 50mW +0.3312
mW

H z
∗100H z ∗ 240×960

640×480
= 74.85mW.

(2.1)

As two cameras are required per eye and in addition 8 LEDs are used to illuminate the eye

and generate glints, in total 10 components are integrated into the glasses lens.This sums up

to a total power consumption of 189.69 mW, not including the gaze tracking algorithm. The

22



2.3. Mobile Eye Tracking Sensor Technologies

ambient light robustness of VOG systems is derived from the Python 300 CMOS sensor which

states a dynamic range of 60 dB [80].

Scanned Laser System

The Adhawk Mindlink [103] is chosen as a reference for scanned laser eye-tracking systems

because it is the only system that is robust against slippage and achieves product maturity. The

hardware consists of a 2D MEMS micro mirror, which is integrated into the glasses nose pad,

and four photodiodes integrated into the glasses lens frame. The power consumption is split

between the power consumption of the micro mirror (15 mW [101]) and the four photodiodes,

including the associated TIA, resulting in estimated total power consumption of 75 mW, not

including the gaze tracking algorithm. Adhawk reports a gaze accuracy below 1◦ and an update

rate of 500 Hz of their scanned laser eye-tracking system. According to Adhawk [103] robust

tracking in the presence of sunlight is possible thus, the ambient light robustness exceeds the

ambient light robustness of VOG systems. This is mainly because scanned laser systems rely

on coherent light sources with a small bandwidth variation around the central wavelength,

which allow efficient filtering of ambient light on the detector side e.g. by using narrow-band

optical filters in front of the photodiode as mentioned by Sarkar et. al. [101].

PSOG system

As a PSOG eye-tracking sensor reference system, the latest work of Katrychuk et al. [112]

is considered. They achieve a slippage robust design by using an array of 15 photodiodes

integrated into the glasses lens and at least one IR LED as an illumination source to illuminate

the eye region. This leads to 16 components that consume power on a sensor hardware level of

230 mW. The authors reported a gaze accuracy of 1.09◦ with a maximum update rate of 1 kHz

using a CNN. The dynamic range of PSOG systems of ≈ 30 dB is derived from the reference

Trans Impedance Amplifier (TIA) [116] gain bandwidth product at a frequency of 1 kHz.

Neuromorphic Camera

Recently, Stoffregen et al. [115] presented a neuromorphic camera eye-tracking system. They

used ten blinking IR LEDs integrated into the eyeglass frame to generate corneal glints, leading

to a corneal glint event stream. Based on the event stream, the cornea is tracked at an update

rate of 1 kHz. By reconstructing the cornea from the glint events, the authors can perform

slippage robust gaze estimation with a total power consumption of the hardware components

of 85 mW. Since the authors only report the pixel error ( 0.5 pixel) and not gaze accuracy directly,

this is derived from a comparable work by Angelopoulos et al. [114], which achieved a gaze

accuracy of 0.46◦. According to Gallego et al. [113] the dynamic range of the neuromorphic

camera technology is 120 dB.
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Conclusion

The radar chart in Figure 2.9 summarizes the different eye-tracking sensor technologies with

respect to the key requirements for mobile eye-tracking sensors for AR glasses. A large coverage

of the chart corresponds to a better fulfillment of the requirements. As the power consumption
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Figure 2.9: Radar chart to compare different eye-tracking sensor technologies for AR glasses

is limited to the hardware power consumption, excluding the power consumption of tracking

algorithms, this will increase, especially for systems with a high update rate. To get a sense of

the impact of gaze estimation algorithms on system power consumption, the authors of the

PSOG system [112] estimated the power consumption of their CNN model optimized for low

power consumption between 70 mW to 5.75 W. Therefore this is the most critical requirement

as current systems already have a significant power consumption on the hardware level.

The scanned laser technology has the best coverage among all eye-tracking sensor technologies

compared in the chart. The technology has advantages with respect to sensor integration and

power consumption.

2.4 Laser Feedback Interferometry

As AR glasses with retinal projection are already equipped with an integrated laser scanner

and scanned laser eye-tracking sensors seem to fit best the requirements for AR glasses, this

thesis focuses on laser-based eye-tracking sensors. In particular, the use of LFI sensors for

eye tracking is investigated. To better understand the contributions in the domain of LFI

sensors of this thesis, the basic functionality of semiconductor lasers and, in particular, the

measurement method of LFI will be introduced. The following Sections are mainly based on
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the ground laying work of Coldren et.al. [1] about diode lasers as well as the works of Michalzik

et.al. [117] about Vertical Cavity Surface Emitting Lasers (VCSELs) and Taimre et.al. [6] about

LFI.

2.4.1 Semiconductor Laser

The main component of semiconductor lasers is the gain medium with a crystalline structure.

In this medium, electrons can occupy several energy levels, so-called energy bands. Similar to

other semiconductor devices, these structures are divided into a valence band with energy

level Ev and a conduction band with energy level Ec . If the electrons are not excited, all

electrons are in the valence band. However, suppose an external current is applied to the

active medium. In that case, electrons get excited and travel to the conduction band, which

results in holes in the valence band and free electrons in the conduction band [1].

Figure 2.10 shows different electron transitions between the valence band and the conduction

band, which are essential for the absorption or emission of photons.

Ec

Ev
Rsp R12 R21 Rnf

Figure 2.10: Different electron transitions that are important, emphasizing those that involve
the absorption or emission of photons [1].

The four recombination or generation mechanisms of photons are spontaneous recombina-

tion Rsp , stimulated generation R12, stimulated recombination R21 and non-radiative recom-

bination Rn f .

Rsp describes spontaneous recombination of an electron in the conduction band with a hole

(missing electron) in the valence band. They do not contribute to a coherent emission [1].

R12 describes photon absorbance. A photon is absorbed by an electron in the valence band

and stimulates the generation of an electron in the conduction band [1].

R21 describes a photon that perturbs the system stimulating recombination of an electron

and a hole and simultaneously generating a new photon. This state is also called stimulated

emission and is the effect that allows the laser to operate and output coherent light [1].

The last effect is non-radiative recombination, which means energy is dissipated as heat in

the semiconductor crystal structure [1]. These losses are material dependent and can be

summarized as internal material loss αi [1].

25



Chapter 2. Introduction

2.4.2 Vertical Cavity Surface Emitting Lasers

Figure 2.11 shows the basic structure of an VCSEL. The excitation current flows from the

p-contact

n-contact

Substrate

Lower Bragg reflector

Isolation layer

Upper Bragg reflector Oxid aperture

Active medium

Gaussian beam

Figure 2.11: Schematics of a vertical-cavity surface-emitting lasers illustrating the structure
and the basic operation of an VCSEL [117]

p-contact through the active medium towards the n-contact of the semiconductor surpassing

the resonator of the VCSEL. The resonator builds up from two DBRs on top and bottom of

the active medium. Inside the resonator, the emission and recombination process occurs,

which finally leads to a coherent Gaussian laser beam emission. The diameter and the beam’s

divergence angle are controlled by the oxide aperture applied on top of the active medium.

Compared to Edge Emitting Lasers (EELs), the VCSELs has a lower threshold current and a

high-power conservation efficiency ηi , which allows a low power operation of the laser, a

circular beam profile with lower divergence angles, which allows a simple and smaller optical

design. VCSELs further can be designed to work in a single transversal mode condition to emit

only a single-mode electromagnetic wave, which is beneficial for an LFI sensor [117].

Distributed Bragg Reflectors

LBragg

L1 L2

n1 n1 n1n2 n2 n2

R1R R2 R1 R2 R1 R2

Figure 2.12: Schematics of a DBR mirror of a VCSEL [1].

The DBRs in Figure 2.11 consist of an alternating sequence of high- and low refractive index

layers (n1,n2) with thickness (L1,L2) of one quarter of the material wave length as shown in

Figure 2.12. With these conditions, the reflection of each reflector pair will add up to an overall

effective reflectivity R of the mirror.

If the oscillating electric field E(z, t) propagates along the z-axis inside the resonator, it is
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reflected by one of the two mirrors. Losses occur inside the mirrors as the mirrors are no ideal

reflectors and a part of the field is transmitted and coupled out of the cavity. The mirror losses

of a DBR are calculated according to Michalzik et. al. [117] by

αm = 1

LBr ag g
ln

[
1p

R1R2

]
. (2.2)

Optical Resonator

z z

x
y
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Lint

R1 R2

Lp/2 Lp/2

M1 VaVp/2 M2

Figure 2.13: Schematics of the resonator of a diode laser [1].

The optical resonator shown in Figure 2.13 is the main component of a laser. It can be divided

into two parts, an active volume Va with length La including the active medium and a passive

volume Vp with length Lp . Together both volumes form the whole resonator volume V . The

fraction between the active volume and the overall volume is described by the confinement

factor Γ. In the active volume Va photons are generated, which propagate with the group

velocity vg along the z-axis of the resonator until they hit one of the two DBRs (M1, M2) and

are back reflected leading to a harmonic oscillating field E (z, t ) inside the resonator. The group

velocity inside the resonator is given by

vg = c0

n
(2.3)

with c0 describes the speed of light and n the effective refraction index of the materials [1].

The harmonic oscillating field E(z, t ) inside the resonator is described by

E(z, t ) = E0e− jωt−β̃z (2.4)

with the angular frequency ω of the electric field E and the complex propagation constant β̃.

The angular frequency ω of E in Equation (2.4) is determined by the laser wavelength λ and

the speed of light as follows

ω= 2π f = 2π
λ

c0
. (2.5)

The complex propagation constant is according to Coldren et. al. [1] given by

β̃=β+ 1

2
j (Γg −αi ) (2.6)
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where β summarizes the real part of β̃ and the modal gain g . αi summarizes the internal

losses as described in Section 2.4. Besides the gain, there are internal losses αi inside the

resonator which are mainly related to non-radiative recombination Rn f of charge carries [1].

The real part β is composed of the laser wavelength λ and the effective refractive index n of

the active medium

β= 2πn

λ
. (2.7)

The propagation of a mode inside the resonator requires that stimulated emission of photons

exceed the internal losses αi as well as the mirror losses αm . At this point the modal gain

has reached g th , the threshold gain. At this condition the electric field E(z, t) will replicate

itself after a round trip through the resonator which yields E(z = 2Li nt , t) = E(z = 0, t) [1].

Inserting these boundaries and the DBR reflectivity R1 and R2 into Equation (2.4) together with

Equation (2.6) gives the threshold condition which needs to be fulfilled for stable oscillation of

E(z, t ) inside the resonator √
R1 ·

√
R2 ·e− jβth L+(Γg th−αi L) = 1. (2.8)

The subscript th denotes that Equation (2.8) defines β and g at threshold operation and above.

The amplitude condition is therefore the real part of Equation (2.8) given by√
R1 ·

√
R2e(Γg th−αi )L = 1. (2.9)

Resolving Equation (2.9) for the threshold gain leads to

g th = 1

Γ

(
αi + 1

Li nt
ln

(
1p

R1 ·
p

R2

))
(2.10)

where Li nt denotes the length of the resonator. Recalling Equation (2.2), Equation (2.10) can

be rewritten to

Γg th = 1

vgτp
= vg (αi +αm) (2.11)

where τp is referred to as photon decay lifetime containing all losses inside the resonator.

In Equation (2.11) the losses are described in a more general way by the photon lifetime τp ,

leading to
1

τp
=αi +αm . (2.12)

The photon lifetime therefore describes the mean lifetime of a photon traveling inside the

resonator until the internal losses stops it [1].

The duration a photon takes to fulfill a full round trip inside the resonator is given by the laser

round trip time τi nt . The round-trip time is calculated from the group velocity and the cavity

length

τi nt = 2 ·Li nt

vg
. (2.13)
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The length of the cavity further defines the wavelength of the laser. This can be shown by

analyzing the complex part of Equation (2.8) which states the following condition

e−2 jβth Li nt = 1. (2.14)

A solution which fulfills this condition is according to Coldren et. al. [1]

βthLi nt = mπ (2.15)

with m describing the longitudinal mode number of the laser, which is 1 for a single mode

laser used in this work. Inserting Equation (2.7) into Equation (2.15) the wavelength of the

laser is given by

λ= 2

m
nLi nt . (2.16)

Threshold Current and Optical Power

One important parameter of a VCSEL is the threshold current. If this current is applied to the

VCSEL, the laser condition, which is described in Equation (2.8), is fulfilled and stimulated

emission takes place.

The threshold current is given by

Ith = qV

ηiτsp
·Nth (2.17)

with q describing the elementary charge and τsp the spontaneous emission rate which does

not contribute to the stimulated emission of photons, as described in Section 2.4.1 [1]. At

threshold the carrier density Nth inside the cavity reaches its maximum and a further increase

of the current I will not further increase the carrier density.

Based on this observation, above threshold only the photon density Np will increase and

contribute to the emission of photons

Np = ηi (I − Ith)

q · vg · g th ·V (2.18)

which is equal to an increase of optical power. This leads us to the basic equation to describe

the optical power of a laser

P0 = ηd
h · v

q
(I − Ith) (2.19)

with the differential efficiency

ηd = ηi ·αm

αm +αi
. (2.20)

Equation (2.19) is only valid if both mirrors are symmetric and have the same reflectivity R.
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Figure 2.14: a) shows the active laser cavity coupled with a passive external cavity formed by
an external measurement target. The external target is modeled as an additional Mirror M3

with a reflectivity R3. b) shows the three-mirror model according to Coldren et. al. [1]. In this
model the out-coupling mirror M2 is replaced by an effective mirror Me f f , which describes
the coupling of M2 and M3 obtained by an S-parameter analysis.

Otherwise a correction factor F2 is applied, yielding

P02 = F2 ·ηd · hv

q
(I − Ith) (2.21)

with

F2 = T2(
1−p

R2
)2 +

√
R2
R1

· (1−p
R1

)2
. (2.22)

2.4.3 Semiconductor Laser under Feedback

LFI sensors are VCSELs working on the self-mixing phenomena. Self-mixing describes an

operation mode of a laser where a part of the emitted light is back injected into the laser

cavity and thus leads to direct feedback to the laser source [118]. The operation of a laser

under feedback can be described by extending the laser cavity as shown in Figure 2.13 by

addition of an external cavity with an additional mirror M3, which scatters back light into the

laser cavity, as shown in Figure 2.14 a). This leads to the well-known three-mirror model of

a semiconductor laser under feedback. A schematic of the three-mirror model is shown in

Figure 2.14 b). An analytical description of the physical behavior of a laser under feedback

was introduced by Lang and Kobayashi [119].

The cavity of the laser with length Li nt , propagation constant βi nt and the two mirrors M1

and M2 with reflectivity R1 and R2 are coupled with an external passive cavity with length Lext ,

propagation constant βext and a mirror M3 with a reflectivity R3 [1].

To simplify the further analysis of the system, an effective mirror model is introduced. The

mirrors M2 and M3 of the laser cavity and the external cavity are replaced by an effective mirror
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Me f f with an effective reflectivity Re f f . Based on the S-parameter analysis, the reflectivity of

the effective mirror is according to Coldren [1] given by

√
Re f f =

p
R2 + (T2) ·pR3 ·e− j 2·β̃ext ·Lext

1+p
R2 ·

p
R3 ·e− j 2·β̃ext ·Lext

. (2.23)

Considering a weak reflectivity of the external mirror R3 << 1 the effective mirror reflection,

Equation (2.23) can be reduced to√
Re f f =

√
R2 + (T2) ·

√
R3 ·e− j 2·β̃ext ·Lext . (2.24)

Thus, a change of feedback due to a change of the reflectivity ∆R can impact both the am-

plitude and the phase of the effective mirror. A change of external reflectivity is expressed

by ∆R = Re f f −R2. Inserted into Equation (2.24), the impact of changing reflectivity can be

described by a complex vector, which can, according to Coldren et.al. [1], be partitioned into a

real in-phase part ∆Ri p

∆Ri p = (T2) ·
√

R3 ·cos
(
2 ·βext ·Lext

)
(2.25)

and a imaginary quadrature part

∆Rq =−(T2) ·
√

R3 · sin
(
2 ·βext ·Lext

)
. (2.26)

Recalling Equation (2.15), the term 2 ·βext · Lext describes the external phase φext of the

external cavity and thus equals ωext ·τext .

The in-phase component Equation (2.25) affects the laser by changing the reflectivity of the

second mirror and therefore the mirror losses ∆αi given by Equation (2.2). This leads to a new

photon life time (Equation (2.12))

1

τ
′
p
= 1

τp
+ vg ·∆αm = 1

τp
+ vg

Li nt

√
R1 ·∆Ri pp

R1 ·R2
. (2.27)

By plugging in the laser round trip time, given in Equation (2.13), and the in-phase component

of the effective reflectivity, Equation (2.25) leads to

vg ·∆αi =−2 ·T2 ·
√

R3

R2
· 1

τi nt
·cos

(
2 ·βext ·Lext

)=−2 ·k f ·cos
(
2 ·βext ·Lext

)
. (2.28)

k f = T2 ·
√

R3

R2
· 1

τi nt
(2.29)

describes the coupling strength between the laser cavity and the external cavity and influences

the signal quality.
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The cosine modulation of the photon life time leads also to a modulation of the threshold

gain g th ,introduced in Equation (2.11), and therefore to a shift in threshold carrier density

Nth , which leads to a variation in the threshold current Ith and therefore a modulation of the

optical power (Equation (2.19)). In addition the differential efficiency ηd (Equation (2.20))

and the symmetry correction factor F2 given by Equation (2.22) are modified by the change in

mirror reflectivity. This effects lead to a new optical power equation for a perturbed laser [1]

P f = P02
(
1−m ·cos

(
2 ·βext ·Lext

))
(2.30)

which is equal to the more common notation of the equation

P f (ωext ) = P02 (1−m ·cos(ωext ·τext )) (2.31)

as 2 ·βext ·Lext equals ωextτext as well as φext . The modulation factor m describes the power

variation of the perturbed laser due to coupling effects between the two cavities for robust

operation of the laser above the threshold [1]

m = 2 ·k f ·τp (
ηi

ηd
−1)+k f τext (1−F2)(

1+R2

T2
). (2.32)

Variation of the in-phase component ∆Ri p affects the threshold level and the optical power of

the laser leading to an Amplitude Modulation (AM) of the laser. The quadrature component

∆Rq in contrast modifies the round-trip phase angle φe f f at mirror R2

φe f f =
∆Rq

R2
(2.33)

modifying the resonant wavelength of the cavity given by Equation (2.16) and thus leading to

an angular frequency shift, which is given according to Coldren et.al. [1] by

∆ωφ =−k f · sin
(
2 ·βext ·Lext

)
. (2.34)

Besides the round trip phase angle, an additional change of the angular frequency is intro-

duced by the change of the threshold carrier density Nth described by Henry’s line-width

enhancement factor α [120]

∆ωN =−αk f ·cos
(
2 ·βext ·Lext

)
. (2.35)

Adding both frequency shifts ∆ωφ and ∆ωN using the trigonometric identity, the total fre-

quency shift ∆ω is given by

∆ω=−k f ·
√

1+α2 · si n(φext +arctan(α)). (2.36)

The angular frequency shift describes the difference of the angular frequency ω0, experienced
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by the laser during the round trip through the external cavity without optical feedback. The

angular frequency ωext corresponds to the actual frequency response including optical feed-

back [6]. As linkage between phase and angular frequency is given by φ = ω ·τ, ∆ω can be

decomposed as follows

∆ω=ωext −ω0 = φext

τext
− φ0

τext
= (

φext −φ0
) 1

τext
. (2.37)

With this expression and the introduction of Acket’s feedback parameter C [118]

C = k f

√
1+α2τext (2.38)

Equation (2.36) can be rephrased, and the well-known excess phase equation is obtained

φext −φ0 +C · sin
(
φext +arctan(α)

)= 0 (2.39)

which is the fundamental equation to describe the LFI sensing principle found in most of

the literature dealing with LFI sensors e.g., by Giuliani et.al. [121] or Taimre et.al. [6]. As

Equation (2.39) is a transcendental equation, a stable phase contingent operation of the laser

is only possible if C < 1 otherwise more than one possible solution of Equation (2.39) exists,

which leads to phase jumps and thus an unstable behavior of the laser [6]. Thus, in the further

descriptions a stable operation of the system in the low feedback regime (C < 1) is assumed.

2.4.4 Modulation of Semiconductor Lasers under Feedback

Modulation of the coupled cavity is required to observe a change of phase response and thus

measure physical quantities. In general, modulation of the coupled cavity can be divided

into modulation of the internal cavity and modulation of the external cavity. Modulation of

the internal cavity affects the effective mirror Me f f of the coupled system by changing the

output mirror M2 of the laser by variation of the internal laser parameters. Modulation of

the external cavity affects the effective mirror Me f f by variation of the external cavity mirror

M3 by variation of the parameters of the external cavity. In the following, both modulation

schemes and the corresponding measurement quantities are discussed.

External Cavity Modulation

Based on Equation (2.30), the modulation of optical power is strongly dependent on the cosine

term and therefore to ωext ·τext =φext , which is linked via Equation (2.39) with the phase φ0

of the unperturbed laser. Examining Equation (2.39), two parameters influence φext . One

is Acket’s feedback parameter C and the other is the phase φ0 of the unperturbed laser. The

linewidth enhancement factorα as third possible parameter is omitted, as according to Taimre

et al. [6] this parameter can modeled as constant.

Analyzing the remaining parameters, the most straightforward way to modulate φext is a mod-

33



Chapter 2. Introduction

ulation of the round trip phase φ0 of the unperturbed laser [6]. Recalling the correspondence

between phase φ0 and the angular frequency ω0 (φ0 =ω0 ·τ0) as well as Equation (2.16) and

the relationship between wavelength and frequency λ= c0/ f , the following equation shows

which parameters affect the round trip phase φ0 of the unperturbed laser

φ0 = 2 ·π · f0 ·τext = 4 ·π ·next Lext

λ
. (2.40)

Considering operation in free space (next = 1) and a constant wavelength λ of the laser, the

round-trip phase is directly proportional to the length of the external cavity φ0 ≈ Lext . A

periodic variation of ∆Lext of at least λ/2 leads to a periodic variation of the optical power P f .

Differentiating Equation (2.40) with respect to time t leads to

dφ0

d t
= 4π

λ

dLext

d t
. (2.41)

As the derivation of the phase with respect to time equals the frequency and the derivation of

the distance with respect to the time equals the velocity v of displacement in beam direction.

This leads to the well-known Doppler equation

fd = 2 · |vT |
λ

(2.42)

which equals a Doppler shift by the superposition of the incident wave and the back scattered

wave. Equation (2.42) is limited to target movements which are transversal to the propagation

axis denoted by vT . To overcome this limitation, the Doppler frequency equation is expressed

in a more general way

fd = 2 · |v | ·cos(Ψ)

λ
(2.43)

where Ψ denotes the angle between the wave vector k and the velocity vector v [122]. To

measure absolute velocity, the internal parameters of the cavity need to be modulated as well.

Internal Cavity Modulation

The modulation of internal cavity parameters of a laser under feedback is carried out by

a modulation of the drive current of the laser [117]. A variation in drive current affects

the internal cavity by two different mechanisms. First, as the current increases, the cavity

temperature rises, which affects the effective cavity length Li nt and the gain curve in the

material. Secondly, increasing the current increases the carrier and photon density in the

material, which influences the material’s refractive index ni nt . This second effect is also

referred to as the plasma effect, which tends to be the dominating effect at high modulation

frequencies [123]. Recalling Equation (2.16), both effects influence the wavelength of the laser.

For low modulation frequencies, the temperature effect dominates the modulation of the

cavity [124] which leads to

λ(t ) = 2 ·n ·Li nt (t ). (2.44)
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Recalling Equation (2.40) and plugging in the variation of the wave length leads to a modulation

of φ0 and therefore a modulation of the optical output power P f . The modulation of the

wavelength can be interpreted in Equation (2.40) as a slight movement of the laser towards the

target, if the driving current is increased and a movement away from the target as the drive

current is reduced respectively. One important observation is the proportionality between

drive current modulation, active cavity modulation and the modulation of the wavelength

dλ

d t
∼ dLi nt

d t
∼ d I

d t
. (2.45)

Plugging in Equation (2.44) into Equation (2.40) leads to a modulation of φs even if Lext does

not vary, which allows the measurement of the distance Lext towards still standing targets.

Time differentiating Equation (2.41) with respect to the wavelength λ as a modulation of the

drive current leads to a variation of the wavelength and gives the following equation

fb = 2 ·Lext

λ2 · d ·λ
d t

. (2.46)

with fb as beat frequency [125]. The beat frequency is directly proportional to the target

distance [125] .

Simultaneous Measurement of Distance and Velocity

As both frequencies, fd and fb lead to a modulation of the optical power P f either induced

by a moving target or by a change of the wavelength caused by the laser drive current modu-

lation, both effects superimpose and thus cannot be observed independently. Therefore, a

known current modulation scheme with two distinguishable states is required to resolve this

singularity. A widely applied modulation scheme with two states is a triangular modulation as

used in FMCW LIDAR systems [126].

The drive current of the laser is modulated by a symmetric Direct Current (DC)-free triangle

signal with a frequency fmod , a period duration Tmod and an amplitude Imod .

Figure 2.15 a) shows the effect of triangular modulation of the wavelength λ by the drive

current of the laser on the transmitted signal (solid triangular line) and the back-reflected

echo signal (dashed line) from the target. The echo is delayed by τext and shifted by the

Doppler frequency. fup corresponds to the difference frequency measured during the up

ramp, and fdown corresponds to the difference frequency measured during the down ramp of

the triangular signal. The amplitude of the triangular signal is controlled by the modulation

current Imod and the duration of a triangular wave by Tmod . Figure 2.15 b) shows the resulting

frequency inside the laser cavity as the sum of transmitted and back-reflected signal. The

mean resulting frequency corresponds to the distance-related beat frequency fb and the

difference between up ramp frequency fup and the down ramp frequency fdown corresponds

to twice the frequency shift induced by the Doppler effect and thus to the target velocity.
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The sum frequency finally modulates the optical power inside the laser cavity according to

Equation (2.31)

I(
t)

~
L i

n
t(

t)
~
λ(

t)
~

f(
t)

Tup Tdown
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~
f d
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Figure 2.15: a) Effect of triangular modulation of the wavelength λ by the laser’s drive current
on the transmitted signal (solid triangular line) and the back-reflected echo signal (dashed
line) from the target. b) the resulting frequency inside the laser cavity as a sum of transmitted
and back-reflected signal.

The current modulation leads to a change in the internal cavity length, and thus the wavelength

of the cavity as described by Equation (2.45). This change leads to a modulation of the

frequency of the optical wave transmitted from the laser. With a delay of τext , corresponding

via Equation (2.13) to the target distance, the modulated wave is back-reflected from the target,

and the echo signal is back injected into the laser cavity. Due to the velocity of the target,

the optical wave is shifted by the Doppler frequency. Thus the cavity acts as an optical mixer

constructing the sum and difference of both wave frequencies[125]. Figure 2.15 b) shows

the frequency difference of both wave frequencies. While the laser operates in the Terahertz

Regime, the optical mixer converts the difference signal to the Megahertz regime, which eases

signal processing. As depicted in Figure 2.15, the mean of both frequencies fup and fdown

corresponds to the beat frequency fb and half of the difference between them to the Doppler

frequency fd .

Due to the symmetric shift of the signal wave during a full modulation swing Tmod , the distance

related frequency fb is given by

fb = fup + fdown

2
(2.47)

and the target velocity related frequency fd is given by

fd = fup − fdown

2
. (2.48)
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By measuring the frequencies fup and fdown during the corresponding triangle ramps Tup and

Tdown , the Doppler- and beat-frequencies can be calculated. Recalling Equation (2.46), the

distance to the target can be calculated from the laser wavelength λ, the triangle parameters

and the drive current corresponding wavelength modulation constant dλ/d t . In addition,

the target velocity can be calculated by plugging in Equation (2.48) into Equation (2.43) if the

angle of incidence ψ is known.

2.4.5 LFI Sensor

As described in the previous sections, the optical power P f of the laser under feedback is

modulated based on an external target, which back reflects laser light into the laser cavity as

described by Equation (2.31). Therefore it is required to measure the varying optical power

inside the resonator of the laser cavity. A suitable solution is to integrate an intra-cavity

photodiode into the lower DBR of the cavity as shown in Figure 2.16 [6]. A detailed description

of the integration of a so-called monitoring diode is given by Grabherr et al. [2].

Oxid aperture

Upper Bragg reflector

Lower Bragg reflector

Intra-cavity photodiodeSubstrate

Isolation

p-contact

n-contact

Intra-cavity-contact

Active medium

Figure 2.16: Integration of a photodiode into the lower DBR of the laser cavity [2].

Besides the sensor component itself, additional electrical components like a laser driver

circuit, a receiver circuit, and a digital circuit are required to build up an LFI sensor to measure

distance and velocity as described in Section 2.4.4. Figure 2.17 shows a block diagram of an

LFI sensor, including the sensing component as well as the circuitry to operate an LFI sensor.

Segmen-
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Figure 2.17: Block diagram of an LFI sensor with modulation source (DAC and laser driver)
and analog frontend (TIA) for to capture the photodiode signal. Finally the measurement
quantities (distance, velocity) are extracted in the digital domain [6].

The circuitry can be divided into analog and digital domains. The digital domain, which
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could be realized by an Application Specific Integrated Circuit (ASIC), generates a triangular

modulation signal Ud (t), e.g., by an DAC. This signal is fed into a laser driver circuit, which

converts the voltage signal into a current modulation signal Id (t ). The VCSEL with integrated

photodiode emits frequency-modulated light, which is collimated using, e.g., a collimation

lens. The light travels along the optical axis of the laser until it hits the target at a distance d(t ),

which moves with a velocity v(t ). A portion of the light is back-reflected and back injected into

the cavity where both the local optical wave and the back-reflected optical wave interfere. The

photodiode, integrated into the back DBR, measures the power modulation, which follows the

inference signal according to Equation (2.31). The resulting current signal Ip (t) is highpass

filtered to suppress the DC power of the laser and amplified and converted into a voltage Up (t )

by a TIA. This voltage signal is digitized by an Analog Digital Converter (ADC) and segmented

into voltage segments Up,up (t) and Up,down(t) which either belong to the up-ramp or the

down-ramp of the current modulation triangle. From both segments the peak frequencies fup

and fdown are calculated. With these frequencies fd and fb are calculated using Equation (2.48)

and Equation (2.47). Afterwards, the target velocity v(t ) in beam axis and the target distance

d(t ) are calculated by applying Equation (2.43) and Equation (2.46).

2.5 Conclusion

Mobile eye-tracking sensors are a key sensing technology for AR glasses, especially for retinal

projection glasses, as discussed in Section 2.1. Moreover, they are the enabling technology for

a wide range of applications from HCI applications over display enhancement applications to

medical and well-being applications as introduced in Section 2.2, adding significant value to

consumer AR glasses. The integration of eye-tracking sensors into the domain of consumer

graded AR glasses sets high requirements in the area of gaze accuracy, robustness, sensor

integration, power consumption as well as sensor update rate, which are discussed in detail

within Section 2.2.5.

A detailed analysis of established state-of-the-art VOG eye-tracking sensor technology shows

that VOG systems fulfill requirements regarding accuracy but are limited with regard to pupil

detection and ambient light robustness, sensor integration, power consumption, and sensor

update rate as discussed in Figure 2.7. Therefore, emerging eye-tracking sensor technologies

are analyzed within section 2.3. The summary of different eye-tracking sensor approaches in

fig. 2.9 shows that scanned laser eye-tracking sensors have the best fulfillment of all require-

ments.

Therefore, contributions within the first part of the thesis focus on closing the gap between

the high gaze accuracy of established VOG sensors and the advantages of scanned laser eye-

tracking sensor technology with respect to sensor integration and power consumption. In

addition, known technological limitations like ambient light robustness, glasses slippage, and

user calibration are addressed within the contributions in this part of the thesis.

As contributions in the first part of the thesis focus on integrating scanned laser eye-tracking
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sensors into retinal projection AR glasses, the second and third part of the thesis focus on an

alternative novel static laser approach, which enables mobile eye-tracking independent of the

display technology. As potential technology LFI is identified due to the small size of the sensors

and the capability to measure distance and rotational velocity with an outstanding update

rate. Therefore this capture closes with a detailed description of this sensing technology in

Section 2.4 to ease understanding of the contributions within the second and third part of the

thesis.

The major contributions this thesis makes to enable energy-efficient mobile eye-tracking for

AR glasses through optical sensor technology are discussed in the next chapter.
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Figure 3.1: Overview and relationship of contributions in the thesis.

Figure 3.1 summarizes the contributions of this thesis. The major contributions are split into

the three parts Scanned Laser Eye Tracking, Static LFI for Human Computer Interaction for AR

glasses, and Static LFI Eye Tracking.

The first part of the thesis focuses on replacing VOG systems for retinal projection AR glasses

through a scanned laser eye-tracking approach.

Contribution in the second part Static LFI Human-Computer Interaction for AR Glasses of the

thesis focuses on low power gaze HCI through static LFI sensors.
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To enable low-power gaze interaction with AR glasses, the publications B.1 and B.2 introduce

static LFI sensors operating with the Doppler principle to measure rotational eye velocities.

Furthermore, based on the measured eye velocities, a gaze gesture recognition algorithm is

derived to enable a gaze gesture-based control of the glass’s user interface.

Contribution within the third part Static LFI Eye Tracking focuses on fusing multiple static LFI

sensors to develop a high-speed eye-tracking senor.

This thesis is based on a rich set of fundamentals from machine learning and signal- and

image processing over embedded systems to optical technology, covering various aspects

from computer science and electrical engineering.

The following sections summarize each part and its contributions regarding motivation,

methods, and the achieved results. At the end of the chapter, a summary of the individual

contribution is drawn.

3.1 Scanned Laser Eye Tracking

The contributions [127, 128, 129, 130, 131] focuses on scanned laser eye-tracking sensor

approaches for retinal projection AR glasses in order to replace VOG systems and overcome the

technological challenges of VOG systems as outlined in Section 2.3.6. The first two publications

focus on the sensor integration concept, the second and third publication on ambient light

robustness and minimization of power consumption, and the final publication on robustness

against glasses slippage and reduction of calibration effort.

3.1.1 Scanned Laser Eye Tracking for Retinal Projection AR Glasses

This subsection is based on the publications A.1 Low Power Scanned Laser Eye Tracking for

Retinal Projection AR Glasses and A.2 A novel camera-free eye-tracking sensor for augmented

reality based on laser scanning in Appendix A.

Motivation

Retinal projection AR glasses are emerging as potential near-eye display technology with

several advantages compared to other near-eye display technologies like high contrast and low

power consumption. However, the main drawback of the retinal projection display technology

is the single eye box due to the tiny exit pupil, limiting the effective eye box. Therefore, an

eye box expansion mechanism like exit pupil steering is necessary to increase the eye box

size. Furthermore, introducing an eye box expansion mechanism requires robust eye-tracking;

thus, eye-tracking sensor technology is mandatory for the success of retinal projection AR

glasses.

Integrating state-of-the-art VOG eye-tracking sensors into lightweight AR glasses is challenging
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due to the large dimensions of camera optics and the required optical axis of the camera sensor

w.r.t the visual axis of the eye. Furthermore, the power consumption of camera sensors limits

the operation time of battery-constrained AR glasses. Therefore, the possibility of integrating

a scanned laser eye-tracking system into a retinal projection AR glass as a replacement of VOG

sensors is investigated in these publications to solve these limitations.

Methods

For this purpose, an IR laser was integrated into the RGB laser projection module of a retinal

projection AR glasses system. The IR laser beam shares the same beam path as the RGB laser

beams, and thus the existing MEMS micro mirror scanner used for image projection can be

reused to scan the IR laser beam over the surface of a holographic free space combiner. By

adding a additional optical function for the IR wavelength to the holographic beam combiner,

the IR light is deflected towards the eye such that a 2D area on the surface of the eye is

illuminated.

An external single-pixel photodetector was integrated into the glasses frame temple to generate

a grey scale image from the illuminated area on the eye. The photodetector captured the

intensity of the back scattered IR light for each scan position (α,β). Combining the single-

pixel detector and the free space combiner yields a virtual single-pixel grey scale camera. As

the laser beams are off-axis w.r.t the photodetector, dark pupil images are captured by the

single-pixel camera. This allows the application of state-of-the-art VOG algorithms for pupil

tracking and gaze estimation.

Results

Reusing the existing MEMS scanner leads to the comparable low power consumption of the

proposed sensor of roughly 11 mW mainly driven by the photodetector circuitry and the IR

laser. In addition, the holographic free-space combiner of the single-pixel camera enables

virtual observation of the eye from a centered perspective through the glasses lens while not

obscuring the user’s FOV. This is a superior perspective for VOG algorithms as the pupil can

be observed in a wide range of pupil positions. Finally, the system’s output allows reusing

state-of-the-art VOG algorithms. Therefore, the proposed system achieves similar accuracy as

state-of-the-art VOG systems and immediately benefits from advancements in VOG algorithm

developments. The achieved gaze accuracy of the system was 1.31 ◦, and the precision 0.01 ◦.

The theoretical achievable single-pixel gaze angle resolution estimated from the geometric

system analysis was 0.28 ◦. The deviation between this theoretical gaze accuracy and the

achieved gaze accuracy is related to the optical geometry of the laboratory setup, which leads

to a large pixel size compared to the glasses geometry and a defocusing of the laser beam and

thus to a reduction of the image contrast.
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3.1.2 Scanned LFI Eye Tracking for Retinal Projection AR Glasses

This subsection is based on the publications A.3 A novel-eye-tracking sensor for AR glasses

based on laser self-mixing showing exceptional robustness against illumination and A.4 A

Highly Integrated Ambient Light Robust Eye-Tracking Sensor for Retinal Projection AR Glasses

Based on Laser Feedback Interferometry in Appendix A.

Motivation

Aside from power consumption and sensor integration, VOG systems further suffer from

a signal loss in the presence of ambient light and a high-power consumption through the

required image processing steps for pupil segmentation. In addition, other artifacts such as

partly occluded pupils by the lashes or the eyelid and wearing mascara reduces the accuracy

of VOG systems.

As AR glasses are everyday devices, robust operation and thus robust eye-tracking under

various lighting conditions are mandatory. In addition, a similar robust gaze estimation for

various pupil occlusions and mascara is required to achieve a great user experience for retinal

projection systems with pupil steering.

Methods

A similar optical architecture as proposed by the publications discussed in Section 3.1.1 is

chosen. Only the IR laser sensor inside the RGB laser projection module is replaced with an

LFI sensor. The advantage of the LFI sensor is its coherent measurement principle, which is

robust against external lighting. This aspect is investigated in the paper A.3 by exposing the

sensor to various ambient lighting sources.

In A.4 the LFI sensor is integrated into an AR glasses prototype system in a laboratory setup

to show the miniaturization potential as well as to investigate the system performance. In

addition, a highly transparent IR HOE as free space combiner was fabricated to redirect the IR

light of the LFI sensor towards the eye.

Compared to the external off-axis single-pixel photodetector used in the previous approaches

the LFI sensor consists of an IR laser and a on-axis photodetector integrated into the back

DBR of the laser. Therefore the photodetector is perfectly aligned with the illumination source,

emphasizing the detection of the pupil through the bright pupil effect. Furthermore, the bright

pupil response reduces the complexity of pupil segmentation algorithms as the pupil contour

is immediately derived from the detected signals of the LFI sensor. As the bright pupil signal is

corrupted by speckling, a multivariate Gaussian fitting approach was proposed to derive the

pupil contour.
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Results

The introduction of the LFI sensing modality led to a robust pupil detection method that

is immune to ambient light at eye-safe exposure limits and provides robust pupil signals

even for partly occluded pupils. Furthermore, as only a bright pupil signal is detected, the

approach is robust against lashes and mascara. The robust signals from the pupil further

reduce the computational complexity of pupil segmentation algorithms and thus reduce the

overall system power consumption. A laboratory experiment with 15 participants unveiled a

gaze accuracy of 1.674 ◦ and a precision of 0.945 ◦ of the proposed system.

3.1.3 A Holographic Single-Pixel Stereo Camera Eye Tracking Sensor for Retinal
Projection AR Glasses

This subsection summarizes the publication A.5 A holographic single-pixel stereo camera eye-

tracking sensor for calibration-free eye-tracking in retinal projection AR glasses in Appendix A.

Motivation

A significant challenge for VOG eye-tracking sensors in everyday devices such as AR glasses is

the degradation of gaze accuracy due to glasses slippage [93]. The reduction in gaze accuracy

when the glasses slip is mainly because gaze estimation algorithms assume a known static

mapping function f between glasses- and the eye coordinate system, which is stationary over

time. This mapping function f is derived from an initial system calibration performed by

the user. If the glasses slip, f is no longer valid, and a recalibration is required [92]. Frequent

recalibration by the user leads to a poor user experience. A possible solution to obtain f

without a calibration step is to use a stereo camera setup, e.g., used in the Tobii Pro glasses

[97]. However, this requires the integration of two camera sensors per eye, which drastically

increases the power consumption of VOG systems and makes them impractical for lightweight

AR glasses.

Methods

In this publication, a virtual single-pixel holographic stereo camera is porposed to achieve

calibration-free, slippage-robust eye-tracking for the previously proposed scanned laser eye-

tracking approaches, while keeping the advantgeous sensor integration and low power con-

sumption. The main idea to create a stereoscopic perspective of the user’s eye in a near-eye

display relies on the spatial multiplexing of the HOE, which is used as a free space combiner

in retinal projection systems.

By scanning over the spatial multiplexed HOE, two images of the eye from two perspectives

generated by two optical functions embedded in the spatial multiplexed HOE are captured

sequentially. By applying a cone reconstruction algorithm, the pupil disk can be reconstructed
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from the two images in space with respect to the origin of the virtual camera. Therefore,

the mapping f is derived from each pair of images. As the reconstruction algorithm relies

only on a set of algebraic equations and omits demanding computational operations, a

power-efficient implementation on AR glasses is reasonable. A spatial multiplexed HOE was

fabricated using a holographic wavefront printer to assess the gaze accuracy of the proposed

system experimentally.

Results

With the fabricated spatial multiplexed HOE the robustness of the proposed approach was

investigated using a laboratory setup. As a result, a gaze accuracy of 1.35◦ and a precision of

0.02◦ over a FOV of 30◦ was achieved. The resolution of the individual camera sensors was

110 px × 240 px with a frame rate of 60 Hz. In addition, the reconstruction of the pupil disc in

space using an artificial eye model was shown.

3.2 Static LFI Human-Computer Interaction for AR Glasses

The last part of the thesis focused on eye-tracking methods tailored to retinal projection AR

glasses. However, aside from retinal projection display technology, other near-eye-display

technologies like wave-guide displays or micro-LED displays exist. In addition, audio glasses

such as the Amazon Echo frames [132] are emerging to the market without a near-eye dis-

play. Therefore, gaze-based interaction concepts based on static LFI sensors are investigated

through the contributions [4, 5, 133, 134] in this part of the thesis to enable gaze-based HCI

concepts for AR glasses independent of the display technology.

3.2.1 A Novel Gaze Gesture Sensor for Smart Glasses Based on Laser Feedback In-
terferometry

This subsection is based on the publications B.1 A Novel Gaze Gesture Sensor for Smart Glasses

Based on Laser Self-Mixing and B.2 A compact low-power gaze gesture sensor based on laser

feedback interferometry for smart glasses in B.

Motivation

Various HCI input methods such as push buttons or capacitive sliders have been adapted

from existing smart wearable technologies such as mobile phones to the field of smart glasses.

The main drawback is that they do not allow hands-free interaction with the glasses, which

reduces the immersion of AR glasses and limits the user experience, especially during cycling

or driving. Aside from device interaction purposes, low-power always-on input methods like a

push-button on a smartphone are used to control the display to save power and thus extend

battery life. Since the display in AR glasses like the smartphone accounts for the tremendous
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power demand, implementing a low power always-on input modality is also beneficial from a

power-saving perspective.

Methods

Static LFI sensors are investigated to achieve low power always-on gaze gesture control for AR

glasses. Static LFI sensors are capable of measuring the eye’s rotational velocity as well as the

distance between the sensor and the eye through a triangular modulation of laser wavelength,

leading to a near range FMCW LIDAR. Due to the small size, high robustness against ambient

light, and low power consumption, the sensor perfectly fits the requirements of AR glasses.

From measured raw eye velocities, eye movement directions into the four quadrants up, down,

left, and right were derived using a decision tree to classify four gaze symbols. In addition,

blinks were classified from the distance measurement signal yielding a fifth gaze symbol.

Finally, aside from classifying individual gaze symbols, an Finite State Machine (FSM) was

proposed to model gaze gestures as a sequence of individual gaze symbols.

Results

A laboratory setup was built up to evaluate the proposed static LFI gaze gesture sensor. Velocity

and distance features from two participants performing in a total of 162 gaze symbols were

captured together with a camera sensor used to derive ground truth labels on a single sample

level. As a result, the proposed gaze symbol classifier achieved a macro-F1-score of 93.44 % on

a single sample scale. Furthermore, as the static LFI sensors are capable of measuring distance

and velocity features at a sampling rate of 1 kHz a gaze gesture was recognized before the

user finished the eye movement belonging to the gaze gesture, leading to a negative latency

of about 100 ms. This allowed the user interface to start rendering interaction-dependent

content even before the user finished the gaze gesture input.

3.2.2 A CNN-based Human Activity Recognition System for context-aware Smart
Glasses

This subsection is based on the publications B.3 A CNN-based Human Activity Recognition

System Combining a Laser Feedback Interferometry Eye Movement Sensor and an IMU for

Context-aware Smart Glasses and B.4 U-HAR: A Convolutional Approach to Human Activity

Recognition Combining Head and Eye Movements for Context-Aware Smart Glasses in Ap-

pendix B.

Motivation

State-of-the-art AR glasses rely on interaction concepts derived from existing wearable tech-

nology like push buttons, capacitive sliders, hand gesture control, or voice control. However,
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these interaction methods rely on active interaction with the glasses, distracting the user and

limiting the immersion of the AR glasses. To resolve this issue and enable true user immersion

for AR glasses adding context awareness through recognition of human activities is proposed

to control the user interface without active interaction. While the recognition of physical

activities through a body-worn motion sensor or the recognition of cognitive activities through

an eye-tracking sensor, are well established in research, the combination of both sensor modal-

ities is less well explored. The combination of both sensors allows recognition of a rich set of

human activities to infer a rich set of contextual information during everyday activities.

Methods

The input of the HAR system used to derive contextual information is eye- and head movement

trajectories over time. The head movement trajectories are detected by an IMU sensor attached

to the glasses frame. In contrast, the trajectories of the eyes in B.3 are detected by static LFI

sensors, as also used in the previous section. In B.4, the static LFI sensors are replaced by a

commercially available VOG sensor to highlight the operation of the HAR system independent

of the eye movement sensor, thus enabling context awareness through HAR e.g., VR glasses

with already integrated camera-based eye-tracking sensors.

To recognize human activities from the captured eye- and head movement trajectories, a

windowing approach was chosen to split raw data into slices of 30 s from which features as

input of a HAR classifier are derived. Furthermore, a CNN model was proposed to automate

feature extraction. A CNN model allows the extraction of features on different time scales and

reduces the input data size and thus the required system memory. Compared to other network

architectures, CNN models further require a comparatively small number of parameters, which

is beneficial primarily for integrating the HAR system into memory-constrained embedded

systems. In B.4, the number of model parameters was further optimized by adopting a U-Net

like CNN model for the HAR task.

To personalize the HAR classifier to each user and thus reduce false classification, transfer

learning was applied to adapt the decision boundaries of a pretrained CNN model.

Finally, an experimental setup was the build-up to collect head- and eye-movement data

from a set of participants, which performed the seven activities cycling, walking, talking,

reading, typing, solving, and watching media. The activities were chosen to represent activities

spanning from cognitive activities like reading to varied activities like talking involving both

head and eye movements, as well as physical activities like cycling.

Results

By using state-of-the-art CNN models for activity classification and the adaption of the de-

cision boundaries through transfer learning an macro F1-score of 88.15 % and 86.59 % was

achieved for B.3 and B.4 respectively. The evaluation was carried out by using leave-one-
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participant-out cross-validation Leave one Participant out Cross Validation (LOPOCV). Both

HAR systems outperformed existing works on a more challenging set of activities. They showed

generalization across users by evaluating the HAR systems of both works on a set of 15 and

20 participants, respectively. In addition, the importance of head- and eye movements for

different activities was highlighted through an ablation study in both publications. The study

supports the initial idea that the combination of both sensor modalities enhances HAR across

various activities and thus enables context awareness through HAR for AR glasses.

3.3 Static LFI Eye Tracking

The second part of this thesis introduced static LFI sensors for HCI e.g., to recognize gaze

gestures from measured relative eye movements. In this part of the thesis, the initial approach

of static LFI sensors is extended to achieve full eye-tracking with static LFI sensors. The main

advantages of the approach are the high update rate, the ambient light robustness, and a,

compared to low power consumption in a VOG system. In addition, the proposed system

operates independent of the display technology and thus can be used in AR and VR glasses.

This part is based on the publication C.1 Static Laser Feedback Interferometry Gaze estimation

in Appendix C.

3.3.1 Motivation

VOG systems are limited in their update rate due to limitations of camera technology as well

as the exponential increase of power consumption with respect to the update rate due to

the camera sensor itself as well as the image processing required to infer gaze information

from images In addition, VOG systems suffer from obtrusive sensor integration, loss of gaze

estimation accuracy in dynamic lightning conditions and degradation of gaze accuracy in the

presence of glasses slippage To overcome these limitations, this publication extends the gaze

gesture approach. It introduces a model-based eye-tracking approach optimized for static LFI

sensors.

Methods

Like VOG model-based eye-tracking approaches, a geometric model of the human eye is used

to link LFI measurements to the pose of the eye. For this purpose, a measurement setup was

built up, and the human eye of a participant was scanned with a static LFI sensor to derive

the geometric eye model from LFI distance measurements. The experiment showed that

most light of the IR laser beam is backscattered from the sclera, iris, and retina. Thus, the

transparent optical components like the lens or the cornea can be omitted in the geometric

eye model.

A static LFI simulation tool was introduced to generate measurement trajectories of a multi-
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static LFI configuration and avoid human error. LFI sensors were modeled as point sources,

and the human eye model was derived from a 3D scan of a human eye. The derived 3D model

is rotated in a 3D Computer Aided Design (CAD) program based on an input eye movement

trajectory (θ,φ). At each trajectory point, the measured distance and velocity for each modeled

LFI sensor are calculated from the 3D model. In addition, a sensor noise model is added to

the simulation tool to consider sensor noise.

An algorithm consisting of four stages was proposed to estimate the gaze vector from a set

of static LFI distance and velocity measurements. In the first stage, the part of the eye (none,

sclera, iris, retina) hit by an individual IR laser beam of an LFI sensors were classified by using

the distance measure and the distance difference as input features for an Hidden Markov

Model (HMM) classifier. In the second stage, the eyeball center is estimated via trilateration

from the distance measures of at least three LFI sensors. The use of trilateration allows for

continuous reestimation of the eyeball center. This reestimation adds slippage robustness

to the proposed method. In the third stage, the gaze angle of the eye is estimated through

continuous integration of measured rotational velocities. To compensate for errors introduced

by sensor noise and an unknown initial pose of the eye frequent absolute eye pose estimation

is added as a final stage to the gaze estimation algorithm. Distance measurements are fitted to

the derived geometric eye model during this step.

3.3.2 Results

A laboratory setup was built up to characterize distance and velocity in a range of 20 mm -

30 mm and 0 ◦/s - 500 ◦/s to set up the sensor noise model required for simulation of multi LFI

laser sensor distance and velocity measure trajectories. A distance noise of 68.66µm, and a

velocity noise of 2.5 ◦/s was measured. In addition, the classification accuracy of the proposed

HMM model to classify the part of the eye hit by the laser was evaluated, and a macro F1-score

of 93.33 % was reported. Finally, an actual eye trajectory, including different eye movements

from fixations to saccades, was captured by an VOG system and fed into the simulation tool to

generate distance and velocity measurement trajectories for six static LFI sensors. Based on

the generated trajectories the gaze estimation algorithm was evaluated. A gaze accuracy of

1.79 ◦ was achieved.

3.4 Summary

To summarize the contributions made through this thesis, the radar chart from Section 2.3.9

is advanced by the eye-tracking sensor approaches contributed by this thesis. The resulting

radar chart is shown in Figure 3.2.
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Figure 3.2: Comparison of the presented three developed eye-tracking sensor approaches
compared to the state-of-the-art eye-tracking sensor technologies.

The following contributions within this thesis are summarized for each part in the next three

subsections.

3.4.1 Scanned Laser Eye Tracking

The first part of the thesis contributes a scanned laser eye-tracking sensor technology for

integration into retinal projection AR glasses. The approach closes the gap between established

VOG systems by capturing 2D images of the eye with a highly integrated single-pixel camera

setup.

Within the publications A.1 and A.2 the Scanned IR approach is presented, which rely on a

2D scanner and an off-axis photodetector to capture dark pupil images. The main advantages

are the high sensor integration and the redirection of the light via an HOE to create a superior

perspective of the virtual camera compared to state-of-the-art VOG sensors. Therefore, these

publications address the technological challenges of camera sensor integration as well as

power consumption.

Within the publications A.3 and A.4 the Scanned LFI approach is presented, which extends

the previous publications of this part of the thesis by using an LFI sensor and its integrated in-

axis photodiode to capture bright pupil images. This approach’s main advantage is exploiting

the red-eye effect to capture the bright pupil directly. Therefore, the sensor segments the pupil

in the captured image and shows a robust pupil signal independent of the iris color or pupil

occlusion through lids or lashes, which further reduces the algorithm power consumption
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compared to VOG systems. In addition, the sensor operates coherently and thus is immune to

ambient light. Within these two publications, the technological challenges of ambient light

robustness and power consumption are addressed.

Within the final publication A.5 of this part of the thesis, a methodology is contributed to

achieve slippage robustness and minimize the calibration effort of the previously introduced

approaches Scanned IR and Scanned LFI by spatial multiplexing of the HOE to capture the

eye from two perspectives. This results in a single-pixel stereo camera system, which allows

reconstruction of the pupil disk in 3D from a single pair of images. Therefore this publication

addresses the technological challenges of glasses slippage and calibration.

Figure 3.2 summarizes the Scanned IR and Scanned LFI approaches with respect to the require-

ments derived in Section 2.2.5. Especially the Scanned LFI method shows superiority w.r.t

sensor integration and ambient light robustness compared to all investigated technologies. In

addition, the scanned laser sensor approaches achieve a comparable low power consumption.

The theoretical system analysis in A.2 further shows that from a geometric point of view, a

maximum gaze accuracy of 0.28◦ is achievable in a near-eye setting. Therefore, improvements

regarding gaze accuracy are expected in the future.

3.4.2 Static LFI Human-Computer Interaction for AR Glasses

In the second part of the thesis, static LFI sensor technology for gaze interaction applications is

contributed. The sensor modality allows deriving the unique features distance towards the eye

and the eye’s rotational velocity independent of the display technology with an outstanding

sample rate of 1 kHz.

Within the publications B.1 and B.2 gaze gesture interaction with this sensor modality is

investigated. As the sensors consume only a fraction of the power of VOG sensors, they can be

used as always on gaze gesture interaction sensor, e.g., for low power system wake up my gaze.

Due to the high sample rate, it is further possible to classify a gaze gesture before the user

finishes its execution leading to a negative sensor latency, which relaxes the system rendering

constraints.

Within the publications B.3 and B.4 the combination of gaze and head movement interaction

are investigated to achieve context-awareness for AR glasses. Context-awareness is derived

through HAR based on eye and head movements. For the collection of eye movements, the

LFI sensor is used as a power-efficient alternative to VOG sensors. During an experimental

study, data for seven activities is collected, and a classification approach to fuse head- and eye

movement data with an CNN model is contributed. The same experiment is also made with

an VOG sensor to show the generalization of the approach to existing AR glasses with VOG

sensors integrated. The collected second dataset is published to emphasize research within

context-aware AR glasses through HAR as an additional contribution to this part of the thesis.
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3.4.3 Static LFI Eye Tracking

The main contribution of the publication C.1 in this part of the thesis is a novel high-speed

eye-tracking sensor approach based on highly integrated, ambient light robust static LFI

sensors. Compared to VOG systems, the LFI sensors did not resolve the eye’s surface in

2D as they have no spatial perception. This reduces the amount of captured data, which

allows a higher update rate while reducing power consumption. With the introduction of the

multi LFI sensor fusion algorithm based on a geometric model and spatial perception of the

sensor is achieved by integration of observations over time. This allows obtaining absolute

gaze estimation for static LFI sensors, including slippage robustness. Therefore within this

publication the technological challenges of power consumption, glasses slippage, update

rate and ambient light robustness are addressed.

In Figure 3.2 the Static LFI eye-tracking sensor technology developed within this part of

the thesis is summarized with respect to the derived requirements for eye-tracking sensor

technology for AR glasses within Section 2.2.5. The sensor technology achieves comparable

update rates to emerging neuromorphic camera eye-tracking approaches while outperforming

other sensor technologies regarding ambient light robustness.
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While the introduction of mobile eye-tracking for everyday devices enables new applications

and opportunities to improve the immersion of AR glasses, e.g., through gaze-controlled

interaction, it poses some risks to the user. The main risks are the medical impact of long-

term IR exposure to the human eye and the impact on the user’s privacy due to everyday

eye-tracking. These aspects will be discussed in the following sections.

4.1 Health Impact of long-term IR Radiation on the Human Eye

The human eye is exposed to IR illumination regularly as the heat transfer from the sun to

the earth occurs in the IR regime. While the human organism can handle this natural IR

exposure. Recently, a rising number of artificial IR light sources like LIDAR sensors on cars

or IR flooding illumination and IR dot projectors used for face recognition on smartphones

are introduced. Finally, VOG eye-tracking systems rely on IR LEDs, e.g., to illuminate the eye

region or produce glints on the cornea. While LIDAR sensors and IR illumination used for

face recognition on smartphones emit artificial IR light only for a relatively short duration,

state-of-the-art VOG systems with flooding IR illumination for AR glasses expose the eye with

artificial IR illumination on a daily basis over a long period of time [135].

To address the potential risk of IR illumination of VOG systems, the research network Com-

munication by Gaze Interaction (COGAIN) [135] initiated a study to explore safety issues in

eye-tracking by IR illumination. The study identified three potential optical radiation hazards

sources through IR illumination. The first source of the potential hazard to the eye is a thermal

hazard to the cornea. This hazard mainly applies to IR illumination in the IR-B band ranging

from 1400 nm - 1 mm wavelength as the tissue of the cornea has high transparency for IR

wavelength in the IR-A band ranging from 780 nm - 1400 nm not absorbing much IR energy.

The second potential hazard source is a retina tissue thermal burn. According to Vos et al. [136]

the risk of a thermal burn of the retina exists primarily in the range from 400 nm - 1400 nm

and thus including the IR-A band at which VOG IR illumination sources are emitting. Finally,

it is known from workers dealing with hot materials, e.g., molten glass over a long period, that
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there is a higher risk of developing cataract due to the intense IR radiation, especially from the

IR-A band [137].

As a result of the study by COGAIN the International Commission on Illumination (CIE)

issued in 2021 a technical report on the optical safety of eye trackers applied for extended

duration [138]. The authors analyzed the different sources of potential radiation hazards for

IR illumination. They pointed out that the most limiting exposure criterion is the IR exposure

limit, leading to cataracts in long-term exposure conditions. The study further analyzed

different state-of-the-art VOG systems and showed that the emitted dose of IR radiation for

all tested VOG systems was below the IR exposure limit which increases the risk to develop

cataract [138].

The scanned laser systems, as well as the static LFI systems introduced in this thesis, rely

on coherent IR illumination from laser diodes with a compared to LEDs slight divergence

angle. Therefore the authors in [138] pointed out that the long-term exposure limits for laser

illumination sources need to be derive from the International Electrotechnical Commission

(IEC) 60825-1 norm [139]. To protect participants’ health during the experiments with the

proposed static and scanned systems for all experimental setups, a risk assessment according

to IEC 60825-1 was made. For the experimental setups in this thesis, the most restricting

exposure limits, which assume a daily dose of IR radiation with a duration of > 8h, were used

to rate the eye safety.

The exposure limit for the scanned systems with geometry as described in appendix A.2

is according to [139] 9.25 mW for a wavelength of 820 nm and exposure duration of > 8h.

Compared to the exposure limit of 677µW for a static laser of the same wavelength is because

according to [139] scanning systems are rated as pulsed systems. The scanned IR system

introduced in A.1 and A.2 used a IR laser with an optical power of 150µW on the eye surface

and the scanned LFI systems introduced in A.3 and A.4 used an IR laser with an optical

power of 142µW on the eye surface. Therefore, both scanned laser systems introduced in

this thesis stay below the exposure limit of a static IR laser, ensuring eye safety even in fault

conditions, e.g., when the MEMS micro scanner stops scanning the laser beam. The scanned

LFI approach introduced in A.3 and A.4 further shows a robust signal in the presence of low-

level illumination. While other VOG systems tend to increase the optical power of their IR

flooding illumination in low lighting conditions, the scanned LFI system did not require to

increase in the optical power.

The exposure limit for the static LFI approaches discussed in the publications B and C also stay

at their operating wavelength of 850 nm below the exposure limit of 778 µW for each sensor. In

addition, the mechanical design of the demonstrators and laboratory setups built during this

thesis ensured that the combination of multiple LFI sensors did not violate exposure limits.

Therefore, the static LFI approaches introduced in this thesis did not pose any hazard to the

participants.

From a product development perspective, it cannot be ensured that for different head geome-
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tries or in the case of glasses slippage, the laser beams of multiple LFI sensors did not hit the

same spot and thus violate the exposure limits. Therefore, time multiplexing of the individual

sensors is required to ensure eye safety for a product. Time multiplexing does not harm the

performance of the sensors as the current update rate of 1 kHz can be preserved by slight

adjustments on the triangular modulation rate of the individual static LFI sensors.

To finally rate the eye safety of an AR glasses, it is further required to ensure that the exposure

limit of all visible and invisible light and laser sources combined stays below the exposure

limits. Therefore, carefully considering eye safety on a system level is mandatory.

4.2 Privacy Concerns of Mobile Eye Tracking

Privacy concerns in the domain of mobile eye-tracking can be divided into concerns regarding

user authentication and biometric identification as well as information obtained through the

linkage between gaze- and environment information.

4.2.1 User Authentication and Biometric Identification

The advancement of sensor technology for the acquisition of gaze information inevitably leads

to the extraction of features from the eye usable for user authentication and occular-based

biometric identification [29].

Ocular-based biometric identification relies mainly on high-quality images of the user’s eye to

derive structural features of the iris or on high-quality scans of the retina to derive structural

features such as the retina’s blood vessels for retina recognition [140]. These methods allow

the identification of a single user and are therefore reliable identification methods for security-

critical applications [140].

The scanned laser eye-tracking method developed in this thesis can capture images of the eye,

and the scanned LFI method can capture images of the retina.

According to [141] an image resolution of at least 200 pixels across the iris and a Signal to

noise ratio (SNR) of at least 40 dB is necessary to gather enough information from the iris

for biometric identification. Both aspects are not fulfilled by the scanned laser method as

introduced in A.1 and A.2.

Retinal recognition systems rely on high-quality retina images to derive individual user features

from the blood vessels [140]. However, the scanned LFI method introduced in A.3 and A.4 is

not capable of resolving individual blood vessels of the retina as the interference signal of the

LFI sensors are superimposed by speckle patterns.

In contrast, user authentication approaches perform recognition of a user in a closed set

of N users, which is compared to biometric identification as less complex [142]. Therefore,
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user authentication using eye-tracking features like number and duration of fixations, eye

movement velocities, and amplitudes or blink frequency can be used to identify users with a

certain accuracy [143].

The high update rate of 1 kHz together with the capability to direct measure eye velocities,

makes the static LFI method introduced in B.1 a beneficial sensing modality to support gaze-

based user authentication for AR glasses [144]. Therefore this aspect must be considered

during development in the future.

4.2.2 Linkage between Gaze- and Environment Information

The energy-efficient eye-tracking methods presented in this thesis enable ubiquitous eye-

tracking in everyday scenarios. However, the gaze information that is thus available in a

previously impossible quantity poses an additional risk to the user’s privacy, especially if

gaze information is linked to environmental information, e.g., derived from a world camera.

The linkage between the environment and gaze information enables applications like target

advertisement [145] as it can be used to derive private information like user’s interest, attention,

or other sensitive information like gender, age, or race [146, 147].

Steil et al. [148] presented a potential solution to decouple environment and gaze information.

The authors used a shutter in front of the world camera sensor, which is closed in privacy

concerning situations like talking or reading messages on the smartphone. To recognize

privacy concerning situations, they used the eye movement patterns captured by an VOG

system. The publications B.3 and B.4 of this thesis can be used to improve the recognition of

privacy concerning situations by adding context awareness to allow the user to define privacy

concerning situations in which the world camera is disabled.

In addition, the system design can restrict the use of gaze information. For example, retina

projection systems require gaze information for display enhancement methods like exit pupil

steering or eye box switching. However, these applications are realized within a closed control

loop inside the projection system. Therefore, it is not required to output gaze information

outside the projection system.

Finally, the publications B.1 and B.2 of this thesis show that relative eye velocities are sufficient

to interact with the AR glasses interface without complete gaze information.

4.2.3 Gaze based User State Estimation

Besides biometry and the linkage between gaze- and environment information, the user’s

gaze reveals additional user-sensitive information, which can be exploited on a large scale

in an everyday eye-tracking setting. This information can be summarized as the user’s state,

containing the user’s emotion [149], cognitive load [150, 32], user’s attention [151] as well as

medical features [37].
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This information can be used either in a user-beneficial way, e.g., through early detection of

medical issues, or in a non-beneficial way, e.g., through target advertising based on the user’s

emotion or attention.

Features from which the user’s state is derived are pupil diameter variations, the user’s scan

path, the duration and number of fixations, (micro) saccades, and blink information. Although

the scanned laser methods measure the pupil diameter variation with a low update rate and

thus emotion recognition is rather complicated, the static LFI methods can resolve the eye

movement-related features with a high update rate. Thus, the static LFI approaches pose a

potential risk for gaze-based user state estimation. A potential miss-use of the sensors needs

to be prevented, e.g., by adding a differential privacy approach [152].
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Energy-efficient and robust eye-tracking is a key technology required for the success of AR

glasses. Furthermore, eye-tracking is crucial for novel hands-free interaction concepts with

the glasses and furthermore enables advanced near-eye display technologies like retinal

projection. The contributions of this thesis address the limitations of state-of-the-art eye-

tracking sensor technology for AR glasses, and different approaches are proposed to solve

individual short comes of existing eye-tracking sensors. Furthermore, the optical sensing

technology approaches for eye-tracking provided in this thesis can be advanced in several

ways, which will be discussed in the following.

5.1 Scanned Laser Eye Tracking

The main difference between the scanned laser eye-tracking sensor approach described in A.1

and A.2 and the scanned LFI eye-tracking approach described in A.3 and A.4 is the position of

the photodetector. By combining both sensing methods, the bright as well as the dark pupil

effect, can be captured in the same coordinate space as shown in Figure 5.1. This approach

yields a dual bright- and dark pupil eye tracker. The pupil response signal from both sensors

can be combined to increase the signal strength and improve pupil detection accuracy. In

1 2 3

Figure 5.1: 1) Scanned laser image of the eye taken by external off-axis photodetector, 2)
Scanned LFI image taken by the laser cavity integrated on-axis photodetector, 3) Scanned
laser image with scanned LFI image overlaid in green
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Figure 5.2: Left: Single static LFI sensor IR laser spot on the pupil of a participant captured
with an IR camera, Center: Two subplots of the raw distance spectra (top) for a sequence of
triangular modulation patterns and the averaged distance spectra (bottom) with three signal
peaks A-C in the spectra. The frequencies on the x-axis are converted into corresponding
distance measures. Right: Section of the human eye with the LFI laser beam penetrating the
cornea and the lens and finally hitting the retina. At each change of the refraction index, a part
of the emitted light is back-reflected (A, B), and the remaining light is back-reflected from the
retina (C).

addition, the scanned laser image can be used to track landmarks on the eye to compensate

for glasses slippage.

An alternative to compensate for slippage is shown in A.5 where a single-pixel stereo camera

approach based on laser scanning is introduced. This approach works for both the scanned

laser and the scanned LFI approaches. The two perspectives of the stereo camera are created

by spatial multiplexing of the HOE in the horizontal dimension. Furthermore, by spatial

multiplexing of the HOE in the vertical dimension as well, a multi-camera setup can be realized.

This can be used to increase further the covered FOV of the scanned laser eye-tracking sensors

or to increase the robustness and accuracy of gaze estimation.

5.2 Static LFI for Human-Computer Interaction for AR Glasses

The distance and velocity features of the static LFI sensors used for gaze gesture recognition

in B.1 and B.2 and HAR in B.3 are derived from interference frequencies measured by the

photodetector integrated into the laser cavity. The peak frequencies are derived from a distance

spectrum obtained by an Fast Fourier Transform (FFT) of the captured interference signal

recorded during a rising and falling triangular ramp. Figure 5.2 shows in the center the distance

spectra measured by a static LFI sensor hitting the pupil of a participant perpendicularly (white

spot on the pupil in the left image). The upper subplot of the figure shows that frequencies of

multiple interference’s appear in the spectra. The lower subplot shows the signal strength of

the spectra calculated for each frequency bin averaged over ten consecutive distance spectra

obtained from 10 triangular modulation slopes. From the frequencies and the known LFI

sensor parameters, the corresponding distance can be calculated, and the individual peaks
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in the spectra (A-C) can be mapped to different parts (cornea, lens, retina) of the eye. From

this observation, a further research direction is the applicability of the static LFI sensor for

medical or well-being applications in everyday devices. Especially if the sensor is integrated

into AR glasses, this might allow early detection of biomarkers, which hint at eye disease like a

cataract.

5.3 Static LFI Eye Tracking

The gaze estimation accuracy of the static LFI eye-tracking method is particularly limited

by the cases where the LFI laser beams hit the sclera, as in this case, the gaze position is

estimated by integrating velocity measurements, and an integration error builds up until

measurement data can eliminate the integration error from the iris. One possible solution to

increase the accuracy of the static LFI eye-tracking approach is to combine it with a camera

sensor operating at a low frame rate. This combines the high update rate and ambient light

robustness of LFI sensors with the high accuracy of camera-based eye-tracking systems while

reducing the overall system’s power consumption. Research towards hybrid eye-tracking

systems through multi-sensor fusion offers the possibility to overcome the limitations of VOG

systems such as limited sensor update rate and high-power consumption and is therefore of

great importance for mobile eye-tracking for AR glasses.
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calibration-free eye-tracking in retinal projection AR glasses". In 2022 Symposium

on Eye Tracking Research and Applications (2022), https://doi.org/10.1145/3517031.

3529616 � Best Short Paper

A.1 Low Power Scanned Laser Eye Tracking for Retinal Projection

AR Glasses

A.1.1 Abstract

Next generation AR glasses require a highly integrated, high-resolution near-eye display

technique such as focus-free retinal projection to enhance usability. Combined with low-power

eye-tracking, such glasses enable better user experience and performance. This research work

focuses on low power eye tracking sensor technology for integration into retinal projection

systems. In our approach, a MEMS micro mirror scans an IR laser beam over the eye region

and the scattered light is received by a photodiode. The advantages of our approach over

typical VOG systems are its high integration capability and low-power consumption, which

qualify our approach for next generation AR glasses.

A.1.2 Research objectives

The number of commercially available augmented reality (AR) glasses has largely increased in

the last years. A new shift in the commercial domain is the integration of eye-tracking sensors

into AR glasses to increase user experience by adding new functions and introducing new

ways of interaction with systems around us [153]. Examples for interactions with systems

around us are driver assistance systems [151], human computer interaction (HCI) [154] or

smart home control [155].

Additionally, the performance and resolution of AR applications can be increased by foveated

imaging, where high resolution content is only projected sharply on the projection area

corresponding to the fovea and lower-resolution content is used in peripheral regions. It is

obvious that this technique is dependent on eye-tracking and can significantly reduce the

required processing power for image rendering compared to a full-resolution rendering in the

full field of view (FOV) [39]. A recent implementation of foveated imaging for VR applications

was presented by Tobii [156].

In this research work we focus on the integration of low power eye tracking sensors in AR-

Glasses utilizing retinal projection as near-eye display technique. Retinal projection displays

are based on direct illumination of the eye’s retina using an ultra low-power eye-safe laser

projector. Unique aspects of this display technology are a high degree of integratability into a

frame temple, providing outstanding design opportunities, as well as near focus-free image

projection, providing a sharp projection independent on the user’s accommodation state [157].
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Figure A.1: Principle structure and optical path of a retinal projection system.

Figure A.1 illustrates the basic structure and the main components of a retinal projection

system. A laser module combines the laser beams of diode laser emitters for red, green and

blue wavelengths. The combined beam is led to a scanning device which deflects the laser

beam two-dimensionally onto a holographical optical element (HOE). This element redirects

the beam towards the retina of the eye, where it forms a projected image. For most retinal

projection systems, eye-tracking is crucial as the scanned beam has to follow the pupil’s

position to enter the eye [158].

A.1.3 Hypothesis and problem statement

Current eye-tracking sensors for low cost, commercially available systems, e.g. Pupil Labs [53],

use video-based oculography (VOG). These eye-tracking sensors rely on a set of infrared (IR)

emitters to illuminate the eye and an IR camera to capture eye images. The gaze direction

is then determined by image processing algorithms. While camera-based VOG systems are

well-established and perform at high accuracy, there is only little potential for significant

reduction of power consumption. Further, feasible orientation of the camera modules limits

integration into a AR glasses frame and often interferes with the user’s view [54, 112].

To solve the mentioned issues of current eye tracking technology new eye tracking sensor

concepts with focus on a low power consumption and a high integratability are required.

Furthermore, these sensors should be unobtrusive to ensure the user’s comfort.

A.1.4 Approach and Methods

The concept we investigated is the integration of an eye tracking sensor into a retinal projection

AR glasses by exploiting the existing laser projection unit and the HOE required for the display

of the glasses.

This concept extends previous scanning laser eye tracking sensor approaches by [159] and

[102]. The main difference is the use of a laser scan path over the full region of the eye. This
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allows us to capture a full image of the user’s eye and the use of robust slippage invariant state

of the art VOG algorithms to extract the pupil position. The integration of the eye tracking

sensor into a retinal projection display is shown in Figure A.1.

R
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Laser module

Optical element

Eye

Scanning device

IR

Optical receiver

Figure A.2: Principle structure and optical path of a retinal projector with integrated eye-
tracking capabilities. An IR laser is integrated into the RGB laser module and an optical
receiver is placed near the eye.

Beside the components of the retinal projector the added components are an IR laser, an

optical receiver and an additional laser beam deflection function of the optical element

specific to the IR wavelength of the eye-tracking laser. The integration of the new components

into a retinal projection system are shown in Figure A.2. The laser projection unit consists

of a laser module and a scanning device. The laser projection module projects IR laser light

(purple dotted line) onto the optical element. The optical element redirects the laser beam

with a defined optical function (e.g. parabolic mirror) onto the surface of the eye. Based on the

varying IR reflectivity of the different eye regions, the laser beam is scattered with a different

intensity from the surface of the eye. The reflected light is measured by an optical receiver.

A.1.5 Preliminary results

Figure A.3: The image of a 5mm chess pattern in the eye-tracking region of the laboratory
setup.
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Figure A.4: Sample images captured with the proposed eye-tracking approach. The pupil
position is detected by a state of the art CBF pupil detection algorithm [3].

To evaluate the feasibility of such a eye tracking sensor concept we created a laboratory setup

by using similar components as for the retinal projection glasses demonstrator shown in

Figure A.1. We integrated an IR laser into the projection module and used a semi transparent

mirror to redirect the scanned laser beam towards the eye region. To measure the backscat-

tered light from the eye region we used a separate photodiode and place it close to the eye

region.

We ensured that the laboratory setup is a class 1 laser system according to IEC 60825-1 [139]

and therefore does not pose any medical hazard to the eye. The emitted IR laser power towards

the eye is less than 150µW.

The power consumption of the proposed eye-tracking sensor is estimated roughly at 11mW

using off-the-shelf components. This estimation does not include the power budget of the

MEMS micro mirror, which is already included in the power budget of the retinal display.

[102] report that state of the art VOG eye-tracking sensors consume more than 150mW of

power, which is significantly higher than our sensor approach. Compared to the scanned laser

approach by [102], a similar power consumption is achieved.

To evaluate the eye tracking sensor concept we carried out two experiments. One experiment

evaluates the spatial resolution of the proposed eye tracking sensor. In this experiment we

placed a 5mm chess pattern in the scan region of the eye tracking sensor. Figure A.3 shows

the result of the experiment. The image is constructed by synchronized measurements of the

backscattered light captured by the photodiode and measurements of the deflection angles of

the micro mirror.

In the second experiment we evaluated the feasibility of capturing a human eye with the

proposed eye tracking sensor and extracted pupil positions from the captured images using

state of the art VOG algorithms. Figure A.4 shows the application of an VOG algorithm for pupil

position extraction. To extract the pupil position we used the circular binary features (CBF)

pupil detection algorithm by [3]. The estimated pupil center positions are marked by a green

dot in Figure A.4. The result is very promising and proves the feasibility to apply standard VOG

algorithms to our low-power eye tracking data. This enables robust slippage invariant pupil

extraction while minimizing development effort.
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A.1.6 Broader Impact

The field of low power eye tracking sensors for AR glasses is an emerging area of research [112].

With the increase of AR glasses eye tracking sensors will become state of the art wearable

sensors. This impacts additional research fields in the psychological or medical domain e.g.

long term supervision of the user’s behaviour to detect early signs of medical diseases or

mental disorders.

The demand for a low power consumption also impacts the research field of eye tracking

algorithm design. New algorithm concepts will focus on low power consumption and high

robustness outside the laboratory while keeping a sufficient gaze angle resolution to fulfill the

requirements of AR glasses applications.

A.1.7 Future work

We presented a novel eye-tracking sensor for integration into our existing retinal projection

AR glasses prototype. Currently, the viability of the approach has been demonstrated under

laboratory conditions only. The head-worn demonstrator of the retinal projection system

currently contains only red, green and blue projection lasers, as shown in Figure A.5. The next

step of our work is focused on integrating the eye-tracking sensor into this demonstrator and

evaluation of the performance under real-world conditions, e.g. in the presence of various

illumination conditions. For this purpose, some improvements of the photodiode circuit are

considered. In addition we want to carry out additional experiments on the laboratory setup

to estimate the achievable gaze angle resolution for the AR glasses.

Another challenging task is the integration of pupil tracking algorithms into the head-mounted

demonstrator under the constraint of limited computational resources. In particular, a com-

promise between the required gaze angle resolution for AR glasses applications and the

required computational effort to achieve this resolution needs to be examined in more detail.
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A.2 A Novel Camera-Free Eye Tracking Sensor for Augmented Real-

ity based on Laser Scanning

A.2.1 Abstract

Next generation AR glasses require a highly integrated, high-resolution near-eye display

technique such as focus-free retinal projection to enhance usability. Combined with low-power

eye-tracking, such glasses enable better user experience and performance. We propose a

novel and robust low-power eye-tracking sensor for integration into retinal projection systems.

In our approach, a MEMS micro mirror scans an IR laser beam over the eye region and the

scattered light is received by a photodiode. The advantages of our approach over typical

VOG systems are its high integration capability and low-power consumption, which qualify

our approach for next generation AR glasses. In here along with the technical components,

we present a mathematical framework to estimate the achievable gaze angle resolution of

our approach. We further show the viability of the proposed eye-tracking sensor based on

a laboratory setup and discuss power consumption and gaze angle resolution compared to

typical eye-tracking techniques.

A.2.2 Introduction

The number of commercially available augmented reality (AR) glasses has largely increased in

the last years. A new shift in the commercial domain is the integration of eye-tracking sensors

into AR glasses to increase user experience by adding new functions and introducing new ways

of interaction with systems around us [153]. Examples for interactions with systems around

us are driver assistance systems [151, 160], human computer interaction (HCI) [161, 154] or

smart home control [155, 162].

Additionally, the performance and resolution of AR applications can be increased by foveated

imaging, where high resolution content is only projected sharply on the projection area

corresponding to the fovea and lower-resolution content is used in peripheral regions. It is

obvious that this technique is dependent on eye-tracking and can significantly reduce the

required processing power for image rendering compared to a full-resolution rendering in

the full field of view (FOV) [39, 38]. A recent implementation of foveated imaging for VR

applications was presented by Tobii [156].

Current eye-tracking sensors for low cost, commercially available systems, e.g. Pupil Labs [53],

use video-based oculography (VOG). These eye-tracking sensors rely on a set of infrared (IR)

emitters to illuminate the eye and an IR camera to capture eye images. The gaze direction

is then determined by image processing algorithms. While camera-based VOG systems are

well-established and perform at high accuracy, there is only little potential for significant

reduction of power consumption. Further, feasible orientation of the camera modules limits

integration into a smart glasses frame and often interferes with the user’s view [54, 112].
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These drawbacks limit the use of VOG based eye-tracking sensors for battery powered AR

glasses in consumer applications. The requirements of AR glasses in this segment are low-

power consumption and a high degree of integration into the frame temple [112]. Additionally,

high stability and reliability are required for everyday use in the wild. A main problem that

arises in the outside world is however reduced sensor performance due to artificial or natural

light sources [56].

To meet these requirements, we propose a novel camera-free eye-tracking sensor based on

retinal projection AR glasses. Our main contribution is a new miniaturized low-power eye-

tracking sensor approach using state of the art VOG algorithms for integration into retinal

projection AR glasses.

Retinal projection is a very promising near-eye display technique for AR glasses. It is based on

direct illumination of the eye’s retina using an ultra low-power eye-safe laser projector. Unique

aspects of this display technology are a high degree of integratability into a frame temple,

providing outstanding design opportunities, as well as near focus-free image projection,

providing a sharp projection independent on the user’s accommodation state [157].

R
G

B
Laser module

Optical element

Eye

Scanning device

Figure A.5: Principle structure and optical path of a retinal projection system.

Figure A.5 illustrates the basic structure and the main components of a retinal projection

system. A laser module combines the laser beams of diode laser emitters for red, green and

blue wavelengths. The combined beam is led to a scanning device which deflects the laser

beam two-dimensionally onto a holographical optical element (HOE). This element redirects

the beam towards the retina of the eye, where it forms a projected image [14]. For most

retinal projection systems, eye-tracking is crucial as the scanned beam has to follow the pupil’s

position to enter the eye [158].

We propose an extension of these retinal projection systems to fully integrate eye-tracking.

More specifically, we place an additional IR laser diode in the laser module and a tiny photo-

diode close to the joint in the frame temple. This resulting setup can be compared to photo

sensor oculography (PSOG). PSOG exploits the varying IR reflectivity of different regions of

the eye such as sclera, iris, pupil etc. [110].
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Exploiting the scanning device and HOE already available for the projection system, this

enables us to significantly simplify the PSOG setup by using only one IR diode laser and one

photodiode for the whole tracking region. At the same time, spatial resolution is significantly

increased. Moreover, system output are greyscale images suitable for processing using state of

the art VOG algorithms.

The remaining of the paper is organized as follows. The next section discusses the state-of-the-

art with regard to eye-tracking based on laser scanning. Section 3 presents our eye-tracking

technique and its integration into retinal projection AR glasses as well as a mathematical

framework to analyse the theoretical spatial and gaze angle resolution achievable by our

technique. The evaluation in Section 4 shows the expected viability and resolution of the

proposed eye-tracking sensor by an laboratory setup. Based on this setup the resolution for

an head worn sensor is estimated utilizing the mathematical framework derived in Section

3. Afterwards a comparison between our sensor approach and VOG eye-tracking sensors

is performed. Section 5 concludes this work and gives an outlook to our future research

activities.

A.2.3 Related Work

First scanned lasers for retina imaging appeared in the clinical section. Webb et al. introduced

a scanning laser opthalmoscope (SLO), which works according to a process of scanning a

laser beam over the retina surface to capture an image of the retina [163]. The captured image

was used for medical diagnosis of eye diseases. Eye motions during the scan process lead to

distortions of the retina images. To resolve this issue, the SLO method was later extended by an

eye-tracking system, as for example in [164, 165] who presented a binocular tracking scanning

laser ophthalmoscope (TSLO). The beam of a super luminescent diode was collimated and

deflected by a 15kHz resonant scanner horizontally and by a 30Hz mirror galvanometer

scanner vertically onto the eye. A photomultiplier tube and a beam splitter were used to detect

the reflections of the eye. The photomultiplier tube was sampled based on the position of

the mirrors to extract an image. Afterwards, the eye position was calculated offline on a host

device. For this techniques, [165] reported a possible tracking speed of 366Hz at a resolution of

0,003◦. Such medical scanned laser eye-tracking approaches are characterized by high image

resolution, however only during fixation phases of the eye. Furthermore, the optical setups are

expensive, large and only suitable for laboratory use. To reduce the size of the optical setups

[166] and [167] used micro-electro-mechanical systems (MEMS) micro mirrors as scanning

devices.

A different scanned laser approach was described by [159]. They integrated an IR laser into an

RGB laser module to track the eye position. The IR laser beam was deflected onto a polygon

mirror for horizontal deflection and a galvanometer scanner for vertical deflection. The

scanned laser beam was then guided by a prism onto the surface of the eye. To capture the

reflections of the eye, a semi-transparent mirror was placed in front of the user’s eye region.

73



Appendix A. Scanned Laser Eye Tracking

The mirror directs the reflected light from the surface of the eye onto a collective lens on top of

a photodiode. Based on the position of both scanning mirrors, the photodiode was sampled to

capture an image of the eye. This setup was however rather large and was based on multiple

mirrors which interfere with the user’s view. Therefore, such eye-tracking setups can hardly be

integrated into AR glasses.

To reduce the power consumption and size of scanned laser eye-tracking sensors, [101] in-

troduced MEMS micro mirrors to scan a laser beam vertically and horizontally across the

eye-tracking region. Based on this improvement, [102] integrated the technology into AR

glasses. In their setup, a two dimensional resonant MEMS micro mirror and an IR laser were

placed on the inside of the frame temple. The MEMS micro mirror deflected the light towards

the surface of the eye. To receive reflections from the eye’s surface, a photodiode was placed

on the nose bridge of the glasses. To track the horizontal eye position, a linear trajectory was

scanned by the MEMS micro mirror over the surface of the eye. The photodiode received the

reflected IR light from the surface of the cornea. The maximum light intensity detected by the

photodiode was then used to estimate the horizontal eye position. Afterwards, the vertical

position of the eye was estimated by a hill climbing algorithm based on the amplitude shifts of

the photodiode output in horizontal scanning direction. This approach achieves an angular

resolution of approximately 1◦ at a temporal resolution of 3300Hz and a power consumption

of less than 15mW [102].

The main draw back of this approach is the vulnerability to shifts of the glasses. Even small

movements of the glasses on the user face lead to significant drifts and therefore inaccuracy of

the eye position estimation [102].

Our approach combines the advantages of robust camera-based eye-tracking systems and

the low-power consumption and small size of MEMS scanned laser eye-tracking sensors.

Additionally, we integrate an optical element into the spectacle lens to obtain an eye-tracking

sensor invisible to the user and therefore do not disturb the users view.

A.2.4 Scanned laser eye-tracking
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Figure A.6: Principle structure and optical path of a retinal projector with integrated eye-
tracking capabilities. An IR laser is integrated into the RGB laser module and an optical
receiver is placed near the eye.

The proposed eye-tracking sensor is based on a retina projector for AR glasses as described in

[14]. The main components of the system are shown in Figure A.5. Additional components are

an IR laser, an optical receiver and an additional laser beam deflection function of the optical

element specific to the IR wavelength of the eye-tracking laser. The integration of the new

components into a retinal projection system are shown in Figure A.6. The laser projection

unit consists of a laser module and a scanning device. The laser projection module projects IR

laser light (purple doted line) onto the optical element. The optical element redirects the laser

beam with a defined optical function (e.g. parabolic mirror) onto the surface of the eye. Based

on the varying IR reflectivity of the different eye regions, the laser beam is scattered with a

different intensity from the surface of the eye. The reflected light is measured by an optical

receiver.

The components of the sensor are described in more detail in the following.

Laser projection module

Figure A.7 shows a block diagram of a laser projection module.
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Figure A.7: Block diagram of the laser projection module. Based on incoming frames, the
integrated laser module and the MEMS micro mirrors are controlled by a control ASIC to
project the frames onto a surface.

The main component of the projection module is the control application specific integrated

circuit (ASIC). The ASIC is fed with a digital image via a low voltage differential signaling (LVDS)

interface.

Based on the incoming image stream, the lasers are modulated by the RGB values of each

image pixel. The IR laser remains in an active state as long as eye-tracking remains active. The

modulated and collimated RGB laser beam and the IR laser beam are directed onto the MEMS

micro mirrors.

The micro mirror module consists of a fast axis MEMS micro mirror for the horizontal scan

direction and a slow axis MEMS micro mirror for the vertical scan direction. The horizontal

scan mirror is driven at resonance frequency and oscillates sinusoidal. The vertical mirror is

actuated non resonantly by an external magnetic force. The start of a new line scan is reported

by sync signals to the control ASIC.

Holographic optical element

An HOE is integrated into the AR spectacle lens to deflect the incoming scanned IR laser light

field of the laser projection module towards the surface of the eye as shown in Figure A.8.
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Figure A.8: Description of the function of an holographic optical element (HOE). The Bragg
structure inside the HOE diffracts the incoming IR light along parallel lines towards the eye to
form a rectangular region in the surface of the eye.

The HOE is realized by recording a mirror function into a photo polymer material. For a more

detailed description of the recording process and integration of optical functions into HOEs

using Bragg structures, we refer to [168].

The main advantage of HOEs over other optical elements like semi-transparent mirrors is the

high selectivity and optical transparency. Ideally, the optical function is only active for the

recording wavelength [158].

The HOE function controls the size and contour of the region which is scanned by the IR laser

on the eye. For the scanned laser eye-tracking sensor, this scanned surface is referred to as

eye-tracking region.

Receiving photodiode circuit

To capture a reflection map of the eye-tracking region a similar receiving photodiode circuit

as known from previous approaches like PSOG or the scanned laser approach by [102] is

used.Figure A.9 shows the system block diagram of the receiving photodiode circuit.

Photodiode

I
U

Transimpedance
amplifier

High pass filter Analog digital 
converter

  ADC

Image 
construction

FPGA

Figure A.9: System block diagram of the receiving photodiode circuit.

The main component is a photodiode which is sensitive to IR light. To increase the resolution

and convert the photodiode current Ip (t ) into a measurable voltage Up (t ), a transimpedance

amplifier (TIA) circuit is used. The voltage Up (t) is AC coupled via a high pass filter to re-
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move low frequency disturbances like ambient light. The amplified and filtered signal is

then converted into the digital domain by an analogue to digital converter (ADC). A Field

Programmable Gate Array (FPGA) converts the digitized samples into an image utilizing the

sync signals of the laser projection module. To capture an image of the eye, the photodiode

current is sampled at fixed time intervals by the ADC.

V sync

H sync

Eye-tracking region

Figure A.10: Simplified sinusoidal scan path of the laser beam over the eye-tracking region.
The sync signals are used to reconstruct an image based on the samples captured by the ADC.

The start of a new frame is indicated by the vertical synchronization signal V sync. With the

rise of this signal, the ADC starts to sample the photodiode signal. The start of a new row of

the frame is indicated by the horizontal synchronisation signal H sync. With these two signals,

a reflectivity image of the surface of the eye is reconstructed by the FPGA.

Figure A.10 shows a simplified scan path (much less lines) of the laser beam in the eye-tracking

region. The characteristic bounding box results from the geometric setup as depicted in

Figure A.11.

The resolution of the image, and therefore the pixel size, is dependent on the bandwidth of

the AFE, the sample rate of the ADC, the time-dependent sinusoidal angular scan speed of the

laser projection system and the geometric setup.

Spatial resolution

State of the art camera-based eye-tracking approaches utilize pupil edge detection methods

to extract the pupil location and calculate the gaze direction [70]. For this purpose, a sufficient

spatial resolution in the captured eye region is required. The spatial resolution in VOG eye-

tracking approaches is limited by the camera resolution and image distortions due to lens

misalignments.

In the scanned laser eye-tracking sensor approach, pixel size and image distortion are related

to the scan frequency of the MEMS micro mirrors, the optical path length and the performance

of the photodiode circuit [169].

Horizontal distortions occur due to a sinusoidal-like velocity pattern of the laser spot along

the scan path shown in Figure A.10. Combined with equitemporal sampling of the photodiode
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circuit, this leads to barrel distortions [170].

The spatial resolution is characterized by analysing the image data of a high contrast linear

or square edged test pattern with known properties in the eye-tracking region captured by

the photodiode circuit. The known properties of the test pattern and the resulting number

of pixels in the image are used to calculate pixel sizes at various positions in the image. With

this, image distortions due to varying optical path length and the sinusoidal angular velocity

pattern are quantified.

Gaze angle resolution

A gaze angle is described by the pupil center position and eye rotation angles. With rotation of

the eye, the pupil center, and therefore, the pupil edges are rotated as well. To assess the gaze

angle resolution of the proposed scanned laser eye-tracking sensor, a mapping from spatial

resolution to angular resolution is required. It is dependent on the geometrical system design,

the laser projection unit, the sample rate of the photodiode circuit, the HOE function, and

the rotation angle of the eye. For the calculations, a parallel deflection function of the HOE as

described in Figure A.8 is assumed.

Figure A.11 shows the geometrical dimensions of the AR glasses setup.

d1
d2

d3

α

β z

x
y

l(α)
α0

Figure A.11: Integration of the proposed scanned laser eye-tracking sensor into AR glasses.
The HOE is integrated into the spectacle lens and the laser projection module is integrated
into the frame temple.

The laser projection module is integrated into the right frame temple with a distance d1 to the

hinge between frame temple and spectacle lens. The angles α and β describe the horizontal

and vertical scan angles of the laser projection module. The distance d2 denotes the width of

the HOE inside the spectacle lens. The distance d3 describes the height of the HOE.

As mentioned earlier, pixel sizes vary throughout the eye tracking region. They are dependent

on the oscillation frequencies fh and fv as well as the maximum scan angles αmax and βmax

of the horizontal and vertical micro mirrors, respectively. In addition, the sample speed fs of

the ADC and the distance d1 are key parameters.

The x-coordinate of a point on the HOE can be expressed by d1 and α:

x(α) = d1 · tan(α). (A.1)
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The angle α changes sinusoidal in time. For the geometry shown in Figure A.11, this is

α(t ) = αmax

2
· sin(ωh · t − π

2
))+ αmax

2
+α0. (A.2)

α0 denotes the horizontal offset angle between frame temple and the right edge of the HOE

integrated in the spectacle glasses. The pixel size sx along the horizontal direction can be

expressed as the difference between a first horizontal position at angleα and a second position

at an angle incremented by ∆α

sx = x(α+∆α)−x(α). (A.3)

∆α denotes the angle increment between two consecutive samples of the ADC and is depen-

dent on the sample speed fs of the ADC. Therefore,

∆α=α(t + 1

fs
)−α(t ). (A.4)

This can be used to eliminate t in Equation (A.2):

∆α=α−
αmax cos

(
2π fh

fs
+acos

(
2α0−2α+αmax

αmax
+1

))
2

+ αmax

2
. (A.5)

Now, the horizontal pixel size sx from Equation (A.3) can be expressed by the position on the

HOE given by α and known system constants only:

sx (α) =−d1 ·
(

tan(α)+ tan

(
α0 + αmax

2 − αmax ·
(
cos

(
ωh
fs
+acos

(
2α0−2α−αmax

αmax

))
−1

)
2

))
.

(A.6)

The vertical axis is operated in a triangular-like fashion with a linearly increasing β(t) until

βmax and a linear flyback to β = 0. As apparent from Figure A.11, the optical path length

increases with increasing deflection of the micro mirrors. With this, the vertical position is

dependent on the length of the projection of the optical path between micro mirror and HOE

onto the xz-plane. This can be expressed as

l (α) = d1

cos(α)
. (A.7)

The resulting y-coordinate is then calculated using β:

y(α,β) = l (α) · tan(β). (A.8)

Analogy to the horizontal case, the pixel size sy along the vertical direction is expressed as the

difference between a first vertical position defined by α and β and a second position at an

angle incremented by ∆β. Here, ∆β is the linear angle increment between two consecutive
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horizontal scan lines and can be expressed as

∆β= βmax

Nh
(A.9)

with the number of horizontal lines Nh scanned over the eye-tracking region. Nh is calculated

by

Nh = fh

fv ·kv
. (A.10)

The constant kv < 1 describes the fraction of forward scan to flyback time which is required to

drive the horizontal mirror back to the starting position.

With this, the vertical pixel size sy is

sy (α,β) = y(α,β+∆β)− y(α,β)

cos(β)
. (A.11)

The division by cos(β) results in a projection of the pixel size vector perpendicular to the

optical path onto the plane of the HOE.

Now, pixel dimensions can be expressed dependent on mirror positions only (given by α

and β). To calculate gaze angle resolution, this spatial resolution has to be mapped to eye

rotational resolution.

θ

δ

α

α+Δα   

s (α)

l

reye

θ

eye ball

HOE x

Figure A.12: Mapping of horizontal eye rotation to spatial resolution on the HOE. A parallel
deflection function of the HOE is assumed.

For calculation, we assume a simplified eye ball model as shown in Figure A.12 with radius

re ye . It is rotated by θ in the horizontal plane and φ in vertical direction around its center. This

rotation causes the pupil edge to propagate through different pixels along the reconstructed

image. Neglecting methodologies like subpixel interpolation, eye rotation is only noticeable by

the eye-tracking system if the pupil edge propagates from one pixel to an adjacent one. Thus,

we define an infinitesimal angular increment δ of eye rotation that keeps the pupil edge in the

current pixel. In this view, δ is the position-dependent angular resolution of our eye-tracking

system.
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Based on Figure A.12, δh for horizontal gaze angle resolution is calculated by

δh(θ) = atan

(
sx (α(θ))

re ye ·cos(θ)

)
(A.12)

with α(θ) as mapping function to map an eye rotation angle θ to a horizontal angle α. With

the assumption that the eye-tracking region, and therefore the HOE, is centered over the eye,

the mapping function α(θ) is

α(θ) = atan

( d2
2 − re ye · sin(θ)

d1

)
. (A.13)

The vertical gaze angle resolution δv in analogy to Equation (A.12) is

δv (φ) = atan

(
sy (α(θ),β(φ))

re ye ·cos(φ)

)
(A.14)

with

β(φ) = atan

( d3
2 − re ye · sin(φ)

d1

)
. (A.15)

The overall gaze angle resolution is calculated by the euclidean distance of the horizontal and

vertical gaze angle resolution

δ(θ,φ) =
√
δv (θ)2 +δh(φ)2. (A.16)

A.2.5 Evaluation

To determine the gaze angle resolutions of the proposed head worn eye-tracking sensor, a

laboratory setup is used. It is shown in Figure A.13.
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Figure A.13: Laboratory setup to evaluate the accuracy and precision of the proposed eye
tracking sensor.

The subject 1© is placed in a distance of l2 = 90mm in front of an semitransparent mirror 4©
to align the eye tracking region with the subjects eye. The semitransparent mirror mimics

the HOE with a parallel beam deflection function as shown in Figure A.8. The mirror is used

to deflect the scanned IR laser beam of the laser projection module 3©. The laser module

82



A.2. A Novel Camera-Free Eye Tracking Sensor for Augmented Reality based on Laser
Scanning

is placed in a distance of l1 = 30mm towards the semi-transparent mirror. The photodiode

circuit 1© is directly orientated towards the subjects eye to receive as much backscattered IR

light as possible and thus improve sensitivity. The mirror allows the laser projection module

to be virtually rotated so that it points directly at the eye tracking region without disturbing

the user’s view. In addition, artefacts of the captured images caused by eyelids and eyelashes

are reduced, which improves the robustness of the sensors.

Table A.1 shows the geometrical and electrical properties of the the laboratory setup. The

overall distance d1 is the sum of l1 and l2.

Table A.1: Electrical and geometrical properties of the laboratory setup.
α0 ±αmax ±βmax fs fh fv kv d1 d2 d3

0◦ 15◦ 9◦ 22 MHz 21kHz 60Hz 0.83 120mm 69mm 39mm

The laboratory setup is a class 1 laser system according to IEC 60825-1 [139] and therefore

does not pose any medical hazard to the eye. The emitted IR laser power towards the eye is

less than 150µW. Laser class 1 would allow 670µW for a steady beam, even significantly more

in scanned operation. Laser safety is therefore ensured for all single error cases as required by

IEC 60825-1 as well.

The power consumption of the proposed eye-tracking sensor is estimated roughly at 11mW

using off-the-shelf components. The main components that affect power consumption are

the TIA and the ADC. With a higher degree of integration, e.g. by a custom ASIC, further power

reductions are expected.

[102] report that state of the art VOG eye-tracking sensors consume more than 150mW of

power, which is significantly higher than our sensor approach. Compared to the scanned laser

approach by [102], a similar power consumption is achieved.

Spatial resolution

To prove the mathematical framework in Appendix A.2.5, the spatial resolution as described in

Appendix A.2.4 is calculated by placing a chess pattern of defined size in the eye-tracking region

and compared with the theoretical spatial resolution. The experimental spatial resolution is

determined based on the known properties of the chess pattern image. The number of pixels

per chess field is counted and divided by the known length of a chess field to determine the

pixel size.

Figure A.14 and Figure A.15 show the resulting theoretical and experimental spatial resolutions,

as color surface and annotated numbers respectively.
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Figure A.14: Calculated pixel size for the horizontal direction based on Equation (A.6) with
the parameters of Table A.1. In addition, the measured horizontal pixel sizes from the chess
pattern are annotated.

The spatial resolution in horizontal direction shown in Figure A.14 is dominated by the non-

linear horizontal scan speed of the MEMS micro mirror described by Equation (A.2). The

sinusoidal change of velocity results in smaller pixels in the left and right edge regions of the

eye tracking region. In the centre of the eye tracking region, the peak velocity is reached and

thus increasing pixel size. In consequence, the sensor resolution is higher towards the left and

right sides of the eye tracking region.
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Figure A.15: Calculated pixel size for the vertical direction based on Equation (A.11) with the
parameters of Table A.1. In addition, the measured vertical pixel sizes from the chess pattern
are annotated.

For vertical direction the pixel sizes increases for increasing angles α and β, as shown in

Figure A.15. This effect is mainly caused by increasing optical path length of the laser beam for

increasing angles α and β. This effect is superimposed by the effect of the sinusoidal change

of velocity, which leads to additional distortions in the horizontal direction.

Experimental gaze angle resolution

To estimate the achievable gaze angle resolution a experiment with the laboratory setup is

performed. A subject sits approximately 0.5m away from a chart with visual markers M and

fixate the markers. For each marker a set of N images is taken. The markers are placed on the

chart to cause eye rotation angles θ and φ in the range of ±20◦ and of ±10◦.

Figure A.16 shows a subject fixating different markers. The images are captured with the
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laboratory setup.

+

+

+

+

+

+

1 2 3

4 5 6

Figure A.16: Images of a subject fixating different markers on a chart. The images are captured
with the proposed eye-tracking approach. The pupil position is detected by a state of the art
VOG pupil detection algorithm [3]. The numbers indicate which marker of the chart is fixated
by the subject.

To extract the pupil positions we use the state of the art VOG circular binary features (CBF)

pupil detection algorithm by [3]. The estimated pupil center positions are marked with a green

dot in Figure A.16. The result is very promising and proves the feasibility to apply state of the

art VOG algorithms to our low-power eye tracking data. This enables slippage robust pupil

extraction for the scanned laser eye tracking sensor with minimal algorithm design effort. In

addition the sensor benefits directly from advances in VOG algorithms.

To calculate the resolution and precision of the sensor we perform the standard 9 point chart

marker based calibration method similar to [53]. For each calibration marker Mc N images are

captured and the corresponding pupil coordinates Pc are calculated using the CBF algorithm.

With the known calibration coordinates and the related pupil coordinates a second order

polynomial function

xc = a0 +a1xc +a2 yc +a3xc yc +a4x2
c +a5 y2

c (A.17)

for x coordinates and

yc = b0 +b1xc +b2 yc +b3xc yc +b4x2
c +b5 y2

c (A.18)

for y coordinates is fitted using a least mean square optimizer to estimate the coefficients a

and b.

In addition to the calibration markers Mc test markers Mt are placed on the calibration chart.

These markers are used to estimate the spatial accuracy and precision of the proposed eye

tracking sensor. Figure A.17 shows the results of the experiments in gaze angle coordinate

space.
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Figure A.17: Result of the accuracy and precision experiment with calibration markers Mc (1-9)
and test markers Mt (11-13) and the corresponding pupil coordinates P . The arrow indicates
the error between corresponding marker coordinates and estimated pupil coordinates.

To estimate the resolution based on the experiment the average angular distance between

the position of the test markers Mt and a set of corresponding locations of fixations Pt is

calculated for every test marker

Res(Mt ,Pt ) = 1

N

N∑
e=0

√(
xMt −xPt

)2 + (
yMt − yPt

)2. (A.19)

In addition the precision is estimated by the Root Mean Square (RMS) of successive samples

of fixations Pe for a given test marker Mt . It is calculated by

Pr e(Pt ) =
√√√√ 1

N

N−1∑
e=0

(
xPt −xPt+1

)2 + (
yPt − yPt+1

)2 (A.20)

for every test marker. The resulting mean resolution of the test markers is 1.31◦ and the

precision is 0.01◦ for this setup.

A possible source of error, which reduces the achieved gaze accuracy, is that the head of the

test person is not fixed during the experiment. In addition, a large part of the captured images

covers the face around the eye. The pupil information is therefore only contained in a small

subset of pixels in the center of the image.

Theoretical Gaze angle resolution

In addition to the experimental estimation of the gaze resolution of the proposed eye tracking

sensor the the theoretical gaze angle resolution is estimated by Equation (A.16). The distance

re ye in Equation (A.16) is derived from the Emsley’s reduced eye model. Based on this model,

the distance re ye between the iris and the center point of the eye ball is 9.77mm. The result is
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shown in Figure A.18.
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Figure A.18: Calculated gaze angle resolution of the proposed eye tracking sensor based on
the laboratory setup based on Equation (A.16) using the geometry of the Emsley’s reduced eye
model.

Recalling Figure A.12, δ is much smaller for given sx (α) close to θ ≈ 0,φ≈ 0. To some extent,

this compensates the lower spatial resolution in the center of the eye tracking region as shown

in Figure A.14. The theoretical mean single-pixel gaze angle accuracy of the laboratory setups

is around 2.3 ◦, which is significant lower as the experimental estimated gaze angle resolution.

Thus, our simplified mathematical approach neglecting the effect of pupil tracking algorithms

can be understood as an upper boundary estimation for gaze angle resolution.

Based on this assumption the theoretical gaze angle resolution of the head worn eye tracking

sensor is calculated using the electrical and geometric parameters shown in Table A.2. The

main differences between the laboratory setup and the proposed head worn demonstrator are

the reduced distance d1 towards the HOE, the offset angle α0 and the maximum angles for

αmax and βmax . Due to the glasses geometry α is in a range between 0 and αmax an β is in a

range between 0 and βmax . The theoretical gaze angle resolution of the proposed head worn

Table A.2: Electrical and geometrical properties of the AR glasses setup.
α0 αmax βmax fs fh fv kv d1 d2 d3

15◦ 30◦ 18◦ 22 MHz 21kHz 60Hz 0.83 22.5mm 22.5mm 7.3mm

eye tracking sensor is shown in Figure A.19.
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Figure A.19: Calculated gaze angle resolution of the proposed eye tracking sensor for the
glasses geometry based on Equation (A.16) using the geometry of the Emsley’s reduced eye
model.
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The offset angle α0 adds an increasing optical path length with increasing angles α which

leads to an decrease in resolution for extreme eye rotational angles especially towards the

lower left edge, as apparent from Figure A.19. The theoretical mean single-pixel gaze angle

accuracy for this setup is around 0.28 ◦ and is therefore a upper boundary estimation of the

gaze angle resolution. A further increase in gaze angle resolution by the use of an pupil tracking

algorithms is expected.

Compared with the scanned laser approach of [102], the calculated gaze angle resolution of

the proposed laser based eye-tracking sensor for the glasses geometry is higher especially for

relevant eye rotation angles around the center. Compared to state of the art VOG eye-tracking

sensors like [53], our approach is capable to achieves higher gaze angle resolution. Based on

this results a less complex pupil tracking algorithm can be used to reduce the computational

effort and therefore power consumption, while keep comparable gaze angle resolutions to

VOG sensors.

Limitations

The temporal resolution of the eye-tracking sensor is limited by the frame rate of the retinal

projection system, which currently is 60Hz. To overcome this limitation, a faster micro mirror

could be used. However, as a collimated laser beam requires sufficient micro mirror aperture,

miniaturization of the micro mirror is restricted. Therefore, frequencies up to about 120Hz

are technically feasible.

The low-power consumption is achieved because components already contained in the pro-

jection system such as the micro-mirror module are not considered in the eye tracking power

budget. This is valid as long as the sensor is a replacement for an VOG sensor in a retinal

projection system, for example. For stand-alone application of the eye tracker, contribution of

the micro-mirror module to the power budget has to be considered.

A.2.6 Conclusion

We presented a novel eye-tracking sensor for integration into our existing retinal projection

AR glasses prototype. Compared to VOG eye-tracking sensors, our technology achieves a

significant reduction in power consumption at comparable gaze angle resolution and full

integration into a frame temple. Besides the photodiode in the frame temple, the sensor is

completely invisible to the user. Furthermore, our approach is used in combination with state

of the art robust VOG eye-tracking algorithms.

The achievable gaze angle resolution is evaluated experimentally based on a laboratory setup.

It shows comparable gaze angle resolution in comparison with VOG sensors. In addition the

theoretical gaze angle resolution of the proposed head worn eye tracking sensor is calculated,

which leads to an even better gaze angle resolution as the laboratory setup.
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Based on these results the next step is to integration of the proposed eye tracking sensor

into our AR glasses demonstrator to perform experiments and evaluate the sensor under real

conditions, e.g. in the presence of various illumination conditions.

Additionally, the eye tracking algorithms used must be transferred to an embedded platform

and integrated into the demonstrator.
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A.3 A Novel -Eye-Tracking Sensor for AR Glasses Based on Laser Self-

Mixing Showing Exceptional Robustness Against Illumination

A.3.1 Abstract

The integration of eye-tracking sensors in next-generation AR glasses will increase usability

and enable new interaction concepts. Consumer AR glasses emphasize however additional

requirements to eye-tracking sensors, such as high integratability and robustness to ambient

illumination. We propose a novel eye-tracking sensor based on the self-mixing interference

(SMI) effect of lasers. In consequence, our sensor as small as a grain of sand shows exceptional

robustness against ambient radiation compared to conventional camera-based eye trackers.

In this paper, we evaluate ambient light robustness under different illumination conditions for

video-based oculography, conventional scanned laser eye tracking as well as the SMI-based

sensor.

A.3.2 Introduction

Next generation AR glasses are already integrating eye-tracking sensors to enable new gaze-

based interaction concepts with the glasses and the surroundings [171, 172, 173]. In addition,

new rendering schemes to reduce the power consumption and increase the image quality

during image projection like foveated imaging are introduced [39, 174]. These rely mainly on

eye-tracking for pupil position estimation [158].

The state of the art eye-tracking sensor technology is video oculography (VOG). VOG sensors

use infrared (IR) illumination and an IR camera to capture images of the eye surface and

determine the pupil position utilizing image processing techniques. Such technology is

meanwhile well established and provides high accuracies [54].

To perform best, VOG systems require high-contrast, disturbance-free eye images. In real

world conditions, variations in illumination affect image quality and in the end lead to a

low pupil detection ratio [56]. To improve the detection ratio, recent algorithms using deep

neural networks are applied which introduce additional computational effort and high power

consumption for real-time applications [175].

To overcome the susceptibility of VOG sensors to ambient light, we propose a novel eye-

tracking sensor for AR glasses based on lasers featuring the self-mixing interference (SMI)

effect [122]. Our main contribution is the successful application of the SMI effect for an

exceptionally robust eye-tracking sensor as well as systematic comparison to competing

technologies. We use two micro-electro-mechanical system (MEMS) micro mirrors to scan

the IR laser beam of a vertical cavity surface emitting laser (VCSEL) with a cavity-integrated

photodiode across the eye region. Strong pupil signals are based on the high reflectivity of the

retina in the infrared wavelength range.
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The remaining of the paper is organized as follows: Section 2 discusses previous work in the

area of MEMS scanned laser eye-tracking sensors. In Section 3, we explain the underlying

SMI VCSEL technology and introduce an index for disturbance robustness. The evaluation

in Section 4 compares the performance of the selected three technologies under different

artificial illumination conditions up to direct exposure to an intense camera flash. Section 5

concludes this work and gives a brief outlook to future work.

A.3.3 Related Work

MEMS scanned laser eye-tracking sensor concepts categorize into two classes that differ in

the way of scanning the eye surface as well as in the algorithm for pupil position estimation.

Sarkar et al. [101] introduced small MEMS micro mirrors to scan a laser beam vertically and

horizontally across the eye’s surface. The micro mirror and the IR laser were attached to the

frame temple of the glasses and a photodiode was integrated close to the nose pads [102]. The

laser beam was scanned along a straight line over the eye. The micro mirror angle at which the

photodiode observed a corneal glint was found to be linked to the horizontal pupil position.

For the vertical pupil position, a hill climbing algorithm based on the amplitude shifts of the

photodiode output in horizontal scanning direction was used. An optical bandpass filter in

front of the photodiode reduced susceptibility to ambient radiation. Sakar et al. [102] reported

an angular gaze resolution of approximately 1◦ with a temporal resolution of 3300Hz at a

power consumption of less than 15mW. Recently, a further implementation of this sensor

concept was presented by [176].

One drawback of this approach is a high susceptibility to movements of the glasses movements

of the glasses while being worn. As mirror scan angles at glint occurrence are directly linked to

pupil positions, recalibration is required each time the glasses move [102].

To approach shift-invariance, [159] used a different scan path of the IR laser beam. Their setup

was based on two micro mirrors for horizontal and vertical deflection to scan the IR laser

beam across the entire eye region. An external photodiode captured the reflectivity of different

regions of the eye that could be used to reconstruct an image of the eye region. Then, state

of the art VOG image processing algorithms were used to extract pupil positions. Again, an

optical long-pass filter reduced susceptibility to ambient radiation. However, only radiation of

shorter wavelength can be blocked by such a filter and interference with infrared sources is

possible.

Both prior works used an external photodiode to record laser beam reflectivity in the eye

region. Our approach exploits the SMI effect to record such a reflectivity map at outstanding

robustness to ambient radiation as the laser cavity itself is a very narrow bandpass and the

SMI effect relies on the laser’s coherence length.
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A.3.4 Methodology

Figure A.20: Setup of the proposed eye-tracking sensor integrated in a frame temple

Figure A.20 shows the IR VCSEL with integrated photodiode and a MEMS micro mirror inte-

grated in a frame temple. The MEMS micro mirror deflects the laser beam of the IR VCSEL

towards the eye. By using a two-axes mirror, a rectangular region covering the eye is scanned.

At a specific mirror scan angle, the IR laser beam enters the eye through the pupil and is retro-

reflected towards the laser cavity. The retina acts as retro-reflector similar to VOG eye-tracking

methods based on the bright eye effect [62]. This results in a strong interference inside the

laser cavity, which is observable at the integrated photodiode output. Aligning this photodiode

output as a grey-value pixel with the mirror scan angles, a two dimensional reflectivity image

of the scan region is formed. Then, pupil extraction can be done in a similar way to the

VOG sensors. Configuring the laser power in such a way that strong SMI interference is only

maintained for retinal reflections. This significantly enhances the image contrast and much

simpler image processing algorithms can be applied.

Self-mixing interference laser sensor

The proposed eye-tracking sensor relies on a VCSEL semiconductor laser. The VCSEL’s tech-

nology has several advantages over edge emitting lasers (EEL). They are characterized by a

very low threshold current and thus a low power consumption. Furthermore, they have small

dimensions and can easy be manufactured and tested, enabling low cost devices [117].

Due to the small size of the aperture, a circular emission profile and low beam divergence

is achieved. This allows the use of small optical components, which results in a high inte-

gratability in the glasses frame temple [117]. The size of the sensor without external optical

components is shown in Figure A.21.

The SMI effect relies on backscattering of a fraction of the coherent laser light into the laser

cavity. Inside the cavity, it interferes with the lasing field and modulates the amplitude and

frequency of the lasing field. The cavity serves as an optical mixer and amplifier as well as an

optical filter due to the narrow optical bandwidth [117].
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To obtain information about the reflectivity of the structure that causes backscattering, the

optical power of the modulated laser field is recorded by a photodiode. In our sensor, the

photodiode is directly integrated into the bottom reflector of the cavity yielding a tiny sensor

module [2].

Figure A.21: Size of the sensor in comparison to a Euro cent coin. The size of the sensor is
approximately 180x180 µm.

Image quality metric

VOG pupil detection algorithms rely on the recognition of features such as the pupil’s edges.

To achieve a high pupil detection rate however, a high contrast and a noise-free image with

suitable resolution is required [56]. To take these requirements into account, the structural

similarity index (SSIM) is used as an image quality metric to describe the robustness of an

eye-tracking sensor against disturbance by ambient light.

The SSIM expresses image quality degradation as a combination of structural, illuminance

and contrast distortions of a disturbed image F relative to a reference image R [177]. It is

calculated as

SSI M(R,F ) = (2µRµF +C1)(2σRF +C2)

(µ2
R +µ2

F +C1)(σRσF +C2)
. (A.21)

Here, µ and σ describe the mean illuminance and standard deviation of illuminance, respec-

tively, which can be interpreted as an estimation of the image contrast. The cross correlation

σRF between R and F expresses structural distortions and the constants C1 and C2 are required

to avoid the denominator becoming zero.

The index is calculated using a local N ×N sliding window over the whole frame to consider

local distortions. Then, the arithmetic mean of all m window positions represents an overall

quality metric, the mean structural similarity index (MSSIM):

MSSI M(R,F ) = 1

m

j∑
j=1

SSI M(R j ,F j ). (A.22)

A.3.5 Evaluation
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Figure A.22: Laboratory setup to evaluate the disturbance immunity of the proposed eye-
tracking sensor against disturbances induced by artificial light sources.

Figure A.22 shows the laboratory setup of the proposed eye-tracking sensor. The laser beam

of the VCSEL is directed to the micro mirror module, which consists of two MEMS micro

mirrors. Each micro mirror deflects the laser beam in one orthogonal direction resulting in a

two-dimensional scan region covering the eye and its surroundings. Synchronization signals

indicate the start of a new frame as well as the start of a new horizontal line. These signals

are temporal synchronized with the output of the VCSEL’s integrated photodiode and used to

reconstruct a spatial mapping of the retro-reflectivity sensed by the SMI effect.

Ambient light sources

To evaluate the robustness against ambient radiation of the proposed eye-tracking sensor, it

is exposed to different light sources. To evaluate even extreme illumination scenarios, high

illuminance, modulated light sources and light sources with broad wavelength spectra are

used. Figure A.23 shows the optical 1 and frequency spectra 2 of the light sources considered

in the experiment.

1Measured with Ocean Optics HR4000
2Measured with Ultra fast photodiode UDP-200-SP
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Figure A.23: Optical and temporal characterization of the light sources used to disturb the
three eye-tracking sensors.

To assess ambient sources relevant to data glasses, we considered a liquid crystal display (LCD)

(watching TV or using PC), a fluorescent tube as well as a halogen bulb (indoor illumination)

and a photoflash 3 as very strong disturbance in terms of transient and spectral bandwidth.

Measurements in direct sunlight are not carried out, as no uniform conditions can be guar-

anteed for all measurements. For this reason the halogen lamp is used, which imitates the

wavelength spectrum and intensity of the sun on a bright day.

3Canon Speedlite 580EX II
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Disturbance immunity

For each light source, we evaluate three different eye-tracking approaches: a system based on

a scanned IR laser comparable to the system of [159], the proposed eye-tracking sensor based

on the SMI effect and a commercial VOG sensor by Pupil Labs.

For each system, test cards optimized to the underlying technology are used to obtain a high

resolution and contrast-rich image. Therefore, a chess pattern is used for the scanned IR

laser sensor and the VOG sensor. For the SMI sensor a black coloured test chart with circular

retro-reflectors of different diameters is used, mimicking pupils of different diameters.

Figure A.24: Results of the disturbance evaluation for the three eye-tracking sensors.

First, the eye-tracking sensors are placed in front of their respective test chart to capture a high

quality disturbance free reference image R without any external illumination. Afterwards, the

measurement is repeated for each of the four chosen light source to capture a disturbed image

F . Figure A.24 shows the resulting images F for each eye-tracking sensor and illumination

condition.

Afterwards, the MSSIM is calculated by Figure A.21 and Figure A.22 with C1 =C2 = 0.26 and

N = 9 similar to [178]. For differentiation of intra-sensor image quality variations to ambient

light disturbance, the MSSIM of two consecutive reference images (one as R and one as F )

is calculated as a representation of sensor noise. The MSSIM is included as annotations for

every experiment in Figure A.24 with a low MSSIM indicates a low repeatability within one

row.The scanned IR laser sensor shows an overall low MSSIM due to Gaussian noise of the

photodiode and a reduced dynamic range due to currently low amplification in the analog

frontend. With rising illumination, noise increases and affects the MSSIM. Further, periodic

flickering of the fluorescent tube and the high illumination change by the photoflash produce

strong interference in the images, thus leading to poor MSSIM.

The scanned SMI setup shows a low reference MSSIM due to noise induced by speckling on
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the targets surface as well. Image noise is considered a minor impact for eye-tracking using

SMI signals, however directly affects the MSSIM. However, exceptional robustness to ambient

radiation is obvious from the images, as other disturbances like periodic flickering and high

illumination changes (photo flash) are almost invisible in the recorded images.

The VOG sensor as our eye-tracking Gold Standard reference is characterized by an overall

high MSSMI and very good image quality. Even periodic flickering of fluorescent lights is

effectively suppressed in the sensor. Only the strong illumination change of the photo flash

strongly affects the image quality and leads to an low MSSIM. To compare these three very

different eye-tracking sensor principles, the MSSIM is normalized by dividing the respective

MSSIM by the MSSIM of the corresponding reference frame. This way, repeatability issues

are suppressed to emphasize on ambient light robustness. Figure A.25 shows the resulting

normalized MSSIM (MSSIM-n) with high values indicating high image quality.

Figure A.25: Visualization of the MSSIM-n to compare the eye-tracking sensors for the different
illumination conditions.

Concluding, the proposed scanned SMI sensor is very robust in terms of ambient light suppres-

sion seen in overall high MSSMI-n indices. Although overall imaging quality is poor compared

to recent VOG systems, the technology is well suited for eye-tracking. Exceptional image

contrast is not required as the sensor principle exploits the retro-reflectivity of the retina to

separate the pupil from surrounding eye regions. This way, edge- or template-based pupil

detectors are not required. Based on this feature, the pupil position is detectable with less

computational effort. In addition rotations of the eye in relation to the sensor may result in

partial shadowing of the retina by the sclera. This leads to distortions of the image of captured

retro-reflections, which can be used as additional features to estimate the gaze angle. For

extreme eye rotations, the optical path of the laser beam can be deflected via a parabolic

mirror to reduce large angles of incidence and cover the whole eye region.
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A.3.6 Conclusion

We presented a novel eye-tracking sensor based on MEMS micro mirrors and a laser featuring

the SMI effect. Compared to VOG sensors and scanned laser eye-tracking with separate

photodiode, exceptional robustness to ambient radiation is shown. Paired with the sensor’s

low power consumption and its tiny size, it is a promising technology for fully integrated

always-on ubiquitous eye-tracking in next generation AR glasses.

An important next step is to repeat the experiment with the human eye instead of test charts,

especially as there exists only little data about the SMI effect from human retinal reflections.

Furthermore, the pupil detection accuracy and precision of the proposed eye-tracking sensor

will be evaluated. For outdoor use, robustness to sunlight should be analysed, although no

relevant degradation is expected following to the halogen bulb and photo flash experiments.

One promising increase the pupil-iris contrast further sensor is the modulation of the VC-

SEL wavelength by current modulation. Similarly to frequency modulated continuous wave

(FMCW) radar systems, this introduces depth resolution of the sensor. However, for enhanced

performance, modifications of pupil detection algorithms are required to exploit these new

sensor capabilities.
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A.4 A Highly Integrated Ambient Light Robust Eye-Tracking Sensor

for Retinal Projection AR Glasses Based on Laser Feedback In-

terferometry

A.4.1 Abstract

Robust and highly integrated eye-tracking is a key technology to improve resolution of near-

eye-display technologies for augmented reality (AR) glasses such as focus-free retinal projec-

tion as it enables display enhancements like foveated rendering. Furthermore, eye-tracking

sensors enables novel ways to interact with user interfaces of AR glasses, improving thus the

user experience compared to other wearables. In this work, we present a novel approach

to track the user’s eye by scanned laser feedback interferometry sensing. The main advan-

tages over modern video-oculography (VOG) systems are the seamless integration of the

eye-tracking sensor and the excellent robustness to ambient light with significantly lower

power consumption. We further present an algorithm to track the bright pupil signal captured

by our sensor with a significantly lower computational effort compared to VOG systems. We

evaluate a prototype to prove the high robustness against ambient light and achieve a gaze

accuracy of 1.62 ◦, which is comparable to other state-of-the-art scanned laser eye-tracking

sensors. The outstanding robustness and high integrability of the proposed sensor will pave

the way for everyday eye-tracking in consumer AR glasses.

A.4.2 Introduction

Robust and highly integrated eye-tracking sensors are a key technology to improve resolution

of display technologies like focus-free retinal projection for augmented reality (AR) glasses e.g.

by enabling display enhancement methods like foveated rendering [39, 40, 38]. Furthermore

eye-tracking allows to steer the exit pupil increasing the display’s field of view (FOV) [39, 105]

of AR glasses. In addition to display enhancement techniques, eye-tracking sensors enable

novel ways to seamlessly interact with the user interface of AR glasses [179, 5, 4], improving

thus the user experience.

Video oculography (VOG)camera sensors are the state-of-the-art in mobile eye-tracking,

tracking either the pupil in the 2D image and estimate gaze using a geometric 3D eye model

[9], or track the pupil and corneal reflections from additional infrared (IR) LEDs and use a

regression-based approach to determine gaze direction, as shown by [63]. In both cases, the

key to robust eye tracking is robust detection and tracking of the pupil under a variety of

conditions, which is, as shown in Figure A.26, not always the case with current VOG systems.

A well-known issue with state-of-the-art VOG sensors is the limited dynamic range of camera

sensors, leading to a loss of the pupil signal in presence of varying ambient light or in bright

sun light [85, 56], as illustrated in Figure A.26 a).

Furthermore the high off-axis integration of camera sensors in current VOG systems, as
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Figure A.26: Key challenges of VOG based eye-tracking sensors is a robust detection of the
pupil, which is limited due to a) limited dynamic range of camera sensors to operate under a
wide range of ambient illumination settings e.g. in bright sun light, b) detection of the pupil
over the whole field of view due to the high off-axis integration of camera sensors, c) false
pupil detection e.g. due to mascara, other disturbances, dirt on the lens and d) false detection
due to partly occluded pupils by lashes or eye lids. Furthermore the pupil detection is rather
computational complex as several image processing steps are required to extract the pupil as
shown in e)

illustrated in Figure A.26 b) [100, 53], leads to a loss of pupil detection especially if the gaze

vector points away from the cameras optical axis, which allows robust eye-tracking only in a

part of the user’s FOV [89]. This problem is solved by adding more camera sensors to cover

a larger field of view, such as proposed by [97] or [90]. However, this leads to more complex

sensor integration as well as higher power consumption stem from additional sensors and

higher complexity eye-tracking algorithms.

Additional cases which leads to a false pupil detection are due to the wearing of mascara [104],

as false edges are considered as pupil edges by the pupil detection algorithm, illustrated in

Figure A.26 c). A similar case is shown in Figure A.26 d) where a part of the pupil is occluded

by the eyelid, which also leads to a false pupil detection [180, 56]. This issues is addressed by

more advanced pupil detection algorithms e.g. by using convolutional neural networks like

PupilNet [74], RITNet [76] or the Deep VOG approach by [67]. The main drawback of these

advanced algorithms is increased demand of processing power which increases the power

consumption of VOG eye-tracking systems.

Finally, VOG algorithms require several steps of image processing to extract pupil features from

camera images, as shown in Figure A.26 e), which illustrates the processing steps of the VOG

algorithm proposed by [53]. There are several variants of the algorithm with optimization of

individual steps of the pupil detection pipeline to improve detection accuracy and robustness,

e.g. ELSE [69], PURE [70] or PUREST [71]. The increased robustness is accompanied by

higher computational requirements. In recent years this issue is addressed by pupil detection

algorithms which are optimized with respect to computational requirements and latency e.g.

by [84] or [181].
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The presented disadvantages of VOG sensors and the corresponding power consuming eye-

tracking algorithms indicate that the sensing technology itself puts some hurdles for eye-

tracking sensor integration into AR glasses. To enable robust eye-tracking and overcome these

limitations, we introduce a low power eye-tracking sensor approach using laser feedback inter-

ferometry (LFI) sensing technology to integrate eye-tracking capability into retinal projection

AR glasses.

The LFI sensor is composed of a tiny vertical cavity surface emitting laser (VCSEL), operating

at the infrared (IR) regime. In addition, a photodetector is integrated into the laser cavity

using semiconductor processes. The small sensor size enables high integration into the frame

temple of AR glasses. Integration of the photodetector enables the LFI sensing method, a

coherent sensing method, leading to a high robustness against ambient light as most light

stemming not from the lasers own radiation is suppressed [117]. Thus the sensor is capable to

robustly operate in presence of ambient light [128].

To solve the sensor integration problem and the high-off-axis integration of VOG systems,

we further propose to integrate the LFI IR laser sensor into a retinal projection AR glasses

system which consists of a micro-electro-mechanical system (MEMS) micro mirror based

laser scanner and a holographic optical element (HOE) to steer the laser beam towards the

eye.

Furthermore, we exploit the unique sensing modality of the LFI sensor and propose a low-

power pupil detection and tracking algorithm by exploiting the characteristic bright pupil

signal.

Our contribution is three fold:

(i) We propose an highly integrated eye-tracking sensor approach for retinal projection AR

glasses based on an ambient light robust LFI sensor. By combining the LFI sensor with a highly

transparent IR HOE and a MEMS micro mirror we further solve the highly-off-axis sensor

integration. In addition, the eye tracker is invisible to the user, as it is fully integrated into the

frame temple.

(ii) We propose an algorithm optimized to detect and track the pupil based on the characteris-

tically bright pupil signal captured by the LFI sensor and

(iii) We evaluate the resulting gaze accuracy of the proposed algorithm and the ambient light

robustness of the proposed sensor experimentally in a prototype setup.

Compared to the work of [129] we switch from an IR laser with external photodiode to the

LFI sensor with integrated photodiode and further show the high integratability into a glasses

frame. In addition we manufacture the high transparent IR HOE, which is mandatory for the

system.

Compared to the work of [128] we apply the LFI sensor to human eyes and proof the proposed
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bright pupil effect. We further evaluate gaze accuracy in a human study with 20 participants

and further propose an power saving algorithm for pupil detection algorithm.

In the upcoming Section the state-of-the-art w.r.t. scanned IR laser eye-tracking sensors is

discussed. Afterwards, in Appendix A.4.4, we introduce the proposed eye-tracking sensor and

describe briefly the system components. Furthermore, we describe the underlying sensing

principle of the LFI sensor technology as well as the origin of the observed bright pupil pattern.

In addition, we describe our algorithm to detect and track the pupil. In Appendix A.4.5, we

describe our setup used to evaluate the gaze accuracy and compare it to a VOG system. Further,

we show the robustness against artificial light. Finally, we compare our results with other

state-of-the-art scanned IR laser eye-tracking approaches, discuss the applicability for AR

glasses w.r.t. power consumption, sensor integration, glasses slippage and system latency, and

finally draw a conclusion from our work.

A.4.3 Related Work

One of the first works which address scanned IR laser eye-tracking technology for AR glasses

was introduced by [101]. The authors used a 2D MEMS mirror to scan the beam of an laser

operating in the IR regime in a 2D pattern over the eye’s surface. The photodiode, which

receives backscattered light, was integrated close to the nosepad while the scan unit consisting

of the IR laser and the 2D MEMS mirror were integrated into the glasses frame temple. The

photodiode detects corneal reflections originating from the eye’s surface [102]. To obtain

the horizontal gaze angle, the MEMS mirror scan angle under which a corneal reflection

was detected by the photodiode is captured. To further obtain the vertical gaze angle [102]

proposed a hill climbing algorithm using the the photodiode amplitude variation as feature.

To address ambient light robustness, an optical bandpass filter was applied to the front of the

photodiode. The authors reported a gaze resolution of ≈ 1◦ with an update rate of 3300Hz

while their system consumes less than 15mW power.

A major drawback of their method is the vulnerability to glasses slippage. As gaze angles are

directly linked to the MEMS mirror scan angles via calibration, the system requires calibration

after occurrence of slippage of the glasses [102].

To achieve slippage robustness, the authors most recently released MindLink [103], which

incorporates five photodiodes attached around the spectacle frame and a 2D MEMS micro

mirror placed in the nose pad of the glasses. With this improved setup, the authors reported a

gaze accuracy of <1◦ over a FOV of 40◦ x 25◦ and achieved an update rate of 500 Hz.

[129] approach slippage robustness by scanning an IR laser beam with a 2D scan path over

the surface of the eye. The scan path was formed using two 1D MEMS mirrors for vertical and

horizontal deflection. Backscattered light from the eye is measured by a photodiode, which is

placed in the frame temple. The measured intensity variation over both the horizontal and the

vertical scan angles is used to construct a gray scale image of the eye’s surface. By applying
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a state-of-the-art VOG algorithm [3], they achieved a gaze accuracy of 1.31◦ with an 60 H z

update rate. The authors further reported a power consumption of 11 mW and estimated a

theoretical resolution of 0.28◦ with an improved optical design. To increase robustness against

ambient light they propose to use optical filters in front of their photodiode circuitry, similar

to [102].

Most recently, EyeWay Vision [105] released a scanned IR laser based eye-tracking sensor

to steer the exit pupil for their retinal projection AR glasses. In a previous evaluation of the

prototype system by [104] a gaze accuracy of 1.72◦ at a sampling rate of the corneal reflection

signals of 4000 Hz was reported. For absolute eye-tracking accuracy and to compensate

translation movements of the eye with respect to the glasses e.g. due to slippage, a stereo

camera with a sample rate of 120 Hz was added to the laboratory setup.

All above-mentioned related approaches used a photodiode to capture back reflected light

of an IR laser, which was scanned in a 2D pattern over the surface of the eye. Sarkar et.

al.[102, 103] and EyeWay Vision [104] focus on glint features from the cornea, the limbus or

the retina to estimate the gaze direction while [129] reconstruct a gray scale image and extract

the dark pupil from the image by applying state-of-the-art VOG algorithms.

All methods have drawbacks with respect to ambient light robustness, which are addressed

by protecting the photodiode with optical filters from ambient light. Furthermore, the glint

feature based approaches by Sarkar et. al. and EyeWay Vision tend to have issues with slippage.

To address this issue they either add an reference sensors or additional photodiodes, which

adds to the overall power budget of these systems. Furthermore the approaches of [129] and

[104] are validated only in a laboratory setup and the sensor integration is not fully solved.

In our approach, we address the issue of ambient light robustness and sensor integration by

using the LFI sensor technology. We further follow the path of [129] and use a 2D scan pattern

to reconstruct gray scale images to extract the bright pupil feature. With this approach, we

address the issue of a high power consumption by exploiting the bright pupil effect to directly

detect the pupil in an image to reduce computational complexity.

A.4.4 Scanned laser feedback interferometry

Figure A.27 illustrates the integration of the LFI sensor into the retinal projection AR glasses

to form a scanned LFI eye-tracking sensor. The LFI sensor component is added to the RGB

module, integrated in the glasses frame temple. The IR laser of the VCSEL is coupled via a

prism into the beam path of the visible light of the RGB lasers and the combined beam is

scanned via a MEMS mirror module over the HOE surface. The HOE acts as a wavelength

selective mirror which parallelised the incoming beam pattern and redirects it towards the eye

region.

The HOE is recorded into a photopolymer (Bayfol HX TP photopolymer) by constructing

a reference wavefront and an imaging wavefront and expose the photopolymer with both
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Figure A.27: The LFI sensor added to the RGB module and shares the same optical path as
the visible light. The holographic optical element acts as a wavelength selective mirror and
redirects the scanned laser pattern to the eye’s surface.

wavefronts. As our photopolymer is only active for visible light, we recorded the HOE at a

wavelength of 650 nm with an angular offset such that if the HOE is played back at 850 nm

under an different angle the desired wavefront is reconstructed. [182] and [183] gave a detailed

description of the recording HOEs using photopolymer with an angular offset.

The MEMS mirror module contains two 1D MEMS mirrors to scan in a 2D pattern over the

HOE. The horizontal mirror scans in a sinusoidal pattern, while the vertical MEMS mirror

is non resonantly actuated using an electrodynamic driver to steer the sinusoidal pattern

vertically over the HOE. With the known geometry and the mirror deflection angles αh(t ) and

βv (t ), the corresponding intersection point of the laser beam with the HOE can be calculated.

For a detailed description of the geometry and the image generation we refer to [129]. The scan

pattern is illustrated in Figure A.28. HOEs are characterized by a high wavelength selectivity

αh(t)

βv(t)

Eye-tracking region

Figure A.28: Scan pattern of the laser beam over the eye’s surface.

and optical transparency allowing integrating them invisible to the user into the glasses lenses

[182].

Laser feedback interferometry

The key element in our scanned eye-tracking approach is the LFI sensor. LFI is a widely

applied interferometry sensing method [6], which is used e.g. to measure displacement or

velocity of solid targets. Recently, LFI sensors have also been applied to AR glasses e.g. for

gaze gesture recognition [4, 5] and human activity recognition [133]. This works address the

applicability of static LFI sensors for a near-eye setting.
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Figure A.29: a) LFI sensing scheme modeled by the well known Coupled-cavity model. Emitted
light from the laser is backscattered from the eye’s surface and backinjected into the cavity.
The photodiode integrated into the back mirror monitors the optical power inside the cavity,
which changes based on variation of the feedback path [4, 5]. )

¯
Macroscopic scale of the laser

beam hitting the outer surface (sclera, iris) of the laser or the retina of the eye.

To describe the basic sensing method of LFI sensors, the coupled-cavity model as shown in

Figure A.29 a) is used. The laser with its cavity length Li nt and laser round trip time τi nt emits

coherent light with an optical power P0 towards the eye’s surface. The laser hits the eye ball

with an incident angle γ and dependent on the reflectivity and absorption, summarized by r3,

and the scattering behavior of the tissue, a fraction of the emitted power P f is backinjected in

the cavity of the laser. τext describes the round-trip time of the laser to cross the distance Lext .

τext is given by the speed of light c0 and the refractive index next inside the external cavity [6].

The backinjected wave interferes inside the cavity with the locally oscillating wave, which

results in a optical power modulation of the laser

P ′
0 = P0

(
1+m ·cos

(
φ f b

))
. (A.23)

The feedback power P ′
0 relies on the laser’s optical power P0, the modulation depth m and

variations of the feedback phase φ f b . The photodiode inside the Bragg reflector measures a

tiny fraction of the optical modulated feedback power P ′
0 [6].

While scanning the surface of the eye region, two effects influence the modulated feedback

power P ′
0. The first effect is an amplitude modulation due to varying reflectivity r3 and

scattering behavior of the different parts of the eye, which influence the modulation depth m.

According to [1] m is given in a second order approximation by

m = 2 ·k f ·τp ·
(
ηi

ηd
−1

)
+k f ·τi nt · (1−F2)

(
1+ r 2

2

t 2
2

)
. (A.24)

The feedback rate k f describes the normalized reflected field injection rate, τp the photon

lifetime and the fraction of ηi and ηd the differential efficiency between pump efficiency and

quantum efficiency of the cavity. F2 describes the fraction of total power which is coupled out

of the front mirror of the laser cavity. The mirror is further described by its transmitivity t2 and
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r2. The feedback rate can be rewritten with respect to the three-mirror model by

k f =
t 2

2

√
P0
P f

r2
/τi nt wi th

√
P0

P f
∝

√
r3

r2
. (A.25)

Considering a constant transmitivity t2 and reflectivity r2 of the front mirror and a constant

output of laser power P0, the coupling factor is mainly affected by a variation of the power of

backscattered light P f due to an increase of reflectivity r3 of the target and scattering behavior

as shown in Figure A.29 b).

Figure A.29 b) shows the macroscopic scale of a single laser beam reflected by the HOE for

two deflection angles of the micro mirror. The left beam position describes the beam hitting

the outer tissue of the eye (sclera, iris) where volume scattering effects dominate the overall

scattering and thus a rather low portion of light is backinjected into the laser cavity. The right

beam position describes the beam hitting the retina. In this case the lens of the eye focuses

the laser beam onto the retina and as the retina surface is dominated by Lambertian scattering

[184], a large portion of light is back scattered. This effect is also referred as red eye effect or

bright pupil effect, which is varying in severity across different human eyes [185].

The second effect which influences the modulated feedback power P ′
0 is given by the mod-

ulation of the feedback phase φ f b due to speckling effects. Speckling describes the additive

superposition of several backscattered signal components with random amplitude and phase.

The sum of this components leads to a random modulation of the phase φ f b of the back

injected light and in particular whether constructive or destructive interference dominates

the signal [186]. With respect to the eye this effect is well known from optical coherence

tomography (OCT) imaging, where the signal from the retina is characterized by dark an bright

speckle patterns [187].

Bright pupil detection
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Figure A.30: a) Image of the scan area (bright area inside red box) on a person’s eye taken with
an IR camera looking directly through the HOE from the outside. b) Background: Modulated
feedback power P ′

0 measured by the integrated photodiode of the LFI sensor over the scan
area. Foreground: Histogram of the retinal area pixel intensity distribution (green and grey)
and the non-retinal area distribution (blue). c) Segmented bright retinal area pupil pixels from
b) using the intensity boundary (red dashed line). d) Multivariate Gaussian fit of the retinal
area pixels in c) with pupil center in blue and pupil contour in yellow.

Figure A.30 a) shows the region of the eye, scanned by the LFI sensor. An IR camera looking

directly through the HOE from the outside towards the eye. The pupil appears bright when the

IR laser beam hits the retina during the 2D scan, also known as the bright pupil effect. This

supports our assumption that the reflectivity r3 as well as the scattering behavior changes

and therefore changes the coupling factor k f in presence of the retina, resulting in amplitude

modulation according to Equation (A.24). In particular, by integrating the photodiode into the

back reflector of the laser cavity, IR illumination and sensing element are perfectly aligned

on axis to support the bright pupil effect. In addition, the effect of speckling is clearly visible,

leading to a normal distributed pattern of bright and dark speckles.

To detect the location of the pupil and therefore track the eye for each full 2D scan the following

three steps are applied to each recording.

Image reconstruction: The photodiode signal of the LFI sensor is sampled in equidistant

time steps t to capture the modulated feedback power P ′
0(t ), while the MEMS mirror scans the

laser beam over the surface of the eye. To generate an image of the eye region, the modulated

feedback power P ′
0(t) and the mirror deflection angles αh(t) and βv (t) are sampled in the

same equidistant time steps. A series of samples (P ′
0(t),αh(t),βv (t)) are used to construct

an image using the mirror deflection angles as pixel coordinates (Ix ≈ αh , Iy ≈ βv ) on the

HOE and the modulated feedback power P ′
0 as intensity value (I (x, y) = P ′

0) of the pixel. In

Figure A.30 b) in the background, a reconstructed image is shown. The pupil appears in the

center of the image as a bright pattern, marked by the red box.

Pupil segmentation: Similar to VOG-based eye-tracking sensors, segmentation of the pupil

is required to determine the pupil contour and center. To separate the retinal area pixels from

the non-retinal area pixels of the image, a histogram-based approach is used. In Figure A.30 b)

the normalized histogram of the image is shown in gray and green, containing information

about both the retinal area and the non-retinal area. This histogram is overlaid by a second
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normalized histogram (in blue), which includes only the first ten lines of the image and

represents the non-retinal area area probability density distribution (PDF) Nb
(
µb ,σb

)
, since

there is no pupil in the first ten lines of the image. To extract the retinal area and thus separate

the pupil from the non-retinal area , the intensity limit Ib (red dashed line in Figure A.30 b)) is

calculated by Ib =µb +σb based on the non-retinal area PDF. Using this limit, the normalized

histogram of the image is divided into non-retinal area intensity values (gray) and retinal area

intensity values (green).

Figure A.30 c) shows a cropped area around the bright pupil pattern for illustration. The

remaining retinal area pixels are highlighted in green.

Pupil ellipse fitting: The segmented bright pupil pattern is given as a set of pi tuples, con-

taining the pixel coordinates as well as the pixel intensity pi = (xi , yi ,P ′
0i ). To obtain the pupil

ellipse from this set of tuples, a multivariate Gaussian distribution Np
(
µp ,Σp

)
is fitted using

least squares optimization. µp hereby represents the pupil center and the main components

of the covariance matrix Σp represent the horizontal and vertical axis of the ellipse repre-

senting the pupil contour. In Figure A.30 d), the resulting ellipse contour is annotated in

yellow as well as the center of the ellipse as a blue dot. A pupil ellipse is therefore given by

Ei =
(
µp0,µp1,3 ·Σp00,3 ·Σp11

)
.

A.4.5 Evaluation

Figure A.31: Laboratory setup to evaluate the proposed scanned LFI eye-tracking sensor. The
left image shows the laboratory setup from the perspective of a participant and the right image
shows a participant inside the setup.

Figure A.31 shows the laboratory setup used to evaluate the scanned LFI eye-tracking sensor.

The LFI sensor component itself is based on an research prototype adapted from an optical

communication application where IR VCSELs with monitoring photodiodes in the back DBR

are common. A detailed description of the sensor component is given by Grabherr et. al. [2].

The glasses frame temple 3© with the integrated laser module and the MEMS micro mirror

module 4© is based on a modified BML500P [188], an optical microsystem developed for AR

glasses. The MEMS mirrors are used to scan the IR laser across the surface of the HOE, which

108



A.4. A Highly Integrated Ambient Light Robust Eye-Tracking Sensor for Retinal
Projection AR Glasses Based on Laser Feedback Interferometry

is integrated into a flat glasses lens 2©. The high transparency of the HOE allows a participant

to sit in front of the laboratory setup and look through the glasses lens towards a display 5© on

which stimuli markers are displayed. The participant’s head is fixed in front of the HOE and

the glasses frame temple by a chin rest 1© to minimize head movements that could lead to

erroneous measurements. In addition a Pupil Core V1 [53] is added to the setup. The world

camera 6© monitors the stimuli markers on the display and an eye camera 7© observes the

participant’s eye from a bottom-up perspective through the HOE. The mirror signals αh(t)

and βv (t ) as well as the interference signal P ′
0(t ) are captured in the setup by an oscilloscope.

The Lab setup complies according to IEC 60825-1 [139] regularization to a class 1 laser system

and therefore does not pose any risks to the eye. The optical power of the IR laser beam surface

was limited to an optical power of 142 µW on the eye’s surface, whereas the IEC 60825-1 allows

a maximum optical power of 778 µW for an 8-hour continuous emission to the retina.

The low required optical power is favorable to minimizes power consumption of our scanned

LFI eye-tracking sensor. Using off-the-shelf components, the power consumption of our

system is estimated roughly at 30 mW. The main components contributing to the overall

systems power consumption are the transimpedance amplifier (TIA) (THS4567 10 mW),

which is used to amplify the interference signal P ′
0(t ) measured by the integrated photodiode,

and the analog digital converter (ADC) (MAX19191 with 15.3 mW). The gain of the TIA was

set to 940 during the experiments. With further integration, additional power reduction is

expected. The estimated power consumption is comparable to reported power consumption of

other scanned IR laser eye-tracking sensors. In example, [102] reported a power consumption

of 15 mW for their system. A major advantage of our approach is that we reuse the existing

MEMS micro mirror of the RGB projection similar to [105], and therefore, did not require an

additional scanner which would increase the power consumption.

Gaze accuracy

To evaluate the performance of the scanned LFI eye-tracking sensor and prove the robustness

of our approach, we conducted a study with 20 participants (4 female, 16 male, mean age

34 SD(10.83)). The participant’s eye colors ranged from dark brown to blue-gray. Half of the

participants required vision correction ranging from +1 dpt to -2.75 dpt. Except for participant

P14 who wore contact lenses, participants did not wear vision correction during the study.

None of the participants were of Asian ethnicity, so the robustness of the effect of reduced

bright pupil response in Asian populations as reported by [185] was not tested. All participants

gave their written consent after being informed about the nature of the study.

During the study, participants sat approximately 0.6 m away from a 36" display and positioned

their head on the chin rest. To set the calibration and test marker coordinates, participants

were first asked to look straight through the HOE towards the display. Then, the center marker

describing the resting position of the eye at θ = 0 and φ= 0 was adjusted to align with straight

gaze. After setting the calibration and test marker coordinates, participants were asked to
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Figure A.32: Results of the gaze accuracy experiment. Participants were asked to fixate the
calibration markers (red crosses) and the test markers (cyan crosses). The calculated mean
gaze position per test marker and participant is added as a colored marker. In addition, an
arrow shows the correlation between the calculated gaze position and the test marker.

follow and fixate on the stimuli markers on the monitor. In a sequence 9 reference markers

(red crosses in Figure A.32) and 4 test markers (cyan crosses in Figure A.32) are presented for

approximately 5 seconds each with three repetitions resulting in a total of 39 stimuli markers

presented per participant. During the experiment, scanned LFI data and images from the

Pupil Core eye camera were recorded for each marker location. For each point, the first and

last second of recorded data were discarded to ensure that the participant had time to fixate on

the next stimuli marker. In addition, scanned LFI sensor images were discarded if no pupil was

detected due to blinking. In the Pupil Core data, detected pupil positions with a confidence <

0.8 are discarded in order to eliminate errors due to blinking as well. The pupil core camera

was placed 8 cm away from the eye, which is rather large. To compensate the larger distance,

the camera focus was tuned to receive sharp images at that distance. To compensate accuracy

losses due to the increased distance we reduced the camera angle w.r.t. eye compared to a

head worn configuration.

After data acquisition and cleaning of the raw data, the standard 9-point polynomial regression

algorithm is used to map the data from pupil position space to gaze angle space. The regression

algorithm was trained for each user individually and for both the scanned LFI sensor and

the Pupil Core VOG sensor separately. Figure A.32 shows the mapped gaze points for each

participant and the 4 test points for the LFI eye-tracking sensor.

To evaluate the scanned LFI eye-tracking sensor based on the captured data, we use the

accuracy as evaluation metric, which is defined as the average angular offset between esti-

mated fixation location and the corresponding marker position. In addition, we evaluate the
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Table A.3: Accuracy and precision of our approach and the Pupil Core eye tracker over all
participants

Scanned LFI Pupil Core V1

Precision ◦ Accuracy ◦ Precision ◦ Accuracy ◦

P1 1.991 2.591 0.127 1.802

P2 0.438 1.976 0.172 1.935

P3 0.718 1.239 0.644 1.597

P4 0.587 0.982 0.778 1.585

P5 1.001 1.122 0.746 0.988

P6 1.661 1.792 0.925 1.542

P7 0.512 1.408 0.830 1.820

P8 0.743 1.623 0.974 1.990

P9 1.039 2.877 0.523 1.339

P10 0.905 2.408 0.411 1.616

P11 0.455 1.888 0.830 0.820

P12 1.011 1.082 0.775 0.875

P13 0.743 1.597 0.158 0.966

P14 0.960 1.211 0.892 1.026

P15 0.569 1.077 0.058 0.847

P16 1.733 1.812 0.106 1.126

P17 1.106 1.655 0.477 1.442

P18 0.685 1.951 0.459 1.371

P19 1.138 1.750 0.291 1.181

P20 0.914 1.446 0.791 2.427

Mean 0.945 1.674 0.548 1.415

Std 0.4162 0.5052 0.3014 0.4305

precision, which is defined according to [53] as the root mean squared (RMS) error between

successive samples. Table A.3 summarizes precision and accuracy results of the study for the

scanned LFI eye-tracking sensor and the Pupil Core.

Our scanned LFI eye-tracking sensor achieves a mean gaze accuracy of 1.674◦, which is

comparable to the accuracy reported by other scanned laser eye-tracking approaches e.g.

the 1.72◦ reported by [104]. The accuracy of the Pupil Core is 0.232◦ lower compared to our

approach. In our experiments, we did not achieve the stated precision and accuracy of the

Pupil Core, which is to some extent due to our laboratory setup as the scanned IR pattern

appears as a varying IR illumination, which distorts the dark pupil tracking of the Pupil Core.

The results of the study show that the scanned LFI eye-tracking sensor is capable to track the

bright pupil with a reasonable accuracy.

Ambient light robustness

A further requirement to eye-tracking sensors for consumer AR glasses is a robust operation

under variation of ambient light. To evaluate the ambient light robustness, our scanned LFI
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eye-tracking sensor as well as the Pupil Core VOG sensor are exposed to different illumination

sources, while a participant was looking straight through the HOE such that the HOE and

thus the parallel laser rays were perpendicular to the eye. Figure A.33 summarizes the results

of this study. The first row shows images taken with the Pupil Core V1 eye-tracking sensor
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Figure A.33: Comparison of the Pupil Core V1 eye-tracking sensor and our approach with
respect to ambient light robustness. The first row shows images captured by the Pupil Core.
The second row shows images captured by our approach with annotated optical power of the
light source at 850 nm and the estimated pupil diameter from the pupil contour. The last rows
shows spectrograms of the different light sources.

using the pupil capture software (V1.17.71) with default settings while the second row shows

images captured with the scanned LFI eye-tracking sensor. The last row shows a spectra of

each illumination source captured by an OceanOptics4000 optical spectrometer. In addition,

we measured the optical power at the wavelength of 850 nm on the eye’s surface as both the the

Pupil Core eye-tracking sensor and our scanned LFI eye-tracking sensor operates at 850 nm.

The results are annotated in the second row of the image.

The first lighting situation we investigated was a completely dark laboratory with no external

light sources. Under this condition, both sensors track the pupil as expected. The second light-

ing situation we investigated is office lighting. Under this very controlled lighting condition,

both sensors also worked perfectly. Also under cloudy sunlight this condition, both sensors

show stable operation. In bright sunlight (Popt (850 nm) = 507µW) the dark pupil appears only

as a tiny dark spot in the camera image, which is no longer robustly detected. While the VOG

camera sensor saturates, the scanned LFI eye-tracking sensor still is capable to robustly detect

the bright pupil. As already a improved version of the VOG system (Pupil Core V2) is available,

which we did not used for the experiment, the image quality for the bright sun light condition

might improve.

As final lightning condition, we used a halogen lamp, which is a broadband thermal radiator

with characteristically high intensity in the IR wavelength region. With a measured optical

power of 2.5 mW at 850 nm the eye region was exposed by a five times higher intensity com-
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pared to bright sun light. Even under this condition, the scanned LFI sensor is capable to

detect the bright pupil reliably, leading to an outstanding dynamic range of the scanned LFI

eye-tracking sensor. The observed high robustness to ambient light is in line with earlier work

by [128].

A.4.6 Discussion

To assess the quality of our scanned LFI eye-tracking approach with respect to the state of

the art of scanned IR laser eye tracking approaches and discuss the results and potential

limitations, we compare our approach with other scanned IR laser eye tracking approaches in

Table A.4.

Table A.4: Comparison between different scanned IR eye tracking approaches and our ap-
proach

[102] [129] [104] Ours

Tracking method Corneal reflec-
tion

Dark Pupil track-
ing on rasterized
2D image

Corneal reflec-
tion & Stereo
image

Bright Pupil track-
ing on rasterized
2D image

IR Scanner 2D MEMS mir-
ror

2x 1D MEMS mir-
rors

2D MEMS mirror 2x 1D MEMS mir-
rors

Accuracy >1◦ 1.31◦ 1.72◦ 1.67◦

Precision - 0.01◦ 0.0091◦ 0.945◦

Diag. FOV 35.35◦ 44.72◦ 16.97◦ 22.36◦

Power 15 mW 11mW - 30mW

Sample rate 3300 Hz 60 Hz 4000 Hz 60 Hz

The works of Sarkar et. al. and Holmqvist et. al. differ from the work of Meyer et. al. and our

approach mainly with regard to the chosen tracking method. They track corneal reflections

with a rather high sampling rate while the work of Meyer et. al. and our work rely on a rasterized

2D image and tracking of either a dark or a bright pupil. All approaches are in the same range

of absolute gaze accuracy and power consumption. Furthermore, they are evaluated on a

comparable diagonal FOV. The main improvements in our work compared to the state of the

art is the robustness of pupil detection, which is extremely important for consumer AR glasses.

By using the presented LFI measurement method, the sensor is almost immune to ambient

light. Due to the signal characteristics of the bright pupil and the proposed algorithm, our

approach overcomes several limitations of VOG eye-tracking systems, as it is robust against

eyelashes that interfere with the pupil, mascara that causes false pupil detection and eyelids

that partially occlude the pupil. In addition, the sensor works independently of eye color and

iris structure.
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Figure A.34: Sensor integration of the scanned LFI eye-tracking sensor. a) shows a microscope
image of the 160µm x 180µm LFI sensing element on a coin for scale (blue arrow). b) En-
capsulated optical module of the research prototype composing of the LFI sensor as well as
the beam shaping lens. The lens diameter is roughly 2 mm. c) virtual rotation of the MEMS
scanner to the center of the FOV by the HOE to solve the off-axis integration issue of VOG
sensors

Sensor integration

In addition to robust pupil detection, our approach can be fully integrated into AR glasses with

retinal projection, as the optical path of the IR laser uses the same optical path as visible light.

Moreover, the VCSEL as the optical transmitter and the photodiode as the optical receiver

of the LFI sensor element are highly integrated in a single chip, as shown in Figure A.34 a).

In combination with the beam shaping optics a diameter of the optical module of below

2 mm is possible (Figure A.34 b)), allowing thus direct integration into the RGB laser module.

Compared to other scanning laser approaches, such as e.g. shown by [102], our setup does not

require any components to be mounted outside the spectacle temple or even in the spectacle

frame. The use of an HOE allows us to virtually rotate our MEMS scanner to the front of the

glasses lens as shown in Figure A.34 c). Images taken with the scanned LFI eye-tracking sensor

therefore appear as if taken from the perspective of a camera viewing the eye centrally from

the outside through the lens. Compared to VOG systems, this effect is possible without any

camera arms interfere with the users FOV. In addition, this perspective allows covering the

whole eye region and it is possible to track the pupil over a large FOV.

Power consumption

[102] estimated the power consumption of VOG camera sensors at 150 mW, while our sensor

consumes only about 30 mW, which is a significant improvement and allows real-time opera-

tion in lightweight consumer AR glasses. In addition, our proposed pupil detection algorithm

requires less computationally intensive image processing steps to extract the pupil contour

compared e.g. to the Pupil Core algorithm [53]. As the output of our pupil detection algorithm

is an ellipse contour E , the power consumption to derive an absolute gaze vector e.g. by using

a geometrical 3D model approach as proposed by [68] is comparable to VOG eye-tracking

systems.
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Glasses slippage

A major problem that causes eye-tracking sensor accuracy to degrade is the effect of glasses

slippage [93]. This issue also affects our sensor performance as we are working on image data.

The impact of slippage to our sensor might however be less significantly affecting our results

as the camera axis in our approach is close to the optical axis of the eye. Compared to the

work of [129] we only capture the bright pupil and do not gather further any information from

the eye region. Thus slippage compensation by tracking landmarks like the eye corners as

introduced by [95] is not feasible. A possible solution to achieve slippage robustness for our

approach is to adopt the approach of [92] to derive slippage robust features from a geometric

3D eye model, which we will consider and evaluate as part of our future research.

Update rate, latency and motion blur

Due to the tight coupling of the optical path of the RGB projection and the IR path the update

rate is limited to 60 Hz, which is compared to [102] and [104] rather low. A faster scanning

MEMS mirror would improve the update rate to some extend. However, since the diameter of

the laser beam determines the minimum required mirror diameter, mirror miniaturization is

limited, resulting in a maximum technically feasible scan frequency of 120 Hz. Compared to

VOG systems latency is rather low as in our approach we capture images pixel by pixel, and

therefore, the foreground background segmentation can be performed in parallel to image

capturing, leading to a latency of 0.0166 s to calculate the pupil ellipse E . A camera sensor

captures all pixels in parallel while in contrast our system captures images sequential. Thus a

fast saccadic movements of the pupil during image acquisition can lead to elliptical distortions

of the captured ellipse E .

Gaze angle dependency of bright pupil effect

The bright pupil effect appears only if both the illumination axis and the sensor axis are close

to each other. The scanned LFI system moves both the light source and the detector in parallel,

leading to a perfect alignment of both axes. However, a disadvantage of our system is the

collimated nature of the laser beam compared to a diverging IR light source. If the laser beam

is not approximately perpendicular to the retina due to the Lambertian scattering less light

is back injected into the laser cavity leading to a reduced bright pupil response. This effect

is independent from external illumination. A possible solution is to use a parabolic mirror

function for the IR HOE which follows the curvature of the eye.

A.4.7 Conclusion

In this work, we present a novel scanned LFI eye-tracking sensor approach, which is able

to track the pupil with high robustness. Compared to VOG sensors and other scanned laser

approaches, we highlight the outstanding robustness to ambient light and the high integrate-
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ability of our sensor approach into retinal projection AR glasses. We introduced the sensing

technology, derived the physical foundations to describe the signal occurrence and propose

a pupil extraction algorithm, which is optimized for the bright pupil signal characteristics

measured by our sensor approach. To validate the accuracy of our scanned laser eye-tracking

sensor we build a prototype using a modified retinal projection AR glasses setup based on the

BML500P, a retinal projection system.

Our eye-tracking sensor achieves a mean accuracy of 1.674◦, which is comparable to scanning

laser eye-tracking approaches e.g. by [104]. We further solve typical problems of VOG eye-

tracking sensors, e.g. the highly off axis integration of camera sensors by using an IR HOE to

virtually place the laser scanner in front of the participants eye.

With the advancements especially in ambient light robustness and by the nearly invisible

integration of the eye-tracking sensor we pave the way for eye-tracking sensors to become

standard sensors for upcoming AR glasses, which will enable new application areas of eye-

tracking e.g. long-term gaze monitoring for early detection of mental disorders.
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A.5 A holographic single-pixel stereo camera eye-tracking sensor

for calibration-free eye-tracking in retinal projection AR glasses

A.5.1 Abstract

Eye-tracking is a key technology for future retinal projection based AR glasses as it enables

techniques such as foveated rendering or gaze-driven exit pupil steering, which both increases

the system’s overall performance. However, two of the major challenges video oculography

systems face are robust gaze estimation in the presence of glasses slippage, paired with the

necessity of frequent sensor calibration. To overcome these challenges, we propose a novel,

calibration-free eye-tracking sensor for AR glasses based on a highly transparent holographic

optical element (HOE) and a laser scanner. We fabricate a segmented HOE generating two

stereo images of the eye-region. A single-pixel detector in combination with our stereo

reconstruction algorithm is used to precisely calculate the gaze position.

In our laboratory setup we demonstrate a calibration-free accuracy of 1.35◦ achieved by our

eye-tracking sensor; highlighting the sensor’s suitability for consumer AR glasses.

A.5.2 Introduction

Eye-tracking is a key technology to improve current near-eye displays such as holographic

retinal projection displays [174]. It can enable foveated rendering to increase the system’s

perceived resolution while minimizing the system’s power consumption, or increase the overall

field of view (FOV) by using exit pupil steering [158, 38, 39]. Thus, robust eye-tracking sensors

are required for future near-eye displays such as augmented reality (AR) glasses.

Current state of the art video-oculography (VOG) meets the requirements for gaze accuracy

but is limited in sensor integration and robustness against slippage of glasses. In addition,

VOG systems often require at least a single marker calibration to achieve high gaze accuracy;

thus limiting the usability of VOG sensors in everyday AR glasses.

In order to achieve calibration-free eye-tracking [96] have introduced a stereo camera ap-

proach for 3D reconstruction of the pupil using a closed-form stereo reconstruction algorithm.

However, this approach implements multiple camera sensors to cover a sufficiently large FOV;

resulting in the integration of additional components with a high power consumption.

To address drawbacks of current VOG stereo approaches for AR glasses, we introduce a single-

pixel holographic stereo camera sensor approach, which is capable of capturing a stereo

perspective view of the eye-region. We embedded a holographic optical element (HOE) in

the eyeglass lens, which we used to redirect a scanned laser beam to the eye-region; followed

by the capturing of backscattered light using a single-pixel detector. The HOE is designed to

achieve a stereo perspective vision by performing two holographic functions; transforming a

single scanned beam into two separate beams which propagate towards the eye. HOEs based
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on photopolymer technology provide excellent transparency and low noise which, combined

with their high integrability, makes them particularly interesting for future AR glasses. In

addition to that, the presented stereo camera VOG sensor consumes only a fraction of the

power of current VOG stereo systems.

Our main contributions are i) we solved the sensor integration problem of headword stereo

camera VOG systems by using an HOE and a single-pixel detector in a scanned laser system to

generate stereo images and ii) we fabricated a suitable HOE and demonstrated the calibration-

free 3D reconstruction of the eye’s optical axis in our experimental setup by applying the

closed-form stereo reconstruction algorithm proposed by [189]. We further evaluated the gaze

accuracy and precision of the overall system.

Our main contribution compared to previous work by [128],[129] is the proposed and fabri-

cated segmented HOE to create a stereo perspective of the eye to enable stereo reconstruction

algorithms e.g. by [189] to reconstruct the optical axis of the eye without calibration.

In the next section, we present related work focusing on stereo camera eye-tracking for mobile

applications. Sec. A.5.4 describes our single-pixel stereoscopic holographic camera sensor

system design as well as the reconstruction algorithm to derive the 3D gaze vector from a pair

of images. Afterwards, in Sec. A.5.6 and Sec. A.5.7 our approach is evaluated in a laboratory

setup to derive gaze accuracy and precision. Finally, in Sec. A.5.8, we conclude our work and

discuss limitations and further research directions.

A.5.3 Related Work

One of the first works introducing a stereo camera approach for calibration-free eye-tracking

was published by [96]. The authors used a pair of infrared (IR) cameras to capture a set of

images to create a stereo perspective of the left eye. The pair of cameras were then integrated

into the side of the glasses’ frame and an image of the eye was relayed onto the camera

sensors via a semi-transparent mirror (hence resulting in a rather bulky design). By applying a

closed-form stereo reconstruction algorithm [189], a 3D perspective of the pupil plane was

reconstructed by extracting pairs of pupil ellipses. The system achieved an accuracy of 2.2◦

over a FOV of 30◦.

[190] combined a stereo camera approach with additional glint features and reported a gaze

accuracy of 1.6◦. To solve the camera integration issue they integrated the camera pair below

the glasses by adding a mechanical arm, leading thus to a highly off-axis camera integration.

A similar approach is proposed by [191], which combined corneal images captured by an

RGB camera as well as pupil ellipse features extracted from images captured by a second IR

camera in a mobile stereo camera setup. The cameras were mounted on a mechanical arm to

integrate them into a head-worn setup, leading to similar highly off-axis integration. By fusion

of corneal images and IR images, the authors achieved a mean accuracy of 2.19◦ over a FOV of

30◦. Additionally, this approach showed robustness to calibration drift.
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Currently, the Tobii Pro glasses [97] are to the best of our knowledge the only commercial

mobile eye tracker, working with a pair of cameras. They have embedded the camera sensors

and IR illumination directly into the glass lenses inside the user’s FOV. After a single point

calibration, a gaze accuracy of 0.6◦ is reported combining stereo reconstruction methods as

well as corneal reflection methods. The system shows to be robust to slippage [93].

To summarize the state of the art, all current approaches use IR camera sensors that are

either directly integrated into the lens of the eyeglasses or mechanically integrated by camera

brackets, which results in an impairment of the user’s vision. Only the work of [96] tend to

reduce the impairment by using a semi-transparent mirror. However, their approach still

requires two power consuming camera sensors and additional imaging optics per eye.

In summary, to address challenges related to camera integration and reduce the power con-

sumption of the overall system, we present the combination of an HOE with a single-pixel

detector. With this, we demonstrate an eye-tracking system creating a stereo holographic

image with two virtual cameras.

A.5.4 Holographic Single-Pixel Stereo Camera

The holographic single-pixel stereo camera eye-tracking sensor, as shown in Figure A.35 a),

consists of three main components: a 2D laser scanner with a MEMS (micro-electromechanical

system) micro mirror as scanning unit, an HOE embedded into the glasses’ lens and a single-

pixel detector. The MEMS scanner with its scan anglesα and β deflects the laser beam towards

the glasses’ lens to scan along the surface of the embedded HOE. A review on MEMS scanner

technology is given by [192]. The laser component is integrated into an RGB laser module as

described in our previous work [129]. The HOE is deflecting the laser beam towards the user’s

eye, forming the total image plane Ii at the eye’s surface.

The global holographic function of the HOE is defined by considering the whole scanning area

as a diverging point source, originating from the scanning point of the MEMS scanner. The

HOE splits up the incoming beam into two diverging point sources, which propagate towards

the user’s eye under different angles. The origin points of both wave fronts generated by the

HOE lay in the space behind the HOE’s surface, stretching out two diverging cones towards

the eye’s surface as outlined in Fig. A.35 a).
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Figure A.35: a) Schematic integration of the proposed eye-tracking sensor into a glasses frame.
The MEMS laser scanner and the single-pixel detector are integrated into the frame temple
while the HOE with its two sub-HOEs (Left and Right) with the corresponding wave fronts
(yellow and blue) are integrated into one glasses lens. b) Image of a capital B letter printed on
paper. The paper is placed in the overlapping image plane (IL , IR ), captured by the holographic
single-pixel stereo camera system

Each sub-HOE can be regarded as a virtual laser scanner, which in combination with the

single-pixel detector can be described as a virtual camera sensor with its own coordinate space

ci , a camera matrix Ki and an optical center of the camera oi as the origin of ci , with i ∈ {1,2}

for each virtual camera sensor. The coordinate spaces of both virtual cameras are linked to

each other by the rotation matrix R in conjunction with the translation vector t.

To reconstruct an image from the scanned laser beam and the HOE, the backscattered light

from the eye’s surface is captured by the single-pixel detector consisting of a photosensitive

diode, a transimpedance amplifier and an analog-to-digital converter (ADC), which samples

the photodiode current in equidistant time steps. Therefore, the sample rate of the ADC

determines the pixel clock rate of the outlined system, which consequently determines the

resolution of the virtual camera sensors. The position of an individual pixel on the sensor

plane of the virtual camera relative to the image plane Ii is given by the deflection angles α

(horizontal) and β (vertical) of the MEMS scanner, whereas the intensity of an individual pixel

is given by the scattered light measured by the single-pixel detector at each scanning position.

By splitting the HOE into two non-overlapping sub-HOEs with overlapping image planes,

the same scanning point in the global image plane results in two diffracted light signals,

originating from the two virtual laser scanners with different propagation angles. Thus, one

full scan from α0 −αmax and β0 −βmax of the MEMS scanner generates two image frames of

the same object as shown in Figure A.35 b), which can be reconstructed into two images from

the object under two different perspectives. The frame rate of the proposed stereo system

therefore depends on the number of full scans the laser scanner performs per second.
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HOE fabrication

The HOE is fabricated by means of holographic wave front printing. Details on the recording

setup employed as an extended immersion-based holographic wave front printer, are outlined

in [182]. The HOE is made up of individual sub-holograms, so called Hogels, which are aligned

in an array-based structure. Each Hogel is recorded by sequentially relaying two coherent

recording wave fronts onto a photopolymer-based holographic film. The resulting interference

pattern leads to a photopolymerization-based modulation of the local refractive index in the

volume of the holographic film, which results in a manifestation of the recording wave front’s

characteristics in the form of a 3D diffraction grating.

The HOE is recorded in development grade Bayfol® HX TP* photopolymer [193] by Covestro,

with a photopolymer thickness of 16µm and a protective polyamide layer of 60µm. Individ-

ual Hogels are recorded via two monochromatic wave fronts, modulated by means of two

phase-only spatial light modulators. Both wave fronts originate from a common single-mode

laser source with λ = 639nm. For demonstration purposes and ease of experimentation a

wavelength in the visible spectrum has been chosen; however, future HOE-based systems are

planned to operate at non-visible IR wavelengths as outlined in [183]. Each Hogel performs an

individual optical transformation, which contributes to the HOE’s global holographic function.

The HOE realizes a combiner functionality, whereby each of the two sub-HOEs performs a

point-source-to-point-source transformation from a large off-axis to a close to on-axis config-

uration. Both sub-HOEs have the same off-axis recording point source placed at the MEMS

scanner position. Under reconstruction of the HOE each sub-HOE deflects a diverging wave

front propagating with an angle of ± 7.1° relative to the sub-HOE’s respective surface normal.

Stereo calibration

To reconstruct the pupil-normal-vector in space, the parameters K1,K2,R, and t of the pro-

posed single-pixel stereo holographic eye-tracking camera sensor must be known. These

parameters can be determined by a camera calibration procedure using a chess pattern. In a

first step, images of a checkerboard pattern are captured with both virtual cameras, varying

the orientation and position of the checkerboard. Afterwards, the method of [194] is applied

to determine the camera matrix Ki of each virtual camera, as well as the relative position t and

orientation R of both cameras to each other. The stereo calibration process is required only

once after the HOE is embedded in the eyeglass lens and the laser projector is integrated into

the eyeglass temple.
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Figure A.36: a) Correspondence between the world coordinate systems cw and the camera
coordinate systems ci . the origin of each camera coordinate system oi is the origin of one of
the two cones ( f1, f2), which are constructed from the pupil ellipse in the 2D image space. b)
Parameterized description of the pupil ellipse E in the image plane

Stereo correspondence

The correspondence of the pupil in the stereo system can be described by its appearance

as ellipse Ei in each camera frame Ii . With the given pupil ellipse Ei and the known optical

center of the camera, a cone, e.g. f1, can be constructed to re-project the pupil ellipse from a

2D image plane to 3D, as shown in Figure A.36 a). From a single cone, the 3D position and

orientation of the pupil cannot be derived due to the fact that many valid pupil projections

exist, which yield the same cone [9]. To solve this problem, we make use of the correspondence

of the pupil and construct a second cone f2. As both cones are constructed from the same

pupil in the 3D space, the pupil position t1 and orientation R1 with respect to c1 can be derived

from the intersect of both cones. Aside from t1 and R1 the pupil size a and b is derived. To

reconstruct the pupil ellipse, the closed form solution as proposed by [189] is used.

Each virtual-holographic single-pixel stereo camera operates in its own coordinate space ci

with its camera center oi and an image plane Ii in which the normalized pupil ellipse Êi is

defined. Since the contour of the pupil in the image plane is assumed to be an ellipse or circle

and both cameras observe the same pupil, the intersection of the two cones f1 and f2 again

results in a conic intersection. Therefore, the projected ellipse are defined by two conics A

given by

xT A1x = 0 xT A2x = 0. (A.26)

An ellipse Ei is described in the image plane by its principal axis a and b, its position in the

image given by tx and ty as well as the orientation φ with respect to the u-axis, as shown in

Figure A.36 b). With this information the conic matrices A1 and A2 can be derived by applying
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an affine transformation S

Si =

cos(φi ) −sin(φi ) −txi cos(φi )+ tyi sin(φi )

sin(φi ) cos(φi ) −txi sin(φi )− tyi cos(φi )

0 0 1

 (A.27)

to the ellipse matrix Hi for virtual camera i in normal form in the pupil plane

Hi =


1

a2
i

0 0

0 1
b2

i
0

0 0 −1

 (A.28)

which results in Ai = ST
i Hi Si . As Hi is defined in the pupil plane, we can without loss of gener-

ality assume a focal distance f = 1 and therefore rescale and translate the ellipse parameters

in the image plane Ii by

t̂xi =
1

fxi

(txi − cxi ), t̂yi =
1

fyi

(tyi − cyi ), âi = ai

fxi

, b̂i = bi

fyi

(A.29)

where fxi and fyi are the the focal distances and cxi and cyi are the camera centers from

Ki . After normalization of the ellipse Ei towards the pupil plane, the relation between the

camera coordinate system ci and the world coordinate system cw is given by xi = Ri xw + ti .

For points in the pupil plane Ii , this can be rewritten as xi = Gi uw where uw = (xw , yw ,1) are

homogeneous coordinates in the pupil plane and Gi is a 3×3 matrix consisting of the first two

rows of Ri and the last row contains the corresponding translation vector ti

Gi = (ri 1ri 2ti ) i = 1,2. (A.30)

Considering the pinhole camera model ui = xi
zi

and vi = yi

zi
, the pupil plane is linked to the

world coordinate system cw :

zi ui = Gi uw i = 1,2. (A.31)

With this correspondence between cw and ci , a pupil ellipse E in the pupil plane is defined

according to [189] by

uT
w Huw = 0 (A.32)

and its projection with respect to Equation (A.26) by

uT
i Ai ui = 0 i = 1,2. (A.33)
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Inserting Equation (A.31) into Equation (A.33) yields

uT
w GT

i Ai Gi uw = 0 i = 1,2. (A.34)

As both equations Equation (A.32) and Equation (A.34) describe the same cone, H can be

written in a generalized form

GT
i Ai Gi = ki H (A.35)

with ki describing an unknown scaling factor of the cone [189].

A.5.5 Stereo reconstruction

For a set of two virtual cameras, Equation (A.35) provides 12 constraints as it contains two real

valued symmetric 3×3 matrices with six parameters each. As we have only 10 unknown param-

eters, three from R1 and t1, as well as the scalars k1, k2 ,a and b, the system is overdetermined

and we can solve it e.g. for R1 and t1 independently as shown by [189].

In a first step, Equation (A.35) is reduced to(
RT

1 A1R1
)2×2 = k1H2×2,

(
RT

2 A2R2
)2×2 = k2H2×2 (A.36)

where 2×2 denotes the upper left submatrix of the corresponding 3×3 matrix. By substituting

the known stereo correspondence R2 = RR1 and t2 = Rt1 + t obtained from stereo calibration

as described in Appendix A.5.4 and elimination of H2×2, Equation (A.36) can be rewritten to

[
R1

(
A1 −kRT A2R

)
R1

]2×2 =O2×2 wi th k = k1

k2
. (A.37)

To achieve a (2×2) zero matrix O , as stated by Equation (A.37), the determinant of the corre-

sponding (3×3) matrix must be equal to zero. Therefore, Equation (A.37) yields

det
(
A1 −kRT A2R

)= 0 (A.38)

which shows that k is an eigenvalue of the matrix RT A2A1. By solving for k and denoting the

left side of Equation (A.38) by det (C) Equation (A.37) can be rewritten as follows:(
R1CRT )2×2 =O2×2 (A.39)

As we already used det (C) = 0, Equation (A.39) only provides two independent solutions. With

this constraint, R1 can be found. In a first step the two non-zero eigenvalues λ1 and λ2 and

the corresponding eigenvectors s1 and s2 of C are calculated. Afterwards, the third column r31

of R1 is given by

r31 =±nor m
(√

|λ1|s1 ±
√

|λ2|s2

)
. (A.40)
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Equation (A.40) yields four different possible solutions of r31, which is due to the fact that the

two intersecting cones f1 and f2 have two ellipses in common, as [189] shows. Considering

the geometric conditions, that both virtual cameras are positioned on the same side of the

ellipse and the gaze vector is directed away from the pupil plane towards the virtual camera,

only one possible solution remains [96]. To obtain the correct r31, we must ensure that both

z-components of r31 and r32 = Rr31 are positive. Using this criterion, in a second step the

remaining vector r31 is selected and the other columns of R1, r21 and r11, are given by the

corresponding eigenvectors of A1−r31rT
31A1, which finally leads to a solution for R1. Afterwards,

the remaining parameters can be resolved in the following order

t1 =

 rT
11AT

1

rT
12AT

1

rT
21AT

2 R


 0

0

−rT
21AT

2 t

 , k1 =−tT
1 A1t1, a2 = k1

rT
11A1r11

, b2 = k1

rT
12A1r12

(A.41)

to obtain the length of the principle axis a and b of the pupil ellipse E as well as the center of

the pupil with respect to the camera coordinate system c1. From t1 and R1 the pupil-normal-

vector can be derived to calculate the gaze angles.
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Figure A.37: a) Calculated gaze angle θ (blue) based on stereo reconstruction and ground truth
from rotation stage (red), b) Position of pupil center w.r.t. virtual camera 1 t1, c) A captured
stereo image with annotated ellipse contour, center, and reconstructed gaze vector

A.5.6 Evaluation
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Figure A.38: a) Laboratory setup consisting of the fabricated HOE (5), the MEMS laser scanner
(3,4), a single-pixel detector (6) and an artificial eye (2), mounted on a precision, motorized
rotation stage (1), b) Origin of the two virtual cameras captured by a camera placed in the
pupil plane, c) Image of the artificial eye through the glasses’ lens demonstrating the excellent
transparency of the HOE.

To evaluate the accuracy and precision of our single-pixel holographic stereo camera eye-

tracking sensor and to demonstrate the working principle, we implemented a laboratory setup

as outlined in Figure A.38.

An artificial eye model (2) is attached to a precision motorized rotation stage (1) 1, which

allows the artificial eye to be rotated with a resolution of 0.0089◦ and a precision of ±0.00083◦.

Furthermore a laser scanner2 consisting of a laser module (3) and a MEMS micro mirror (4) is

used to scan a 2D field across the fabricated HOE (5), which generates the stereo perspective.

To capture the reflected light for image reconstruction, a photodiode (6) is used.

The HOE is fabricated to operate in accordance with the red laser wavelength (λ= 639nm)

of the laser scanner. The two optical center points of the two virtual cameras o1 and o2 are

shown in Figure A.38 b) captured from the pupil plane. Finally, Figure A.38 shows an image of

the artificial eye model taken from the outside of the lens to highlight the high transparency of

the HOE. The artificial eye model uses a white pupil to emphasize the specular reflection of

red light at the pupil, causing the photodetector to perceive a dark pupil, similar to the dark

pupil shown by [129] on a real eye using an IR laser scanner.

Tab. A.5 summarizes the geometrical and electrical parameters of the prototype system used

in the laboratory to evaluate our approach.

To determine the camera parameters (K1, K2, R, and t) of the system, the stereo system is first

calibrated as described in Appendix A.5.4 using a 5×3 checkerboard with a square size of 3 mm.

Afterwards, the artificial eye is rotated in 0.5◦ increments from -15◦ to 15◦ to cover a total

FOV of 30 ◦. For each position, 100 image pairs are acquired with the single-pixel-detector

1Rxhq 50-12T0.3 Jenny Science
2BML050 [195]
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Table A.5: Summary of design parameters of the stereo setup in the laboratory setup according
to Figure A.35.

Baseline
b

Distance
d

Camera an-
gle γ

Camera resolution
(w×h)

Size of HOE
(w×h)

Pixel clock Frame
rate

20 mm 80 mm 14.2◦ 110 px × 240 px 20 mm × 10 mm 22 MHz 60 Hz

as described in Appendix A.5.4. Then, the two sub-images per image are isolated and the

contour of the pupil ellipse is extracted for each sub-image. Based on the extracted contours,

the ellipse Ei is fitted using a least squares method and the ellipse parameters (ai , bi , txi , tyi

and φi ) are extracted. After rescaling the ellipse parameters by applying Equation (A.29) and

computing A1 and A2, the reconstruction algorithm, described in Appendix A.5.5, is used to

determine the gaze vector as well as the position of the ellipse with respect to c1. Figure A.37

summarizes the results of the experiment.

Figure A.37 a) shows the gaze angle resulting from the reconstructed gaze vector for the

artificial eye. The mean gaze accuracy is 1.35◦ with a mean precision of 0.02◦. The gaze

accuracy is mainly limited by the pupil segmentation and the ellipse fitting accuracy. The

accuracy can be improved by using more advanced ellipse fitting algorithms e.g. DeepVOG

by [67]. Figure A.37 b) shows the pupil center t1 relative to c1. While the y-axis is constant,

the x-axis varies as the rotation of θ around yw leads to a shift of the pupil center along xw .

Furthermore, the distance d between camera center c1 and the pupil plane is close to the

camera distance of 80 mm described in Tab. A.5.

A.5.7 Discussion

Overall, the experiment shows that stereo reconstruction leads to a comparably high gaze ac-

curacy, even with the low resolution of the two virtual cameras. In terms of sensor integration,

our approach has several advantages over VOG stereo systems, as the use of an HOE allows to

capture image information from multiple angles.

[129] reported a power consumption of 11 mW of a similar setup, which is already significant

lower compared to VOG systems. Therefore, our approach reduces power consumption

significantly further compared to a stereo VOG setup, since we generate two virtual cameras

from a single laser scanner and only have to sacrifice image resolution.

A limitation of our approach is the high dependence on robust detection of the pupil ellipse

E , since the reconstruction fails if the cones f1 and f2 do not intersect. [128] addressed this

general issue by replacing the IR laser and the single-pixel-detector by an laser feedback

interferometry (LFI) sensor to increase the robustness of pupil detection, an approach that

could be applied also in this working context.

Finally the stereo reconstruction algorithm only estimates the normal vector of the pupil and

thus the optical axis of the eye omitting the offset angle κ between optical and visual axis [63].
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To determine the user dependent κ at least a one time single marker calibration is required.

Otherwise κ needs to derived from average population.

A.5.8 Conclusion

In this paper, we presented a novel approach to mobile stereo camera eye-tracking for AR

glasses, which combines a MEMS laser scanner with a segmented HOE. We fabricated the

HOE and demonstrated its functionality for the proposed use-case. We applied a stereo

reconstruction algorithm to the stereo images captured by our holographic single-pixel virtual

stereo camera, which achieved an accuracy of 1.35◦.

To increase the robustness of the stereo reconstruction as well as the FOV covered by the virtual

cameras, we plan to increase the number of virtual cameras and optimize the orientation of

the cameras w.r.t. to the eye. In addition, we plan to integrate our system into a head-worn

demonstrator based on the BML500P 3 to further investigate precision and accuracy also

taking human error into account.
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B.1 A Novel Gaze Gesture Sensor for Smart Glasses Based on Laser

Self-Mixing

B.1.1 Abstract

The integration of gaze gesture sensors in next-generation smart glasses will improve usability

and enable new interaction concepts. However, consumer smart glasses place additional

requirements to gaze gesture sensors, such as a low power consumption, high integration

capability and robustness to ambient illumination. We propose a novel gaze gesture sensor

based on laser feedback interferometry (LFI), which is capable to measure the rotational

velocity of the eye as well as the sensor’s distance towards the eye. This sensor delivers a

unique and novel set of features with an outstanding sample rate allowing to not only predict

a gaze gesture but also to anticipate it. To take full advantage of the unique sensor features

and the high sampling rate, we propose a novel gaze symbol classification algorithm based on

single sample. At a mean F1-score of 93.44 %, our algorithms shows exceptional classification

performance.

B.1.2 Introduction

In recent years, various smart glasses have been released into the market. As a successor of

virtual reality (VR) glasses, they follow a more natural design while integrating similar sensing

technology into the glasses. In general, they consist of a light projection engine and a set of

sensors to capture user inputs and monitor the user’s state.

To enable human computer interaction (HCI) with smart glasses, a variety of interaction

concepts are possible. These concepts can be classified into touch based interactions e.g. via

a track pad on the glasse’s temple introduced by the Google Glass [196], an external on-body

device e.g. a controller like as in the Magic Leap One [197] or via touchless interactions such as

spoken commands via voice recognition as used by the Echo Frames [132]. Also, hand gestures

captured by a camera sensor have been shown by the HoloLens [17].

An additional touchless interaction concept is making use of the user’s gaze by tracking their

eye movements by means of eye-tracking sensors. Gaze-based interaction allows a fast and

natural input, leading to an intuitive and unobtrusive way of interaction with smart glasses

while maintaining social acceptance and user’s privacy [17].

To the best of our knowledge, no commercially available smart glasses solution so far utilizes

gaze gestures as input modality, mainly due to the challenges arising from integration and due

to limited available power and space constraints [17]. Furthermore, a high robustness of the

sensor against variable external illumination is required to allow for operation in uncontrolled

outdoor environments e.g. in bright sun light [56].

To overcome these limitations and enable gaze gesture based interaction for the next genera-
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tion of smart glasses, we present a novel low power gaze gesture sensing approach based on

laser feedback interferometry (LFI). This multimodal sensor is capable of measuring distance

towards the eye as well as eye rotational velocity with a high sample rate of up to 1 kHz. The

sensor is based on a small vertical cavity surface emitting laser (VCSEL) in the near infrared

(IR) spectrum, which allows for a space constrained integration into the glasse’s frames. Ad-

ditionally, the LFI sensing principle is due to the coherent sensing scheme only sensitive to

its own radiation, allowing a robust operation in presence of ambient radiation, as shown in

[128].

In the next section, we give an overview of the state of the art regarding gaze gesture sensor con-

cepts for AR glasses and discuss the limitations of existing sensor concepts. In Appendix B.1.4,

we introduce the sensing principle and the sensor concept. In addition, we provide an overview

of the measurement features produced by the LFI sensor on the human eye. Based on these

features, we introduce an optimized and robust gaze symbol classification algorithm in Ap-

pendix B.1.5. Afterwards, we evaluate the proposed sensor concept in Appendix B.1.6 using a

laboratory setup. In the last section, we conclude our findings and discuss further steps.

B.1.3 Related Work

Several eye-tracking sensor concepts have been investigated in the past. The successors of

these different concepts, which are widely used in research and commercial applications, are

video-oculography (VOG) and electro-oculography (EOG) [15]. In addition, novel low power

eye-tracking sensor approaches for AR glasses based on microscanners and infrared (IR) lasers

have emerged in recent years [101, 129].

Drews et al. used a VOG eye-tracking sensor with a 60 Hz sample rate to capture the absolute

gaze position and extract gaze gestures from the input data stream [16]. They described a gaze

gesture as a sequence of atomic eye movements. Atomic eye movements, also refereed to as

strokes of the eye, are single unidirectional eye movements, e.g. left or upwards and can be

interpreted as gaze symbols. A set of gaze symbols forms a gaze gesture protocol. Drews et

al. used gaze symbols to control the user interface by linking a sequence of gaze symbols to a

gaze gesture.The main advantage of their approach over dwell based interaction approaches,

e.g. by [198], is that an absolute calibration of the eye-tracking sensor is not required because

only relative eye positions are tracked.

The main disadvantage of VOG sensor based approaches is the high power consumption

required by the sensors and the image processing, as well as the limited sample rate of the

sensors [17]. Furthermore, they are sensitive to ambient light which disturbs the captured

images leading to a low detection rate and therefore limiting the interaction capabilities in the

wild [56].

To overcome this limitations Bulling et al. integrated EOG sensors into a wearable glasses

demonstrator to measure relative movements of the eye and extract gaze gestures for mobile
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human computer interactions [20]. They placed two electrode pairs for horizontal and vertical

eye movements around the eye and used microcontroller to sample the four EOG channels and

extract the relative eye movements. In addition, they used a light sensor and an accelerometer

to compensate external artefacts in the sensor data. They reported a sample rate of 250 Hz

with an overall power consumption of 769 mW.

They use a gaze gesture protocol with 16 symbols to encode the gaze gestures. The overall

correct classification rate for different gaze gestures of varying complexity was given as 87 %.

Compared to VOG sensor concepts, EOG sensors benefit from computational light weight

signal processing. In addition, they are more robust against ambient illumination. The major

drawback limiting the use of EOG sensor for gaze-based interaction in recent smart glasses is

the use of electrodes on the skin [15].

Our gaze gesture sensor concept based on LFI combines the benefits of non-intrusive inte-

gration of VOG sensors and the calibration free measurement of relative eye movements by

EOG sensors. Furthermore, our sensor principle is robust against external illumination and is

therefore capable of operating in the wild.

B.1.4 Gaze gesture sensor based on laser feedback interferometry

Emission

Back Injection

Laser

nin next R,γ

Lin,τin Lext,τext

P0
P'

0

Photodiode

Figure B.1: Coupled cavity model of a laser feedback interferometry sensor. The laser emits
light which is scattered by the eye and back injected into the laser cavity. The photodiode
monitors the laser power, which varies with changes in the feedback path.

Laser feedback interferometry or self-mixing interferometry (SMI) is a widely known interfer-

ometry measurement method. It is used in the industry as well as in laboratory environments

to measure displacement and velocity of solid targets, as well as fluids and distance. Due to

the high distance and velocity resolution, it is also widely used in vibrometry applications

[121].

Sensing principle

Figure B.1 shows the coupled cavity model to introduce the basic sensing principle of LFI

sensors. A laser with an optical output power P0 emits a coherent laser beam towards the

surface of the eye. The laser beam hits the eye under an angle of incidence γ, is attenuated

by volume scattering effects and absorption described by a reflectivity R and is back injected
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into the laser. τext denotes the time the laser beam requires to travel over the distance Lext

towards the eye. τext is dependent on the speed of light c0 and the external refraction index

next of the external medium [6].

The back injected light interferes with the local oscillating field, which is often referred to as

self-mixing interference, resulting in a modulation of the optical power

P ′
0 = P0

(
1+m ·cos

(
φ f b

))
. (B.1)

The varying feedback power P ′
0 is dependent on the optical power P0, the modulation depth

m and a varying phase φ f b of the backscattered light field. A small fraction of the varying

feedback power P ′
0 is measured by a photodiode, which is integrated into the back mirror of

the laser cavity [6].

A more in-depth description of the coupled cavity model is given by the rate equations intro-

duced by [119]. A solution of the rate equation is the excess phase equation

φ f b −φs +C sin
(
φ f b +arctan(α)

)= 0. (B.2)

The feedback phase is expressed as a function of the signal phase φs , Acket’s feedback parame-

ter C and Henry’s line width enhancement factorα. Considering operation of the LFI sensor in

the weak feedback regime (C < 1) and a constant α, Equation (B.2) has only a single solution

and φ f b is, therefore, only dependent on φs , leading to

φs = 4πnext Lext

λ
(B.3)

with λ describing the wavelength of the laser. Considering next ≈ 1 is constant due to the

operation of the sensor in free space, only changes in λ and Lext lead to a varying phase

φs and , consequently, to a varying phase φ f b . This results, with respect to Equation (B.1),

in a modulation of the optical power which is measured by the photodiode. Changes in

the wavelength λ occur by a modulation of the laser drive current. That leads to a periodic

heating and cooling of the resonator and, thus, to a periodic change of the cavity length. The

variation of the cavity length leads to a periodic modulation of the wavelength, which allows

for continuous measurement of the distance according to Equation (B.4).

To distinguish between both effects, we compute the partial derivative of Equation (B.3) with

respect to time, which leads to

f0 = 2Lext

λ2

dλ

d I

d I

d t

∣∣∣∣
Lext=const .

(B.4)

and

fd = 2vext cos
(
γ
)

λ

∣∣∣∣
λ=const .

. (B.5)
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Considering a known dλ
d I , which is a static process parameter of the laser, and a controlled

current modulation d I
d t , the distance to the eye can be calculated by extracting the so called

beat frequency f0 by applying a fast Fourier transform (FFT) to the measured varying optical

power and rearranging Equation (B.4) with respect to Lext .

Movements of the eye ( dLext
d t = vext ) lead to a shift of the beat frequency f0 by the so called

Doppler frequency fd . With a known angle of incidence γ and a measured Doppler frequency,

Equation (B.5) can be rearranged with respect to vext to obtain the surface velocity of the eye.

In order to separate f0 and fd and, thus, simultaneously measure the distance and velocity of

the eye, a triangular modulation similar to frequency modulated continuous wave (FMCW)

radar is applied to the drive current of the laser [122]. By separating the up- and down

ramp signals into two segments and applying an FFT on each segment, an fup and an fdown

frequency is captured. f0 and fd are obtained from these measurements by

f0 =
fup + fdown

2
(B.6)

and

fd = fup − fdown

2
(B.7)

respectively.

θ

φ

Figure B.2: Positioning of the LFI sensors with respect to the rotational axes of the human eye.

The LFI sensor measures surface velocity as a dot product between the laser normal and the

surface velocity vector of the moving eye at the intersection point between laser and eyeball. If

the eye’s rotational axis and the laser beam are aligned, a simplified description by the angle of

incidence γ as described in Equation (B.5) is possible. Therefore, two LFI sensors are required

to measure both, the horizontal movement around the θ-axis and vertical movement around

the φ-axis. Figure B.2 shows the positioning and the laser beam directions of two LFI sensors

to comply with these requirements.

From an integration point of view, the sensor for vertical movements can be integrated into

the AR glasse’s frame below the spectacle and the sensor for horizontal movements can

be integrated into the AR glasses frame temple. The size of a single LFI sensor is mainly
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determined by the diameter of the lens in front of the laser chip which is roughly 4 mm. This

results in a size of the final sensor that is comparable to the twin-eye sensor shown in [6].

Sensor features on the eye

dI

Lid
Iris

Cornea

Lens Retina

dR dL

Eyelash

Distance to iris Distance to retina Distance to lid

a) Looking straight b) Looking down c) Closing eye

Figure B.3: Different movement related position changes of the eye and the lid resulting in a
change in distance measurement due to the geometry and scaffold of the eye.

Based on Equation (B.4) and Equation (B.5) and the positioning of the LFI sensors shown

in Figure B.2, four features are measured by the sensors. For each rotational axis of the eye,

the surface velocity and the distance are measured resulting in vθ and vφ as velocity related

features and dθ and dφ as position related features.

Figure B.3 shows a sectional view of the eye and a fixed LFI sensor position for three different

positions of the eye and the lid. In Figure B.3 a), the gaze is directed straight ahead. The laser

beam of the LFI sensor for vertical rotations penetrates the cornea and backscattering occurs

at the iris. For this setup, the LFI sensor measures the distance between sensor and iris dI .

In Figure B.3 b), the eye is slightly rotated along the vertical direction downwards and the laser

beam penetrates the cornea and the lens and is backscattered from the retina. The measured

distance in this case is the distance between sensor and retina dR .

In Figure B.3 c), the eye is directed straight forward but the lid is closed by a blink. In this case,

the distance dL between sensor and lid is measured. By subtracting dI and dL , the thickness

of the lid can be calculated, which is around 4 mm, and by subtracting dR and dL the diameter

of the eye is approximately calculated, which is around 24 mm [61].

B.1.5 Gaze gesture algorithm

Similar to related works by [16], [20] and [199], the gaze gesture algorithm is based on a gaze

gesture protocol which encodes atomic movements of the eye into gaze gestures denoted by

symbols.

We define a gaze symbol set consists of four basic atomic eye movements which are annotated

by small letters. For the horizontal axis, movements to the left l and to the right r around θ

are possible. In addition, eye movements in the vertical axis around φ are denoted by u and
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d for up and down movements of the eye, respectively. In addition to movements of the eye,

blinks (b) are considered an additional atomic movement. In order to cover all types of eye

movements, fixations of the eye, as well as slow movements, are described by an additional

symbol n for non-movements.

The entire set of symbols S thus consists of six unique symbols S = {l ,r,u,d ,b,n}.

Feature extraction

The novel sensor concept described in Appendix B.1.4 allows for the extraction of a unique set

of features from the human eye with a high sampling rate. A major advantage over the state of

the art is the use of the distance measurement between the glasse’s frame and the eye as an

additional feature, as discussed in Appendix B.1.4.

To obtain unique features from the measured velocities, vθ and vφ are treated as velocity

vector components. This velocity vector can be represented in polar coordinate space by an

angle

ε= arctan(
vθ
vφ

) (B.8)

and a vector length

v =
√

v2
θ
+ v2

φ
(B.9)

which lead us to an two dimensional feature vector F with ε and v as gaze symbol features.

Figure B.4 shows the feature space, which is spanned by ε and v , in polar coordinate space.

up

left non right

down

Figure B.4: Gaze gesture velocity feature space shown in a polar coordinate system.

The grey area in the centre covers the area of fixations and slow eye movements e.g. drift

or tremor. The size is determined by a certain absolute velocity threshold vn for v . The

sensitivity and robustness of the gaze symbol algorithm can be controlled by varying vn . The

main advantage of this representation is the wide range of allowed angles of 90◦ per direction,

leading to a robust gaze symbol detection and an easy execution of gaze gestures for the user.

To also be able to measure blinks dθ is added as a third feature to F . The feature vector

describes a point in cylindrical coordinate denoted by F = {ε, v,dθ}.
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Gaze symbol classification

The first step of the classification process is to map a feature vector F measured by the LFI

sensors to a gaze symbol from the gaze symbol set S. For this purpose, a decision tree, which

describes the feature space shown in Figure B.4 and the additional distance information

dθ, is used. The main advantage of this single sample classification approach over other

classification approaches, e.g. by [20], is the invariance with respect to time. This allows for

a robust classification, which is insensitive to sensor drift, as is the case with EOG sensors

[15]. Furthermore, this classification approach does not require the detection of a movement

sequence in the input sensor signal stream to extract significant movements which belong to

a gaze symbol as proposed by [199].

B.1.6 Evaluation

1

2

3 4

5

6

Figure B.5: CAD sketch of the laboratory setup to validate the proposed LFI gaze gesture sensor
approach.

To validate the proposed features of the human eye measured by the LFI sensors and evaluate

the gaze gesture recognition algorithm, a laboratory setup is used, as shown in Figure B.5.

The subject 1 is placed in front of a monitor 5 which is used to create stimuli for eye move-

ments. Its head is fixated by a head- and chin rest to suppress unintended head movements.

The LFI sensor at position 2 is responsible for measurements of vφ and dφ while the LFI

sensor at position 3 is responsible for measurements of vθ and dθ. An IR camera 4 captures

a video of the subject during the experiments. A sub Figure 6 shows a frame captured by the

camera showing the focused laser spots of the two IR lasers on the iris of a subject as white

spots.

Table B.1: Properties of the LFI sensors of the laboratory setup.
LFI Sensor dλ/d I λ γ P0

2 0.406 nm/mA 848 nm 45◦ 390µW
3 0.396 nm/mA 856 nm 45◦ 390µW

With the low optical power of the IR VCSELs, the mechanical setup of chin and head rest and

the positioning of the lasers in the laboratory setup, a class 1 laser system according to IEC

60825-1 (class 1 optical power limit 780µW) is achieved and, therefore, the experiments do
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not pose any medical hazard to the subject’s eye.

The power consumption of the proposed gaze gesture sensor is roughly 140 mW, which is

estimated based on an STM32G473 microcontroller including all required peripherals to

capture and process the data from the LFI sensors. With optimized logic blocks and an

subsampling scheme enabled by an higher integration using a custom application specific

integrated circuit (ASIC) a further power reductions to 30 mW is expected.

A comparable power consumption of 150 mW is reported by [101] for state of the art VOG

eye tracking sensors excluding image processing. Compared to [20] a much lower power

consumption can be achieved.

Feature validation

To validate the proposed features of the human eye from Appendix B.1.4, the laboratory setup

is used. Figure B.6 shows the measured data of the two LFI sensors from a subject performing

the gaze symbol sequence [l ,r,u,d ,b] .

Figure B.6: Data captured with the laboratory setup to evaluate the proposed features of
the eye. a) shows the measured velocity, b) shows the measured distance and c) shows eye
movements captured with the IR camera and the corresponding gaze symbol. The background
colour refers to the corresponding atomic movement of the eye.

The LFI sensors are modulated to achieve an update rate of 1k̇Hz for distance and velocity
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measurement. Figure B.6 a) shows the measured velocity and Figure B.6 b) shows the measured

distance. The movement threshold vn is set to 0.02 m/s to distinguish between atomic eye

movements and non-relevant movements of the eye. In the distance plot we added three

distance lines corresponding to the distances described by Figure B.3 a) - c). The measured

distance between dR (retina) and dI (iris) is 23,36 mm and the measured distance between dI

(iris) and dL (lid) is 5,01 mm, which both correspond to the known anatomy of the human eye.

Gaze gesture symbol classification

To validate the proposed gaze gesture symbol classifier described in Appendix B.1.5, a set of

gestures is recorded using the laboratory setup as described in Appendix B.1.6. Two male

subjects with blue and brown eyes were instructed to perform 18 eye movement gestures

and 9 blinks each. To capture natural trajectories of the eye, during the execution of the gaze

gestures no visual stimuli were used to guide the gaze of the subjects.

In a first step, the ground truth is manually annotated utilizing the IR camera images to the

measured data with the corresponding gaze symbols, similar to related work by [200]. To distin-

guish between movements and non-movements, the velocity threshold vn = 0.02ms is applied.

Afterwards, we extract the features from the measured data according to Appendix B.1.5 and

use the proposed gaze symbol classification algorithm to classify atomic eye movements. This

allows us to evaluate the classification approach on the sample-level. In addition, we treat the

multiclass classification problem for evaluation purpose as a binary one-vs-all classification

problem. This evaluation approach is commonly used in the literature [201, 202] and allows

us to compute the F1-score as evaluation metric. Table B.2 shows the evaluation results.

Table B.2: Properties of the LFI sensors of the laboratory setup.
Gaze symbol Gestures Symbols Precision Recall F1-Score

l 36 3783 0.906 0.995 0.949
r 36 3505 0.916 0.997 0.955
u 36 3229 0.820 0.976 0.891
d 36 3624 0.873 0.945 0.908
b 18 3063 0.971 0.967 0.969

B.1.7 Conclusion

We present a novel low power gaze gesture sensor concept based on IR VCSELs and the LFI

effect, which allows for seamless integration of gaze gesture sensors into next generation

smart glasses. This sensor enables new gaze based interaction concepts like true hands-

free interaction. We also introduced a computational lightweight gaze symbol classification

algorithm with a sufficient classification accuracy and precision.

Based on the promising results obtained with the laboratory setup, our next goal is to integrate

the sensors into our head-mounted demonstrator. This will allow us to evaluate the gaze
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gesture sensor during everyday activities to investigate the robustness against glasses slippage.

Furthermore we want to develop a gaze gesture algorithm which recognizes a user interaction

with the glasses by detecting a sequence of gaze symbols and investigate the robustness against

unwanted interactions during everyday activities.
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B.2 A compact low-power gaze gesture sensor based on laser feed-

back interferometry for smart glasses (invited)

B.2.1 Abstract

The integration of gaze gesture sensors in next-generation smart glasses will improve usability

and enable new interaction concepts. However, consumer smart glasses place additional

requirements to gaze gesture sensors, such as a low power consumption, high integration

capability and robustness to ambient illumination. We propose a novel gaze gesture sensor

based on laser feedback interferometry (LFI), which is capable to measure the rotational

velocity of the eye as well as the sensor’s distance towards the eye. This sensor delivers a

unique and novel set of features with an outstanding sample rate allowing to not only predict a

gaze gesture but also to anticipate it. To take full advantage of the unique sensor features and

the high sampling rate, we propose additionally a novel gaze gesture classification algorithm

based on single sample. At a mean F1-score of 93.44 %, our algorithms shows exceptional

classification performance at a negative latency between gaze gesture input and command

execution.

B.2.2 Introduction

Consumer smart glasses evolve their full potential, if the user has intuitive means to interact

with and control the device. In the past a variety of interaction concepts are brought into the

market, which can be classified into touch based interactions e.g. via a track pad on the glasse’s

temple introduced by the Google Glass [196], an external on-body device e.g. a controller like

as in the Magic Leap One [197] or via touchless interactions such as spoken commands via

voice recognition as used by the Echo Frames [132]. Also, the use of hand and finger gestures

captured by a camera sensor have been shown by the HoloLens [17].

An additional touchless interaction concept is making use of the user’s gaze by tracking their

eye movements by means of eye-tracking sensors. Gaze-based interaction allows a fast and

natural input, leading to an intuitive and unobtrusive way of interaction with smart glasses

while maintaining social acceptance and user’s privacy [17].

Gaze-based interaction allow further to adaptive control and activate the image projection

system based on the users interaction, which allows to extend the battery life of lightweight

augmented reality (AR) glasses to all-day operation.

To cover both aspects, user interaction and system control, low-power always-on gaze gesture

sensors are well suited.

To the best of our knowledge, no commercially available smart glasses solution so far utilizes

gaze gestures as input modality, mainly due to the challenges arising from integration and due

to limited available power and space constraints [17]. Furthermore, a exceptional robustness
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of the sensor against variable ambient illumination is required to allow for operation in

uncontrolled outdoor environments e.g. in bright sun light [56].

To fulfill these requirements and enable gaze gesture based interaction for the next generation

of smart glasses, we present a novel low power gaze gesture sensor based on laser feedback

interferometry (LFI) and extend our previous work [5] by an gaze gesture detection algorithm.

This multimodal sensor is capable of measuring distance towards the eye as well as eye

rotational velocity with an outstanding sample rate of up to 1 kHz. The sensing component

consits of a tiny infra red (IR) vertical cavity surface emitting laser (VCSEL) with an integrated

photodiode. Due to its coherent sensing scheme, the sensor is only sensitive to its own emitted

radiation, allowing a robust operation in presence of ambient radiation, as shown by Meyer

et.al. [128]. Another advantage of this sensing technology is the omission of an imaging

process for gaze sensing. This enables unobtrusive, socially acceptable sensor integration and

reduces privacy concerns as no images of the eyes are captured.

In the next Section, we give an overview of the state of the art regarding gaze gesture sensors as

well as gaze interaction concepts for AR glasses and discuss the limitations of existing concepts.

In Appendix B.2.4, we introduce the sensing principle and the sensor concept of the proposed

LFI sensor. In addition, we provide an overview of the measurement features captured by the

LFI sensor on the human eye. Based on these features, we introduce an optimized and robust

gaze gesture recognition algorithm in Appendix B.2.4. Afterwards, we evaluate the proposed

sensor concept in Appendix B.2.5 using a laboratory setup. In the last section, we conclude

our findings and discuss further steps.

B.2.3 Related Work

Several eye-tracking sensor concepts have been investigated in the past. The successors of

these different concepts, which are widely used in research and commercial applications, are

video-oculography (VOG) and electro-oculography (EOG) [15]. In addition, novel low power

eye-tracking sensor approaches for AR glasses based on microscanners and infrared (IR) lasers

have emerged in recent years [101, 129].

Most gaze interaction concepts relie on VOG. VOG concepts for smart glasses rely on video

cameras, which are mainly integrated into the glasses frame. They record the movements

of the eye and track the position of the pupil and extract the gaze vector by using computer

vision algorithms.

Bednarik et.al. introduce a gaze interaction method by interpreting the gaze vector as mouse

courser to interact with UI elements [198]. By fixating and dwelling on an UI element, the UI

element is activated and an interaction is performed. The dwell time is required to differentiate

between explicit interactions and random eye movements and thus solve the so-called Midas

touch problem. The main disadvantage of this approach is that, due to the required dwell

time, only a few interactions can be performed in a defined period of time. Furthermore, an
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absolute calibration of the eye tracker is necessary to obtain the absolute gaze position.

Drews et al. used a VOG eye-tracking sensor to capture the absolute gaze position and extract

gaze gestures from the input data stream [16]. They described a gaze gesture as a sequence

of atomic eye movements. Atomic eye movements, also refereed to as strokes of the eye, are

single unidirectional eye movements, e.g. left or upwards and can be interpreted as gaze

symbols. A set of gaze symbols forms a gaze gesture protocol. Drews et al. used gaze symbols

to control the user interface by linking a sequence of gaze symbols to a gaze gesture. In

addition, they used a timeout of 1000 ms to distinguish between gesture inputs and natural eye

movements. The main advantage of their approach over dwell based interaction approaches

is that an absolute calibration of the eye-tracking sensor is not required because only relative

eye positions are tracked.

In recent years gaze based pursuit interactions are investigated [18]. Pursuit interaction

exploit pursuit eye movements by displaying moving objects, which are pursued by the human

gaze. [18] combined the gaze vector and optical flow of a series of images to obtain pursuit

informations for targets shown on a display. Similar to the gaze gesture approach, they only

require relative eye movements, but in order to obtain the velocities for detection of pursuit

eye movement , the optical flow needs to be calculated from a series of incoming images,

resulting in high computational complexity.

The main disadvantage of VOG sensor based approaches is the high power consumption

required by the sensors and the image processing, as well as the limited sample rate of the

sensors [17]. Furthermore, they are sensitive to ambient light which disturbs the captured

images leading to a low detection rate and therefore limiting the interaction capabilities in the

wild [56].

Our LFI-based gaze gesture sensor concept combines the advantages of non-intrusive inte-

gration of VOG systems with the advantage of directly capturing the relative velocity of the

eye with an outstanding sampling rate and a low power consumption. Due to the fact that

the LFI sensor captures relative eye movements, it is ideally suited for a gaze gesture-based

interaction concept similar to Drews et.al.. Furthermore, our sensor principle is robust against

external illumination and is therefore capable of operating in the wild.

B.2.4 Gaze gesture sensor based on laser feedback interferometry
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Figure B.7: a) 160 µm x 180 µm VCSEL with integrated photodiode on a cent coin b) Coupled
cavity model of a laser feedback interferometry sensor. The laser emits light which is scattered
by the eye and back injected into the laser cavity. The photodiode monitors the laser power,
which varies with changes in the feedback path. c) Encapsulated optical module including the
LFI sensor and the beam shaping optics.

Laser feedback interferometry or self-mixing interferometry (SMI) is a widely known interfer-

ometry measurement method. It is used in the industry as well as in laboratory environments

to measure displacement and velocity of solid targets, as well as fluids and distance. Due to

the high distance and velocity resolution, it is also widely used in vibrometry applications

[121].

Sensing principle

Figure B.7 b) shows the coupled cavity model to introduce the basic sensing principle of LFI

sensors. A laser with an optical output power P0 emits a coherent laser beam towards the

surface of the eye. The laser beam hits the eye under an angle of incidence γ, is attenuated

by volume scattering effects and absorption described by a reflectivity R and is back injected

into the laser. τext denotes the time the laser beam requires to travel over the distance Lext

towards the eye. τext is dependent on the speed of light c0 and the external refraction index

next of the external medium [6].

The back injected light interferes with the local oscillating field, which is often referred to as

self-mixing interference, resulting in a modulation of the optical power

P ′
0 = P0

(
1+m ·cos

(
φ f b

))
. (B.10)

The varying feedback power P ′
0 is dependent on the optical power P0, the modulation depth

m and a varying phase φ f b of the backscattered light field. A small fraction of the varying

feedback power P ′
0 is measured by a photodiode, which is integrated into the distributed Bragg

reflector (DBR) of the laser cavity itself [6].

To understand the link of the phase φ f b to our observation goal (distance and velocity), we

consider the rate equations introduced by [119]. A solution of the rate equation is the excess

phase equation

φ f b −φs +C sin
(
φ f b +arctan(α)

)= 0. (B.11)

The feedback phase is expressed as a function of the signal phase φs , Acket’s feedback pa-

rameter C and Henry’s line width enhancement factor α. Considering operation of the LFI
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sensor in the weak feedback regime (C < 1) and a constant line width enhancement factor

α, Equation (B.11) lead to a single solution [6] and φ f b is, therefore, only dependent on φs ,

leading to

φs = 4πnext Lext

λ
(B.12)

with λ describing the wavelength of the laser. Considering next ≈ 1 is constant due to the

operation of the sensor in free space, only changes in λ and Lext lead to a varying phase

φs and , consequently, to a varying phase φ f b . This results, with respect to Equation (B.10),

in a modulation of the optical power which is measured by the photodiode. Changes in

the wavelength λ occur by a modulation of the laser drive current. That leads to a periodic

heating and cooling of the resonator and, thus, to a periodic change of the cavity length. The

variation of the cavity length leads to a periodic modulation of the wavelength, which allows

for continuous measurement of the distance according to Equation (B.13).

To distinguish between both effects, we compute the partial derivative of Equation (B.12) with

respect to time, which leads to

f0 = 2Lext

λ2

dλ

d I

d I

d t

∣∣∣∣
Lext=const .

(B.13)

and

fd = 2vext cos
(
γ
)

λ

∣∣∣∣
λ=const .

. (B.14)

Considering a known dλ
d I , which is a static process parameter of the laser, and a controlled

current modulation slope d I
d t , the distance to the eye can be calculated by extracting the so

called beat frequency f0 by applying a fast Fourier transform (FFT) to the measured varying

optical power and rearranging Equation (B.13) with respect to Lext .

Movements of the eye ( dLext
d t = vext ) lead to a shift of the beat frequency f0 by the so called

Doppler frequency fd . With a known angle of incidence γ and a measured Doppler frequency,

Equation (B.14) can be rearranged with respect to vext to obtain the surface velocity of the eye.

In order to separate f0 and fd and, thus, simultaneously measure the distance and velocity of

the eye, a triangular modulation similar to frequency modulated continuous wave (FMCW)

radar is applied to the drive current of the laser [122]. By separating the up- and down

ramp signals into two segments and applying an FFT on each segment, an fup and an fdown

frequency is captured. f0 and fd are obtained from these measurements by

f0 =
fup + fdown

2
(B.15)

and

fd = fup − fdown

2
(B.16)

respectively. Recalling Equation (B.16), the triangle modulation allows to extract the direction
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of the velocity as well. The modulation frequency of the triangle signal therefore corresponds to

the sample frequency of the LFI sensor. Under this consideration, the upper sample frequency

of the LFI sensor is determined by thermal time constants of the laser cavity, which is for

spacial confined semiconductor VCSELs in the range of 100 kHz [117].

Sensor concept

Figure B.8 shows a system diagram of the whole LFI sensor. The output of the photodiode is

AC coupled to an transimpedance amplifier (TIA) to reject the DC component of the varying

optical output power and only measure the cosine part of Equation (B.10).

Inside the digital logic the output of the TIA is sampled by an analogue digital converter

(ADC). The sampled data is synchronized with the up- and down ramp of the triangle signal

synthesized by an internal digital to analogue converter (DAC) and fed to the laser driver.

Afterwards, an FFT is applied to the two signal segments to obtain fup and fdown and use

Equation (B.15) and Equation (B.16) to calculate f0 and fd , respectively.

The LFI sensor measures surface velocity as a dot product between the laser normal and the

surface velocity vector of the moving eye at the intersection point between laser and eyeball. If

the eye’s rotational axis and the laser beam are aligned, a simplified description by the angle of

incidence γ as described in Equation (B.14) is possible. Therefore, two LFI sensors are required

to measure both, the horizontal movement around the θ-axis and vertical movement around

the φ-axis. Figure B.9 shows the positioning and the laser beam directions of two LFI sensors

to comply with these requirements.

DAC

FFT

ADC TIA Photo- 
diode Laser 

Digital logic

Laser 
driver Triangle modulation 

Analogue front end

Lens

Figure B.8: System diagram of the whole LFI sensor including the sensing element, the modu-
lation circuit and the data processing element [6].
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θ

φ

Figure B.9: Positioning of the LFI sensors with respect to the rotational axes of the human eye.

From an integration point of view, the sensor for vertical movements can be integrated into

the AR glasse’s frame below the spectacle and the sensor for horizontal movements can

be integrated into the AR glasses frame temple. The size of a single LFI sensor is mainly

determined by the diameter of the lens in front of the laser chip, shown in Figure B.7 c) is in

the range of 1 mm - 2 mm.

dI

Lid
Iris

Cornea

Lens Retina

dR dL

Eyelash

Distance to iris Distance to retina Distance to lid

a) Looking straight b) Looking down c) Closing eye

Figure B.10: Different movement related position changes of the eye and the lid resulting in a
change in distance measurement due to the geometry and scaffold of the eye.

Sensor features on the eye

Based on Equation (B.13) and Equation (B.14) and the positioning of the LFI sensors shown

in Figure B.9, four features are measured by the sensors. For each rotational axis of the eye,

the surface velocity and the distance are measured resulting in vθ and vφ as velocity related

features and dθ and dφ as position related features.

Figure B.10 shows a sectional view of the eye and a fixed LFI sensor position for three different

positions of the eye and the lid. In Figure B.10 a), the gaze is directed straight ahead. The laser

beam of the LFI sensor for vertical rotations penetrates the cornea and backscattering occurs

at the iris. For this setup, the LFI sensor measures the distance between sensor and iris dI .

In Figure B.10 b), the eye is slightly rotated along the vertical direction downwards and the

laser beam penetrates the cornea and the lens and is backscattered from the retina. The

measured distance in this case is the distance between sensor and retina dR .
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In Figure B.10 c), the eye is directed straight forward but the lid is closed by a blink. In this case,

the distance dL between sensor and lid is measured. By subtracting dI and dL , the thickness

of the lid can be calculated, which is around 4 mm, and by subtracting dR and dL the diameter

of the eye is approximately calculated, which is around 24 mm [61].

Gaze gesture algorithm

Similar to related works by Drews et. al.[16] Bulling et. al. [20] and Findlin et.al. [199], the gaze

gesture algorithm is based on a gaze gesture protocol which encodes atomic movements of

the eye into gaze gestures denoted by symbols.

Figure B.11 a) shows a graphical description of our gaze gesture protocol. We define four

basic atomic eye movements which are annotated by small letters. For the horizontal axis,

movements to the left l and to the right r around θ are possible. In addition, eye movements

in the vertical axis around φ are denoted by u and d for up and down movements of the eye,

respectively. In addition to movements of the eye, blinks (b) are considered an additional

atomic movement. In order to cover all types of eye movements, fixations of the eye, as well as

slow movements, are described by an additional symbol n for non-movements. The entire set

of symbols S thus consists of six unique symbols S = {l ,r,u,d ,b,n}.

Feature extraction

The novel sensor concept described in Appendix B.2.4 allows for the extraction of a unique set

of features from the human eye with a high sampling rate. A major advantage over the state of

the art is the use of the distance measurement between the glasse’s frame and the eye as an

additional feature, as discussed in Appendix B.2.4.

Figure B.11: a) Graphical description of the proposed gaze gesture alphabet. The small letters
denote atomic unidirectional movements of the eye. b) Gaze gesture velocity feature space
shown in a polar coordinate system.

To obtain unique features from the measured velocities, vθ and vφ are treated as velocity

vector components. This velocity vector can be represented in polar coordinate space by an

angle

ε= arctan(
vθ
vφ

) (B.17)
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and a vector length

v =
√

v2
θ
+ v2

φ
(B.18)

which lead us to two dimensional feature vector F with ε and v as gaze symbol features.

Figure B.11 b) shows the feature space, which is spanned by ε and v , in polar coordinate space.

The grey area in the centre covers the area of fixations and slow eye movements e.g. drift or

tremor. The size of this area is independent on the angle ε and is, therefore, only determined

by a certain absolute velocity threshold vn for v . The sensitivity and robustness of the gaze

gesture algorithm can be controlled by varying vn . The other areas in the feature space are

each associated with exactly one symbol of the symbol set S.

The main advantage of this representation is the wide range of allowed angles of 90◦ per

direction, leading to a robust gaze symbol detection and an easy execution of gaze gestures

for the user. In addition, the use of speed as a feature for extracting gaze symbols allows

atomic eye movements to be performed individually without exceeding a certain angle of eye’s

rotation.

Taking Equation (B.14) into account, it appears that the LFI sensors are capable of measuring

any kind of velocity at the eye. This includes blinking, which would be misclassified using the

approach previously described as an opening or closing movement of the eye due to the up and

down movement introduced by the moving eyelid. To avoid this misclassification, the distance

measurement dθ is evaluated for differentiation, as already described in Appendix B.2.4. By

adding the distance measurement dθ as a third feature to F , the feature vector describes a

point in cylindrical coordinate denoted by F = {ε, v,dθ}.

Gaze symbol classification

The first step of the classification process is to map a feature vector F measured by the LFI

sensors to a gaze symbol from the gaze symbol set S. For this purpose, a decision tree, which

describes the feature space shown in Figure B.11 b) and the additional distance information

dθ, is used. The main advantage of this single sample classification approach over other

classification approaches, e.g. by Bulling et. al. [20], is the invariance with respect to time.

This allows for a robust classification, which is insensitive to sensor drift, as is the case with

EOG sensors [15]. Furthermore, this classification approach does not require the detection

of a movement sequence in the input sensor signal stream to extract significant movements

which belong to a gaze symbol as proposed by Findling et. al. [199].

Gaze symbol preprocessing

One drawback of the single sample classification approach is that even slight movements of

the eye in the wrong direction lead to a different gaze symbol. To overcome this limitation and

increase robustness of the gaze gesture recognition, the gaze symbol stream is preprocessed.
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Figure B.12 shows the preprocessing of the gaze symbol stream.

FIFO
n n n u u u n n u u u u u n d d n u u u

l r u d n b

N

NT u

Figure B.12: Gaze gesture symbols accumulated in a FIFO memory.

A first in first out (FIFO) buffer with length N is filled with incoming gaze symbols. In addition,

for every symbol in S, a corresponding bin is created. These bins contain the number of asso-

ciated symbols from the FIFO. If the number of symbols in a bin exceeds a certain threshold

NT , the corresponding gaze gesture symbol is set as an active symbol until NT is undershot.

The FIFO is initialized at beginning of the algorithm with n as default symbol to always output

an active symbol.

Gaze gesture recognition

N
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L

B
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r,n
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b

r,u,d

Incoming call

Figure B.13: Description of a gaze gesture using a FSM to accept a incoming call displayed in
the AR glasses user interface.

Similar to Drews. et. al. [16], we define a gaze gesture as a sequence of atomic movements of

the eye described by the corresponding gaze gesture symbols. To describe a gaze gesture, a

finite state machine (FSM) is used. This allows for a flexible design of custom gaze gestures.

To manipulate the state of the FSM, the preprocessed gaze symbol stream is used.

Figure B.13 shows an FSM with a gaze symbol sequence [r, l ,b] as gaze gesture to accept a

incoming call. When the state R is reached, a timer is started with a given time t0 to reset

the FSM to its initial state N if a timeout is reported before reaching the final state B . This

increases the robustness and reduces the sensitivity to unintended interactions. Furthermore,

a higher robustness of gaze gesture recognition can be achieved by increasing the length of

the gaze symbol sequence of a gaze gesture.

The transition to the final state B is issued as soon as the blink gaze symbol b is detected in the
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preprocessed gaze symbol stream, which occurs as soon as enough b symbols have entered

the FIFO and NT is exceeded. This allows for the execution of the gaze gesture command

before the blink is even finished, resulting in a negative latency between finishing the gesture

and execution of the command.

Due to the fact that no sliding window or time and power consuming transformation of time

series data, as proposed by Bulling et. al. [19], is used to recognize the gaze gesture, a low

power gaze gesture recognition for smart glasses is achieved.

B.2.5 Evaluation

1

2

3 4

5

6

Figure B.14: CAD sketch of the laboratory setup to validate the proposed LFI gaze gesture
sensor approach. The grey scale image shows the eye of a subject with the two laser spots on
the iris captured by the reference camera.

To validate the proposed features of the human eye measured by the LFI sensors and evaluate

the gaze gesture recognition algorithm, a laboratory setup is used, as shown in Figure B.14.

The subject 1 is placed in front of a monitor 5 which is used to create stimuli for eye move-

ments. Its head is fixated by a head- and chin rest to suppress head movements, which would

lead to a faulty velocity measurement. The LFI sensor at position 2 is responsible for mea-

surements of vφ and dφ while the LFI sensor at position 3 is responsible for measurements

of vθ and dθ. An IR camera 4 captures a video of the subject during the experiments. A sub

Figure 6 shows a frame captured by the camera showing the focused laser spots of the two

IR lasers on the iris of a subject as white spots. The lasers are not aligned to hit the eye at the

same position, as already described in Appendix B.2.4.

Table B.3: Properties of the LFI sensors of the laboratory setup.
LFI Sensor dλ/d I λ γ P0

2 0.406 nm/mA 848 nm 45◦ 390µW
3 0.396 nm/mA 856 nm 45◦ 390µW

Considering the sensor system diagram shown in Figure B.8, the laser together with the laser

driver and the lens are integrated into the black housing shown in Figure B.14. The triangular

modulation signals are synthesized by an external waveform generator and the photodiode
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signal of the sensors is sampled by an oscilloscope together with the synthesized triangular

modulation signal to extract fup and fdown , which are required to calculate fd and f0 by

Equation (B.15) and Equation (B.16), respectively. Afterwards the distance- and the velocity

are calculated by Equation (B.13) and Equation (B.14) with the known laser parameters shown

in Table B.3.

With the low optical power of the IR VCSELs, the mechanical setup of chin and head rest and

the positioning of the lasers in the laboratory setup, a class 1 laser system according to IEC

60825-1 is achieved and, therefore, the experiments do not pose any medical hazard to the

subject’s eye.

The power consumption of the proposed gaze gesture sensor is roughly 140 mW using of

the shelf components. With optimized logic blocks and a subsampling scheme enabled by

a higher integration using a custom application specific integrated circuit (ASIC), a further

power reductions to 30 mW is expected. A comparable power consumption of 150 mW is

reported by Sarkar et.al. [101] for state of the art VOG eye tracking sensors, however excluding

image processing. Compared to the EOG approach of Bulling et al. [20], a much lower power

consumption can be achieved.

Feature validation

To validate the proposed features of the human eye from Appendix B.2.4, the laboratory setup

is used. Figure B.15 shows the measured data of the two LFI sensors from a subject performing

the gaze symbol sequence [l ,r,u,d ,b] .
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Figure B.15: Data captured with the laboratory setup to evaluate the proposed features of
the eye. a) shows the measured velocity, b) shows the measured distance and c) shows eye
movements captured with the IR camera and the corresponding gaze symbol. The background
colour refers to the corresponding atomic movement of the eye.

The LFI sensors are modulated to achieve an update rate of 1k̇Hz for distance and velocity

measurement. Figure B.15 a) shows the measured velocity and Figure B.15 b) shows the

measured distance. The movement threshold vn is set to 0.02 m/s to distinguish between

atomic eye movements and non-relevant movements of the eye. In the distance plot we

added three distance lines corresponding to the distances described by Figure B.10 a) - c). The

measured distance between dR (retina) and dI (iris) is 23,36 mm and the measured distance

between dI (iris) and dL (lid) is 5,01 mm, which both correspond to the known anatomy of

the human eye. The distance measurement shows that the iris of the eye scatters IR light and

the cornea and the lens of the eye let IR light pass through without significant reflection and

backscattering only occurs on the retina.

In Figure B.15 c), the images captured by the IR reference camera show the laser spots on the

subject’s eye for different atomic eye movements described by the corresponding gaze symbol.

Similar, the background colours of the plots in a) and b) refer to the corresponding atomic eye

movements.

Gaze gesture symbol classification

To validate the proposed gaze gesture symbol classifier described in Appendix B.2.4, a set of

gestures is recorded using the laboratory setup as described in Appendix B.2.5. Two male

subjects with blue and brown eyes were instructed to perform 18 eye movement gestures
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and 9 blinks each. To capture natural trajectories of the eye, during the execution of the gaze

gestures no visual stimuli were used to guide the gaze of the subjects.

In a first step, the ground truth is manually annotated utilizing the IR camera images to the

measured data with the corresponding gaze symbols, similar to related work by Santini et.

al. [200]. To distinguish between movements and non-movements, the velocity threshold

vn = 0.02ms is applied. Considering Emsley’s reduced eye model (reye = 11.11mm) this equals

to a velocity threshold of 103.14 ◦/s, close to the suggested velocity threshold used in the

velocity threshold Identification algorithm (I-VT). Afterwards, we extract the features from the

measured data according to Appendix B.2.4 and use the proposed gaze symbol classification

algorithm to classify atomic eye movements. This allows us to evaluate the classification

approach on the sample-level. In addition, we treat the multiclass classification problem for

evaluation purpose as a binary one-vs-all classification problem. This evaluation approach is

commonly used in the literature e.g. Startsev et.al. [201] or, Hoppe et. al. [202] and allows us

to compute the F1-score as evaluation metric. Table B.4 shows the evaluation results.

Table B.4: Results of the gaze gesture symbol classification algorithm.
Gaze symbol Gestures Samples Mean duration F1-Score

l 36 3783 105.08 ms 0.949
r 36 3505 97.36 ms 0.955
u 36 3229 89.69 ms 0.891
d 36 3624 100.67 ms 0.908
b 18 3063 170.17 ms 0.969

The overall high F1-scores, shows high precision and recall capability of the proposed algo-

rithm and underlines the robustness of the features acquired with our novel LFI gaze gesture

sensor.
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Figure B.16: Response time tr es (solid line) and latency tl at (dashed line) for the left-, up- and
blink atomic eye movements evaluated for different thresholds NT . The light shaded regions
around the lines represent the standard deviation of all atomic eye movements captured
during the experimental validation.
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Gaze symbol preprocessing validation

To increase the robustness of the recognition algorithm, the gaze symbols are preprocessed

according to the proposed method in Appendix B.2.4. Based on the results shown in Table B.4,

a FIFO size N of 100 elements is used, which represents an 100 ms window. This preprocessing

smooths the incoming gaze symbol stream to increase the robustness, but also introduces a

response and latency time to the gaze gesture symbol output, which is used to control the FSM.

We define the response time tr es as time between the start of a gesture (v exceeds vn) and the

first indication of a gaze gesture symbol in the output symbol stream (NT is exceeded). In

addition the latency, tl at is defined as the time between the end of a gesture (v falls below vn)

and the first indication of a gaze gesture symbol in the output symbol stream (NT is exceeded).

Figure B.16 shows the latency and response time for different thresholds NT . A part of the

gestures described in Table B.4 is used for the evaluation. The solid and dashed lines represent

the mean response time and latency, respectively, while the light shaded regions around the

lines represent the standard deviation.

Figure B.16 shows another significant advantage of the proposed gaze gesture algorithm over

state of the art approaches. Beside the low response time, we achieve a negative latency,

meaning that the proposed algorithm is able to recognize a single gaze gesture before the user

has finished its execution. This allows for a seamless interaction with the smart glasses UI

because the integrated control unit reacts before the user finishes the gesture input.

Gaze gesture recognition validation

Based on the example in Appendix B.2.4, the proposed FSM based gaze gesture recognition

is validated. A subject is reading an text until a incoming call appears. When the incoming

call appears, the subject performs the gaze gesture as described in Figure B.13. Figure B.17

shows the measured velocities vθ and vφ as solid and dashed lines respectively. Every data

point is classified, preprocessed and fed into the FSM. The corresponding state of the FSM

is annotated to the velocity trajectories. The black dashed vertical line indicates the time at

which the gesture is successfully recognized. Similar to Drews et.al. [16], we set the timeout t0

to one second.

This example shows the robustness of the detection and preprocessing algorithm. Further-

more, the negative latency between gesture recognition and the completion of the gesture is

illustrated. The blink gesture and, thus, the execution of the user interaction already starts

while the eyelid is closing, which is described by the negative speed of vθ and vφ. Especially

during reading activities, the eye primarily makes small movements to the right when scanning

over a line of text and larger movements to the left when jumping back to the beginning of a

new line. In this experiment, the FSM reaches the state L at the 2 seconds mark on the time

axis. If a blink occurs at this position, a false gesture input is executed.

To address this issue and make this approach more robust against unintended activations, an
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Figure B.17: Application of the proposed gaze gesture recognition approach to an example
user interaction. The colourized dots on the velocity trajectory denotes the corresponding
state of the FSM described in Figure B.13.

incoming call can be classified as an event-based interaction and the FSM for user interaction

detection is armed only when the event occurs. Furthermore, the time-out t0 can be decreased

to reset the FSM earlier or a more complex gesture consisting of a longer sequence of atomic

eye movements can be used.

B.2.6 Conclusion

We present a novel low power gaze gesture sensor concept based on IR VCSELs and the LFI

effect, which allows for seamless integration of gaze gesture sensors into next generation

smart glasses. This sensor enables new gaze based interaction concepts like true hands-free

interaction. In addition, the high sampling rate of the sensor, combined with our gaze gesture

recognition algorithm, results in negative latency and ,thus ,ensures a fast response time and

a high user experience.

Based on the promising results obtained with the laboratory setup, our next goal is to integrate

the sensors into our head-mounted demonstrator. This will allow us to evaluate the gaze

gesture sensor during everyday activities to minimize unwanted activations and investigate

the robustness against glasses slippage.

In addition the proposed LFI sensor opens options for further applications like fatigue detec-

tion based on blink speed and duration, recognition of user’s emotions, classification ofthe

user’s mental health as well as early detection of eye diseases.
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B.3 A CNN-based Human Activity Recognition System Combining

a Laser Feedback Interferometry Eye Movement Sensor and an

IMU for Context-aware Smart Glasses

B.3.1 Abstract

Smart glasses are considered the next breakthrough in wearables. As the successor of smart

watches and smart ear wear, they promise to extend reality by immersive embedding of

content in the user’s field of view. While advancements in display technology seems to fulfill

this promises, interaction concepts are derived from established wearable concepts like

touch interaction or voice interaction, preventing full immersion as they require the user to

frequently interact with the glasses. To minimize interactions, we propose to add context-

awareness to smart glasses through human activity recognition (HAR) by combining head-

and eye movement features to recognize a wide range of activities. To measure eye movements

in unobtrusive way, we propose laser feedback interferometry (LFI) sensors. These tiny low

power sensors are highly robust to ambient light. We combine LFI sensors and an IMU to

collect eye and head movement features from 15 participants performing 7 cognitive and

physical activities, leading to a unique data set. To recognize activities we propose a 1D-CNN

model and apply transfer learning to personalize the classification, leading to an outstanding

macro-F1 score of 88.15 % which outperforms state of the art methods. Finally, we discuss the

applicability of the proposed system in a smart glasses setup.

B.3.2 Introduction

Followed by smart watches and smart ear wear smart glasses are considered as the next break-

through in the smart wearable domain because they are able to enhance human perception

and embedding user interfaces seamlessly into the user’s field of view (FOV). In certain sit-

uations, e.g. when driving, this highly integrated display causes distraction to the user as

information e.g. notifications appear in the FOV. State of the art smart glasses try to adapt

established user interface control concepts from the smartphone e.g. by adding tactile input

modalities like capacitive sliders, buttons or touch sensors to the glasses frame [203], [204]

or voice based control [132]. Furthermore, human gaze is investigated as a natural input

modality for controlling user interfaces with smart glasses [5],[16].

All of these concepts require active interaction with the glasses. Furthermore, for voice based

interaction the user’s privacy is not covered, what might reduce the social acceptance of smart

glasses [17]. To address this drawback, we propose a pervasive computing approach to control

and adapt the user interface based on the user’s activities. This leads to a reduction of required

user interaction and enables unconscious non-intrusive control of the user interface of smart

glasses.

A major advantage for HAR with smart glasses is that the glasses provide access to the human
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eyes and thus the human gaze to derive features for activity recognition. Combined with head

positions or head movements, the result is a unique set of features that represents a wide

range of human perception. This allows recognizing a rich set of human activities ranging

from mainly cognitive activities like reading e.g. shown by Islam et. al. [205] to activities of

physical nature like walking [206].

Besides of these advantages, smart glasses also introduce challenges arising from the sensor

integration due to space constraints as well as the limited available power for a continuous

operation in a HAR task. While head movements can be easily captured by accelerometers

and gyroscope sensors, which are available as highly integrated microelectromechanical

systems (MEMS) with low power consumption and small sensor size, challenges arise for eye

movement sensors.

Eye movement sensors, also referred to as eye tracking sensors, are dominated by video

oculography (VOG) sensors and electro oculography (EOG) sensors [15]. VOG sensors, e.g. the

Pupil Invisible [90] rely on video cameras, which are integrated into the glasses frame or the

frame temple. They capture video frames from the eye and use computer vision algorithms

to extract the pupil contour and estimate the user’s gaze. The main disadvantages of VOG

sensors are the size of the camera sensors and the required optics as well as the required angle

under which the sensor needs to be positioned to capture images of the eye. In addition, the

computer vision algorithms add significantly to the overall power budget for VOG systems.

Camera sensors itself are furthermore sensitive to varying external illumination by limited

dynamic range which occurs during every day activities, reducing the pupil detection accuracy

[56]. EOG sensors measure the electrical potential of the electrical dipole between the retina

and the cornea with electrodes placed on the user’s skin to estimate the gaze vector. While

EOG sensors are insensitive to external illumination and consume less power compared to

VOG sensors, they cannot be integrated unobtrusively and contactless into glasses as they

require attaching electrodes to the skin [15].

To overcome these limitations and to be able to reliably measure eye movements to enable

HAR for smart glasses, we introduce laser feedback interferometry (LFI) sensors. The LFI

sensors have three main advantages compared to VOG and EOG sensors.

i) Sensor integration The sensor is based on a small vertical cavity surface emitting laser

(VCSEL) in the near infrared (IR) spectrum with a cavity-integrated photodiode, which allows

for a space constrained integration into the glasses frame. Due to the invisible IR laser beam,

the sensor is unobtrusive and contactless for the user.

ii) Sensed features The multimodal sensor is capable of measuring distance towards the eye

as well as eye rotational velocity with an outstanding sample rate of up to 1 kHz. From the

distance information, characteristic blink patterns can be extracted, while the rotational

velocity is directly related to eye activity without any further signal processing.

iii) Ambient light robustness The VCSEL with cavity-integrated photodiode enables to apply
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the LFI sensing principle, a self-coherent sensing scheme. This leads to a high sensitivity to its

own radiation while suppressing most other radiation entering the laser cavity. This allows a

robust operation in the presence of ambient radiation, as shown by Meyer et. al. [128].

To summarize the advantages of the LFI sensor compared to camera-based VOG systems, we

like to highlight the low power consumption of the sensors and the ability to measure the

rotational velocity without any further signal processing. In addition, the coherent sensing

scheme of the LFI sensors allows for high robustness to ambient light, enabling robust op-

eration in a wide range of lighting conditions from darkness to bright sunlight, as shown by

Meyer et. al. [128].

In this work, we propose a novel way to capture eye movements for HAR utilizing LFI sensors

to enable a pervasive control of the user interface of upcoming smart glasses. We show that

the combination of eye and head movements lead to a high activity recognition rate for a rich

activity set which consists of seven different activity classes from physical as well as cognitive

domains. To prove this, we conduct experiments and collect simultaneously LFI sensor data as

well as data from an inertial measurement unit (IMU) consisting of an accelerometer as well

as a gyroscope sensor from 15 participants performing seven different activities. We further

design a one dimesional convolutional neural network (CNN) based classifier to recognize

the activities. We investigate the effect of different sensing modalities as well as the effect of

transfer learning on the classification accuracy and discuss the proposed sensors as well as

the proposed classifier with respect to sensor integration and power consumption.

We highlight the contribution of this work as follows. First, we integrate a novel LFI based

sensor modality to smart glasses to capture eye movements and combine them with an IMU

to obtain a unique HAR data set. To the best of our knowledge, this is the first work of HAR

systems, which combines LFI sensor modalities and IMU sensor modalities for smart glasses.

Secondly, we implemented the activity recognition system into a smart glasses demonstrator.

Experiments with 15 participants were conducted to evaluate the performance of the system.

Using state of the art leave one participant out cross validation (LOPOCV) we obtain a macro

F1-score of 88.15 %, which is outstanding for the chosen diverse activity set.

In the next section, we discuss the related work in body-worn HAR, eye-tracking based HAR

and related work that combines head and eye tracking to perform HAR in a head-worn setup.

In Section B.3.4 we provide background knowledge of the LFI sensing principle as well as

the features the LFI sensor is capable to capture from the human eye. Afterwards, in Section

B.3.5 we introduce our data recording setup and describe the experimental design to generate

our data set. In addition, we give an overview of the data processing and the obtained data

set. In Section B.3.6 we introduce our 1D-CNN model to classify the human activities and

compare the classification performance with a baseline model. Furthermore, we show the

effect of transfer learning as well as the influence of both sensor modalities on the classification

accuracy for different activities. We conclude this work with a discussion on the applicability

and the main challenges of the proposed system.
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B.3.3 Human activity recognition

HAR is a well established field of research which deals with concepts of inferring the current

goals and behavior of one or multiple human individuals based on a series of observations

[207]. The main motivation for building and implementing a precise HAR system is its wide

range of applicability. Domains such as active and assisted living (AAL), healthcare monitoring

or surveillance can derive a clear benefit from employing HAR algorithms. What is more,

within the last decade HAR found its way into consumer electronics with products such as

Microsoft Kinect [208, 209] or Nintendo Switch [210] and also tapped into the consumer sports

sector with smart footwear providing feedback during running or golfing [211, 212, 213].

At present, there are two main approaches of how human activity data is collected: video-based

systems and sensor-based systems [214]. In video-based systems cameras are installed to gain

insights on human behavior from images and videos, typically employed for surveillance or

recognizing activities of a group of people [215]. On the other hand, sensor-based systems rely

on observations stemming from sensors either attached to an individual’s body [216] or from

ambient sensing devices such as RFID-tags [217] installed within a participant’s environment.

In this work, we present a sensor-based HAR system and therefore limit our literature review

to sensor-based HAR approaches.

HAR Based on Body Worn Sensors

Modern smart wearables from smart phones to smart ear wear are equipped with MEMS IMU

sensors capable of measuring body motion in a ubiquitous and unobtrusive fashion. This

intensified research has led to a multitude of publications in the area of sensor-based HAR.

One of the most renown works was published by Kwapisz et al. [218]. They collected an activity

data set with the six physical activities walking, jogging, ascending stairs, descending stairs,

sitting and standing from 29 participants. They sampled the smart phone’s accelerometer with

20 Hz, which the participants wore in their front trouser pocket. The raw data stream was split

into windows of 10 s duration with each window containing 200 samples. For each window

they derived the statistical features mean, standard deviation and time between peaks and

used them for training a decision tree classifier. They achieve an overall accuracy of 91 %. This

high accuracies only drops for climbing stairs as it frequently was misclassified as walk [218].

This effect is also known as inter-class similarity where the sensor features of two activities are

not distinguishable by the classifier [206].

To increase classification performance, Wahl et. al. [219] integrated an IMU sensor, a light

sensor as well as an heart rate sensor into a glasses frame and recorded data of nine participants

during a full day. They derive 25 statistical features to classify nine activities where two mainly

cognitive activities where present in their activity set. They reported a overall accuracy of 77 %

utilizing a LOPOCV validation scheme.

In a more recent work by Hayashi et al. [220] audio data was added as further sensor modality
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and captured together with smart phone’s accelerometer data at a sample rate of 16 kHz and

200 Hz, respectively.

The participants were asked to pursue everyday occupation in a dedicated apartment. Data

was recorded for 19 different participants and labelled to match 22 activity classes such

as cooking, eating, reading, sleeping, etc. leading to a diverse activity set, with 12 physical

activities, 4 cognitive activities and 6 mixed activities. Similarly to Kwapisz et al. [218], Hayashi

et al. [220] made use of statistical features (mean, variance, entropy, correlation) which

were extracted from non-overlapping sliding windows with a duration of one second each.

These features were then used to train a deep neural network for activity classification. For

training and predicting on data originating from the same participant, F1-scores of 80 % are

reported. However, classification performance drops as soon as the classifier is reviewed using

a LOPOCV scheme as different participants perform the same activity in different ways, leading

to variation in statistical characteristics. This effect is also called intra-class heterogeneity

[206].

To counteract intra-class heterogeneity, Hayashi et al. [220] followed the idea of transfer

learning and retraining a subset of the deep neural network’s parameters with a few samples

from the left-out participant. This adaptation method reduces the accuracy degradation in

the LOPOCV validation scheme and the F1-Score of 80 % is obtained.

HAR Based on Eye Tracking

One of the first works utilizing eye-tracking for HAR was published by Bulling et al. in 2008

[221]. They classify whether a participant was reading, solely based on the participant’s eye

movements recorded with an EOG sensor. Within the collected data set of eight participants

they achieved an overall recognition rate of 80.2 % by using a hidden Markov model as classifier.

In a follow-up study, they extended the activity set by office activities like reading, copying,

handwriting, watching a video and web browsing. For classification, they extracted statistical

features from the raw EOG readings of eight participants such as mean, variance or maximum

peak. Applying a support vector machine (SVM), lead to a precision of 76 % across multiple

participants [19].

In 2013, Bulling et al. [222] stepped away from a discrete activity set and abstracted distinct

activities with high level cues which group a set of activities. They choose spatial, physical,

social and cognitive cues as high-level abstraction. Eye movements of four participants were

recorded using an EOG sensor. Detected saccades were encoded into a string representation

based on the saccade’s direction. For each context and participant, a separate binary classifier

(string kernel SVM) was trained. The reported results show a high F1 score of 91.21 % for the

recognition of social interactions but less accurate performance when predicting a physical

activity context (F1 score of 74.78 %).

Steil et al. [223] approached the challenge of HAR in an unsupervised way. 10 participants wore
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a VOG head-mounted eye-tracking sensor [53] throughout a full day of their ordinary life and

were not restricted in terms of the activities to be performed. Saccadic direction, fixation dura-

tion and blink rate were encoded into strings and altogether form a bag-of-words representing

an individual’s visual behavior. This bag-of-words was passed to a Latent-Dirichlet-Allocation

(LDA) topic model, which tried to find reoccurring topics, i.e. activities, within the visual data.

With the help of an exemplary ground truth annotation of activity classes, detected topics

could be assigned to an activity class. Steil et al. [223] reported the highest average F1-score for

the activity of reading (74.75 %) but mentioned that good recognition performance is highly

dependent on the individual participant, the activity duration and the number of topics to be

discovered by the LDA model. Nevertheless, unsupervised approaches have the advantage of

being able to deal with an arbitrary set of activities.

Braunagel et al. [21] investigated eye tracking based HAR in the context of conditionally

autonomous driving. They recored the eye movements of 84 participants using a VOG sensor

while they performed secondary tasks (reading, video, idle) in a driving simulator. For classifi-

cation, Braunagel et al. [21] used visual scanpaths, i.e. they mapped the recorded gaze data

to a string of symbols, with each symbol representing a certain region within the gaze space.

The advantage of visual scanpaths compared to statistical feature extraction is that scanpaths

preserve the temporal order of the gaze signal. The maximum reported average F1-score of

84 % supports this argument.

A very recent publication from Lan et al. [224] stepped away from using hand-crafted statistical

features for HAR and leveraged the automatic feature learning capabilities of deep learning

models. An individual’s visual behavior was encoded into a spatial-temporal graph. Each

node in the graph represents a gaze vector and has connecting edges to temporally adjacent

gaze vectors. Edge weights were computed based on differences in angular orientation and

euclidean distance of the connected nodes. The resulting weight matrix was passed to a

CNN which learns meaningful features such that recognition performance is maximized.

The gaze vectors of eight participants where captured by an VOG sensor from Pupil Labs

while the participants perform six mainly cognitive activities (Browsing, playing online games,

reading, searching answers in a list, watching video, typing). The reported F1-scores were most

promising, 96 % on average over data of all participants, when considering gaze data within

windows of 30 seconds in duration.

HAR Combining Eye-Tracking and Body Worn Sensors

Bulling et. al. [225] were the first to combine information from eye and head movements

to classify reading activities in an everyday environment, using an EOG sensor to extract

eye movement features and a body-worn IMU sensor to extract body movements. Using a

combined evaluation of body and eye movement features, they achieved 87.8 % performance

with an SVM across 8 participants, while performance degraded by 24 % when head movement

features were discarded.
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Ishimaru et al. [226] advances the initial study of Bulling et. al. [225] by a larger set of in total 5

activities from cognitive as well as physical domain. For data acquisition, eight participants

wore the commercially available Google Glass and performed the activities talking, watching,

solving a mathematical problem, reading and sawing. Head motion was recorded using

Google Glass’ built-in IMU. Actual eye movement recording is not possible with Google Glass

which is why Ishimaru et al. [226] resorted to the data provided by the glasses’ proximity sensor

for blink detection. The recorded accelerometer data was converted into a motion feature by

using the averaged variance across all axes. The mean blink frequency as well as the center of

distribution of all recorded blink frequencies were used as eye motion features. Ishimaru et al.

[226] evaluated the performance for both sensor modalities and their combination by training

a person-dependent decision tree. Results indicate that the combination of head motion and

blink features yields and average F1-score of 82 % whereas restricting the features space to

head or eye features resulted in F1-scores of 63 % and 67 % respectively.

In a later study Ishimaru et. al. replaced the Google Glass with commercial EOG glasses

[227] leading to EOG signals as well as head acceleration signals as input modalities for their

k-nearest neighbor (KNN) classifier. They collected an activity data set of four activities (typing,

eating, reading and talking) from two participants and reported and overall accuracy of 70 %.

The analysis of related work shows that the area of HAR with body worn sensors and the area of

HAR based on eye tracking are well established fields with a lot of previous work. Furthermore,

it is shown that HAR with body worn sensors most likely emphazise the features of physical

activities and HAR with eye tracking more likely emphazise the features of cognitive activities.

Therefore, high recognition accuracies are present in both subfields. The combination of both

sensor modalities in a head worn setup is only investigated by a few works of Ishimaru et al.

where he was also mainly focusing on cognitive tasks. To capture eye movements he used an

EOG sensor in his latest study, which has disadvantages in terms of product integration for

future smart glasses.

In our work, we replace the EOG sensor with a promising LFI sensor and furthermore use

state of the art method to improve the HAR accuracy in a balanced activity data set and show

the classification robustness over a larger set of participants by applying the state of the art

LOPOCV method.

B.3.4 Laser Feedback interferometry
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Figure B.18: a) 160 µm x 180 µm VCSEL with integrated photodiode as sensing element on a
cent coin b) Coupled cavity model of a laser feedback interferometry sensor. The laser emits
light which is scattered by the eye and injected back into the laser cavity. The photodiode
monitors the laser power, which varies with changes in the feedback path. c) Encapsulated
optical module including the LFI sensor and the beam shaping optics used in the experiments
[5].

Laser feedback interferometry is a widely known interferometry measurement method [6]. It

is used in the industry as well as in laboratory environments to measure displacement and

velocity of solid targets, as well as fluids and distance. Due to the high distance and velocity

resolution, it is also widely used in vibrometry applications [121]. Recent works by Meyer et.

al. [4],[5] apply LFI sensors in a smart glasses setting to recognize gaze gestures and show the

basic functionality of this sensing modality in a near eye setup.

Sensing Principle

Figure B.18 b) shows the coupled cavity model to introduce the basic sensing principle of LFI

sensors. A laser with an unattenuated optical baseline output power P0 emits a coherent laser

beam towards the surface of the eye. The laser beam hits the eye under an angle of incidence

γ, is attenuated by volume scattering effects and absorption described by a reflectivity R and

is injected back into the laser. τext denotes the time the laser beam requires to travel over

the distance Lext towards the eye. τext is dependent on the speed of light c0 and the external

refraction index next of the external medium [6].

The back injected light interferes with the local oscillating field, which is often referred to as

self-mixing interference, resulting in a modulation of the optical power

P ′
0 = P0

(
1+m ·cos

(
φ f b

))
. (B.19)

The modulated feedback power P ′
0 is dependent on the optical power P0, the modulation

depth m and a varying phase φ f b of the backscattered light field. A small fraction of the

modulated feedback power P ′
0 is measured by a photodiode, which is integrated into the

distributed Bragg reflector (DBR) of the laser cavity itself [6].

To understand the link of the phase φ f b to our observation goal (distance and velocity), we

consider the rate equations introduced by Lang and Kobayashi [119]. A solution of the rate

equation is the excess phase equation

φ f b −φs +C sin
(
φ f b +arctan(α)

)= 0. (B.20)
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The feedback phase is expressed as a function of the signal phase φs , Acket’s feedback parame-

ter C , describing the coupling strength between target (eye) and laser cavity, and Henry’s line

width enhancement factorα. As we operate the LFI sensor in the weak feedback regime (C < 1)

and a constant line width enhancement factor α, Equation B.20 leads to a single solution [6]

and φ f b is, therefore, only dependent on φs , leading to

φs = 4πnext Lext

λ
(B.21)

with λ describing the wavelength of the laser. Considering next ≈ 1 is constant due to the

operation of the sensor in free space, only changes in λ and Lext lead to a varying phase

φs and consequently, to a varying phase φ f b . This results, with respect to Equation B.19,

in a modulation of the optical power which is measured by the photodiode. Changes in

the wavelength λ occur by a modulation of the laser drive current. That leads to a periodic

heating and cooling of the resonator and, thus, to a periodic change of the cavity length. The

variation of the cavity length leads to a periodic modulation of the wavelength, which allows

for continuous measurement of the distance according to Equation B.22.

To distinguish between both effects, we compute the partial derivative of Equation B.21 with

respect to time, which leads to

f0 = 2Lext

λ2

dλ

d I

d I

d t

∣∣∣∣
Lext=const .

(B.22)

and

fd = 2vext cos
(
γ
)

λ

∣∣∣∣
λ=const .

. (B.23)

Considering a known dλ
d I , which is a static process parameter of the laser, and a controlled

current modulation slope d I
d t , the distance to the eye can be calculated by extracting the so

called beat frequency f0 by applying a Fast Fourier Transform (FFT) to the measured varying

optical power and rearranging Equation B.22 with respect to Lext .

Movements of the eye ( dLext
d t = vext ) lead to a shift of the beat frequency f0 by the so called

Doppler frequency fd . With a known angle of incidence γ and a measured Doppler frequency,

Equation B.23 can be rearranged with respect to vext to obtain the surface velocity of the eye.

In order to separate f0 and fd and, thus, simultaneously measure the distance and velocity of

the eye, a triangular modulation similar to frequency modulated continuous wave (FMCW)

radar is applied to the drive current of the laser [122]. By separating the up- and down

ramp signals into two segments and applying an FFT on each segment, an fup and an fdown

frequency is captured. f0 and fd are obtained from these measurements by

f0 =
fup + fdown

2
(B.24)
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and

fd = fup − fdown

2
(B.25)

respectively. Recalling Equation B.25, the triangle modulation allows extracting the direction

of the velocity as well. The modulation frequency of the triangle signal therefore limits the

update rate of the LFI sensor.

The main advantage of the LFI sensor compared to Time-of-Flight (ToF) sensors is its FMCW

operating method, which allows distance and velocity to be measured simultaneously, whereas

ToF sensors only measure absolute distance [126]. A rotation of the sclera surface in a fixed

distance is therefore not measurable by TOF sensors as the absolute distance does not change.

Sensor Features on the Eye

dI

Lid
Iris

Cornea

Lens Retina

dR dL

Eyelash

Distance to iris Distance to retina Distance to lid

a) Looking straight b) Looking down c) Closing eye

Figure B.19: Different movement related position changes of the eye and the lid resulting in a
change in distance measurement due to the geometry and scaffold of the eye [5].

Based on Equation B.22 and Equation B.23 the LFI sensor is capable to measure the surface

velocity in laser beam axis ve ye and the distance between the sensor and the eye de ye . Both

contain valuable features for HAR. Figure B.19 describes the distance features measurable on

the eye. A sectional view of the eye and a fixed LFI sensor position is shown for three different

positions of the eye and the eyelid. In Figure B.19 a), the eye is directed straight ahead. The

laser beam of the LFI sensor penetrates the cornea and backscattering occurs at the iris. For

this arrangement of sensor and eye, the LFI distance measurement gives the distance between

sensor and iris dI as feature.

In Figure B.19 b), the eye is slightly rotated downwards, the laser beam penetrates cornea

and lens and the main backscattering occurs from the retina, leading to a second distance

feature dR describing the distance between the sensor and the retina. In a temporal context,

this feature occur if the pupil crosses the laser beam during eye activities.

Lastly in Figure B.19 c), the lid is closed by for blinking. During a blink the distance dL between

sensor and lid is measured. This lead to a blink feature and in a temporal context it contains

information about blink duration and blink frequency, which are used e.g. by the works of

Ishimaru et al. [226] or Steil et al. [223].
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B.3.5 Recording head and eye movement data set

Our data set was captured from 15 voluntary participants (age (years) = 25.9 (SD 4.5); 10 male;

5 female). Before taking part in the experiment, all participants provided written consent

for using their data for research purposes. Two participants wore contact lenses during the

experiment. The data set was anonymized to remove any personally identifiable information.

Apparatus

As LFI sensors are not available in commercial smart glasses the data set was captured with a

custom head worn research apparatus shown in Figure B.20.

Figure B.20: a) Research apparatus used to capture eye movement data by LFI sensors as well
as head movement data by an IMU sensor. The colored arrows denote the coordinate space of
the accelerometer. The coordinate space of the gyroscope is aligned to it. b) Image of the eye
of an participant captured with the eye camera showing the detected pupil (red mark) by the
pupil labs algorithm as well as the two LFI laser spots on the eye (bright spots).

The apparatus consists of a main board which reads out and supervises the two LFI sensors

(shown in Figure B.18 c)) attached to the lower glasses frame. The laser beams of the LFI

sensors are directed towards the eye ball to measure the eye’s rotational velocity as well as the

distance towards the eye with a sample rate of 1 kHz. To ensure an eye safe operation of the

lasers, the optical power of the lasers is limited to 360µW. With this low optical power a class

1 laser system according to IEC 60825-1 (well below class 1 optical power limit of 770µW) is

achieved and, therefore, the experiments do not pose any medical hazard to the participant’s

eye.

Furthermore, an IMU sensor (BMI270) containing a MEMS gyroscope as well as a MEMS

accelerometer is attached to the main board. The IMU is used to capture head movements

with a sampling rate of 860 Hz. Both data streams are synchronized by the main board and

streamed via USB to a laptop, which is used during the experiment to record the data.

In addition to the IMU and LFI sensors we attach a Pupil Labs Core eye tracker [53]to the
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apparatus to capture world video frames as well as eye video frames. To record the video

data the Pupil Capture (v1.17.71) software was used. The eye video camera is IR sensitive

and we used it to align the laser spots of the LFI sensors to the surface of the eye as shown in

Figure B.20 b). This step is required to adjust the alignment of the LFI sensors to different head

shapes before the actual measurement, as our rigid glasses frame of our research apparatus is

adaptable to any interpupillary distance (IPD). The world video frames were used to annotate

the captured head and eye movements with the corresponding activity label.

Experiment Design

Our activity set consists of seven activities (talk, read, video, walk, type, solve and cycle)

combining cognitive as well as physical activities. The experiment itself was split into two

parts, a stationary part on the laptop and an outdoor part where the laptop was carried in a

bag pack. After a short introduction into the functionality of the setup and an alignment of

the LFI sensors towards the participant’s eye, the experimenter initiated the recording session

and starts a casual conversation with the participant. After the talk part of the experiment the

experimenter left the room and the participant followed for the remaining stationary part of

the experiment the instructions on the laptop, where a website guides the participant through

the solve, read, video and type parts of the experiment. During the solve activity the participant

was asked to solves a logic test. Afterwards, a text about smart glasses was presented to the

participant to read and a video about smart glasses to watch. Based on the video and the text

read, the participants were then asked questions, which they had to answer by typing their

answer in text boxes on the screen.

With the stationary part completed, the experimenter returned and stowed the recording

laptop in a backpack to be worn by the participant and asked the participant to walk around

indoor and outdoor and afterwards to cycle around the research campus. Figure B.21 shows

world camera frames of different activities captured during the experiment.

Figure B.21: a) - g) show world camera frames captured during the activities talk, read, video,
walk, type, solve and cycle. In addition, h) shows a world camera frame captured between the
indoor and the outdoor part of the experiment where the recording laptop was stowed into
the backpack.
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Data Processing

In order to classify activities from the head and eye movement data in a supervised fashion, it

is required to associate each data sample to an activity label, which corresponds to an activity

that the participant was performing at each sample’s time of recording.

This activity labels are derived from the world video. In the first step, each participant’s

recording is loaded into the Pupil Player (v2.4). Next, the videos recorded with the eye and

world cameras as well as the corresponding time stamps are exported and the time stamps of

the LFI sensors as well as the IMU sensors are synchronized to the world video timestamps.

Afterwards the exported world video is compressed and then loaded into a labeling software

for annotation purpose.

In order to assign an activity label to the head and eye movement recordings, the labels saved

in the time domain of the world video need to be transcribed to the time domain of the IMU

and LFI sensors. Since human activity usually extend over several seconds at a rather low

frequency compared to the sensor output rate, and in order to reduce the amount of data,

both the LFI and IMU data streams were down sampled to a common data rate of 120 Hz. Due

to the remaining difference in sampling frequency of head and eye movements with (≈120 Hz)

and world (≈30 Hz) camera, multiple samples of the LFI sensors and the IMU correspond

to a single frame in the world video. For label transcription, the start and end frame of each

labeled activity block in the time domain of the world video is fetched. Next, all LFI and IMU

samples that are associated to a world frame within the range of the given start and end frame

receive the label of the corresponding activity block. This process results in labeled LFI and

IMU features.

Data Exploration

Table B.5 gives an overview of the data set captured during the HAR experiment. A total of

18,5 h head and eye movements were recorded across 15 participants and 7 activities. The

mean duration per class are balanced, while the distribution of duration across participants is

skewed. Participants spend the most time typing (865 s), while cycling(534 s) and reading(506 s)

were sampled the shortest. This skew occurs because the duration of each activity was not

limited during the experiment to ensure that participants behave as naturally as possible

without being pressured by an expiring clock. The only exception was the activity video,

which was naturally limited by the playtime of the video. Furthermore, the experimenter

paid attention that the activities walk and cycle do not take unnecessarily long to prevent the

participants from becoming bored. To get better understanding of the recorded data and the

underlying pattern of the extracted features, Figure B.22 shows a 30 s time span of all input

features for all activities.
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Figure B.22: 30 second windows of the raw head and eye movement features of participant P1
for the seven activities
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Table B.5: Duration in seconds of each individual experiment itemized by activity.
talk read video walk type solve cycle total

P1 251 408 620 623 385 774 547 3608
P2 475 268 621 547 628 383 611 3533
P3 620 541 618 857 841 857 920 5254
P4 693 412 622 680 376 617 382 3782
P5 664 222 619 475 806 313 262 3361
P6 609 691 620 503 1296 743 426 4888
P7 408 454 618 371 943 483 439 3716
P8 269 605 617 605 1735 869 295 4995
P9 772 760 618 760 589 730 605 4834
P10 745 536 616 632 1080 769 454 4832
P11 867 528 618 846 875 799 780 5313
P12 714 466 621 742 580 447 496 4066
P13 722 448 620 785 1452 880 628 5325
P14 552 690 620 684 843 557 631 4577
P15 598 562 619 626 547 871 527 4350
∅ 597 506 619 649 865 673 534 4443

The two left columns show the participants eye movement features eye velocity (v1, v2) as well

as distance (d1, d2) towards the eye, captured by the LFI sensors. The two right columns show

the participants head movement features captured by the accelerometer (accx, accy, accz) and

the gyroscope (gyrx, gyry, gyrz).

The first apparent pattern one can observe is the difference in the variance of the head-

mounted sensors amplitudes. Whilst the gyroscope and accelerometer measurements de-

picted in Figure B.22 show a quite steady line with few to no variation for the stationary

activities, the corresponding sensor readings oscillate across all three axes for the physical

activities cycle and walk.

Considering the detected eye velocities, the strongest re-occurring pattern can be observed for

the activity read. Especially the velocity of the second sensor shows a well-defined pattern with

sequentially high positive velocity peaks and small negative velocities in-between, which align

well with the human reading pattern. Using small saccades, the eye slowly moves towards

the end of a line of text before jumping back with a large saccade to the start of the next line.

In addition, the distance signal shows a regular step pattern which occurs if the laser beam

crosses the sclera and iris and drops into the pupil and gets back reflected from the retina of

the eye, as described in Figure B.19.

B.3.6 Evaluation

Within this section, the synchronized eye and head movement data stream is used to build

and train models for HAR. Prior to training, the data stream needs to be prepared to make

classification feasible.
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Data Preparation

Because different individuals may perform the same activity with varying intensity, the sensor

readings may be offset or scaled differently across participants. This introduces undesired

bias and inconsistency into the data. To avoid this, the distributions of all features within each

participant’s data stream are standardized to zero mean and unit variance.

Furthermore, the duration of human activity typically spans from several seconds up to

numerous minutes. Thus, a single sensor sampled at sub-second resolution will most likely

lack the necessary information to recognize its corresponding human activity. To overcome

this issue, multiple consecutive sensor readings are combined using a sliding window of fixed

duration. For each window, all containing sensor readings are extracted and considered as

one sample and the corresponding label is determined by the most frequent label occurring

during the window. In this way, a set of labeled windows is generated for each participant used

for HAR.

Due to the varying duration of each individual activity, resampling on window scale is used to

balance the data set by up sampling all under represented classes to match the most frequent

class. As a result, all activity classes are represented equally often in the data set.

With this data preparation steps, the data set has been transformed into a three-dimensional

tensor D ∈RN×T×S , with N being the total number of extracted and resampled windows across

all participants’ data streams, T being the number of sensor readings per window and S being

the number of sensor modalities considered. The sliding window size was fixed similar to

previous work by Lan et al. [224] to 30 seconds with an overlap of 30 %. This results in a total

number of N = 4377 sliding windows each containing T = 3600 sensor readings. As two triaxial

head features (accelerometer and gyroscope) and four eye features (eye velocity and distance)

from two sensors are considered, a total of S = 10 sensor modalities are used.

Classification Approach

The data set D is split into a train and a test set by applying the concept of LOOCV. To be

precise, D is split into D tr ai n ∈ RNtr ai n×T×F and D test ∈ RNtest×T×F , with Ntr ai n +Ntest = N ,

such that D test consists of all windows assigned to the left-out participant’s data stream

and D tr ai n contains the windows from all remaining participants. With 15 participants, this

leads to 15 possible splits for D. Each classification model is trained and tested separately

for each permutation of D tr ai n and D test and the model’s overall performance is computed

by averaging across the individual performances for each permutation, leading to a macro

F1-score as classification performance indicator for each model. This method allows getting

an understanding of how well a trained model generalizes to data stemming from an unknown

participant. To ease comparison, each classifier’s performance is visualized using the confu-

sion matrices of the same three participants. These participants were chosen to represent test

sets with overall low (P12), average (P6) and high (P11) macro F1-scores across the investigated
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classifiers.

Baseline Model

As Ishairmaru et.al [226] reported a high F1-score of 82% with a person-dependent decision

tree for HAR based on handcrafted head and eye features, we chose a random forest classifier

(RFC) as our base line model. As the RFC is not capable to learn features automatically, manual

feature engineering is necessary. As suggested by previously mentioned works [19, 221, 228,

229, 226], a statistical analysis of the computed windows yields the desired input feature vector

for the RFC. To be specific, mean, variance and L2-norm are computed along the temporal

axis for each sensor modality and window in D tr ai n and D test . The resulting feature values are

stacked into a feature vector v ∈RF∗S where S is the number of considered sensor modalities

and F the number of statistical features to be computed (here F = 3,S = 10). Thus, the RFC is

trained and tested on the matrices Vtr ai n ∈RNtr ai n×30 and Vtest ∈RNtest×30.
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Figure B.23: Normalized confusion matrix for the RFC for participants P12 (F1-score 59.77 %),
P6 (F1-score 73.36 %) and P11 (F1-score 88.31 %).

Figure B.23 shows the average macro F1-score after LOOCV has run for each participant. The

RFC achieves an average accuracy of 74.32 % and an average macro F1-score of 71.64 %. From

the confusion matrices depicted in Figure B.23 it can be seen that the classifier’s confusion

is only present within the set of stationary (solve, read, talk, video and type) and physical

(walk and cycle) activity classes, respectively. Furthermore, it can be observed that within the

stationary activities, the activities that frequently involve head and eye movements, namely

type and talk, lead to a higher recognition rate than eye movement intensive activities such

as solve, video and read. One possible reason for this observation could be that the statistical

features do not take into account the time-dependent pattern of eye movements which could

be helpful in distinguishing between solve and read, as shown in Figure B.22.
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1D-CNN Model

To better represent time-dependent patterns of the head and especially the eye movement

patterns and get rid of the hand crafted statistical features, we chose a CNN classification

approach to improve our classification result on activities. CNNs use a set of convolving

kernels that move across an input plane, in our case an T xF matrix. CNNs typicaly consists

of several convolutional layers which are chained together to build up a classifier. The lower

convolutional layers extract local salient patterns of the input signal, whereas the deeper

layers operate on high-level, abstract patterns provided from the previous layers [230]. Using

the concept of backpropagation, kernel weights are learned and updated such that a certain

error metric is minimized. This is also referred to as automated feature learning and removes

the necessity of manual feature selection. CNNs are well known for image classification.

However, multiple works have managed to successfully apply CNNs for HAR tasks [230, 231,

232, 233]. Here, the CNN operates on a small subset of data by gradually moving a convolving

kernel of fixed size across the window. To capture temporal relationships, one-dimensional

convolutions along the time axis are used. Each sensor modality is processed by a separate set

of kernels. Each kernel then aggregates multiple sequential data points of that modality.
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Figure B.24: Architecture of the 1D-CNN model. A batch normalization layer and a leaky ReLU
follow each convolutional operation, which are omitted for visualization purpose. The feature
maps (FM) height corresponds to the number of convolutional layers whereas their width
represents the temporal axis.

Table B.6: Hyperparameters of the 1D-CNN model.
Parameter name Value
Learning rate 1E-3
Epochs 9
Exponential learning rate decay 0.95
Weight decay 1E-4
Window size 30s
Window overlap 0.3

The 1D-CNN model architecture, shown in Figure B.24, is inspired by the work of Yang et al.

[230] and was adjusted to fit for the HAR task. The CNN1D-model is trained and evaluated
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using all windows in D tr ai n and D test respectively. To process a single window, the CNN1D-

model utilizes four single strided convolutional layers (FM1, FM3, FM5, FM7), each followed

by a maximum pooling layer (FM2, FM4, FM6, FM8), a leaky ReLU activation and a 1× 5

max-pooling operation. The latter leads to the fact that the temporal resolution becomes

coarser with increasing network depth, which allows extracting more coarse time-dependent

features with increasing convolutional layers. This coarse-grained, high-dimensional time

series features computed by the last pooling layer (FM8) is passed through two fully connected

layers (FC1, FC2) with a dropout layer in-between to map the feature sequence to the desired

amount of classes. In the final step, a softmax activation function is applied to transform the

network’s output into a probability distribution across class labels. The model is trained using

cross entropy loss and the Adam optimizer [234] with the hyper parameters given in Table B.6.
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Figure B.25: Normalized confusion matrix for the 1D-CNN model for participants P12 (F1-
score 73.87 %), P6 (F1-score 82.25 %) and P11 (F1-score 94.55 %).

Figure B.25 shows the confusion matrices of the selected participants. After LOOCV, the

1D-CNN model achieves an average accuracy of 82.13 % and an macro F1-score of 80.98 %.

Compared to the RFC baseline model, the overall HAR rate increases for all participants. This

is mainly caused by the improved accuracy for the reading class. The 1D-CNN seems to be

able to extract patterns that are specific to the read class, which are not represented by the

statistical features alone. In addition, the 1D-CNN model handles intra class similarities

between the eye movement-intensive activities read, solve and video better.

1D-CNN with Transfer Learning
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Figure B.26: Normalized confusion matrix for the 1D-CNN model after three transfer samples
for participants P12 (F1-score 92.41 %), P6 (F1-score 88.34 %) and P11 (F1-score 95.97 %).

Human activity is highly diverse and versatile because different participants perform the same

activity in a different manner. This leads to intra class heterogeneity [206] and a general model,

which shows high recognition accuracy over all participants, is hard to build. To tackle this

issue we apply transfer learning as proposed by Chikhaoui et al. [235] to further increase the

recognition accuracy of the 1D-CNN model. The 1D-CNN model architecture is modified

as follows. For every permutation of LOOCV, the model is trained as described in Section

B.3.6. After training has finished, the weights in the convolutional layers and in the first linear

layer (FC1) are frozen such that they will not be updated during further backpropagation.

Furthermore, the dropout layer between the two linear layers (FC1, FC2) is removed. Next,

only the last linear layer (FC2) is reinitialized and trained for a few epochs, using three 30

second windows per class from the left out participants data set.

To increase generalization the three transfer learning samples are chosen randomly within an

activity class. With the chosen sample size of three transfer samples per activity only a small

subset of all samples per activity are used to retrain the model to minimize overfitting.

The model still relies on the feature extractor built from all other participants, which is mainly

in the convolutional layers but learns to interpret the extracted features in the context of the

current test participant by personalizing their last linear layer to the participant-specific data.

Figure B.26 shows the confusion matrices of the three selected participants after applying

transfer learning. With this approach, the overall classification accuracy increases, leading to

a macro F1-score of 88.15 %.

Especially for participant P12 the classification accuracy improves as the classifier now re-

solves the disambiguity between solve, and read in a better way. Also for participant P6 the

classification accuracy increases slightly. Overall transfer learning leads to an improvement

of ≈ 7 % with only three samples per class. The hyper parameters used during the transfer

learning step are denoted in Table B.7.
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Table B.7: Hyper parameters of the transfer learning part of the 1D-CNN model.
Parameter name Value
Learning rate 1E-3
Epochs 10
Exponential learning rate decay 0.95
Weight decay 1E-4
Transfer samples per class 3

Model Performance Comparison

In Table B.8 the macro F1-scores of the three models (RFC, 1D-CNN and 1D-CNN Trans) are

shown for each participant.

Table B.8: Macro F1-score of the three models, investigated for HAR, for each participant. The
bold marked scores show the highest achieved macro F1-score over the three classifiers while
the scores marked with an underline show the lowest macro F1-score.

RFC 1D-CNN 1D-CNN Trans
P1 71.88 81.85 87.48
P2 62.26 80.84 87.79
P3 87.96 90.56 95.81
P4 60.05 69.17 75.25
P5 71.67 90.09 88.61
P6 73.97 81.97 88.34
P7 63.55 79.57 95.63
P8 72.91 84.09 82.78
P9 73.09 78.34 83.94
P10 65.08 76.43 92.72
P11 84.01 94.49 95.97
P12 59.36 69.33 92.60
P13 74.94 81.78 81.07
P14 78.47 69.65 86.22
P15 75.38 86.54 88.04
∅ 71.64 80.98 88.15

The RFC shows in nearly all cases the lowest macro F1-score, which indicates that the extrac-

tion of statistical features from sampled windows of the sensors do not represent the patterns

required to recognize activities well. With this approach, we achieve similar results as related

work by Ishimaru et. al. [227].

As we introduce a representation of the sequence and extract features automatically by apply-

ing the 1D-CNN model, the overall macro F1-score increases to a similar region as reported by

Ishimaru et. al. [226].

By further personalization of the classifier to the participant using transfer learning, on the

1D-CNN model a further increase in performance was observed, which outperforms related

work by Ishimaru et. al. [226, 227]. It leads to a similar performance like related work focusing

either on physical activities recognized with body worn sensors e.g. [218] or cognitive activities
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recognized with eye-tracking sensors [21].

In Table B.9 the three classifiers are compared on an activity level.

The primary physical activities cycle and walk show an overall high recognition rate. In addi-

tion, talk as an activity consisting of head and eye movements shows a high recognition rate

over all classifiers. Especially the read and solve activity take advantage of the extraction of

sequential features by the 1D-CNN model. Transfer learning improves mainly the recognition

rate for the read and video activities, which are heavily dependent on eye movements. This

indicates that these activities are dominated by an intra class heterogeneity over all partici-

pants. Another observation can be made for the activity type. For this activity transfer learning

leads to a degradation of the classification accuracy compared to the other classifiers. This

shows that there is an inter class similarity (also present in Figure B.25 for P6) between type

and solve and by personalization, the decision boundaries shifts either to solve or type activity

and therefore one increases while the other decreases.

Impact of Sensor Modalities

To investigate the impact of the sensor modalities, especially the impact of head movement

features versus the impact of eye movement features, feature importance is studied. During

this study all three models are retrained with only a subset of all features, more precisely the

features were separated into IMU features (triaxial accelerometer and gyroscope features)

and LFI features (de ye and ve ye ) per sensor. Afterwards, we retrain and evaluate all models

with only LFI features from both sensors (LFI1 & LFI2) and only IMU features and compared

the achieved macro F1-score with the macro F1-score reached if all sensor modalities where

considered. In addition, the effect on the macro F1-score when only a single LFI sensor is used

is investigated to answer the question of how the change in angle of incidence γ of the laser

beam affects the classification accuracy.

Figure B.27 shows the results of the influence of the sensor modalities on the macro F1-score.

Table B.9: Averaged macro F1-score for each activity over all participants of the three models,
investigated for HAR. The bold marked scores show the highest achieved average macro F1-
score over the three classifiers while the scores marked with an underline show the lowest
average macro F1-score.

RFC 1D-CNN 1D-CNN Trans
talk 94.59 93.39 95.06
read 34.92 68.01 91.78
video 70.02 74.88 87.85
walk 95.08 96.12 95.03
type 84.53 85.83 77.17
solve 47.83 60.14 74.74
cycle 85.13 94.92 96.59
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Figure B.27: Impact of the sensor modalities on the macro F1-score for the three models

Is it clearly visible that the combination of head and eye movement features are mandatory to

reach high classification accuracy for all three models. For the 1D-CNN model and the RFC it

is also shown that the impact of the IMU features is higher than the impact of the LFI features.

A further interesting point to note is that the influence of the angle of incidence γ of the laser

beam shows only small contribution to the overall performance of the models but it has to be

noted that the sensor position of LFI2 leads to a slightly better performance.

In Table B.10 the effect of head and eye movement features on the macro F1-score are investi-

gated per activity. As expected from related work, the physical activities walk and cycle are

Table B.10: Macro F1-scores per activity class averaged across all participants when solely
considering eye movement features (LFI1 & LFI2) and head movement features (IMU) as well
as their combination. For each classifier and sensor modality the best and worst values are
emphasized in bold and underlined respectively.

RFC 1D-CNN 1D-CNN Trans

LFI1& LFI2 IMU both LFI1& LFI2 IMU both LFI1& LFI2 IMU both

talk 62.39 92.12 94.59 55.01 95.02 93.39 81.74 92.26 95.06

read 40.50 23.61 34.92 58.20 31.74 68.01 81.53 49.25 91.78

video 33.67 60.13 70.02 46.99 59.26 74.88 73.42 82.77 87.85

walk 60.60 89.93 95.08 74.21 97.54 96.12 76.27 93.25 95.03

type 70.31 70.21 84.53 67.96 81.05 85.53 62.36 78.63 77.17

solve 33.54 36.61 47.83 48.02 38.57 60.14 60.45 51.01 74.74

cycle 63.45 79.41 85.13 71.89 91.84 94.92 88.16 93.87 96.59

dominant in the IMU data, while the LFI data mainly cover the cognitive activities video and

reading. To some extend the LFI features provide information about physical activities. This

might result from glasses slippage during physical activities, which is encoded in the distance

information de ye .

Looking only at the features of the LFI sensor, the velocity feature is the most relevant feature

for HAR, as it describes the eye movement pattern of the different activities. Especially for
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the activity reading, which is dominated by eye movements, a clear velocity pattern can be

observed, as shown in Figure B.22.

The distance feature mainly contains information about blinking and passing of the pupil

through the laser beam. This information is only weakly correlated with activities, since

an increased blink frequency per window correlates with higher cognitive load as well as

drowsiness.

B.3.7 Discussion

Despite the overall high accuracy on the diverse activity set that we reach by combining LFI

sensors and IMU sensor, there are still limitations, we will discuss below and point out a

direction of how to improve them.

Power Consumption

Power consumption is an important factor since the glasses are battery powered and for

continued HAR a steady stream of sensor data is mandatory. The power consumption per

LFI sensor prototype is ≈ 70 mW with a sample rate of 1 kHz using of-the-shelf components.

This can be reduced to about 15 mW by using an application specific integrated circuit (ASIC)

[4], while the power consumption of the IMU is ≈ 1.2mW at full operation mode [236]. As we

down sample the data to 120 Hz a small reduction of power consumption is achievable by

adjusting the sampling rate of the sensors. In addition, the power consumption can be further

reduced by using just a single LFI sensor, as the study of impact on sensor modalities in Section

B.3.6 shows that using a single LFI sensor already a reasonable classification performance is

achieved.

However, the main driver of power consumption is the classification algorithm, which should

run on a resource constrained embedded processor in the frame temple. For the RFC algorithm

Kumar et. al. [237] present a resource and power-efficient implementation while keeping a

high classification performance.

With respect to the 1D-CNN model, energy-efficient implementations for CNN-based models

are established, e.g. in dedicated neural network accelerators or a tensor processing units

[83], [82]. The remaining drawback of the 1D-CNN model for use on a resource constrained

embedded processor is the memory footprint mainly driven by the fully connected layers (FC1,

FC2) which hold 3686400 out of 3703816 model parameters. To reduce them a further network

optimization could be achieved by model pruning or other optimization techniques [238]. An-

other method could be to rely on a pure CNN based model like proposed by Perslev et. al. [239].
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Transfer Learning

To exceed the state of the art with respect to classification performance we apply transfer

learning to improve the 1D-CNN model. This requires the user to perform each activity of the

activity set once for 90 seconds to adapt the final layer of the 1D-CNN model to the user. This

may degrade the user’s experience even if it is a known procedure for smart wearables e.g. the

initial setup of face recognition or fingerprint recognition in a smart phone [240].

In addition, the last layer (FC2) of the 1D-CNN model needs to be re-trained, which needs to

be done on the device. While the inference on the device is a computationally simple process,

the post-training to fit the model is computationally intensive and therefore takes some time.

One solution to improve model adaptation time is to perform the post-training in the cloud.

Glasses Slippage

Glasses slippage is a well-known issue in the eye tracking domain [93] and it also affects the LFI

sensors in some cases. Glasses slippage was to some extend present during our experiments,

mainly during the physical activities walk and cycle as well as talk. Therefore, the effect of

slippage is already reflected in our reported macro F1-scores. But in some cases we observed

that the eye was covered by the eye lids of a participant and the laser spots of the LFI sensors

hit the eye lid. Under these circumstances no robust velocity features were captured by the

LFI sensors leading to a reduction in classification performance. To ensure that the laser beam

of the LFI sensor hits the eye, the laser beam can be scanned over the surface of the eye [102],

[129]. Another solution could be achieved by modification of the optics to split the laser beam

of the sensor to several beams in a line as proposed by Riemensberger et. al. [241].

B.3.8 Conclusion

In this work we introduce the LFI sensor for eye movement detection. The LFI sensor is very

advantageous as it consumes very low power, is fully unobtrusive as the IR light is invisible to

the human eye, and is very robust to ambient light.

We attached the LFI sensors together with an IMU to a glasses demonstrator to capture eye and

head movements and recorded a large dataset of 15 participants performing seven activities.

With the proposed 1D-CNN model and by applying transfer learning, we outperform the

state of the art and achieve a macro F1-score of 88.15 % on a diverse activity set consisting of

both physical and cognitive as well as social activities. We further investigate which sensor

modality leads to high classification performance on each activity level. Furthermore, we

discuss our work critically with respect to power consumption, transfer learning and the

impact of slippage. Based on our results, we are confident that this work will advance the path

towards enabling always-on context awareness based on HAR for smart glasses.
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B.4 U-HAR: A Convolutional Approach to Human Activity Recogni-

tion Combining Head and Eye Movements for Context-Aware

Smart Glasses

B.4.1 Abstract

Smart glasses are considered the next breakthrough in wearables. Their advancement lies

in the ubiquitous embedding of content in the user’s field of view, promising an immersive

extension of reality. While advances in display technology seem to fulfill this promise, interac-

tion concepts are inherited from existing wearable solutions that require the user to actively

interact with the glasses, limiting the user experience. One way to improve the user experience

and drive immersive augmentation is to reduce user interactions to a necessary minimum by

adding context awareness to smart glasses.

To achieve context awareness, we propose an approach based on human activity recognition

which incorporates features derived from the wearer’s eye and head movement. Towards this

goal, we combine an eye-tracker and an IMU to collect eye and head movement features

from 20 participants performing seven cognitive and physical activities to derive context

information. From a methodological perspective, we introduce U-HAR, a convolutional

network optimized for activity recognition on a device with constrained power and memory

resources. By applying few shot learning, we achieve an outstanding macro-F1 score of 86.59%̇,

allowing us to derive contextual information that will pave the wave for a more immersive

user experience in future smart glasses.

B.4.2 Introduction

After the success of smartphones, smart earbuds and smartwatches, smartglasses are expected

to be the next breakthrough in the domain of smart wearables and will replace the smartphone

as personal smart wearable in long term as recently announced by Apple 1. Their advantage

over other wearables is the seamless embedding of visual content into the field of view (FOV)

of a user, resulting in a true augmentation of the environment. A major drawback of smart

glasses, preventing full immersive augmentation of the environment, arises from the state

of the art interaction concepts experienced by the user. The user still has to actively interact

with the glasses, e.g. through spoken commands as shown in the Echo frames [132], by hand

gestures used in the Hololens [51], touch interaction concepts introduced by Google Glass

[203] or gaze gestures [5].

One way to improve the user experience and drive immersive augmentation is to minimize user

distraction from interacting with smart glasses. A possible solution to reduce user interaction

and thus drive immersive augmentation is to add context awareness to smart glasses. A

possible way to achieve context awareness in a smart glass environment is to derive contextual

1https://www.computerworld.com/article/3642649/analyst-apples-ar-glasses-will-run-mac-chips.html
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information from the wearer’s activities by using Human Activity Recognition (HAR).

In this work, we investigate the use of HAR to derive contextual information in a smart glasses

setup. For this purpose, we built up an apparatus to simultaneously collect head movement

data with an inertial measurement unit (IMU) and eye movement data with a commercial

video oculography (VOG) eye-tracking sensor during our experiment. For evaluation purposes,

20 participants performed seven physical or cognitive tasks (i.e. talk, solve, read, watch

a video, type, walk and cycle), leading thus to an unique dataset with a total duration of

1514 minutes. In addition to this novel dataset, we propose a convolutional neural network

(CNN) model to temporal fuse head- and eye-movement information to recognize human

activities, which we coined U-HAR. By applying few shot learning, the CNN model is further

personalized to achieve an macro F1-score of 86.59 % in a leave-one-participant-out cross

validation (LOPOCV) scheme. With this outstanding accuracy our model outperforms earlier

works, e.g. by [227, 226] by a large margin. In addition to the above methodological novelty, we

investigate the relevance of the sensor features for different human activities and discuss the

proposed system in terms of its applicability for smart glasses. Our contribution is three fold:

(i) Context aware smart glasses: We propose to employ HAR to derive contextual information

to minimize user interaction with smart glasses to increase user experience, to minimize power

consumption through contextual aware display control and improve privacy as contextual

information can be derived without the need of a world camera sensor.

(ii) U-HAR: We adapt a CNN (U-HAR) model architecture and add few shot learning to ef-

ficiently recognize a rich set of human activities with a high accuracy from eye- and head

movement features.

(iii) Dataset: We collected a comparable large dataset of 20 participants with commercially

available VOG and IMU sensors commonly used in AR glasses to demonstrate the performance

of our system and publish the dataset for further research 2.

In the following Section, we provide an overview of related work with a focus on HAR combin-

ing both features from head- and eye-movements. In Section B.4.4, we describe the apparatus

and the experiment used to record the dataset. In Section B.4.5 U-HAR is introduced, our

proposed CNN model to classify activities from the gathered dataset and describe the network

architecture. To assess the performance of our network, we compare in Section B.4.6 the

proposed model with a baseline model and investigate the performance improvement that

can be achieved by adapting the model with few shot learning. Furthermore, we investigate the

impact of sensor modalities on HAR accuracy for the different activities of our set of activities.

During the final Section, HAR for context aware smart glasses with an focus on the applicability

of our model highlighting challenges w.r.t. sensor integration, power consumption and few

shot adaption is discussed and a conclusion from our work is drawn.

2https://atreus.informatik.uni-tuebingen.de/seafile/d/978f6631b6b34f7c9139/
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B.4.3 Related Work

A huge amount of smart wearables like smartphones, smart earbuds and smartwatches are

equipped with an IMU sensor to measure body motion in an unobtrusive and ubiquitous

fashion. This stimulates research on HAR using body motion features. One of the probably

most renowned works in this context was the work of [218]. In this work, the authors sampled

an IMU sensor of a smartphone with 20 Hz while 29 participants performed 6 mainly physical

activities: jogging, ascending stairs, walking, sitting, standing and descending stairs. The time

series data they gathered was split over the time axis into equidistant slices of 10 seconds

duration. From each of the slices the authors derived the following statistical features: mean,

time between peaks and standard deviation. The individual features from each windowed time

series slice were used to train a decision-tree-classifier. [218] achieved with this method an

accuracy of 91 % by applying 10-fold-cross-validation.

To expand the activity space compared to the physical activity dominated activity space by

[218], [220] added a microphone as additional sensor modality to an IMU setup to gather audio

data and derive audio features at a sampling frequency of 16 kHz along with IMU features at a

sampling frequency of 20 Hz. The authors, recorded IMU and audio data for 19 participants in

a rather unconstrained experiment environment and labelled 22 activity classes e.g. reading,

cooking, sleeping, eating, etc., forming thus a diverse activity dataset composed of 4 cognitive

activities, 12 physical activities and 6 mixed activities containing physical as well as cognitive

elements. Similar to [218], [220] derived statistical features like (variance, mean, correlation

as well as entropy) from non-overlapping windows spanning over 1 s of the total data stream.

They achieved an F1-score of 80 % using a deep neural network (DNN) while train and predict

on windows extracted from the same participant. However, this rather high accuracy drops

significantly as soon as a LOPOCV validation scheme is applied. This effect also known as

interclass heterogeneity[206], shows that human activities vary across participants as the

same activities are performed in a slightly different ways by different participants, leading to a

variation of the statistical features.

To counteract accuracy degradation due to interclass heterogeneity, [220] apply transfer

learning and thus retrained a few of the final layers of the DNN model using a small amount of

samples stemming from the left-out participant. With the use of transfer learning the authors

achieved again an F1-score of 80 % even while using the LOPOCV validation method.

In contrast to the previous mentioned works of [218] and [220], [224] used an video based eye-

tracking sensor (VOG) from Pupil Labs [56] to capture eye-movement data and extract gaze

vector information as features during an experiment with eight participants. The participants

perform during the experiment the following six mainly cognitive activities: reading, playing

online games, Browsing, typing, watching video and searching in a list.

The authors reported an macro F1-scores of 96 % over all participants, when using sliding

windows with 30 s duration to slice the data stream.
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The work of [226] is one of the first works, which recognize human activities by combining eye-

and head-movement features. According to the authors this combination of features allows

to classify physical as well as cognitive activities. During the experiment eight participants

wore the Google glasses, a commercial smart glasses to acquire data while the participants

perform the following activities: solving a mathematical puzzle, watching media, talking,

reading and sawing. While head motion was recorded with the builtin accelerometer of the

google glasses, the recording of eye movements was not possible as the google glasses only

provide a proximity sensor to detect blink events. Thus only blink information is considered

as eye-movement feature.

From the captured accelerometer data the averaged variance over all axes was extracted as

head-movement feature. As eye movement features [226] derived the mean blink frequency

and the center of distribution from the detected blinks. To evaluate theire approach they

trained an individual decision tree classifier per participant using features from both sensor

modalities. The combined evaluation using both sensor modalities yielded an macro F1-score

of 82 % while [226] reported a degradation of accuracy to 63 % and 67 % if they restrict the

feature space to solely to head- or eye-movement features.

To gather a richer feature set from eye movements [227] used a commercial available glasses

with integrated electro oculography (EOG) sensor instead of the Google Glasses. In addition

the captured head movement data using an accelerometer. Data from both sensing modalities

are combined and finally fed into a k-nearest neighbor (KNN) classifier to classify talking,

reading, eating and typing gathered from two participants. They achieved an overall accuracy

of 70 %.

Most recently [133] propose the combination of an IMU sensors with an optical laser feedback

interferometry (LFI) sensor to capture head- and eye-movement data from 15 participants,

which performed the seven activities reading, watching media, solving, typing, talking, walking

and cycling. Instead of statistical features they extract the features automatically using a CNN

model and achieve an overall F1-score of 88.15 % by personalizing their network using transfer

learning.

Related work indicates that significant effort is made to classify physical activities using data

from an body- or headworn IMU sensor and cognitive activities from an eye-tracking sensor.

Thus, high recognition accuracy is reported isolated in both sub fields using either IMU sensors

for physical activities or eye tracking sensors for cognitive activities. The few works dealing

with both eye- and head movement data in a headworn setup rely either on special sensors

e.g. the LFI sensor from [133] or EOG sensors which did not allow for a robust measurement

of gaze signals in an everyday device, as the dry electrodes of an EOG sensor require constant

good contact with the skin to obtain an optimal EOG signal [227]. Furthermore, related work

restricted their studies to a small number of participants thus limiting evaluation with respect

to generalization for a larger set of participants.

To overcome this limitations and provide context awareness for a broad spectra of smart glasses
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with integrated VOG sensors, we used a commercial VOG sensor similar to the sensor used by

[224] and add a commercial available IMU sensor for further collection of head movement

data from a large number of participants; resulting in a unique dataset that includes data from

physical and cognitive activity domains. Inspired from related work we further propose a state

of the art CNN model together with the aspect of transfer learning to improve HAR accuracy in

a balanced activity dataset containing physical, cognitive as well as mixed activities, and show

the robustness of classification in a large number of participants by applying the LOPOCV

method

B.4.4 Collection of head- and eye-movement dataset

The dataset was collected from 20 participants (10 male, 10 female) with a mean age of 27

(±4.3). All participants gave their written consent to use their data for research purpose before

taking part in the experiment. Further, participants affected by visual impairment were asked

to wear contact lenses to ensure a high data quality.

Apparatus

To collect the data, the participants wore a research apparatus during the experiment which is

shown in Figure B.28 a). Similar to [224], we used the commercially available Pupil Labs Core
Eye cam

eras

World camera
IMU

x

z
y

a) b)

Figure B.28: Research apparatus used during the experiments to collect eye- and head-
movement data.

[53] VOG eye-tracking system as the basis of our research apparatus, as shown in Figure B.28 a).

The VOG sensor system includes two eye cameras pointed towards the eye, capturing images

at 120 Hz of a participant’s left and right eyes. In addition, the frame holds a third camera,

which points at the world scene. To collect head movement data, a custom board consisting of

a microcontroller and an IMU sensor (BMX055) is mechanically attached to the frame of the

Pupil Labs Core. The microcontroller controls and reads the IMU’s triaxial accelerometer, the

triaxle gyroscope and the triaxial magnetometer at a sampling rate of 120 Hz. In Figure B.28

b), a participant wears the visualized apparatus and the axis orientation of the accelerometer

and the magnetometer are drawn. The rotational axes of the gyroscope are perpendicular

to the indicated acceleration axes. Both the Pupil Labs Core and the custom IMU board are

connected to a laptop via USB to simultaneously collect eye and head movement data during

the experiment.
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Experiment design

The experiment itself is divided into two parts, a stationary part and a physical part. During

the stationary part, participants sit in front of the recording laptop and perform the following

activities in the following order talk, read, solve, watching video and type on the keyboard,

which are mainly cognitive and mixed activities. In this part of the experiment, the execution

time per activity was not limited in order to elicit a natural behavior of the participants during

the execution of the activities. During the physical part of the experiment, participants go for a

Figure B.29: a) - g) frames captured by the world camera during the 7 activities talk, solve, read,
video, type, walk and cycle in this order. In addition, h) shows a captured frame during the
switching between the stationary and the physical experiment part.

walk and ride a bike to cycle outdoors. Before the start of the experiment, the Pupil Labs Core

eye tracker is calibrated using the built-in single marker calibration method [99] to provide

accurate gaze estimation in the participants’ FOV . Afterwards, the recording is started and

eye movements are recorded utilizing the Pupil Capture (v1.15) software. At the beginning

of the experiment, the experimenter initiates a conversation to talk with the participant.

Afterwards the experimenter leaves the participant alone and the participant is guided by a

website on the laptop through the stationary part of the experiment. For the solve activity,

a logic test with a set of tasks containing a mathematical quiz and extension of a series of

geometric patterns was presented to the participant. Afterwards, the participants reads a text

about recent advances in the domain of smart glasses and watches a video. Afterwards the

participant has to answer questions related to the shown text and the video, by typing answers

on the keyboard of the laptop. After finishing the stationary part, the laptop is stashed in a

backpack by the experimenter to start the physical part of the experiment which consists of

the activities walk and cycle.

The activities were selected based on related work e.g. by [133] as well as to span a large

variation between pure eye movement related activities (read, video), mixed activities (type,

solve), social activities (talk) and pure head movement dominated activities (walk, cycle) .

Data processing

After a successful recording, the recorded world and eye videos are exported using the Pupil

Player (v2.4). For each frame of the eye videos, the pupil center is extracted based on the

provided 3D eye model pupil detection method [9].
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Figure B.30 shows images of the extracted pupil center for four different cases. In some cases,

e.g. during a blink (Figure B.30 c)), the pupil could not be detected, also indicated by a low

pupil detection confidence value of less than 0.9. In these cases, we forward filled the current

pupil position with the last valid pupil position (pupil detection confidence of more than

0.9) to obtain a continuous stream of features over time. Furthermore, we applied a moving

median filter with kernel size 10 on the pupil position data stream to smooth out high saccades

or jumps due to falsely detected pupils e.g. shown in Figure B.30 d).

a) b) c) d)

Figure B.30: Four different cases of pupil detection (red dot) affect data quality. a) Well detected
pupil b) no detected pupil due to steep camera angle c) no detected pupil during blink d) false
detected pupil due to eye lashes

In Figure B.29, images captured by the world camera are shown for each activity. The images

are used to manually assign an activity label to each timestamp and thus label the record.

Each world video frame is assigned with one of the seven activity labels or none if no activity

is performed by the participant e.g. during the transition between the stationary part of the

experiment and the physical part. As the world camera samples at a sampling rate of ≈ 30 Hz

and the eye video frames are sampled at ≈ 120 Hz, four eye video frames are assigned with

the activity label extracted from one world video frame. The same labels are assigned to the

IMU data stream, which is also sampled at ≈ 120 Hz and synchronized with the pupil labs data

stream. Figure B.36 shows 30 s windows of the sensor features captured from participant P1

for each performed activity.

To get insights into the collected dataset, Table B.11 summarizes total duration, mean duration

and the standard deviation per activity. A more detailed version on individual participant level

is given in Table B.15.

Table B.11: Total duration, mean duration and standard deviation in minutes of the individual
activity over all participants.

NULL talk read video walk type solve cycle total

total 98 137 165 209 237 284 266 119 1514

mean 1.96 6.85 8.25 10.45 11.85 14.2 13.3 5.95 -

std 2.06 2.58 2.36 0.42 2.32 5.15 5.88 1.02 -

In total 1514 minutes of raw data were recorded from 20 participants. The order of stationary

and physical part were not fixed. Also experiments take place in different environments like

in the office or at the participants home. Thus e.g. cycling was performed on different bikes

and walking at different locations to reduce bias by experiment design. The large difference in

mean and deviation between activities caused by the experiment design as participants were

not restricted in duration per activity to ensure a naturally behavior during the experiment.
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B.4.5 U-HAR Network architecture
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Figure B.31: Network architecture of the proposed U-HAR model consisting of a U-Time [7]
like encoder and decoder structure and a activity classifier based on two fully connected layers

To classify the collected data according to the seven activities in the activity set, we propose

a CNN structure followed by a fully connected classification structure as shown in Figure

B.31. The basic network architecture of the so-called U-Nets was introduced by [242] for

two-dimensional biomedical image segmentation and adapted by [7] for segmentation of

one-dimensional time series data. Perslev et. al. shows a reasonable classification accuracy

of sleep stages [239]. Other works, e.g. [243], adapt the network architecture to the domain

of autonomous driving to classify lane changes. As HAR refers to the concept of inferring

activities based on a time series of observations [206], which is similar to the applications of

Perslev et. al. and Eslpas et. al., we decided to adapt the model architecture and apply it to

HAR. The idea of the encoder and decoder structure is to transform a time series input with

T samples from sensors providing F features into a time series output with T samples for C

classes, resulting in a single sample classification. Since human activities normally ranges from

several seconds to minute scale, classification on a higher time scale above a single sample is

mandatory. To this end, an activity classifier was added to the network architecture, which

allows activities to be classified over a longer time period. More details about the classifier are

provided in Section B.4.5.

Data preparation

To avoid bias introduced by sensor offsets or the scaling of sensor data introduced by differ-

ent participants performing activities with non-uniform intensity, all data streams of each

participant are normalized to unit variance and zero mean. A sequence of normalized sen-

sor readings are combined to create a window with a fixed number of sensor readings T by

applying similar to related work a sliding window approach to the input data stream. All

sensor readings (pupil position, accelerometer, gyroscope and magnetometer) of one window

are extracted and handled as a single sample for classification. The class label C is derived
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from the most frequent occurrence of a label within a single window. As shown in Table B.11,

the duration of each individual activity varies across participants. Therefore, the dataset on

window scale has to be rebalanced to match the most frequent class by upsampling all under-

represented classes C . After applying the data preparation steps, the dataset is transformed

into a 3D tensor D ∈ RN×T×F with N as the total number of samples and F the number of

features per sample. Similar to the work of [224] we choose a window length of 30 s and an

overlap of 30 % between windows, which leads at a sample rate of 120 Hz to T = 3600. This

leads to a total number N of 3318 samples. The IMU provides in total 9 features from the 3D

accelerometer, gyroscope and magnetometer and the VOG sensor a 3D pupil position vector,

leading in total to F = 12 features.

Encoder block

The encoder consists of four equally built up convolutional blocks. Similar to the initial ar-

chitecture proposed by [7], each block contains two convolutional layers each with a five

dimensional kernel and same padding to preserve the input dimensions. All convolutional

layers are using batch normalization. Afterwards, the temporal resolution is decreased by

applying max pooling with kernel sizes (8, 6, 4, 2) after each corresponding layer, while increas-

ing the number of filters respectively. In this way, the temporal resolution is decreased from

8.33 ms to 400 ms allowing deeper layers to learn more abstract features of human activities.

Through this aggressive down-sampling, the number of trainable parameters and therefore

the memory footprint is reduced, desirable for operating HAR on embedded hardware inside

the glasses frame temple.

Decoder block

Analogous to [7], the decoder consists of four transposed convolution blocks. Each of these

blocks performs nearest neighbor (NN) up-sampling to increase the time resolution. Each

up-sampling block is followed by a convolutional layer with kernel size of (2, 4, 6, 8) and batch

normalization for Dec1 - Dec4, respectively. Afterwards, the feature maps of the up-sampled

tensor and the corresponding encoder tensor are concatenated along the filter axis and fed

into two convolutional layers, each followed by batch normalization as well to process the

feature maps in each decoder block. After Dec4, a pointwise convolution is performed to map

the feature map obtained by the encoder decoder structure to a T xC tensor, which assigns

each sensor reading in the given window T a classes C confidence score.

Activity classifier

The activity classifier serves as a trainable link between the single sample level class confidence

score and the label level assigned on the window size T .

Therefore, the activity classifier maps the class confidence scores of size T xC to a classification
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output of size 1xC , effectively removing the temporal axis from the intermediate representa-

tion. For this purpose, the activity classifier is added to the output of Dec4, consisting of an

average pooling layer with kernel size of S = T /K and two fully connected layers FC1 and FC2.

The average pooling layer calculates the average along the temporal axis leading to an output

with size SxC which is flattened and fed into the first fully connected layer FC1, followed by a

dropout layer. FC2 maps the output of FC1 to the desired 1xC feature vector with a softmax

activation.

Within the proposed structure, K serves as an additional hyper parameter, which can be

used to adjust the count of trainable parameters of the activity classifier. This allows the

optimization of the network in terms of recognition accuracy and power consumption as

well as memory requirements, making it possible to adapt the network structure, to a certain

extent, to the available embedded hardware.

Few shot adaption of the activity classifier

As shown by [220], a major challenge in human activity recognition is intraclass heterogeneity

[206] leading to a degeneration of HAR accuracy. To counteract this degeneration, [220]

proposed transfer learning to personalize the HAR classifier. [235] introduced few shot learning

(FSL), a distinct form of transfer learning, to personalize a generalized HAR model.

We adapt this method to the U-HAR model by fetching a small fraction of samples per class

from the left-out participant after training the U-HAR model using the LOPOCV scheme to

personalize the decision boundaries of the activity classifier. During this model adaption

phase, the weights of the convolutional layers of the encoder blocks and the decoder blocks

and the first fully connected layer (FC1) are frozen. Furthermore, the dropout layer between

FC1 and FC2 is removed and the weights of FC2 are reinitialized. Afterwards FC2 is retrained

by a few epochs using a small set of samples per class stemming from the leave out participant.

By freezing the weights of the encoder and decoder the model keeps its feature extractor build

from all but the left out participant and learns a personalized activity classifier bound to the

individual participant.

B.4.6 Evaluation

To evaluate the proposed U-HAR model as well as the effect of few shot learning (U-HAR-

FSL), we split the dataset D into a test and train subset. to be precise, D is split into D test ∈
RNtest×T×F and D tr ai n ∈RNtest×T×F , with Ntr ai n+Ntest = N . As we used LOPOCV D test contain

all samples of the left out participant. With 20 participants, this leads to 20 permutations of

D tr ai n and D test for which the model is trained and tested separately. To rate the model’s

overall accuracy the macro F1-score is calculated across all permutations. The macro F1-score

gives insights how well the model generalizes across participants and how well it classifies

data from a unknown subject. Table B.12 gives an high level overview of the resulting F1-Score
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Table B.12: Average macro F1-score over all participants for each activity for the investigated
HAR models.

SVM U-HAR U-HAR-FSL
talk 73.03 92.15 97.20
read 91.97 77.74 89.42
video 66.89 67.38 78.60
walk 89.88 95.59 96.37
type 88.07 88.15 86.89
solve 20.16 66.57 64.40
cycle 77.99 92.29 95.87
Overall 66.86 82.09 86.59

of all classifiers per activity as well as the overall macro F1-score.

For better comparison between the proposed U-HAR model and the state-of-the-art, we

benchmark our dataset using a SVM as baseline model. Afterwards the U-HAR model with-

out and with transfer learning U-HAR-FSL is used to classify activities from the dataset. To

ease comparison between the three models, the performance of each classifier is visualized

based on the confusion matrices in the upcoming sections stemming from three partici-

pants, selected to represent an overall low (P15), an average (P7) and a well (P13) performing

participant.

Baseline model

[19] reported an F1-Score of 76% using a SVM model to predict human activities from statistical

eye movement features extracted from EOG sensor readings. We extract similar to previous

works [19, 221, 228, 229, 226], the following statistical features L2-norm, variance and mean

from the temporal axis of each sensor reading to derive 3xF input feature vector from each

sample. The SVM is trained on all but the the leave out participant and tested on the left

out participant and classification is approached in a one-vs-all setting. As hyper parameters

a RBF kernel function is used and we tune the regularization parameter to 1 to maximize

classification performance of the SVM. Further optimization of the hyper parameters or the

use of additional features derived from the time series data might lead to further improvements

of the overall performance.
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Figure B.32: Confusion matrices of P15 (macro F1-score 50.81 %), P7 (macro F1-score 59.53 %)
and P13 (macro F1-score 82.13 %) obtained by the SVM classifier based on statistical features.

Figure B.32 shows three confusion matrices obtained from the selected participants to provide

an overview of the classifier’s performance with respect to the different activities. The macro F1-

score of the SVM classifier is 66.86 % with an accuracy of 69.63 %, which is roughly 10 % below

the reported performance from [19]. One possible reason could be that the activity set consists

of cognitive as well as physical activities, and therefore, the activities are harder to recognize.

Another reason could be that statistical features did not serve as an effective representation

of the underlying patterns. Of particular note is that miss classification exists only in the

subset of cognitive and physical activities for P15. More specifically, the activity walk is never

miss classified as read while confusion exists for walk and cycle. The confusion matrices of

participant P7 as well as the successfully performing participant P13 show confusion between

solve, read and type,exhibiting that these classes share a common set of statistical features.

This is a well-known problem in HAR and [206] denote it as interclass similarity.

U-HAR model

To get rid of statistical features and improve on the representation of time-dependent patterns,

the dataset D is evaluated in the following using the proposed U-HAR model, introduced in

Section B.4.5.

Figure B.33: Confusion matrices of P15 (macro F1-score 75.52 %), P7 (macro F1-score 75.52 %)
and P13 (macro F1-score 95.59 %) obtained by the U-HAR model introduced in Section B.4.5
without few shot learning.

193



Appendix B. Static LFI HCI for AR Glassess

Similar to the SVM classification approach, the dataset is split into a training set consisting of

all participants except the left-out participant, resulting in 20 permutations of training and test

splits. For all 20 permutations, the model is trained over 6 epochs using cross-entropy-loss and

Adam optimization with a learning rate of 4E-5 and a weight decay of 1E-6. Furthermore the

learning rate was reduced by 1E-6 per epoch. In comparison with the SVM baseline model, the

macro F1-score improves significantly by 15.23 %, reaching 82.09 % with a accuracy of 82.84 %.

For the average pooling layer, we choose a kernel size of 10 (K = 360), effectively down sampling

the segmented output to 360x7, as a good trade off between network size and classification

accuracy. Comparing the confusion matrices in Figure B.33 with the corresponding confusion

matrices in Figure B.32, there is a clear improvement in recognition for the activity talk among

the three participants. Furthermore, the physical activities cycle and walk are well recognized

among all participants as well. As with the SVM model for participants P15 and P7, there

still exists confusion between the cognitive activities read, solve and video, which hints to

interclass similarity.

U-HAR model with few shot learning

Figure B.34: Confusion matrices of P15 (macro F1-score 89.87 %), P7 (macro F1-score 84.74 %)
and P13 (macro F1-score 94.57 %) obtained by the U-HAR model after adapting the decision
boundaries of the activity classifier block by applying few shot learning.

To further improve the accuracy of activity recognition, we apply few shot learning as proposed

in Section B.4.5 to the activity classifier. For this purpose, we randomly select three samples

(windows of 30 seconds) for each activity class of the omitted participant and retrain the last

fully connected layer over 10 epochs using a learning rate of 1E-4 and an exponential learning

rate decay of 0.99. Figure B.34 shows the three confusion matrices derived from the chosen

participants after few shot learning. The macro F1-score increased to 86.59 % and the mean

accuracy increased to 86.99 %. Across all three participants, the recognition of the activities

read, solve and video improves. As we personalize the activity classifier to some extent by

adjusting the decision boundaries through few shot learning, the interclass similarity observed

in Figure B.32 and Figure B.33 resolved.
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Model comparison

To compare the performance of the classification approaches, we analyze the performance of

the three models across all participants in the experiment. Table B.13 summarizes the model

performances for each participant. In nearly all cases, the SVM classifier performs worst

leading to the overall lowest macro F1-score, indicating that the used statistical features does

not lead to a good representation of the underling temporal patterns to recognize activities.

The SVM model reaches similar performance as related work by [227]. The U-HAR model

improves the performance as it automatically extract features to represent the underling

temporal patterns much better and due to the convolutional layers it is capable of to also gather

information from the temporal sequence of incoming data. The macro F1-score increases

to be comparable with related work e.g. [226]. The additional personalising of the activity

classifier through transfer learning, as mentioned in Section B.4.5, an additional increase in

activity recognition performance is observable. The proposed U-HAR model combined with

few shot learning outperforms the related work e.g. by [226, 227]. It also reaches similar activity

recognition performance when compared to related work that solely focus on activities from

the physical domain recognized by IMUs e.g. by [218]. To analyze which activity profits from

Table B.13: Macro F1-score of the baseline model, the U-HAR as well as U-HAR-FSL model
over all participants. The highest achieved macro F1-scores for each participant over all
models are bold marked while the lowest F1-scores are underlined.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 ∅
SVM 56.22 47.77 57.84 62.45 69.87 88.89 59.43 80.87 63.02 72.62 62.44 82.12 60.47 50.81 68.97 67.56 73.3 78.47 57.70 76.35 66.86
U-HAR 75.40 80.31 83.13 74.69 76.66 93.67 78.71 81.78 80.55 79.99 77.56 95.59 81.98 75.52 77.98 91.65 83.36 81.54 79.12 92:59 82.09
FSL 91.59 88.28 87.11 78.56 89.47 95.76 84.74 87.96 87.96 71.30 77.67 94.57 86.20 89.87 86.03 95.20 75.03 93.91 77.63 95.04 86.59

each model design we further calculate per activity and model the average macro F1-score over

all participants. In Table B.12 the results are summarized. The physical dominated activities

walk and cycle show together with the mixed activity talk the an overall high accuracy over

all HAR models. Especially the solve activity improves by automatic extraction of features

while taking into account the sequence data. The few shot adaption scheme improves the

recognition of read and video, which are cognitive activities mainly described by eye movement

features. The improvement through few shot adaption indicates that in particular for this

classes intraclass heterogenity is dominating. Especially for reading intraclass heterogenity

is well known as each individual has a slightly different scan pattern during reading mainly

influenced how trained an individual is on this task. Furthermore a high interclass similarity

exists for the activities video and solve, which leads to a high confusion between the activities

and thus a low accuracy. To improve on this additional features are required. This can either

be derived from the existing sensors e.g. pupil diameter variation or blinks as used by [226]

or by adding additional senor modalities like an microphone as proposed by [220]. Another

potential improvement is to step away from fine grained activities to classification on a higher

contextual hierarchy like proposed by [222] e.g. classify activities into physical context or

cognitive context to control the glasses UI based on this higher context levels. Finally the

U-HAR model provides in the final stage of the decoder as intermediate representation a
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sample wise activity classification. From this representation further information can be drawn

e.g. to distinguish composed activities containing multiple sub activities. Furthermore inter

class similarity could be investigated in at this stage.
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Figure B.35: Effect of eye related features (pupil position) and head related IMU features on
the macro F1-score.

Impact of the sensing modalities

To analyze effects of both sensing modalities, we conducted a study on the importance of these

sensor modalities. More specifically, the three models (i.e., SVM, U-HAR and U-HAR-FSL) are

retrained with either the head movement related features (IMU) or the eye movement related

features (VOG). Figure B.35 summarizes the resulting macro F1-scores after retraining the

three models with only head or eye movement features. Our results in Table B.14 show that a

high classification score is only obtained if both head and eye movement features are taken

into account. At least for activity sets which contain physical and cognitive activities the use

of both sensor modalities is mandatory. The head movement features have a higher impact

on classification accuracy compared to the eye movement features for all three classifiers.

Furthermore it is shown that the high classification accuracy of cognitive activities read and

video is mainly driven by the eye movement features while the mainly physical activities walk

and cycle are mainly classified by the head movement features.

Table B.14: Averaged resulting macro F1-scores per activity when solely considering head
movement features or eye movement features and their combination. For each classifier and
sensor modality, both the lowest and highest F1-scores are highlighted.

SVM U-HAR U-HAR-FSL

Eye Head Both Eye Head Both Eye Head Both

talk 24.05 86.15 73.03 30.38 90.96 92.15 31.92 97.21 97.20

read 92.84 14.07 91.79 80.59 28.43 77.74 88.45 27.30 89.42

video 73.85 58.49 66.89 40.26 77.25 67.38 51.86 78.04 78.60

walk 68.14 88.11 89.88 65.36 94.61 95.59 58.15 96.54 96.37

type 72.14 51.18 88.07 76.94 71.35 88.15 68.78 84.43 86.89

solve 8.45 14.46 20.16 52.59 35.29 66.57 42.55 38.39 64.40

cycle 11.71 75.67 77.99 25.22 91.90 92.29 45.93 95.87 95.37
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B.4.7 Discussion and limitations

As shown in Section B.4.6, the combination of eye and head motion features leads to higher

HAR accuracy. Therefore, the proposed approach of combining eye and head movements and

fusing them through the U-HAR network enables HAR-based context awareness for smart

glasses. In order to apply the proposed system in a real application, several aspects needs to

be considered, which are discussed below.

Sensor integration

While integrating IMU sensors into smart glasses is straightforward as they are already inte-

grated into every smart wearable, integrating eye-tracking sensors seems to be more challeng-

ing. The power consumption of VOG eye tracking sensors is magnitudes higher compared

to IMU sensors, and the size and the position requirements of the video cameras in order to

obtain robust pupil detection over the whole FOV of an participant are challenging, as shown

in Figure B.30. To overcome the limitations of power consumption and sensor integration,

[101, 103] and [129, 128] proposed new eye tracking sensor approaches to replace the camera

sensor and facilitate integration by using scanned infrared lasers to track a person’s eye.

Power consumption

The power consumption of smart glasses is dominated by the power consumption of the

display, similar to smartphones. Therefore, a smart glass system directly benefits from a

reduction of the display’s duty cycle. The contextual control of the display proposed in this

paper is a possible solution to this issue, as it allows the display to be activated contextually.

This implies an always-on HAR with continuous classification of activities by the U-HAR

model. Besides power memory is a further constrained resource on an embedded processor

on the glasses. However, as the U-HAR model mainly rely on convolutional layers, energy

efficient deployment of the model e.g. by using tensor processing units (TPUs) or dedicated

DNN accelerators is possible [83], [82]. The remaining constrain is the small available memory

on embedded devices. The memory footprint of the U-HAR model is mainly determined

by the parameters of FC1 and FC2. With an average pooling kernel size of 10 (K = 360), this

two layers hold 6.373.087 parameters, which are 98.61% of the total network’s parameters. A

straightforward way to decrease this rather large number of parameters is the adoption of

the hyper parameter K . In fact (K = 50), results in a kernel size of 72 of the average pooling

layer, reduces the parameters by a factor of 24.6 while keeping a sufficient macro F1- score of

80.53 % . Further optimization of the model architecture e.g. by improving the 1D CNN layers

e.g. by adaption of bottleneck layers as proposed by [244] or by model pruning or other model

optimization techniques are still possible [238] to reduce model size and thus computational

complexity. Furthermore the IMU features can be fused into a 3D orientation vector of the

head to further reduce network parameters.
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Few shot learning

As suggested by related work to improve classification performance and handle intraclass

heterogeneity we used few shot learning to enhance our U-HAR model. This require to

obtain labels from the user to adapt FC2 and thus personalize the activity classifier. The

label collection may degrade user’s experience although it is a known operation from other

wearables e.g. the initial configuration of face-recognition in a smartphone [240].

Privacy

The proposed U-HAR system relies on privacy preserving sensor features as no direct link

between the features and the individual exists. If inference of contextual information occurs

on the edge, as proposed in the previous sections, no raw potential private data needs to

be transmitted. Furthermore the proposed system did not require a world camera sensor to

derive contextual information, which adds on the social acceptance of such a glasses system.

B.4.8 Conclusion

In this work, we present an approach which enables context-awareness through human activ-

ity recognition for smart glasses. We built a research apparatus and conducted experiments

with 20 participants to record and published a unique activity dataset. Our dataset contains a

distinctive combination of seven activities stemming from physical and cognitive domains.

We recorded eye movement features using a VOG sensor and head movement features using

an IMU sensor for all activities leading to a total recording duration of 1514 minutes. We

further adapted the U-Time CNN model architecture proposed by [7], applied it to human

activity recognition and proposed the U-HAR model structure. We advanced the network

architecture to enable few shot adaptation to personalize the activity classifier to each in-

dividual and counteract accuracy losses due to intraclass heterogeneity. With the few shot

adaptation approach, we achieved a macro F1-score of 86.59 % using LOPOCV. This result

significantly outperforms related work. As part of our future work, we will focus on deployment

of the classifier in a smart glasses prototype. In addition, we like to investigate how to gather

labels from users in a every-day setting to apply the proposed few shot adaption to increase

classification performance and thus minimize missclassification to optimize usability. Finally

we like to investigate how a user can extend the classifier with its personal activities in a on

device setting.
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Figure B.36: 30 second windows of the raw pupil position and IMU features of participant P1
for the seven activities
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Table B.15: Duration in minutes of each individual experiment itemized by activity.
NULL talk read video walk type solve cycle total

P1 1 4 6 11 16 9 6 7 59

P2 6 8 7 11 14 18 12 5 79

P3 6 12 9 10 13 28 17 7 103

P4 11 6 13 11 10 13 35 5 104

P5 4 9 8 10 11 17 12 5 78

P6 4 5 7 10 14 13 7 6 67

P7 8 14 11 10 8 22 18 6 96

P8 5 6 7 10 10 9 7 7 60

P9 6 5 10 11 8 14 13 7 74

P10 4 7 5 10 11 14 12 5 68

P11 2 7 6 10 12 7 11 6 61

P12 3 9 5 10 14 6 14 6 68

P13 4 6 9 10 14 13 11 5 72

P14 6 4 12 11 10 15 12 5 75

P15 5 5 11 10 14 12 16 6 78

P16 4 4 8 10 13 13 12 6 71

P17 5 6 7 10 13 22 14 9 87

P18 6 8 8 10 10 11 13 5 72

P19 5 5 11 11 8 15 16 5 75

P20 4 5 5 10 14 13 9 6 67

total 98 137 165 209 237 284 266 119 1514
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C Static Laser Feedback Interferometry
Eye Tracking

This chapter contains the manuscript:

I. Johannes Meyer, Stefan Gehring, Enkelejda Kasneci. "Static Laser Feedback Interfer-

ometry based Gaze Estimation for Wearable Glasses". Submitted to IEEE Transactions

on Systems, Man, and Cybernetics: Systems (2022)

C.1 Static Laser Feedback Interferometry based Gaze Estimation for

Wearable Glasses

C.1.1 Abstract

Fast and robust gaze estimation is a key technology for wearable glasses, as it enables novel

methods of user interaction as well as display enhancement applications, such as foveated

rendering. State-of-the-art video-based systems lack a high update rate, integrateability, slip-

page robustness and low power consumption. To overcome these limitations, we propose

a model-based fusion algorithm to estimate gaze from multiple static laser feedback inter-

ferometry (LFI) sensors, which are capable of measuring distance towards the eye and the

eye’s rotational velocity. The proposed system is ambient light robust and robust to glasses

slippage. During evaluation a gaze accuracy of 1.79◦ at an outstanding update rate of 1 kHz is

achieved while the sensors consume only a fraction of the power compared to state-of-the-art

video-based system.

C.1.2 Introduction

Eye tracking is a key sensing technology for wearable glasses required to enable applications

ranging from gaze contingent interaction [161, 18, 5] to display enhancement methods like

foveated rendering [38, 39, 40] or exit pupil steering[42, 43]. State of the art eye tracking

systems rely on video oculography (VOG), which is a camera-based system to infer the users
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gaze from a sequence of images. However, due to power constraints imposed by the wearability

of these glasses, the update rate of VOG systems is limited by the high power consumption

of the camera sensors and the image processing algorithms required to estimate user’s gaze

from captured images [84]. Especially see-through AR glasses further require an eye tracking

system, which operates robustly in the presence of ambient light [56]. This further limits the

applicability of VOG systems. Finally, VOG systems are prone to glasses slippage [92], possibly

leading to a degradation of gaze estimation accuracy [93, 57].

To overcome these limitations of VOG systems, we introduce a static laser feedback interferom-

etry (LFI) sensor approach. The LFI sensor itself consists of a tiny (160µm × 180µ m) vertical

cavity surface emitting laser (VCSEL) with infrared (IR) light at 850 nm (invisible to the user)

and a photo detector integrated into the laser cavity [2]. By applying a frequency modulated

continuous wave (FMCW) modulation scheme [125], the sensor is capable to measure the

distance d towards the eye as well as the eye’s rotational speed in beam axis vT simultaneously

with an outstanding update rate of 1 kHz, while consuming only a fraction of the power of

VOG systems. Due to the coherent sensing scheme, the sensor in addition is robust against

ambient light, as shown in [128]. Our contribution in this work is two-fold:

(i) We introduce the static LFI sensor modality for gaze estimation, characterize a static LFI

sensor with respect to distance and velocity resolution in a near-eye setting, propose an

geometric eye model required for sensor fusion, and build up a simulation tool to generate

measurements of multiple static LFI sensors.

(ii) We propose a slippage robust, calibration-free gaze estimation algorithm, fusing multiple

static LFI sensors in order to reconstruct the gaze vector based on a geometric eye model.

The remainder of this work is organized as follows: Appendix C.1.3 gives an overview over

model-based eye tracking approaches of VOG systems as well as IR laser-based eye tracking

approaches with focus on LFI sensors. Afterwards in Appendix C.1.6, the LFI sensing principle

is introduced together with a geometric eye model in order to link LFI sensor measurements

to an eye pose. In addition, a LFI simulation tool is introduced to generate LFI sensor measure-

ments in a multi LFI sensor setting. In Appendix C.1.7, the gaze reconstruction algorithm is

introduced to fuse multiple LFI sensors for gaze estimation. In Appendix C.1.8, we characterize

distance and velocity noise of the LFI sensor and evaluate the gaze estimation accuracy of the

proposed system in presence of glasses slippage. In the final sections, system limitations are

discussed, and a final conclusion is drawn.

C.1.3 Related Work

Related work is divided into two parts. During the first part, geometric model-based gaze esti-

mation algorithms used in VOG systems are introduced to highlight the differences between

existing geometric model-based gaze estimation algorithms and our novel approach. In the

second part, related work using the LFI sensor in a near-eye setting is presented.
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Figure C.1: a) Corneal reflection eye model based on [8]. b) Glint-free eye model based on [9].

C.1.4 Geometric model-based Eye Tracking

Geometric model based eye tracking approaches used in VOG systems can be divided into

corneal reflection eye models and glint-free eye models [64]. Corneal reflection models, as

shown in Figure C.1a), estimate the gaze vector, described as normal vector of the pupil np , by

extracting the center of the pupil Pc from a camera image and estimate the center of the cornea

Cc. To estimate the cornea center, IR LEDs (q1 - qn) are added to the system. The diverging IR

light of the IR LEDs leads to specular reflections on the surface of the cornea, so-called glints.

The positions of the glints on the cornea are extracted from the camera images in order to

estimate the cornea center Cc [63]. According to Hennessey et al. [8] at least two glints are

required to estimate the cornea center under the assumption that the system geometry is fixed

and known in advance. For reconstruction of the cornea center Cc furthermore the radius of

the cornea rc , the distance between pupil and corneal center dp and the refraction index of

the aqueous humor need to be known or derived from average population [8].

In contrast, glint-free models rely solely on a camera sensor as shown in Figure C.1b) [9]. To

estimate the gaze vector np , the center of the sclera Sc and the center of the pupil disk Pc in

space need to be estimated from camera images. Assuming a pinhole camera model and a

projected ellipse representing the pupil in the image plane, the pupil disk with its center Pc is

derived from a cone projection f in space. The cone f is constructed from the pupil ellipse

representation in the image plane and the camera focal point oc . As the pupil diameter varies

with the portion of ambient light, and the diameter of the pupil ellipse representation depends

on the distance between camera sensor and the eye, several singularities exist, which prevent

the estimation of the pupil disk and thus the gaze vector from a single image. By introducing

geometric constraints like a fixed pupil diameter, possible pupil disk candidates fitting to the

projected cone can be derived. By adding further constraints, the correct pupil disk can be

estimated from a sequence of frames [9].

Under the assumption that the eye ball diameter rs is fixed and known in advance, the center

of the eye ball Sc is derived from a sequence of pupil disk observations, assuming a stationary

relation between camera position and eye ball center Sc. This assumption holds for a short

time period, while for longer time periods, glasses tend to slip on the nose and thus the model
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parameter Sc needs to be updated continuously [66, 93].

In summary, VOG eye tracking approaches rely on a reduced anatomical model of the human

eye with minimum physical dimensions and optical quantities in order to link the sensor

features to an eye pose. In addition, fixed model parameters derived from the average popula-

tion are used as additional system constraints. Hennessey et. al. [8] assume a known system

geometry and a rigid glasses frame with mounted IR LEDs and the camera sensor. Swirski et.

al. [9] further assume a stationary fixed relation between eye coordinate space and glasses

coordinate space. In addition, both model-based approaches estimate the optical axis of the

eye as normal vector np of the pupil.

C.1.5 Static LFI eye tracking

Static LFI sensors are well known from literature and are used in a wide range of applications,

like vibrometry or velocimetry [121, 125]. The first work which proposes a static LFI sensor

to measure eye movements was released by Capelli et al. [245]. The authors used a 1310 nm

IR laser with an optical power of 4 mW to measure velocity of a rotating disk to simulate

eye rotational velocities. Measurements on a real human eye were not performed, as the

laser source did not fulfill eye safety requirements. The authors apply a triangular current

modulation scheme to the drive current of the laser to be able to measure rotational velocities

from 0 ◦/s to 500 ◦/s at a sample rate of 60 Hz. They reported a velocity measurement error of

10 %.

Meyer et al. [128] used an unmodulated LFI sensor together with a 2D micro scanner to

capture reflectivity images from the eye and to measure the bright pupil response. They

reported an outstanding ambient light robustness of LFI sensors due to the coherent sensing

scheme of the sensor.

Meyer et al. [4, 5, 133] were also the first to create an eye safety compliant static LFI sensor

system and reported measurements on a real human eye. They used two LFI sensors at a

wavelength of 850 nm with an optical power below 500µW to measure distance towards the

eye as well as relative eye velocities with an update rate of 1 kHz. The authors restricted their

velocity measures to relative eye velocities, because the static LFI sensor was only capable

to measure speed in direction of the laser beam axis vT and thus rotational movements with

perpendicular components could not be measured with their setup.

This work builds up on previous works by Meyer et. al. [128, 4, 5, 133] to apply static LFI eye

sensors in near-eye setting to develop a high-speed gaze estimation method based on LFI

sensor technology.
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Figure C.2: Left: Sensing principle of an LFI sensor described by the coupled cavity model [6].
Right: LFI sensing element on a coin [4, 5].

C.1.6 Laser Feedback Interferometry Eye Tracking

The basic sensing principle of an LFI sensor can be described by the coupled cavity model as

shown in Figure C.2. A single mode VCSEL emits coherent light with optical power P0 through

the laser facet F2. The light propagates along the optical axis of the laser until it hits a target

(the eye) at distance Lext. Dependent on the target’s reflectivity R, a portion of the emitted

light is back-scattered and injected back into the laser cavity after the round trip time τext .

The round trip time is dependent on the external refractive index next and the speed of light c0.

The back injected light interferes with the local oscillating field of the laser, leading to a

perturbation of the lasers optical power through constructive or destructive interference

resulting in a modulation of the optical power P f b

P f b = P0
(
1−m cos

(
φext

))
. (C.1)

The modulation of optical power depends on the modulation index m, which attributes an

amplitude modulation, and the phase modulation φext through the cosine term. A small

fraction of the modulated power P ′
f b is measured by a photo detector integrated into the laser.

According to Taimre et al. [6], the external phase φext is linked via the signal phase φ0 of the

unperturbed laser with the desired observations (distance and velocity) by

φext −φ0 +C sin
(
φext +arctan(α)

)= 0 (C.2)

where C describes Acket’s feedback parameter and α Henry’s linewidth enhancement factor

[120]. Considering operation of the LFI sensor in the weak feedback regime (C < 1) and α to

be constant Equation (C.2) has only a single solution and φext is directly linked to

φ0 = 4πnext Lext

λ
, (C.3)

with laser wavelengthλ [6]. Assuming operation in free space (next ≈ 1), frequency modulation

of optical power through a modulation of phase φ0 requires either a change in distance Lext or

a change of the laser’s wavelength λ w.r.t. time. To separate both effects, the partial derivatives
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Figure C.3: Left: Images from reference camera. Center: Distance measurements of the LFI
sensor for different positions on the eye’s surface. Right: Derived geometrical system model.

∂λ
∂t and ∂Lext

∂t of Equation (C.3) are calculated leading to

f0 = 2Lext

λ

dλ

d t
(C.4)

and

fd = 2vext cos
(
γ
)

λ
, (C.5)

with f0 as distance corresponding beat frequency, fd as velocity corresponding Doppler

frequency, vext as eye velocity and γ as incident angle between eye and laser beam [125].

A modulation of the laser’s wavelength is achieved through modulation of the laser’s drive

current while a modulation of the Lext is achieved through a moving target. To measure target

distance as well as the target velocity simultaneously, a triangular modulation pattern of the

laser drive current is applied similar to FMCW LIDAR systems [126]. Therefore the update rate

of the LFI sensor directly corresponds to the triangle modulation rate, which can reach up to

100 kHz for spatial confined semiconductor VCSELs [125].

Geometric Eye Model

Similar to the discussed model based eye tracking approaches in Appendix C.1.3, we derive a

geometric model to link the LFI sensor measurements, in particular the distance measures,

to the pose of the eye and thus the gaze vector. To derive our eye model, a linear scan across

the surface of a healthy human eye is made while the eye is fixating on an object. Figure C.3

a) shows images taken by an IR reference camera while the IR laser beam1 (white spot) was

scanned over the participants eye. The scan direction is indicated by the red arrow. For each

scan position, the measured distance between laser and eye surface is shown. The distance

measurement follows the curvature of the sclera until it reaches the limbus. At this point,

the beam penetrates the cornea and hits the iris. If the beam hits the pupil, light is scattered

back from the retina and thus the distance towards the retina is measured. The measured

1Class 1 laser system according to IEC 60825-1
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total diameter of the iris is 12.17 mm, which fits well to average population [246]. From this

observation we derived a geometric model as shown in Figure C.3 b). The iris is modeled

as plane inside the eyeball with a distance di r i s between the center of rotation CS and the

iris center CI. The eye ball is modeled as two spheres, one sphere with radius rscler a to link

measured distances from the outer eye to the model, and a second sphere with radius rr et i na

to link measured distances from the inner eye to the model. In addition, the LFI sensors

are modeled as point sources with a pose Sn and a linear laser beam, hitting the eye at an

intersection point xn . The gaze vector is described as normal vector ni r i s perpendicular to the

iris plane. Similar to the geometric eye model proposed by Hennessy et al. [8], di r i s , rscler a

and rr et i na are considered as fixed parameters of the model, which are derived from average

population.

Multi LFI Sensor Simulation tool

S1

Sn

θ(t),φ(t)

Sn(t)

dn(t),vn(t)

xn(t)

p(d)

p(v)
d

v

dn(t),vn(t)

xn(t)

~ ~

System model

3D eye model

Sensor noise model

Figure C.4: Block diagram of the LFI simulation tool used to generate LFI measurement data
without human error.

In order to evaluate the proposed LFI gaze estimation system, we set up a simulation tool to

generate sensor data from arbitrary sensor poses Sn and gaze trajectories denoted by the tuple

(θ,φ). Compared to a laboratory setup, the simulation allows to evaluate the gaze estimation

accuracy while excluding human error e.g. through noise. Thus a simulated environment

allows for systematic investigation of the different algorithm steps on gaze accuracy.

Input of the simulation is a trajectory of eye positions described by a tuple of gaze angles

(θ(t),φ(t)) and the sensor pose Sn(t) of n sensors. The sensor pose Sn of the n-th sensor

consists of a sensor position sn and a direction pn describing the propagation direction of the

laser beam in the glasses’ coordinate space. The sensor pose can vary over time to investigate

the effect of glasses slippage on gaze estimation accuracy of the proposed system.

The input parameters are used to setup our system simulation inside a CAD program. The

sensors are modeled as point sources in space with a laser beam propagating towards the 3D

eye model. The parameters of the eye model e.g. rscler a , rr et i na or di r i s are derived from a 3D

scan of an human eye [247]. To fit the 3D eye model to the proposed geometric eye model

derived in Appendix C.1.6, the cornea and the lens are removed.

209



Appendix C. Static Laser Feedback Interferometry Eye Tracking

During the simulation, the eye is rotated by θ(t) and φ(t) while the sensor pose is updated

for each time step t sequentially according to Sn(t). At each time step, the beam of each

LFI sensor is propagated from the laser position sn along the laser beam direction pn to

calculate the intersection point xn(t) with the 3D eye model. The corresponding distance

measure dn(t ) is calculated as the Euclidean distance between sensor position and intersection

with the eye. In addition, based on the intersection point xn(t), the region of intersection

(none, sclera, iris, retina), which is hit by the laser beam, is extracted. The barely occurring

region none summarizes distance measurements not stemming from the eyeball e.g. distance

measurements from the lashes or the eye lid during a blink. To calculate the velocity vn(t)

measured by the LFI sensor Sn , the rotation axisω(t ) is calculated from the difference between

two gaze trajectory points. Afterwards, the velocity is calculated, e.g., for the sclera by

vn(t ) = Sn(t ) · (ω(t )×xn(t )) . (C.6)

However, the system model does not take into account sensor noise e.g. due to speckling

[248] leading to ideal LFI measurements, leading to ideal senor measures. Therefore we

add a sensor noise model to the simulation tool to incorporate sensor noise described by

N (0, σ2
d ) and N (0, σ2

v ). The parameters σ2
d and σ2

v of the sensor noise model are derived

from sensor characterization measurements. The final output of the simulation is a set of LFI

sensor measurement for each sensor and each time stamp, which is used as input for the gaze

reconstruction algorithm.

C.1.7 Gaze Reconstruction Algorithm

The general structure of the gaze estimator consists of three individual stages:

A Region of Intersection Classification: For each laser, determine the region of intersection

with the eye (none, sclera, iris, retina).

B LFI-Sensor Position and Pose Estimation: From measurements of all lasers with known

class-labels, estimate the sensor position and orientation of the lasers.

C Gaze Angle Estimation: For known sensor positions and with all labeled measurements,

estimate the gaze.

In the following sections, each of the three stages is detailed.

Region of Intersection Classification

For the classification, one crucial question is which signal(s) may be used for robust classi-

fication. From the measurements shown in Figure C.3 a) it is readily seen, that by means of

the distance signal, one could easily differentiate between the intersection point being on

210



C.1. Static Laser Feedback Interferometry based Gaze Estimation for Wearable Glasses

IrisstartSclera Retina

∆d < θi2s

∆d > θs2i ∆d > θi2r

∆d < θr2i

Figure C.5: Deterministic automaton on difference of distance signal for naive classification.

the sclera or on the retina. On the other hand, classification solely based on distance would

require some threshold value, which might have to be adapted in case of slippage.

Taking the time difference ∆dn of the distance signal could reveal useful information about

the laser position. Because the outer shape of the eye contains discontinuities, these will affect

∆dn significantly. Therefore, a possible naive classifier could be the deterministic automaton

shown in Figure C.5, operating solely on ∆dn .

The drawbacks of such automaton are that absolute distance information is neglected com-

pletely, and its susceptibility to noise in the distance signal. Also, the transition from sclera to

iris will cause a much weaker signal in ∆dn compared to a transition from iris to retina.

n(0)

s(0)

i(0)

r(0)

n(1)

s(1)

i(1)

r(1)

n(2)

s(2)

i(2)

r(2)

d(1) d(2)

Figure C.6: Hidden Markov Model for classification, depicted as lattice diagram.

We therefore propose to use both signals dn and ∆dn for classification in a probabilistic frame-

work. To do so, we set up a Hidden Markov Model (HMM) (see, e.g. [249]), which is depicted

in Figure C.6. Therein, the hidden (latent) states z(k) =
[

n(k) s(k) i (k) r (k)
]T

represent

the intersection region (none, sclera, iris, retina) at time k with a 1-of-K representation, i.e.,

zi (k) ∈ {0,1} and
∑

i zi (k) = 1. We assume a multinomial distribution for z with E [zi (k)] =πi

and p(z) =Πiπ
zi

i .

For the emission probabilities, we assume normal conditional distributions

p(d |z ) =
4∏

i=1
N

(
d

∣∣µi ,σi
)zi (C.7)
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of the measured distance d given a latent state z. Therein, µi ,σi are treated as unknown

parameters, which are to be inferred online. This resembles the fact that the absolute position

of the laser sensors are unknown a-priori, and might even change over time due to slippage.

With Equation (C.7), the joint distribution of latent and observed state at time instant k follows

as Gaussian mixture distribution

p(d) =∑
z

p(z)p(d |z ) =
4∑

i=1
πi N

(
d

∣∣µi ,σi
)

. (C.8)

In contrast to the emission probabilities with unknown parameters, the transition probabili-

ties p(zi (k)|zi (k −1),∆d(k −1)) can be specified well before-hand, if based on the measured

difference of distance. This is mainly due to the fact that eye-size varies only weakly among

healthy adults [250]. Hence, distance signal jumps during traversing of the laser signal from

one eye part to another may be treated as quasi-constant quantity, akin to the automaton in

Figure C.5. The strongest assumption in this regard is the spot size of the laser, which is not

infinitesimally small. Hence, for slow eye movements or short sampling times, the laser might

hit two neighboring eye-parts simultaneously, which might hinder transition detection.

The conditional probability of a latent variable given its previous value

p(z(k) |z(k −1) ) =
4∏

i=1

(
4∑

j=1
ai j z j (k −1)

)zi (k)

(C.9)

are assumed to be multinomially distributed with transition probabilities A = [
ai j (∆d)

]
shown

in Figure C.7. As can be seen, starting from the laser hitting the none region, zero or negative

distance change favors the classifier to remain in the none region, whereas a significant positive

distance change is likely due to a transition to sclera, iris or retina region dependent on the

magnitude of the distance change. A direct jump from sclera to retina is given zero probability

due to high sampling rate and limited eye movement. Same reasoning holds for the other

transition probabilities.
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Figure C.7: Modeled transition probabilities.

For the HMM, (approximate) inference has to be carried out online for sequential data, i.e.

measured distances d(k) and difference of distances ∆d(k). We make use of a rather standard

maximum likelihood-approach, namely Expectation Maximization (EM). A number of EM-like

algorithms have been developed for the case of HMMs, e.g., the forward-backward algorithm,

and the Viterbi algorithm (see [249] and the references therein). However, since the transition

probabilities A(k) are assumed to be known, and multinomial and normal distributions are

used, the implementation is significantly simplified, which is derived next.

If the complete-data {D, Z } = {d(k), z(k)},k = 1, . . . ,T, was known, inference of the unknown

parameters θ = {πi ,µi ,σi } could simply be carried out by maximizing the complete-data

log-likelihood function

ln p(D, Z |θ ) = ln
∏
k

p(z(k) |z(k −1), A(k) ) ·p(d(k) |z(k),θ ) =∑
k

ln p(z(k) |z(k −1), A(k) )+ ln p(d(k) |z(k),θ ) (C.10)

However, since the latent variables Z are not known a-priori, an iterative EM scheme is used.

During the expectation-step, the posterior p
(
Z

∣∣D,θ′
)

over latent variables are computed for

previous parameter set θ′ and measurements D . From Equation (C.10), one may readily derive
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the relation

p
(
Z

∣∣D,θ′
)∝ T∏

k=1
p(z(k) |z(k −1) ) p

(
d(k)

∣∣z(k),θ′
)

=
T∏

k=1

4∏
i=1

(
πi N

(
d(k)

∣∣µ′
i ,σ′

i

)∑
j

ai j (k)z j (k −1)

)zi (k−1)

. (C.11)

Furthermore, by taking the expected value, the responsibility

γ(zi (k)) := E [zi (k)] =
(∑

j ai j z j (k −1)
)
πi N

(
d(k)

∣∣µ′
i ,σ′

i

)∑
h
(∑

j ai j z j (k −1)
)
πhN

(
d(k)

∣∣µ′
h ,σ′

h

) (C.12)

is obtained. Note that for each time instance k Equation (C.12) depends on the current data

d(k) and due to the transitions on the latent variable of the previous time step z(k −1).

During the maximization-step, the latent variables are fixed in order to recompute the pa-

rameters θ. This is achieved by maximizing the log-likelihood function ln p(D |θ ), which is

obtained by marginalizing over Equation (C.10) for Z , yielding the expectation w.r.t Z :

EZ
[
ln p(D, Z |θ )

]=∑
Z

p(Z |D,θ ) · ln p(D, Z |θ ) . (C.13)

In order to make the computation tractable, θ′ is used within posterior p
(
Z

∣∣ X ,θ′
)
, yielding

Q
(
θ,θ′

)
:=∑

Z
p

(
Z

∣∣D,θ′
) · ln p(D, Z |θ ) . (C.14)

Thus, during iteration of the EM-scheme,

lim
θ′→θ

Q
(
θ,θ′

)= EZ
[
ln p(D, Z |θ )

]
. (C.15)

Substituting the complete-data log-likelihood Equation (C.10) into Equation (C.14) and

marginalizing over Z ,

Q
(
θ,θ′

)= T∑
k=1

∑
Z

p
(
z(k)

∣∣d(k),θ′
)

ln p(d(k) |z(k),θ )

+
T∑

k=1

∑
Z

p(z(k), z(k −1) |D ) ln p(z(k) |z(k −1),D ) (C.16)

is obtained, which is to be maximized w.r.t θ. Apparently, the second summand does not

depend on θ, hence only the first term has to be considered. Taking the derivative of Equa-

tion (C.16) w.r.t θ and solving for optimal parameter values yields known results for Gaussian
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mixture distributions [249]:

πi = Ni

T
= 1

T

T∑
k=1

γ(zi (k)), (C.17a)

µi = 1

Ni

T∑
k=1

γ(zi (k))d(k), (C.17b)

σi = 1

Ni

T∑
k=1

γ(zi (k))
(
d(k)−µi

)2 . (C.17c)

These update equations for the M-step assume availability of the full data set d(k),k = 1, . . . ,T .

They can however easily be rewritten as sequential update-equations for the online case:

Ni =
T−1∑
k=1

γ(zi (k))︸ ︷︷ ︸
N ′

i

+γ(zi (T )) (C.18a)

πi = Ni

T
, (C.18b)

Niµi =
T−1∑
k=1

γ(zi (k))d(k)︸ ︷︷ ︸
N ′

iµ
′
i

+γ(zi (T ))d(T ), (C.18c)

Niσi =
T−1∑
k=1

γ(zi (k))
(
d(k)−µi

)2

︸ ︷︷ ︸
N ′

iσ
′
i

+γ(zi (T ))
(
d(T )−µi

)2 . (C.18d)

Hence, only the statistics N ′
i , N ′

iµi , N ′
iσ

′
i have to be stored, rather than the entire set of mea-

surements growing over time.

The EM-procedure for an offline-available batch of data usually requires iteration between

the E- and M-steps until a certain convergence criterion is fulfilled, e.g., the log-likelihood

function or the parameters themselves.

Since we carry out the inference in an online fashion, it is justified to perform only one iteration

with each new datum. If θ is quasi-constant over time and sample rate is high, convergence of

the parameter estimation may be achieved over time.

Furthermore, the statistics Equation (C.18) are suitable in case of the parameters πi ,µi ,σi

being constant over time, since inherently, mean value computations are carried out in

Equation (C.18). For the present application, however, parameters might vary over time in

case of slippage of the wearable device. In this case, a certain forgetting property (see, e.g.,

[251], [252]), such that the most recent measurements have a more dominant impact on the

estimated parameters compared to outdated measurements.

A constant exponential forgetting factor however would require a persistence of excitation.
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For the considered application, this requires that each laser to collect measurements from

sclera, iris and retina region sufficiently often in order not to completely forget any learned

parameters.

We therefore modify the update equations in such a way that the old statistics are weighted by a

forgetting factor λi depending on the current responsibility γ(zi (k)) i.e., number of supporting

samples for cluster i and a desired number N∗ of past supporting samples, yielding:

λi = min

{
N∗−γ(zi (k))

N ′
i

,1

}
(C.19a)

Ni =λi N ′
i +γ(zi (T )) (C.19b)

πi =
λi (T −1)π′

i +γ(zi (T ))

λi (T −1)+1
, (C.19c)

µi =
λi N ′

iµ
′
i +γ(zi (T ))d(T )

λi N ′
i +γ(zi (T ))

(C.19d)

σi =
λi N ′

iσ
′
i +γ(zi (T ))

(
d(T )−µi

)2

λi N ′
i +γ(zi (T ))

(C.19e)

Loosely speaking, these modified update equations collect N∗ data points for each cluster and

forget about previous ones. Hence, forgetting is explicitly designed for each cluster depending

on the actual information, rather than having a constant forgetting independent of the cluster

support.

Updating Equation (C.19) will infer the model parameters over time. In contrast to the emis-

sion probabilities, the transition probabilities ai j are assumed to be given. This reasonable

assumption leads to a low number of parameters to be inferred. One shortcoming of this

approach however is the different treatment of sorting of clusters: The transition probabilities

assume a sorting µ1 < µ2 < µ3 < µ4, such that the labeling li z →
[

none,sclera, iris,retina
]

becomes possible. This sorting however does not hold a priori for the inferred parameters of

Equation (C.19). Depending on the initialization of z(0), the means of emission distributions

may not be sorted. A solution to this problem is to rearrange the clusters during each time

step, such that their means have an ascending order.

µ1 µ2 µ3 µ4

d

p
(d

|z
i
) none

Sclera
Iris

Retina

Figure C.8: Example normal distributions for conditional emission probabilities.
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Another shortcoming of this classifier is its limitation to the interpolation region. Figure C.8

depicts an exemplary mixture of normal distributions defining the emission probabilities. For

this known distribution, one can easily predict the most probable class for a measurement

d(k). However in the extrapolation region, shown as shaded area in Figure C.8, this might

lead to miss-classification. Consider in this example d ¿ µ1 or d À µ4. Then, one would

have highest probability for d belonging to the iris, but it is a none or retina point. As an easy

solution, clamping the measured distances to d ∈ [µ1,µ4] when evaluating the conditional

emission probability will lead to the desired behavior.

The classification is summarized as follows:

Algorithm 1 Classification Algorithm.

Init: N∗, z0

for k=1, . . . , T do

• get measurements d(k),∆d(k)

• update transition probability matrix A(∆d(k))

• update statistics Equation (C.19)

• sort clusters depending on µi in ascending order

• classify measurement d(k) by means of Equation (C.12) with d limited to the inter-

polation region.

end for

As a result, one obtains labels for each measurement, and in addition a vague model of the

eye.

This information is exploited in following steps, namely estimation of the sensor positions

and actual gaze angle estimation.

LFI-Sensor Position and Pose Estimation

In order to estimate the gaze angle, it is first necessary to determine absolute position and

orientation of the laser sensors mounted to the glasses. In the sequel, we denote the absolute

sensor position in glasses-fixed coordinates as sg ∈R3, a unitary orientation vector as p, and

denote xg as intersection point of laser beam with the eye surface in glasses-fixed coordinates.

These intersection points

xg,n = sg,n +dn pn (C.20)

can be easily computed from the known sensor position in the glasses frame and the (scalar)

distance measurement di .

The task is now to find the absolute position of the sensors sg,n ,n = 1, . . . , N in head-fixed
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coordinates, with N ≥ 3, and the origin of head-fixed coordinates being the eye ball center

point CS. The transformation between both coordinate systems may be denoted as

xh = R(ϑ,ϕ,%)xg + t , (C.21)

with rotation matrix R ∈ R3×3 and translation t ∈ R3. For the rotation matrix, we use the

common decomposition in roll, pitch and yaw

R(ϑ,ϕ,%) = Rz (%)Ry (ϕ)Rx (ϑ). (C.22)

The idea is to solve the task by means of trilateration given those measurements were classified

to be either a sclera or retina point. For these measurements, we have

‖xh,n‖ = r =
rsclera, li = s,

rretina, li = r.
(C.23)

due to the ball shape of sclera and retina. Substituting Equation (C.21) into Equation (C.23)

yields

xT
g,nRT Rxg,n +2xT

g,nRT t + t T t − r 2 = 0, (C.24)

which can be further simplied to

xT
g,n xg,n +2xT

g,nRT t + t T t − r 2 = 0, (C.25)

since R is unitary (i.e., RT R = I ), with the unity matrix I .

Collecting a batch of measurements of all lasers over time, in which the glasses position

is constant, Equation (C.25) constitutes a non-linear (possibly over-determined) system of

equations in the six unknowns ϑ,ϕ,%, tx , ty , tz .

Although non-linear in nature, one has good chances to solve this root-finding problem, e.g.,

by means of a Levenberg-Marquardt algorithm [253].

Gaze Angle Estimation

Having carried out classification of measurements and estimation of absolute sensor position,

the final step is now the actual gaze estimation. The main idea is to estimate and integrate the

angular velocity of the eye. Due to the unknown starting value of the integration, the initial

estimation θ′,ϕ′ will be corrupted by an offset. In order to compensate for this systematic

error, a surrogate model of the eye in eye fixed coordinates is learned over time, by which the

quasi-constant offset can be determined. This principle is depicted in Figure C.9.

218



C.1. Static Laser Feedback Interferometry based Gaze Estimation for Wearable Glasses

angular
velocity

estimation

Transformation
to eye-fixed
coordinates

Learn
eye model

Gaze offset
estimation

dn

vn
sh,n

θ̇, ϕ̇ θ′, ϕ′ xe,n

eye
model θ0, ϕ0 θ, ϕ

xh,i

Figure C.9: Gaze estimation principle.

In order to estimate the angular velocity of the eye, we first denote the intersection points of

the laser sensors with the eye surface in spherical coordinates

xn(r,θ,ϕ) = r

cosθcosϕ

sinθcosϕ

sinϕ

 . (C.26)

In addition to a distance proportional signal, each laser returns a velocity signal, which is the

projection of the surface velocity at intersection point xi in direction pi of the laser beam.

Thus,

vn = −pT
n

(
∂xn

∂r
ṙ + ∂xn

∂θ
θ̇+ ∂xn

∂ϕ
ϕ̇

)
= −pT

n

(
xn

‖xn‖
ṙ + ∂xn

∂θ
+ ∂xn

∂ϕ

)
(C.27)

holds. Obviously, for a laser beam hitting the sphere-like sclera or retina, ṙ = 0 follows in

case of no slippage, i.e., the measured surface velocity is only due to eye rotation. For a laser

hitting the iris however, the change of ri = ‖xi‖ has to be taken into consideration for the

velocity signal. In the following, we will regard the change of radius by means of a first order

approximation

ṙ ≈ ‖xn(k)−xn(k −1)‖/Ts. (C.28)

Defining θ and ϕ as rotations about the x- and z-axes, i.e. eθ = ex =
[

1 0 0
]T

eϕ = ez =[
0 0 1

]T
Equation (C.27) constitutes for all lasers n = 1, . . . , N a linear system of equations

[
−pT

n (eθ×xn) −pT
n

(
eϕ×xn

)][
θ̇

ϕ̇

]
= vn − xn

‖xn‖
ṙn , (C.29)

which can be solved during each time step by means of a (pseudo-) inverse. At this point, we

omit a lengthy discussion on existence and uniqueness of the solution of Equation (C.29).

Integrating the estimations of angular velocities yields θ′ = ∫ T
0 θ̇ dt, ϕ′ = ∫ T

0 ϕ̇ dt, with yet

unknown starting values θ0,ϕ0. In order to compensate for these offsets, all eye-surface points

xh,i measured in head-fixed coordinates are transformed into eye-fixed coordinates by means

of

xe = Rz (ϕ′)Rx (θ′)xh. (C.30)

Note that we have neglected rotation around the yh-axis (rolling) of the eye.
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The xe are then used to parameterize a surrogate model for the eye shape in order to determine

the quasi constant offset θ0,ϕ0 with regard to a neutral viewing direction (θ = ϕ = 0). In

principle, several surrogate models are applicable to achieve this task. 2D-tensor splines

for example could be used to represent the entire outer shape of the eye. We are, however,

interested in a minimal representation of the eye, to reconstruct the initial gaze direction.

Since information about the viewing direction is mainly given by means of iris-intersection

points, it is sufficient to consider only these points. Then, a simple plane representation

nT
irisx = diris (C.31)

of the iris as depicted in Figure C.10 is a suitable choice. There are four parameters in total,

which might be reduced to three if diris is preset to a reasonable value. In any case, since the

problem is parametric linear, it can be solved by means of a recursive least squares (RLS) with

exponential forgetting [251].

xh

yh

zh

ϕ0

Figure C.10: Simple iris model.

From the estimated parameters of Equation (C.31), the desired offset parameters for the gaze

are then given by

θ0 = arcsin
niris,z

‖n‖ , (C.32a)

ϕ0 = arctan
−niris,x

niris,y
, (C.32b)

which in a last step gives the final gaze estimates

θ = θ′+θ0, (C.33a)

ϕ=ϕ′+ϕ0. (C.33b)

C.1.8 Evaluation

In this section, the proposed static LFI gaze estimation approach is evaluated including the LFI

sensor measurement noise characterization, the region of intersection classification accuracy

as well as the gaze estimation accuracy in presence of glasses slippage.
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LFI Sensor Characterization

For accurate simulation of multi LFI sensor measurements generated by the simulation tool

introduced in Appendix C.1.6, the sensor distance and velocity measurement noise need to

be characterized. For this purpose, a similar lab setup as proposed by Capelli et al. [245] is

used. A disk with a diameter of 24 mm is rotated with a precision rotation stage2, while the

LFI sensor is mounted on a precision linear stage3 so that the laser beam hits the disk with an

incident angle γ of 45 ◦. The linear stage simulates distance variations of 20 - 30 mm, which is

reasonable for a near-eye setting, while the rotating disk simulates rotational eye movements

with velocities up to 500 ◦/s.
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Figure C.11: Sensor noise characterization results over the whole range of eye rotational
velocities and distances. Left: Variance of distance measurements, Right: Variance of velocity
measurements.

Figure C.11 shows the resulting sensor noise for distance (red) as well as velocity (blue) mea-

surements over the whole parameter space. The LFI sensor is capable of resolving the whole

range of eye velocities up to rare occurring saccades with amplitudes up to 500 ◦/s. Especially

for small distances and high velocities above 300 ◦/s the sensor noise increases as indicated

by the gradient vectors in Figure C.11 due to limitations of the current electronics to resolve

the signal. Compared to the work of Capelli et al. [245], who reported a maximum velocity

error of 10 %, we achieved one of 2.8 % while measuring distance and velocity simultaneously.

To exclude errors stemming from electronic limitations, we limit the velocity range to 300 ◦/s

from which σ2
d and σ2

v are derived. The resulting sensor noise characteristics used for further

simulation are 66.85µm and 2.95◦/s for σ2
d and σ2

v, respectively.

Region of Intersection Classification

The region of intersection classification is the first stage of the proposed gaze estimation

algorithm, introduced in Appendix C.1.7. To evaluate the performance of the classifier, we

simultaneously sample a Pupil Labs V2 Core eye camera at 200 Hz and an LFI sensor at 1 kHz.

2Jenny Science ROTAX Rxhq 50-12
3Jenny Science ELAX Ex 50F20
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Both sensors are pointing towards the eye of an participant4. From the camera images, ground

truth labels denoting the region of intersection hit by the IR laser were derived.
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Figure C.12: Left: Reference camera images taken to derive ground truth labels of the left LFI
sensor. Right: Measured distance of the left LFI sensor with corresponding label derived by
the proposed classifier highlighted in color.

The measured distances d of the LFI sensor are fed into the proposed HMM classifier to

derive classification labels. As the sample rates of LFI sensor and camera sensor differ, we

up-sample the labels derived from the camera sensor from 200 Hz to 1 kHz by using nearest

neighbor (NN) up-sampling. Figure C.12 shows the distances measured by the LFI sensor

and the corresponding labels estimated by the classifier highlighted in color. Additionally,

images of the VOG eye camera are shown, where the intersection of the LFI sensor with

the eye is marked by a bright spot in the IR camera image. Classification was made for

the left IR spot in the camera frames. The proposed HMM classifier reaches an macro F1-

score of 94.42 %. Classification mismatches occurs mainly between sclera and iris due to the

overlapping probability distributions of the two classes. In addition, the ground truth labels

are derived from the 200 Hz camera frames and up-sampled using NN up-sampling, leading

to an inaccuracy of ground truth labels and thus affect the classification accuracy.

LFI-Sensor Position and Gaze Estimation

To evaluate the sensor position and gaze estimation accuracy of the proposed system, we

used the multi LFI sensor simulation introduced in Appendix C.1.6 to generate distance as

well as velocity measurement trajectories for a setup of 6 LFI sensors. In order to take into

account sensor noise, we initialized the sensor noise model with the parameters obtained by

the sensor characterization as described in Appendix C.1.8. To evaluate the robustness of the

proposed gaze estimation algorithm, we used a human eye movement trajectory captured

by a Pupil Labs V2 Core eye tracker sampled at 200 Hz. We then up-sampled it similar to the

ground truth labels in the previous section to 1 kHz by NN up-sampling before feeding the

trajectory into the system simulation.

4Class 1 laser system according to IEC 60825-1
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Figure C.13: Top: Original and estimated eye ball center CS. At t = 25 s the glasses slip
2 mm towards the eye and 2 mm up the nose. Center: Original gaze angle θ and ϕ (dashed
blue), estimated gaze angle θ′ and ϕ′ (orange) and estimated gaze angle θ and ϕ with offset
compensation (purple) Bottom: Absolute gaze angle estimation error in ◦.

In addition, we let the sensors slip at t = 25 s ∆CSy =−2mm towards the eye and∆CSz = 2mm

along the nose to investigate robustness against slippage. At t=52 s the glasses slip back to their

initial position on the nose. We choose a step like slippage trajectory, as worst case assumption

for glasses slippage. Figure C.13 a) shows the original sclera center CS (dashed) and the

corresponding estimation from our algorithm. As the estimation relies on trilateration, our

approach is capable of immediately re-estimating the eyeball center in presence of slippage.

The root mean squared error (RMSE) of the eye ball center estimation is 76.39µm and the

mean absolute error (MAE) is 123.11µm, which both are close to the distance noise limit of an

individual sensor. Therefore, the eye model can be reconstructed precisely with a minimum

error, which is mandatory as inaccuracies in the eye model reconstruction directly impact the

gaze estimation accuracy.

Figure C.13 b) and c) show the gaze estimation for both angles θ and ϕ. The original human

eye movement trajectory (dashed blue) starts with random eye movements with different

velocities during the first 20 seconds, followed by a reading part between t = 30 s and t = 60 s

and finally slow eye movements and two fixations at the end of the trajectory. With this

eye movement trajectory profile, a variety of eye movements from fixations to saccades are

covered.

The reconstruction of the gaze angles by integration of the measured velocity (orange) intro-

duces especially for θ a large offset error. The RMSE and MAE error of the uncompensated

gaze estimation is 5.28 ◦ and 6.14◦ respectively. Therefore, the compensation of the offset is

mandatory. For this purpose, we introduced the surrogate model as given by Equation (C.31)

to continuously compensate gaze estimation offsets arising from integration of measured rota-
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tional velocity. With this additional step, the gaze estimation error declines and the estimated

trajectory follows the original trajectory (cyan dashed) closely. The RMSE and MAE error of

the compensated gaze estimation is 1.79 ◦ and 2.32 ◦, respectively.

The absolute error shown in Figure C.13 d) rises during fast saccadic eye movements and starts

declining over time if slower and controlled eye movements dominate the trajectory and the

offset compensation starts to correct the velocity integration error.

C.1.9 Discussion and Limitations

The proposed LFI eye tracking approach is capable of tracking the eye robust in presence

of glasses slippage. Furthermore, the sensor fusion and gaze estimation approach is able to

estimate the optical axis of the eye without additional calibration, which fosters immersion of

AR glasses and thus improves user experience.

Compared to a slippage robust VOG eye tracking system like the Tobii Pro Glasses 2 with stereo

camera sensors and additional IR LEDs, our LFI eye tracking approach achieves comparable

gaze accuracy [93] with a lower power consumption. Furthermore, our system is not limited in

the FOV, as we do not solely rely on tracking the pupil, but on the measurement of rotational

speed on the entire eyeball.

The main limitation of the proposed LFI eye tracking system is that the surface of the eye

must be hit by the laser beams to measure the rotational velocity of the eye. Therefore, it is

possible that incorrect velocity measurements stemming from the none region (lashes or lids)

could lead to a gaze estimation error if the laser sensor e.g., during blinking or squinting the

eye. Therefore, measurements classified as none need to be handled separately during gaze

estimation.

Finally a calibration routine is required to calibrate once the individual sensor poses Sn within

the glasses coordinate system, as the proposed algorithm assumes a fixed known sensor pose

within the glasses coordinate system.

C.1.10 Conclusion

In this work, we present a novel eye tracking sensor system based on static LFI sensors. In

addition to the novel sensing modality, an eye tracking algorithm is proposed, which is capable

to fuse distance and velocity measurements of multiple static LFI sensors by means of an

optimized geometric eye model. We further focus on a lightweight implementation of the

different stages of the algorithm to be able to integrate the whole system into lightweight AR

glasses. In addition, we derived a geometric eye model and characterized the sensor noise

to build up a multi LFI sensor simulation tool to generate measurement data for a multi

LFI sensor setting while excluding human error. With the generated data we evaluated the

proposed LFI system and achieved a gaze accuracy of 1.79 ◦ at an outstanding sampling rate of
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1 kHz.

Based on the promising results of this work, we will investigate the achievable gaze estimation

accuracy including human error by building up a head worn demonstrator in future work. In

addition, we will investigate the combination of the proposed multi LFI system with a low

frame rate camera sensor as reference to combine the high accuracy of VOG systems with the

outstanding update rate of the proposed LFI sensor system.
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