
FabHacks: Transform Everyday Objects into Functional Fixtures
YUXUAN MEI, University of Washington, USA
BENJAMIN JONES, University of Washington, USA
DAN CASCAVAL, University of Washington, USA
JENNIFER MANKOFF, University of Washington, USA
ETIENNE VOUGA, The University of Texas at Austin, USA
ADRIANA SCHULZ, University of Washington, USA

Fig. 1. We created FabHacks, a design system for “home hacks” built from repurposed everyday objects. The system is built on FabHaL, our domain-specific
language for representing rigid fixture hacks. This solver-aided DSL is equipped with verification and solving functionality to help the user finalize their
designs. Here we show two hacks, each with the set of everyday items to build it, the solved configuration from our system, and the design fabricated in the
real world. Left: the birdfeeder hanging hack made of S-hooks, eyehooks, sticky hooks and a hanger. Right: the reading nook hack made of obstacle rings, toy
ringlinks, S-hooks, turnbuckles and a hula hoop; the environment for the reading nook hack was scanned and calibrated with the PolyCam mobile application.

Storage, organizing, and decorating are an important part of home design.
While one can buy commercial items for many of these tasks, this can be
costly, and re-use is more sustainable. An alternative is a “home hack”,
a functional assembly that can be constructed from existing household
items. However, coming up with such hacks requires combining objects to
make a physically valid design, which might be difficult to test if they are
large, require nailing or screwing something to the wall, or the designer has
mobility limitations.

In this work, we present a design and visualization system for creating
workable functional assemblies, FabHacks, which is based on a solver-aided
domain-specific language (S-DSL) FabHaL. By analyzing existing home hacks
shared online, we create a design abstraction for connecting household items
using predefined types of connections. We provide a UI for FabHaL that can
be used to design assemblies that fulfill a given specification. Our system

Authors’ addresses: Yuxuan Mei, University of Washington, Seattle, USA; Benjamin
Jones, University of Washington, Seattle, USA; Dan Cascaval, University of Washing-
ton, Seattle, USA; Jennifer Mankoff, University of Washington, Seattle, USA; Etienne
Vouga, The University of Texas at Austin, Austin, USA; Adriana Schulz, University of
Washington, Seattle, USA.

leverages a physics-based solver that takes an assembly design and finds
its expected physical configuration. Our validation includes a user study
showing that users can create assemblies successfully using our UI and
explore a range of designs.

CCS Concepts: • Computing methodologies → Graphics systems and
interfaces; • Human-centered computing→ Interaction design.

Additional Key Words and Phrases: domain-specific languages, computer-
aided design, fabrication, sustainability

1 INTRODUCTION

In nature nothing is lost, nothing is created, everything is
transformed.

Antoine Laurent de Lavoisier

Everyday life presents all kinds of challenges that we are con-
stantly trying to solve, from common wear and tear like stubborn
stains on the stovetop, a loose outlet, to a cluttered space like a

ar
X

iv
:2

40
1.

15
27

9v
1

 [
cs

.G
R

]
 2

7
Ja

n
20

24

2 • Mei et al.

full countertop or a messy desk. As a result, we are bombarded by
advertisements for the latest cleaning or organizational tool or stor-
age solution that promises to improve our lives. It is very tempting
to just make one more purchase in a world of next-day-delivery,
but this agglomeration of yet more products is wasteful, costly,
unsustainable, and oftentimes unnecessary.

Instead, a thriving subculture is growing on the Internet of shar-
ing “home hacks” that repurpose common household items into
cost-effective and environmentally-friendly solutions. For example,
rubber bands can be used to bind tissues on tongs, which can then
be used to clean blinds; or multiple hangers can be chained together
with soda can tabs to make more effective use of the vertical space
in a closet. We analyzed the space of home hacks (see the full anal-
ysis in Appendix A) and found that they can be divided into two
categories based on their functionalities. One category, such as the
blinds-cleaning tool, makes creative reuse of a single item to change
the shape or feel of an existing object, allowing for better grasp-
ing or easier interaction. The other, including the chained hangers,
usually involves assembling multiple items into a structure that
holds something at a specific location and orientation relative to
the environment. We term the latter “fixture hacks” because their
goal is to build an assembly that can fix some target object in an
environment. Our analysis found that rigid undeformed fixtures (i.e.,
made up of rigid parts that are combined together but not deformed
or modified destructively) are typically used in fixture hacks, so in
this work, we focus on this well-scoped subset.

Replicating fixture hacks at home might be straightforward with
step-by-step instructions but inventing new hacks requires insight,
creativity, experimentation, access to all of the parts, and access
to the home environment. Furthermore, fixture hacks often in-
volve multiple objects that interlock and mechanically interact,
and gravity can affect a design’s stability, making physical pro-
totyping necessary to designing a hack. However, physical pro-
totyping is not always possible, not only for people with limited
mobility, but also in situations where not all parts are available,
or prototyping would alter one’s home permanently. For example,
suppose a user wants to add baskets to their closet for storage, and

wants to hang the bas-
kets using a combination
of surplus items such
as hangers, hooks, or
clips (see inset). Choos-
ing the right basket size
and shape to purchase is
a chicken-and-egg prob-

lem: the user wants confidence that the assembly will fit and hold
together, which is difficult to determine without physically proto-
typing the assembly to discover what works. Even with the right
baskets on hand, if setting up the baskets may cause irreversible
changes on the wall or closet surface, the user might prefer to have
a design that they are satisfied with before drilling a hole.
A key contribution of this work is a representation of fixture

hacks that is well-suited to computational design. We use this rep-
resentation to build a novel design system FabHacks built on top
of FabHaL (short for FabHacks Language), a Solver-aided Domain-
Specific Language (S-DSL) for designing home hacks that allow

users to experiment with designs virtually and simulate their de-
signs under gravity.

The main insight that informed our DSL design is that despite the
variety of objects involved in rigid fixture hacks, these objects attach
to each other via a small number of common types of connector
primitive (Figure 2) on each object. For example, the handle on a
mug, the top hook on a hanger, and the handle on a basket can
all be represented using a “hook” primitive as shown in Figure 5.
The connector primitive concept is thus an important component
in FabHaL: these symbolized categories abstract away the complex
low-level geometry of each object that is irrelevant to how objects
can be combined or to the overall function of the combined assembly.
We also identified rules governing the interaction of pairs of

connector primitives. Such behavior is local to the pair of primitives
that forms the connection. For example, a hook can slide along a rod

Fig. 3. Three examples of rod-hook
connections.

and flex about it, and this
behavior is valid regardless
of whether the rod is part
of a closet, a shower, or an
ironing board (see inset Fig-
ure 3). We parameterize all
possible ways two connec-

tor primitives can touch in our DSL. To further reduce the need for
users to reason about low-level details, our DSL also enforces geo-
metric compatibility constraints on two primitives being connected.
For example, for a hook to connect to a rod, the hook’s hoop radius
must be larger than the rod’s radius. We discuss in more detail the
connection behavior and compatibility constraints for each pair of
connector primitive types in Section 4.
We assume that the goal of any fixture hack is to hold a target

object in place at a specific position and orientation in space. We
also assume that every hack is attached to a fixed environment
(table, wall, ceiling hook, etc.). To define an assembly in FabHaL,
users specify (1) the environment, target object, and target object’s
location and orientation; (2) the list of objects that comprise the
hack; and (3) which pairs of connector primitives on each part (or
target object or environment) should attach to each other. Note
that the FabHaL program does not pin down each part’s placement
in space, and is therefore a partial specification [Phothilimthana
et al. 2019; Torlak and Bodik 2013] that is later completed by the
solver, which solves for the final configurations of all the parts
in the hack assembly under the effect of gravity, subject to all of
the connection constraints. Our fixture hack representation allows
users to experiment with hack designs at a high level, focusing on
which connector primitives to connect; the low-level details of how
they connect are abstracted away by the DSL and handled by the
underlying solver. FabHaL as a programming language also supports
parametric program creation and (with the help of the solver) users
can easily search over a family of designs.

Advantages over CAD. In principle, CAD software can be used
to model and test new hack designs. However, modeling complex
assemblies with today’s computational tools requires a high degree
of CAD expertise, and does not allow users to focus on high-level
design details. Even after an assembly has been digitized as a CAD
model, analyzing whether it holds together under gravity requires

FabHacks • 3

Fig. 2. We analyzed 24 rigid undeformed fixture hacks and extracted eight connector primitive types found on objects in those hacks. Each connector is shown
next to an example hack where it appears. The eight example hacks (left to right, top to bottom) are cup hanger (No.24), scarf organizer (No.22), toothbrush
holder (No.7), charger holder (No.18), bathroom organizer (No.11), nonslip hanger (No.3), pants hanger (No.8), soap bottle bag (No.1) as numbered in Table 3.

other tools. The closest CAD equivalent to our approach is a mate
connector : a local coordinate system on a CAD part or surface that
defines how to orient a part relative to another part or surface. How-
ever, mate connectors are usually single-origin coordinate systems
and have limited degrees of freedom. They are more suitable for rep-
resenting a mechanical assembly where parts fit snugly over each
other, leaving only a few degrees of freedom for the overall motion
of the assembly. In contrast, the everyday hacks that inspired our
system (see Figure 16) consist of many loose connections, like a
hook dangling over a rod, or a ring with a much greater radius than
the hook it’s attached to. Our connector primitives can more easily
represent and model these loose connections, as we establish via a
user study.
Moreover, if the object geometry comes in other formats such

as point clouds from scans, voxels, or inaccurate STLs, users need
to create a B-rep model from these inputs before they can specify
mate connectors in CAD tools. FabHacks can accept any format and
simply requires it be tagged with paramaterized connector primi-
tives. For example, in the reading nook hack in Figure 1, right, we
scanned the room and used it as the geometry for the environment
in this hack design. We created an OnShape plugin (Figure 5, top)
that can be used to tag the connector primitives on geometry that
comes in various formats.
In summary, our contributions include:

• a representation for fixture hacks based on eight common
types of connector primitives extracted from an analysis on
the space of home hacks (Appendix A);

• a solver-aided DSL (Section 4) that effectively captures the
domain knowledge of modeling connections and simulation
and thus allows users to focus on the high-level design;

• a design interface (Section 5.1) that builds on top of the
S-DSL and is validated with user study results (Section 6.2).

We validate our system design with a UI-based user study, where
we compare our user interface to a traditional CAD tool formodeling
home hacks and find it to be more efficient and intuitive to use, and
that it can produce models which are more faithful to the real-life
assemblies.

2 RELATED WORK
Assembly design is important in manufacturing industries. Various
tools have been developed for this task, including computer-aided
design tools. Existing CAD tools [Onshape 2023; SOLIDWORKS
2023] contain constructs for defining assemblies of parts using mate
constraints. To use these, users must select both the relevant parts
of two objects that should be mated and a type of mate; a solver
will then yield a valid result under the constraints. This frees the
user from having to manually create coordinate systems on part
geometries and define constraints on them to position two parts.

However, mates are tricky to reason about: multiple different mate
types between two parts could appear to encode the same kinemat-
ics, only to be shown different later in the design process when
another part is added that further constrains the existing degrees of
freedom. In addition, mates require the user to carefully specify the
position and orientation of each part and tightly align them. Recent
research [Jones et al. 2021] provides mating suggestions but some
level of modeling expertise is still required. Moreover, as discussed
in the Introduction, the tightly-aligned constraints between parts
common in CAD assemblies do not always adequately model the
“looser” connection constraints in fixture hacks.

Lastly, performance analysis is also important during assembly
design. Existing CAD tools are primarily concerned with analyzing
the kinematics of mechanical assemblies and evaluating whether
they achieve the desired concerted motion. In contrast, evaluating
the performance of rigid fixture hacks that we focus on means
measuring their stability as a hanging assembly under gravity. This
type of simulation-based analysis is either completely separate from
current CAD design tools or exists with the CAD tool as part of a
software suite that requires additional expertise to use.
In this work, we propose FabHacks based on the FabHaL DSL

that addresses the specific challenges posed by the domain of fixture
hack design. We survey recent research related to our approach.

Solver-aided DSLs. DSLs have proven effective at abstracting away
expert knowledge and allowing non-experts to create valid designs
but they are, by definition, designed for a specific domain of ap-
plications. Several works [Jones et al. 2020; Zhao et al. 2020] have
used DSLs for geometric modeling in specific domains like simu-
lated terrestrial robots and cuboid-based 3D shapes; they define a

4 • Mei et al.

DSL and try to synthesize programs in the DSL given some specific
objectives. DSLs can also be used for specifying designs and fab-
rication plans for carpentry [Wu et al. 2019; Zhao et al. 2022] and
program synthesis techniques can be introduced to help with the
optimization.

In this work, we also propose a DSL (FabHaL) specifically for fix-
ture hacks. FabHaL imitates the paradigm of solver-aided languages,
where a user can partially specify a program (vastly reducing the
search space) while leaving certain sections (such as expressions, or
parameters) abstract [Torlak and Bodik 2013]. An external solver
is then invoked to concretize the partially specified program into
a complete one, which can then be executed to verify the result.
This paradigm has proven useful in a number of domains in the
programming languages community such as program deobfusca-
tion [Jha et al. 2010], synthesizing GPU kernels [Phothilimthana
et al. 2019], and validating and planning biology experiments [Fisher
et al. 2014]. The same technique has also been used in user interface
designs [Hottelier et al. 2014] for resolving potential conflicts in-
troduced in the constraints of a layout design and in mathematical
diagram designs [Ye et al. 2020] for automatically placing visual
elements given a user-defined specification. In our case, users can
specify the skeleton of connections between primitives while leav-
ing the precise placements of parts to be filled in by a solver and
the solver could also provide feedback to users, such as informing
the user of whether a connection is valid.

Generative Design of Connectors. Existing works on modeling con-
nections or creating connections involve generating new connection
geometry. Koyama et al. [2015] propose a tool for automatically gen-
erating structures that could be 3D printed given a user specification
to hold or connect two objects. Hofmann et al. [2018] also gener-
ate connections between objects and support the specification of
assembly information and constraints affecting the assembly, but
do not automate solving for those constraints. In addition, both
works focus on manufacturing new parts, in contrast to our focus
on exclusively reusing existing objects.

Sustainability in Design and Fabrication. Sustainability consider-
ations have become increasingly prevalent in our everyday lives
and in fabrication research communities [Yan et al. 2023]. Our work
explores the general question of how to fabricate more sustainably.
In this space, prior work explored how fabrication can reduce waste
through using 3D printing to fix broken objects [Lamb et al. 2019;
Teibrich et al. 2015] and reusing materials, such as plastic bags [Choi
and Ishii 2021] and yarns [Wu and Devendorf 2020]. Another line
of work is to augment existing objects with fabrication to achieve
repurposing [Davidoff et al. 2011; Guo et al. 2017; Ramakers et al.
2016], such as by generating structures for re-interfacing with robot
arms, legacy physical interfaces, or appliances. Chen et al. [2018;
2015; 2016] use 3D printing to augment existing objects with ad-
ditional functionality (some involving mechanisms), while Arabi
et al. [2022; 2022] and Li et al. [2020; 2019; 2022] focus more on
augmenting robots using everyday objects or mechanisms to help
robots manipulate objects.
Our research looks at how to use rigid everyday objects of any

shape without modifications to build a hanging fixture. Our work
stands apart from the above literature landscape in that we consider

how multiple objects fit together into an assembly; the above work
instead augment one specific object to allow robotic manipulation
or to create a mechanism. (For example, none of the above work
could be used to design the hanging bird feeder in Figure 1 that
makes use of several different parts.)

3 SYSTEM OVERVIEW
Since our motivation for the FabHacks system is to allow users
to create hack designs without requiring domain knowledge of
geometric modeling or simulation, we embed the domain knowledge
within the components of our system. Consider as an example a
novice user designing a birdfeeder to hang between two hooks using
FabHacks (see Figure 4).

Annotated Object Library. First, the user selects from the Anno-
tated Object Library the parts they would like to repurpose into their
home hack. The Library contains 3D models of a variety of everyday
objects, each annotated with the eight types of connector primitives.
We call these annotated objects in the Library “parts”. In addition
to labeling regions of a part with a connector primitive type (such
as “hook”), the annotations specify the values of any connector-
primitive-type-specific parameters needed to define the geometry
of the primitive. For example, we show in Figure 5, bottom, three
example parts that have been annotated with a hook primitive, each
parametrized to match the exact radius and thickness of the hook
geometry in that part.
We stress that the user does not typically need to do any 3D

modeling or annotation themselves, but rather can select parts from
the predefined library. All examples in this work use a proof-of-
concept library of 47 parts: 22 parts that can be used to model the
fixed environment or the target object that is to be held fixed in place
by the hack, and 25 everyday objects rich in connector primitives
that are promising for use as components of a home hack. To build
this database we extended the OnShape CAD modeling system’s
API to support part annotation. Our plugin (see Figure 5, top) allows
a user to import a 3D model of a part and add connector primitives.
In this way, the Annotated Object Library can be extended (either
because the user wishes to include a bespoke part in their hack that
doesn’t have a good match in the existing library, or as part of a
community effort to expand the library). When a primitive is added
to a part, parameters are set interactively to ensure the connector
aligns with the part.

FabHaL. Next, the user assembles parts into a hack design using
FabHaL, our solver-aided domain-specific language. A FabHaL pro-
gram is a partial specification of a home hack design: a sequence
of instructions to attach a specific connector primitive on one part
to a specific connector primitive on another. Users can also write
parameterized FabHaL programs; for example, they can specify that
a hack should include a chain with an unknown number 𝑁 of links.
The solver will search automatically over 𝑁 for valid hack designs
(see Section 4.4). We describe the FabHaL language in more detail
in Section 4.
Users have two ways of interacting with FabHaL to create hack

designs: either directly writing programs in the FabHaL language, or
by using the FabHacks graphical interface to click on two connectors

FabHacks • 5

Fig. 4. The overview of the FabHacks system. The user can either directly code in FabHaL or use the UI to create programs. FabHaL programs build on top of
an annotated object library and the FabHaL DSL. They are partial specifications of parts and the connections between them, and the 3D configurations of the
parts are then completed by the automatic solver. Users can get visual feedback from the program viewer after this solve and use the feedback to iterate on
the design. Finally, when satisfied with the design the user fabricates the hack in the real world.

thickness

arc angle

arc radius

Fig. 5. Top: the OnShape plugin for tagging 3D models with the eight
connector primitives. Bottom: an example showing how we defined the
hook shape parametrically with its arc angle, arc radius, and thickness, and
three parts tagged with a hook primitive each with different parameters.

of two parts to connect them. In either case, note that the user does
not need to write down any kinematic constraints: these are inferred
automatically by FabHacks from the part annotations.

Solver-aided Evaluation. Finally, the user asks FabHacks to realize
the hack design in 3D space using a constrained optimization solver
(see Section 4.3). Our solver checks whether the part connections
are feasible and, if so, relaxes the 3D positions of the parts under
gravity and presents the final, solved configuration visually to the
user. Problems with the design are also reported to the user (such
as infeasible connections or parts that would fall off the assembly if
relaxed under gravity). In response to this feedback, the user can

(a) Toothbrush Holder (b) Charger Holder

(c) Soap Bottle Holder (d) Mug Hanger

(e) Paper Towel Holder (f) Diaper Caddy

Fig. 6. Six hacks created by directly programming in FabHaL, with photos
and renderings of the corresponding programs (see Appendix B) in our
viewer.

make iterative improvements to the FabHaL program and solve
again.

4 AN S-DSL FOR FABHACKS
In this section, we introduce the S-DSL FabHaL for representing
rigid fixture hacks. Figure 6 shows some example designs that can
be represented in this language.

The design decisions for FabHaL are two-fold.
First, the language design of FabHaL is motivated by our analy-

sis of home hacks (see Appendix A), which found that objects in

6 • Mei et al.

home “fixture hacks” are typically connected via a small number of
common shapes, which we term connector primitives. We will define
connector primitives in detail in Section 4.1.

The language design is also guided by our goal to use the DSL as a
vessel for domain knowledge. Our hope is that this DSL allows users
without any prior experience in modeling or simulation to design
fixture hacks. Therefore, being straightforward and succinct is an
important desideratum. To achieve this, we choose to introduce a
solver to complete a partial specification of the hack design where
the user only needs to specify the configuration for a target object
and its environment, and which connector primitive connects with
which. We will introduce the simple syntax and example usage in
Section 4.2, and the solver behind it in Section 4.3.
Lastly, we discuss the implementation choices and show an ex-

ample application of a parametrized FabHaL program in Section 4.4.

4.1 Connector Primitives

hook hole hemi. edge rod tube clip surf.
hook ✓ ✓ ✓ ✓
hole ✓ ✓
hemi. ✓
edge ✓
rod ✓ ✓
tube ✓ ✓
clip
surf. ✓

Table 1. A table showing which pairs of primitives can be connected. A
checkmark means that connection is currently allowed by the DSL and a
light grey cell means it is not. We ignore the lower-triangular region (dark
grey) as it is redundant with the upper-triangular region.

FabHaL includes eight types of primitives: a hook, a rod, a hole, a
tube, a hemisphere, a clip, an edge, and a surface, which can be as-
signed to a wide variety of objects as described in System Overview
(Section 3).We summarize the connectivity between these primitives
in Table 1 and what shape parameters we use to parametrize a prim-
itive’s geometry in Table 2. Next, we explain in detail how we model
the connection behavior between pairs of connector primitives, as
well as the information associated with each primitive that will be
used by the solver for verifying and finalizing the configuration of
a hack design.

Connector frames. Our analysis of home hacks (Appendix A)
found that the connection behavior between parts is local to the
pair of primitives that forms the connection. Take as an example the
rod-hook connection (inset Figure 3): a hook can slide along a rod
and flex about it, regardless of whether this rod is from a closet, a
shower, or an ironing board. To represent such connection behavior
mathematically so that we can formulate it as part of the constrained
optimization in the solver, we need to establish the concept of a
Frame.
In FabHaL, we define Frame to be a position vector (𝑥,𝑦, 𝑧) and

yaw-pitch-roll intrinsic Euler angles. Frames can be used to repre-
sent a single-origin coordinate system (similar to mate connectors in
CAD), or the 3D configuration of a geometric entity (a primitive or a

Primitive Shape Parameters Example

hook arc angle, arc radius, thickness

hole arc radius, thickness

hemisphere radius

edge width, length, height

rod radius, length

tube inner radius, thickness, length

clip width, height, base distance,
open gap, thickness

surface width, length

Table 2. We parametrize each primitive with its corresponding shape pa-
rameters, and show an example of the primitive.

part).We use frames to represent the connection points on primitives
and call them connector frames. The connector frames of a primitive
can be computed from its base frame and shape parameters (obtained
from the part annotations), and some additional degrees of freedom

specific to its type. For example, a hook
primitive has two additional degrees of
freedom, 𝜃 and 𝜙 , parameterizing the lo-
cation and orientation of the point of con-

tact (see inset). In FabHaL, the additional degrees of freedom and
the information on how to use these DoFs to compute the paramet-
ric connector frames are associated directly with each connector
primitive.

Alignment offsets. When two primitives are connected, their con-
nector frames need to be coincident in position, but the orientation
may have some offset. Based on our analysis, this orientation off-
set is common to a pair of connectable primitives. For example,

as shown in the inset figure, when a rod and a hook con-
nect, their connector frames are offset by a rotation of
[180◦, 0◦, 90◦] in yaw-pitch-roll intrinsic Euler angles.
(Here the frames are intentionally placed to be not coin-
cident at their origins to better display the orientation

offset.) We call the offset rotation between two primitives’ connector
frames an alignment offset.

With the connector frames and alignment offsets defined for each
pair of connector primitives, we can represent the connection behav-
ior precisely with respect to the degrees of freedom associated with

FabHacks • 7

each primitive. Even with a small number of categories of connector
primitives, we can capture a wide range of possible connections that
appear in hacks. This set of primitives and associated alignment
offsets is also easily extensible.
In addition to the theoretically allowed connectivity between

primitives (Table 1), two primitives need to be physically compatible
before they can be connected. We encode two pieces of additional
information in connector primitives so that users do not need to
reason about this lower-level detail.

Closed primitives. Two primitives with no openings cannot con-
nect because there is no valid motion path to create the connection.
Among the eight connector primitives, the hole primitive is always
closed. In addition, primitives that aren’t generically closed could be
inaccessible in the context of the geometry of the part containing it.
For example, the handle of the basket in the bottom-right of Figure 5
is tagged as a hook, which can connect to a hole according to Table 1.
But as an integral part of the basket, it is part of closed geometry;
thus, a hole primitive without an opening cannot connect to this
hook. We allow tagging of individual primitives like the basket han-
dle as closed primitives when annotating parts for the Annotated
Object Library and our solver checks that designs do not attempt to
connect two closed primitives to each other.

Critical dimensions. Primitivesmight not be able to supply enough
physical space for a connection. For example, a one-to-one connec-
tion between a rod and a hook is only possible if the hook’s hoop
radius is greater than the rod’s radius. For a multi-to-one connection
between several hooks and tubes and a single rod, the hooks and
tubes might fully occupy the length of the rod. Then no new con-
nection can be made with the rod because there is no more available
space on it.

To keep track of available physical space on primitives, we specify
a critical dimension for connector primitives that can have multiple
connections (the eight primitives except hemisphere and clip). The
available critical dimensions refer to the dimension of a primitive
that can be occupied when a new connection is made between
itself and another primitive. For example, the critical dimension of
a rod primitive is its length, and when a hook connects to this rod
primitive, its available length is reduced by the width of the hook.
The hook’s critical dimension—the hoop radius—is also reduced by
the rod’s radius.

4.2 Language Constructs and Hack Construction
To represent a hack, we must connect parts (annotated objects from
the Annotated Object Library) using their connector primitives.
These connected parts form a graph (see Figure 7) that we call an
assembly (i.e., a hack).

Two special parts in an Assembly are assumed to be fixed in place:
the part representing the environment the assembly is attached
to, and the target part, a part that is meant to be fixed relative to
the environment and whose configuration is used as a target for
the solver. For example, the clip in Figure 6a is resting on a table,
supporting a toothbrush. The table is the environment and can
be represented using a surface primitive with a fixed position and

Fig. 7. An assembly with a cycle: a basket is connected to a rod via two
eyehooks, forming a cycle (in the red circle) between the basket and the
environment. On the right, yellow rectangles represent parts and green
rounded rectangles represent primitives.

orientation. The toothbrush is the target part that we want to fix
above the table.

Our DSL exposes three operations needed to create an Assembly:

• add(part, frame)
• end_with(part, frame)
• connect(part1.primitive, part2.primitive)

add is used for specifying the environment part with a fixed con-
figuration (frame); and end_with is for specifying the target part’s
configuration (frame). connect takes two primitives as arguments
regardless of order and determines whether each Part is already
part of the Assembly or is newly-introduced. It has two optional

parameters: (1) alignment (either “flip” or “default”)
to indicate an orientation flip, e.g., a hook can hang
on a rod coming from both sides of the rod as shown
in the inset; (2) is_fixed, a boolean value that in-
dicates that the degrees of freedom involved in the

connection should be held constant during solver-aided evaluation
(because the design involves, for example, taping connectors to-
gether).
If both connected parts are already part of the assembly, this

connection will create a cycle in the graph representation of the
connected parts (see Figure 7). Not all connect operations will be
physically realizable and we will discuss how the solver verifies
whether a connection can be made in Section 4.3.

Figure 8 shows an example program in our DSL. This fixture hack
hangs a basket with a round handle in between two rods. In this
program, we first initialize an Assembly, followed by the environ-
ment initialization. Then we use connect to add two eyehooks to
the two rods by connecting the eyehook’s eye to the rod. Finally, we
initialize the target part and connect the hook part of the eyehooks
to the handle of the basket. More example programs can be found
in Appendix B.

4.3 Solver-aided Evaluation
The core advantage of FabHaL is its ability to simplify the represen-
tation of an Assembly to a graph of connected Parts, leaving the
job of calculating the placement of parts to the solver.

8 • Mei et al.

Fig. 8. An example program in FabHaL (top), with the corresponding assem-
bly solved for and rendered by our system (bottom right) and a physically
reproduced design (bottom left).

In our solver, we model an Assembly using a reduced representa-
tion of a kinematic rigid body chain, which is a common practice in
fields like rigid body mechanics and robotics [Featherstone 1983].

The solver handles not only the simulation (4.3.3) but also the pre-
checks (4.3.1, 4.3.2) that check whether the connect() operations
can be physically realized. We will begin with the pre-checks before
we discuss the simulation of the assembly under gravity.

4.3.1 Verify connect(). There are two potential issues when a con-
nection is being made between two parts.
First, a connection cannot be made between two primitives that

cannot be joined together according to the primitive connectivity
table (Table 1), such as a rod to another rod, or when they are two
closed primitives.
Second, the solver needs to check whether the available critical

dimension of a primitive is enough for what is needed for a new
connection. Based on the primitives’ critical dimensions, we add
constraints to the parameters of the connector primitive that has
multiple connections. For example, when two hooks connect to the
same rod, two sets of parameters that decide where along the rod
the hooks connect to will be created. Suppose that the hooks each
have widths 𝑤1,𝑤2, the rod has length 𝑙 , and the two connection
parameters indicating the position of the hooks along the length of
the rod are 𝑡1, 𝑡2 ∈ [0, 1]. Then this “multi-connection” constraint
|𝑡1 − 𝑡2 | · 𝑙 ≥ 𝑤1+𝑤2

2 will be created and included in the solving
process. We represent this constraint as a soft penalty as follows:

𝐶𝑚,𝑓 = 0 if 𝑓 ≥ 0, 𝐶𝑚,𝑓 = 𝑓 2 if 𝑓 < 0

where 𝑓 = |𝑡1−𝑡2 | ·𝑙− 𝑤1+𝑤2
2 . Wewill use the symbol𝐶𝑚 to represent

the sum of all multi-connection constraint penalties.

4.3.2 Additionally verify connect() that creates cycles. A connect
operation creates at least one cycle in the graph representation of
the assembly if it is between two parts that are already part of the
assembly (see Figure 7). Such cycles require explicitly modeling
constraints over the configurations of the parts that are being con-
nected. Therefore, in addition to the pre-checks on connector types
and available critical dimensions, we also need to check whether
we can find a set of values for the degrees of freedom that satisfy
these constraints.
For every cycle, we model six constraints measuring the failure

of the connector frames on the two primitives being connected to
match each other. An assembly with 𝑛 cycles is feasible if valid val-
ues of the connection parameters exist along the cycles that satisfy
6𝑛 equality constraints of the form 𝑓𝑖 (x) = ®0, 𝑖 ∈ [1..𝑛], where x is
a vector of all the degrees of freedom (DoFs) in the assembly and
𝑓𝑖 (x) ∈ R6 measures the failure of the 𝑖th cycle to close up. We
minimize the sum of constraints residuals 𝐶 (x) =

∑𝑛
𝑖=1 ∥ 𝑓𝑖 (x)∥2

subject to bound constraints on the DoFs, xmin ≤ x ≤ xmax. In the
example assemblies we created, most of the time 𝑛 = 1. We use
the Powell method [2020] to minimize 𝐶 and declare the assembly
feasible (and thus the connect successful) if the solver succeeds in
finding parameters with 𝐶 (x) ≤ 10−6. Since the success of the min-
imization depends on the initialization of the assembly parameters
and can get stuck in local minima, we repeat the optimization 𝑇

times starting from different random initial guesses. We terminate
early if a solution is found. We observed that 𝑇 = 16 works well in
practice.

Geometric Quick Reject. Before we actually run a full optimiza-
tion to find a system configuration that satisfies the connection
constraints, we also utilize some precomputed information about
the parts and primitives to perform a quick geometric check.
Our geometric check is based on the triangle inequality: 𝑘 line

segments of length ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓ𝑘 cannot be arranged into a
closed loop in 3D unless ℓ1 ≤ ∑𝑘

𝑖=2 ℓ𝑖 . To apply this principle to our
problem, we note that since each part 𝑖 in a part cycle is rigid, we
can bound the Euclidean distance 𝑒𝑖 ∈ [𝑒−

𝑖
, 𝑒+
𝑖
] between the point

where part 𝑖 connects to parts 𝑖 − 1 and
𝑖 + 1. Because [𝑒−

𝑖
, 𝑒+
𝑖
] depend only on the

geometry of the part and its two connectors
involved in the cycle, not on the connec-
tion parameters, we can precompute these
bounds for all the parts defined in our An-
notated Object Library. Consider the inset
figure representing a design which has a

cycle of 4 parts. In order for the cycle to close up, the following linear
program in the distances 𝑒𝑖 between connectors must be feasible:

min
𝑒𝑖

1 s.t.

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

𝑒1
𝑒2
𝑒3
𝑒4

 ≥ ®0 (1)

𝑒−𝑖 ≤ 𝑒𝑖 ≤ 𝑒+𝑖 , 𝑖 ∈ [1..4] .

Checking the existence of a set of distances 𝑒𝑖 satisfying the bound
constraints and triangle inequality then amounts to checking the
feasibility of a set of linear inequality constraints, which can be

FabHacks • 9

solved inmilliseconds by standard Python libraries, quickly rejecting
impossible connect operations.

Stall Prevention. When we actually need to run the optimization,
we put in measures for stall prevention. To halt optimization of
𝐶 when the solver stalls, we pass a custom callback function to
scipy.optimize that performs linear regression on 𝐶 (x𝑖) for a
sliding window of the last ten DoF iterates x𝑖 . We abort the opti-
mization in failure if the slope of the fit line is less than 0.1 (meaning
not much progress is being made by the optimizer). This strategy
has gained us an additional 1.4x speedup on average for the three
examples with cycles.

4.3.3 Solving the assembly. After a valid assembly is constructed
in FabHaL, the user can invoke the solver to find the values for
the degrees of freedom in the system that bring the target part
as close as possible to its specified configuration while being in
static equilibrium under gravity and respecting all cycle-closure and
critical-dimension constraints.
This solve is a constrained optimization problem: we wish to

minimize the user objective subject to the balance of forces and
torques on each non-environment part. Early experiments revealed
that black-box nonlinear optimization was prohibitively slow at
solving this problem, and moreover, often failed to converge to a
feasible local minimum. Therefore, we propose instead a two-step
solver that firstminimizes the user objective subject to all constraints
being satisfied, and then uses the optimized configuration as an
initial guess for a simulation that relaxes the assembly to static
equilibrium.

First Step: Minimizing the user objective. We use the Powell [2020]
method to find a feasible configuration of the assembly that mini-
mizes the user objective:

xfeas = argmin
x

𝑓obj (x) +𝜎 (𝐶𝑚 (x) +𝐶 (x)) s.t. xmin ≤ x ≤ xmax,

where 𝐶𝑚 (x) are the multi-connection constraints described in
Section 4.3.1, 𝐶 (x) are the cycle-closure constraints as used in Sec-
tion 4.3.2, and𝜎 is a penalty parameter.We use a starting value of𝜎 =

100; if after optimization the constraint residual𝐶𝑚 (xfeas) +𝐶 (xfeas)
is not below 10−6, we double 𝜎 and repeat the optimization, using
xfeas as the initial guess. We repeat this process up to 5 times which
is usually enough for finding xfeas; if the constraint residual is still
not below 10−6 after 5 times, we pass the best configuration found
to the second step.

Second Step: Relaxing under gravity. We use a physics solver to
relax the assembly to an equilibrium state under its self-load, starting
from the guess xfeas . Let 𝑞𝑖 ∈ 𝑆𝐸 (3) represent the configuration of
the 𝑖th part, and q = {𝑞𝑖 }𝑛𝑖=1 the configuration vector of the entire
assembly. For an assembly with 𝑐 total pairs of primitives connected
together, let 𝑔 𝑗 (q, x) ∈ R6 for 𝑗 = 1, . . . , 𝑐 be constraint functions
encoding that each pair of primitives are connected together with
connection parameters x.

To relax the assembly under gravity, we solve

argmin
q,x

𝐸 (q, x) s.t. xmin ≤ x ≤ xmax (2)

𝐸 (q, x) =
∑︁
𝑖

𝑃𝑖 (q) + 𝜎

𝑐∑︁
𝑗=1

∥𝑔 𝑗 (q, x)∥2,

where 𝑃𝑖 (q) measures part 𝑖’s gravitational potential energy and 𝜎
is a penalty parameter enforcing that connectors stay attached: we
use 𝜎 = 100. We optimize Equation (2) using an active-set Newton’s
method [Nocedal and Wright 2006].
To demonstrate the two-step process, we take the hack design

from Figure 7 as an example, which hangs a soap bottle from a rod
using eyehooks and a basket. Both programs visualized in Figure 9
uses the same target configuration specification for the soap bottle
and thus after the first step, the soap bottle is in a configuration that
is closest to the target configuration. But after the second step of
relaxing under gravity, without a second eyehook to balance, the top
row’s design falls under gravity into a less desirable configuration
compared to the bottom row’s design.

Fig. 9. The top row shows the hack design without a second eyehook to
balance the basket, and the bottom row shows the hack design with the
second eyehook. The first column shows the intermediate results after first
running the user objective minimization, and the second column shows the
resulting configuration after the second step is run.

During the physics relaxation, we also predict whether the as-
sembly will fall apart due to connectors slipping off of each other.
To perform this analysis, we annotate each connection parameter
for each primitive in our library with one of three tags:

• UNBOUNDED parameters are periodic and should be allowed
to “wrap around” from 𝑥max to 𝑥min during optimization.
For example, for a ring that can rotate 360 degrees, the angle
parameter specifying the rotation of the ring about its central
axis is UNBOUNDED.

• we tag parameters as BOUNDED_AND_CLAMPED if the geome-
try of the primitive prevents the parameter from ever leaving
the interval [𝑥min, 𝑥max]. The position parameter of a rod

10 • Mei et al.

along the bottom of a clothes hanger is one example of such
a parameter.

• finally, a parameter is BOUNDED_AND_OPEN if exceeding the
bounds of the parameter would cause the assembly to fall
apart. The position parameter of a dowel rod, for example, is
BOUNDED_AND_OPEN: hooks or rings that slide past the end
of the dowel rod fall off the assembly.

At the end of optimization, for each BOUNDED_AND_OPEN parame-
ter 𝑖 we check whether 𝑥𝑖 is in the inequality constraint active set,
i.e. whether 𝑥𝑖 is equal to its maximum or minimum allowed value,
and if so, whether ∇𝑥𝑖𝐸 points away from 𝑥𝑖 ’s feasible interval. If
so, we report to the user that the assembly falls apart.

A complex assemblymight havemany different equilibrium states

Fig. 10. The “Demo”.

under gravity; our method above finds
just one of them. For instance in the
“Demo” assembly (see inset Figure 10)
the S-hook and the ring could slide to
either end of the hanger’s rod depend-

ing on which side xfeas encodes they are closer to.

4.4 DSL Implementation and Parametric FabHaL
Programs

Being a DSL, FabHaL lends itself well to programmatic generation of
families of programs if the design is constructed parametrically. We
implemented FabHaL as a shallowly embedded DSL with Python. In
other words, it is embedded in the host language Python without its
own abstract syntax tree. This allows the DSL to be used as a Python
library or package, and have access to common control structures
like loops and conditionals from the host language. Thus, we can
easily generate parametrized designs using the host language fea-
tures, and use the solver to find the set of parameters from hundreds
of variations that let the program best satisfy the given target part
configuration.

As an example, suppose that we are preparing for a trip to a sum-
mer camp with some bunk beds. We would like to hang a clippable
reading light to be at a certain distance from a hook on the top bunk
bed so that it’s far away enough to not affect others in the same space

and we can also reach the light’s switch easily.
The available parts here are a hanger, extendable
M4 turnbuckles, and rings of different sizes. To
design a fixture hack for this scenario, we might
come up with a parametrized program consist-
ing of a chain of 𝑛 turnbuckle-ring pairs, with
each turnbuckle extended by 𝑙 millimeters and
each ring of radius 𝑋 (see inset). We can pro-
grammatically generate a family of programs
that represent potential hack designs for this sce-
nario. If we already know the desired length and
the size of rings that we have, we can use the
solver to help find the best parameters of 𝑛 and 𝑙
for a given ring size. Figure 11 shows the four de-
signs that match the target configuration, each

corresponding to the four ring sizes (𝑋 ∈ {𝑋𝑆, 𝑆,𝑀, 𝐿}) and se-
lected out of the 80 program variations with 𝑛 ∈ [1..4], 𝑙 ∈ [0, 45.7]
(discretized into 20 values).

5 INTERFACING WITH FABHAL
FabHacks is built on top of the S-DSL FabHaL and in this section
we introduce how users can interface with the DSL through a user
interface, in addition to directly writing programs in FabHaL.

5.1 The FabHacks Interface and User Workflow
As introduced in Section 4.2, to construct a hack design, users start
with specifying a starting environment with add, a target part’s
configuration relative to the environment with end_with, and then
create connections between connector primitives on two parts with
connect. Then they can use solve to check design validity and
solve for the configuration of their design under gravity. Based
on feedback about whether a connection is valid and the visual
feedback shown in the UI, users can choose to iterate on their design
as needed.
The UI consists of the workspace region and three menus (see

Figure 12a). The left menu is mainly used during environment setup
and for selecting parts to use in assembly design; the parts shown
here are all from the “Annotated Object Library”. The bottom menu
is for selecting connector primitives of the part selected from the left
menu and here is where the buttons for constructing the assembly
will show up. The right menu is for solving for the assembly’s final
configuration.

We design the UI to have interactions that roughly correspond to
the program construction process.

Step 1: Environment Setup. Users start by setting up the environ-
ments where this hack will be situated in. Taking the diaper caddy
hanging hack (Figure 6f) as an example, in Figure 12b, we have
already added the car seats as the starting environment, and are in
the process of specifying the configuration of the target part (dia-
per caddy) relative to the environment. The desired configurations
(position and orientation) of the environment and the target part
can be changed with sliders. This finishes the environment setup,
which corresponds to add and end_with in the program.

Step 2: Assembly Design. Next, users construct the assembly by
specifying which connections to make. The user can either select
a part from the left menu to connect it to the assembly, or select
two connector primitives already in the assembly and specify that
they should be connected. As defined in our DSL, connect might
introduce unsatisfiable constraints and thus needs to be verified
before it can be done. To reduce some pre-checks that need to be
done, we provide two-way filtering based on the connectivity table
(Table 1). For example, if a hook is selected in the menu, then only
hook, hole, rod, and tube primitives will be enabled for selection in
the workspace, and vice versa for a hook selected in the workspace.
If a connection cannot be made because of failed pre-checks or
that the solver cannot find a valid set of parameters that satisfy the
constraints, specific feedback will be provided to the user.

Step 3: Solving. After the environment and the target part are
fully connected, the assembly is considered “valid” and the physics
solver can be run. The user can invoke solve with the button “Run
Optimization” and the FabHaL representation of the assembly will
be used to solve for a final configuration that minimizes changes
in the configuration of the target part and is stable under gravity

FabHacks • 11

Fig. 11. The four variations that most closely match the desired target part configuration given different ring sizes, with the photo on the left and simulated
result on the right. The parameter combination is indicated below the simulated result.

(a) The user interface.

(b) Step 1: the UI in the process of set-
ting up the target part (a diaper caddy)
relative to the environment (car seats).

(c) Step 3: The user clicks on “Run
Optimization” and the inset shows
the solved configuration.

Fig. 12. Top: a screenshot of the user interface. Bottom: example interactions
for Steps 1 (left) and 3 (right).

subject to any constraints in the design (Figure 12c). We note that
this is not an interactive-rate step because the full physics-based
solving can take up to a few minutes for complicated assemblies.

After the user sees the visual or textual feedback on their design,
they can choose to continue modifying it either with some back-
tracking via undo and redo buttons, or just adding more parts, and
re-run the solve to view the updated design.

6 EVALUATION OF FABHACKS
In this section, we discuss implementation details and describe how
we evaluated our system with a user study, which shows that our
UI provides an effective way to interface with FabHaL for users.

6.1 Implementation
As mentioned in Section 4.4, FabHaL is implemented using a shallow
embedding strategy in Python. Using Python as the host language
allows easy integration with existing optimization and geometry
processing libraries in our implementation of the solver [Jacobson
et al. 2018; Sharp et al. 2019; Virtanen et al. 2020]. The UI is also im-
plemented in Python using polyscope [2019] with extended features
from imgui.

6.2 User Study with FabHacks Interface
We evaluate how useful our tool is for hack designs through a user
study with ten participants. Participant ages ranged from 18–34
with existing CAD experience ranging from none to greater than
5 years. Participants reported their gender as Male (5); Female (3);
Non-Binary (1) and N/A (1). The user study was conducted in our
lab using a machine we provided and took about an hour in total.
Audio and screen capture (with highlighted clicks) were recorded
during the study; click events were also recorded in a data file.

6.2.1 Method. After consenting participants, we showed them a
short tutorial in which we constructed the “Demo” assembly (see
inset Figure 10) in FabHacks and in the CAD tool (OnShape) in-
terface and the participants repeated the same steps in both tools.

12 • Mei et al.

Participants were then asked to complete two tasks and think aloud
in the process. After the study, participants were asked to answer
three questions: “Can you tell us up to three things you’d like to
see us keep in the FabHacks tool?”; “Can you tell us up to three
things you’d like to see changed in the FabHacks tool?” and “Can
you think of a change you’d like to make to your space in the office
or at home that the FabHacks tool could help you with?”

Task 1. Participants were then instructed to replicate a given hack
design in FabHacks and in the CAD tool. Specifically, participants
were told to hang a basket between two towel rods using two hooks
and were shown an example final assembly (see Figure 8). In both
the CAD tool and FabHacks, they were given an interface with
two rods fixed in place (the environment) and a basket (target) that
should be fixed in the space between them. In the CAD tool, the
necessary parts to complete the assembly were already inserted
into the same local coordinate space as the rods and basket, but not
connected. In FabHacks, the user was expected to select those parts
from the FabHacks menu. In both tools, the user was given about
10 minutes to replicate the assembly they had been shown, after
which they could stop when they were frustrated even if they had
not succeeded.

Task 2. The second task was an open-ended design task where
the user was asked to hang a bird feeder from two hooks but was
not shown a solution. Again, the wall hooks (environment) and the
bird feeder (target) were given. They were given up to 30 minutes to
create a design and were asked to come up with additional designs
if time remained.

6.2.2 Measures. For Task 1, we extracted Clicks; Actions; and Back-
tracks. Clicks was simply the total number of recorded clicks from
the start to the end of a task. However, since the number of raw
clicks does not directly reflect the user experience, we also coded
the data into Actions including creating a connection, editing a
connection,moving a part, and optimizing the solution. The
last two action categories (move a part and optimize the solution)
only exist in the CAD and FabHacks data, respectively. Manually
positioning parts is necessary in traditional CAD, whereas final
positions are determined via simulation and optimization in Fab-
Hacks. Actions might include multiple clicks (such as when rotating
a part). Finally, Backtracks include operations such as undo or redo
or the equivalent action (such as deleting a connection). Repeated
backtrack actions (without any other action between them) were
counted as a single Backtrack data point.
For Task 2, we coded all designs as feasible or infeasible; and

then grouped them into categories based on similarity. Finally, we
grouped questionnaire responses into categories and discussed them
until we reached a consensus.

6.2.3 Results and Discussions. Overall, our study demonstrated that
FabHacks is an efficient and intuitive way to construct assemblies.

Task 1. We found that FabHacks assemblies could be constructed
with fewer clicks, fewer actions, and fewer backtracks than OnShape
assemblies, as summarized in Figure 13. Further, every participant
created a valid and correct model of the target assembly in FabHacks,
while none were able to do so in traditional CAD; all models were

O
ur

s

C
AD

Tool

0

100

200

300

400

C
ou

nt

Clicks

O
ur

s

C
AD

Tool

0

5

10

15

20

C
ou

nt

Actions

O
ur

s

C
AD

Tool

0

2

4

6

8

C
ou

nt

Backtracks

Fig. 13. Quantitative comparison of assembly modeling in FabHacks versus
traditional CAD (lower is better). Our tool is significantly more efficient,
measured by total clicks and modeling actions, and also more intuitive,
measured by the number of times each participant backtracked in the
modeling process.

either missing degrees of freedom and/or were overconstrained and
thus not valid for the CAD program’s constraint solver. Some kinds
of model errors seen in the CAD tool, illustrated in Figure 14, were
part intersections, disconnected parts, and non-physical positions
and orientations.

Fig. 14. Common problems with CAD models produced in Task 1: part
intersections, disconnected parts, non-physical positions and orientations.

Task 2. Between the 10 participants, 25 feasible designs were cre-
ated, each of which was unique, thoughmany used similar strategies.
Twenty-three of these belong to one of four common strategies: (A)
constructing symmetric chains of small objects to anchor the bird-
feeder between the two hooks (7 instances), (B) constructing two
short chains, hanging a coat hanger upside-down between them,
and dangling the birdfeeder from the hook of the coat hanger (6
instances), (C) hanging a coat hanger from each wall hook and
anchoring the bird feeder where they meet (8 instances), and (D)
chaining two coat hangers from each wall hook and connecting
the birdfeeder in the middle of them (2 instances). While several
users discovered each pattern, no two were identical; users chose
different types or numbers of parts to achieve similar constructions,
or connected the same parts in different ways.

Looking at participants’ answers to our three questions, we saw
several important themes arise. First, multiple participants liked
how “intuitive” FabHacks was and praised the physics solver. One
participant praised the “real-time realistic feedback” on connections
and another praised the “simplicity” of making connections in Fab-
Hacks. At the same time, participants noted areas for improvement.

FabHacks • 13

(A) (B) (C) (D)

Fig. 15. Examples of each of the 4 common design strategies (A-D) found by participants in Task 2.

For example, multiple users mentioned that “not knowing the reason
a [connection] is failing [when validation is run] can be frustrat-
ing” and asked for a wider variety of undo and delete operations (a
simple feature to add). Participants also made suggestions such as
having a constraint on the number of available pieces; better sup-
port for orienting, panning, and zooming; a tree diagram showing
the connections; and better feedback about what is selected. These
critiques generally represent opportunities for improved user expe-
rience design rather than fundamental flaws with the mental model
required to use our tool. For example, it would be possible to tell
the user if a connection is failing because of a geometric flaw such
as a part not being long enough to connect, or to visualize the best
solution (connection state) found by the validation, highlighting
failed connections.
We also found that 6/10 participants had concrete ideas for how

they would use FabHacks in their everyday life, from a tree swing
to outdoor lights to wall hangers to hang decorations or photos. Of
four participants who did not see a use for FabHacks one felt that the
library needed to be expanded and account for things like weight;
one felt they could more easily make a plan in their head; and two
just did not have an idea for how to use it. Although participant
comments suggest that there is room for improvement, these mostly
focus on things that can be solved with a larger library and iteration
on the user experience. Future work could explore adding physical
properties like weight to our physics solver or letting users choose
from a library of materials for their parts.

7 LIMITATIONS AND FUTURE WORK
This work introduces a design system that enables users to create
fixture hacks built out of household items. Our solution is centered
around a new Solver-aided DSL, FabHaL, which was inspired by the
analysis of a collection of hacks. With the solver-aided paradigm,
FabHaL allows users to create partial specifications of a hack, which
simplifies the design of hacks to connecting primitives between
parts. Our study showed that FabHacks is much better than existing
CAD tools at supporting end-user construction of assemblies on
quantitative measures and that participants found it intuitive to use.
Participants identified potential opportunities for using FabHacks
in everyday life, suggesting that the ideas presented in this work
can inspire a new age of sustainable DIY design.
A limitation of our system is that it excludes any hacks using

soft parts or examples where the shape of the parts can be altered
during assembly, such as a piece of wood that can be cut to size. An
important future direction of this work is to extend the proposed
abstractions to handle these additional scenarios. For example, our
parametric connections can be expanded to accommodate additional

degrees of freedom, allowing for the representation of deformable
objects or items that can change dimensions when cut. Additionally,
more physical solvers can be incorporated to handle deformable
shapes and more complex part-part interactions. In these scenarios,
it may be valuable to analyze if exposing other degrees of freedom
to the user in the UI, such as connection parameters, may support
design exploration.

Our system also presents opportunities for automating how parts
that make up the library are created. For example, it would be inter-
esting to explore automated recognition and fitting of connection
primitives given a 3D model of a part. A step further would be to
automatically add a part to the library from LIDAR data or multiple
images of an object, which would further increase the modeling
power of the system and help bridge the reality gap.
Another promising opportunity is the complete automation of

assembly design. By abstracting out eight common connector primi-
tives and rules on their connection behaviors, our proposed DSL not
only supports interactive design but has the potential to facilitate
the generation of optimal designs under various objectives because
it fundamentally reduces the search space. Automating the design
of home hacks is a challenging task, as it involves searching through
discrete combinations of parts and finding suitable continuous pa-
rameters that meet the specifications. Our abstractions enable us to
decouple this problem into a program synthesis task nested with
continuous optimization, which is performed by our solver. How
to make program synthesis techniques usable in this context is an
interesting research problem.
FabHaL as a DSL can also benefit from the recent advances

in large language models. Recent experiments that use LLMs for
generating [Jain et al. 2023; Skreta et al. 2023] or completing pro-
grams [Piereder et al. 2024] in various DSLs show promising results.
In preliminary experiments, we prompted GPT-4 [OpenAI 2024] to
design a hack for hanging the birdfeeder with eyehooks, S-hooks,
and hangers. While most attempts don’t lead to a desirable design,

GPT-4 was able to come up with valid
and near-valid designs (see inset). Here
the left of the inset shows a design cre-
ated by GPT-4 that is very close to our
design shown in Figure 1, and the right

shows a design that is not physically valid when evaluated with our
solver (the S-hook will disconnect and fall off) but is similar to the
user-created designs using strategy C in Figure 15. It is an exciting
direction to explore how to enable LLMs to create physically valid
hack designs with FabHaL, where the underlying solver can become
useful in generating feedback based on the solve results to prompt
LLMs to fix issues in invalid or undesired designs.

14 • Mei et al.

8 CONCLUSION
We create a solver-aided domain-specific language, FabHaL, to rep-
resent “hacks” repurposed from everyday objects. The language
design is based on the analysis of a collection of hacks where we
found that hacks are made up of common types of connections
between common primitive shapes. The DSL can represent fixture
designs compactly and at the same time verify and simulate the
design with the help of a solver. We show with a user study that
our system can help users create valid hack designs.

REFERENCES
Abul Al Arabi and Jeeeun Kim. 2022. Augmenting Everyday Objects into Personal

Robotic Devices. In SIGGRAPH Asia 2022 Emerging Technologies. ACM, Daegu Re-
public of Korea, 1–2. https://doi.org/10.1145/3550471.3564763

Abul Al Arabi, Jiahao Li, Xiang ’Anthony Chen, and Jeeeun Kim. 2022. Mobiot: Aug-
menting Everyday Objects into Moving IoT Devices Using 3D Printed Attachments
Generated by Demonstration. In CHI Conference on Human Factors in Computing
Systems. ACM, NewOrleans LAUSA, 1–14. https://doi.org/10.1145/3491102.3517645

Marilyn Caylor. 2019. 75 super easy ways to organize your entire home. https:
//homehacks.co/easy-home-organizational-tips/

Xiang ’Anthony’ Chen, Stelian Coros, and Scott E. Hudson. 2018. Medley: A Library
of Embeddables to Explore Rich Material Properties for 3D Printed Objects. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1–12. https://doi.org/10.1145/3173574.3173736

Xiang ’Anthony’ Chen, Stelian Coros, Jennifer Mankoff, and Scott E. Hudson. 2015.
Encore: 3D Printed Augmentation of Everyday Objects with Printed-Over, Affixed
and Interlocked Attachments. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15). ACM, New York, NY, USA, 73–82.
https://doi.org/10.1145/2807442.2807498 event-place: Charlotte, NC, USA.

Xiang ’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian Coros,
and Scott E. Hudson. 2016. Reprise: A Design Tool for Specifying, Generating, and
Customizing 3D Printable Adaptations on Everyday Objects. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 29–39. https://doi.org/10.1145/2984511.2984512 event-place:
Tokyo, Japan.

Kyung Yun Choi and Hiroshi Ishii. 2021. Therms-Up!: DIY Inflatables and Interactive
Materials by Upcycling Wasted Thermoplastic Bags. In Proceedings of the Fifteenth
International Conference on Tangible, Embedded, and Embodied Interaction. ACM,
Salzburg Austria, 1–8. https://doi.org/10.1145/3430524.3442457

5-Minute Crafts. 2022. 5-Minute Crafts — Learn. Create. Improve. https://5minutecrafts.
site/

Scott Davidoff, Nicolas Villar, Alex S. Taylor, and Shahram Izadi. 2011. Mechanical
hijacking: how robots can accelerate UbiComp deployments. In Proceedings of the
13th international conference on Ubiquitous computing. ACM, Beijing China, 267–270.
https://doi.org/10.1145/2030112.2030148

R. Featherstone. 1983. The Calculation of Robot Dynamics Using Articulated-Body
Inertias. The International Journal of Robotics Research 2, 1 (March 1983), 13–30.
https://doi.org/10.1177/027836498300200102

Jasmin Fisher, Nir Piterman, and Rastislav Bodik. 2014. Toward Synthesizing Executable
Models in Biology. Frontiers in Bioengineering and Biotechnology 2 (2014), 1–8.
https://doi.org/10.3389/fbioe.2014.00075

Fiyaa. 2013. 15 Cord Management Life Hacks for No More Tangled Wires.
https://www.amazinginteriordesign.com/15-cord-management-life-hacks-for-no-
more-tangled-wires/

Anhong Guo, Jeeeun Kim, Xiang ’Anthony’ Chen, Tom Yeh, Scott E. Hudson, Jennifer
Mankoff, and Jeffrey P. Bigham. 2017. Facade: Auto-generating Tactile Interfaces to
Appliances. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, Denver Colorado USA, 5826–5838. https://doi.org/10.1145/3025453.
3025845

Megan Hofmann, Gabriella Hann, Scott E. Hudson, and Jennifer Mankoff. 2018. Greater
than the Sum of its PARTs: Expressing and Reusing Design Intent in 3D Models.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1–12. https://doi.org/10.1145/3173574.3173875

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation
for layout. In Proceedings of the 27th annual ACM symposium on User interface
software and technology. ACM, Honolulu Hawaii USA, 231–241. https://doi.org/10.
1145/2642918.2647378

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Rijul Jain, Wode Ni, and Joshua Sunshine. 2023. Generating Domain-Specific Programs
for Diagram Authoring with Large Language Models. In Companion Proceedings

of the 2023 ACM SIGPLAN International Conference on Systems, Programming, Lan-
guages, and Applications: Software for Humanity (SPLASH 2023). Association for
Computing Machinery, New York, NY, USA, 70–71. https://doi.org/10.1145/3618305.
3623612

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1. ACM, Cape Town South
Africa, 215–224. https://doi.org/10.1145/1806799.1806833

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and
Adriana Schulz. 2021. AutoMate: a dataset and learning approach for automatic
mating of CAD assemblies. ACM Transactions on Graphics 40, 6 (Dec. 2021), 1–18.
https://doi.org/10.1145/3478513.3480562

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: learning to generate
programs for 3D shape structure synthesis. ACM Transactions on Graphics 39, 6
(Dec. 2020), 1–20. https://doi.org/10.1145/3414685.3417812

Karo. 2019. 25 IKEA Hacks to Keep Things Organized. https://craftsyhacks.com/ikea-
organizing/

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and
Wojciech Matusik. 2015. AutoConnect: computational design of 3D-printable
connectors. ACM Transactions on Graphics 34, 6 (Nov. 2015), 1–11. https:
//doi.org/10.1145/2816795.2818060

Nikolas Lamb, Sean Banerjee, and Natasha Kholgade Banerjee. 2019. Automated
Reconstruction of Smoothly Joining 3D Printed Restorations to Fix Broken Objects.
In Proceedings of the ACM Symposium on Computational Fabrication (SCF ’19). ACM,
New York, NY, USA, 3:1–3:12. https://doi.org/10.1145/3328939.3329005 event-place:
Pittsburgh, Pennsylvania.

Jiahao Li, Meilin Cui, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2020. Romeo: A Design
Tool for Embedding Transformable Parts in 3D Models to Robotically Augment
Default Functionalities. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. ACM, Virtual Event USA, 897–911. https://doi.
org/10.1145/3379337.3415826

Jiahao Li, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2019. Robiot: A Design Tool for Ac-
tuating Everyday Objects with Automatically Generated 3D Printable Mechanisms.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). Association for Computing Machinery, New York, NY, USA,
673–685. https://doi.org/10.1145/3332165.3347894

Jiahao Li, Alexis Samoylov, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2022. Roman:
Making Everyday Objects Robotically Manipulable with 3D-Printable Add-on Mech-
anisms. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 272, 17 pages. https://doi.org/10.1145/3491102.3501818

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2e ed.). Springer,
New York, NY, USA.

Onshape. 2023. Onshape | Product Development Platform. https://www.onshape.com/
en/

OpenAI. 2024. ChatGPT. https://chat.openai.com
Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav

Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data Movement Synthe-
sis for GPU Kernels. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems. ACM,
Providence RI USA, 65–78. https://doi.org/10.1145/3297858.3304059

Christina Piereder, Günter Fleck, Verena Geist, Michael Moser, and Josef Pichler. 2024.
Using AI-Based Code Completion for Domain-Specific Languages. In Product-
Focused Software Process Improvement (Lecture Notes in Computer Science), Regine
Kadgien, Andreas Jedlitschka, Andrea Janes, Valentina Lenarduzzi, and Xiaozhou Li
(Eds.). Springer Nature Switzerland, Cham, 227–242. https://doi.org/10.1007/978-3-
031-49266-2_16

Lauren Piro. 2015. 8 Clutter Problems Solved by Shower Rings. https://www.
goodhousekeeping.com/home/decorating-ideas/shower-curtain-rings-organizing

Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016. Retro-
Fab: A Design Tool for Retrofitting Physical Interfaces using Actuators, Sensors
and 3D Printing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. ACM, San Jose California USA, 409–419. https://doi.org/10.
1145/2858036.2858485

Nicholas Sharp et al. 2019. Polyscope. www.polyscope.run.
Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kris-

tensen, Kourosh Darvish, Alán Aspuru-Guzik, Florian Shkurti, and Animesh Garg.
2023. Errors are Useful Prompts: Instruction Guided Task Programming with
Verifier-Assisted Iterative Prompting. https://doi.org/10.48550/arXiv.2303.14100
arXiv:2303.14100 [cs].

SOLIDWORKS. 2023. 3D CAD Design Software | SOLIDWORKS. https://www.
solidworks.com/

Jenny Stanley. 2021. 33 Brilliant Home Hacks Using Our 3 Favorite Items.
https://www.familyhandyman.com/list/20-home-hacks-hangers-rubber-bands-

https://doi.org/10.1145/3550471.3564763
https://doi.org/10.1145/3491102.3517645
https://homehacks.co/easy-home-organizational-tips/
https://homehacks.co/easy-home-organizational-tips/
https://doi.org/10.1145/3173574.3173736
https://doi.org/10.1145/2807442.2807498
https://doi.org/10.1145/2984511.2984512
https://doi.org/10.1145/3430524.3442457
https://5minutecrafts.site/
https://5minutecrafts.site/
https://doi.org/10.1145/2030112.2030148
https://doi.org/10.1177/027836498300200102
https://doi.org/10.3389/fbioe.2014.00075
https://www.amazinginteriordesign.com/15-cord-management-life-hacks-for-no-more-tangled-wires/
https://www.amazinginteriordesign.com/15-cord-management-life-hacks-for-no-more-tangled-wires/
https://doi.org/10.1145/3025453.3025845
https://doi.org/10.1145/3025453.3025845
https://doi.org/10.1145/3173574.3173875
https://doi.org/10.1145/2642918.2647378
https://doi.org/10.1145/2642918.2647378
https://doi.org/10.1145/3618305.3623612
https://doi.org/10.1145/3618305.3623612
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3478513.3480562
https://doi.org/10.1145/3414685.3417812
https://craftsyhacks.com/ikea-organizing/
https://craftsyhacks.com/ikea-organizing/
https://doi.org/10.1145/2816795.2818060
https://doi.org/10.1145/2816795.2818060
https://doi.org/10.1145/3328939.3329005
https://doi.org/10.1145/3379337.3415826
https://doi.org/10.1145/3379337.3415826
https://doi.org/10.1145/3332165.3347894
https://doi.org/10.1145/3491102.3501818
https://www.onshape.com/en/
https://www.onshape.com/en/
https://chat.openai.com
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1007/978-3-031-49266-2_16
https://doi.org/10.1007/978-3-031-49266-2_16
https://www.goodhousekeeping.com/home/decorating-ideas/shower-curtain-rings-organizing
https://www.goodhousekeeping.com/home/decorating-ideas/shower-curtain-rings-organizing
https://doi.org/10.1145/2858036.2858485
https://doi.org/10.1145/2858036.2858485
https://doi.org/10.48550/arXiv.2303.14100
https://www.solidworks.com/
https://www.solidworks.com/
https://www.familyhandyman.com/list/20-home-hacks-hangers-rubber-bands-and-cardboard-tubes/
https://www.familyhandyman.com/list/20-home-hacks-hangers-rubber-bands-and-cardboard-tubes/

FabHacks • 15

and-cardboard-tubes/
Karen Sullivan and Jim Heumann. 2019. Karen and Jim’s Excellent Adventure:

Fiddly Bits: Making life on a small boat safer and more comfortable. http:
//karenandjimsexcellentadventure.blogspot.com/p/fiddly-bits.html

Alexander Teibrich, Stefanie Mueller, FranÃ§ois GuimbretiÃšre, Robert Kovacs, Stefan
Neubert, and Patrick Baudisch. 2015. Patching Physical Objects. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology (UIST
’15). ACM, New York, NY, USA, 83–91. https://doi.org/10.1145/2807442.2807467
event-place: Charlotte, NC, USA.

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with
Rosette. In Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,
USA) (Onward! 2013). Association for Computing Machinery, New York, NY, USA,
135–152. https://doi.org/10.1145/2509578.2509586

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, EricW. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul vanMulbregt, and SciPy 1.0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17 (2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock,
and Adriana Schulz. 2019. Carpentry compiler. ACM Transactions on Graphics 38, 6
(Dec. 2019), 1–14. https://doi.org/10.1145/3355089.3356518

Shanel Wu and Laura Devendorf. 2020. Unfabricate: Designing Smart Textiles for
Disassembly. In Proceedings of the 2020 CHI Conference on Human Factors in Com-
puting Systems. Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3313831.3376227

Zeyu Yan, Tingyu Cheng, Jasmine Lu, Pedro Lopes, and Huaishu Peng. 2023. Fu-
ture Paradigms for Sustainable Making. In Adjunct Proceedings of the 36th An-
nual ACM Symposium on User Interface Software and Technology (UIST ’23 Ad-
junct). Association for Computing Machinery, New York, NY, USA, 1–3. https:
//doi.org/10.1145/3586182.3617433

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Transactions on Graphics 39, 4 (Aug. 2020), 144:144:1–
144:144:16. https://doi.org/10.1145/3386569.3392375

Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg,
Daniela Rus, and Wojciech Matusik. 2020. RoboGrammar: graph grammar for
terrain-optimized robot design. ACM Transactions on Graphics 39, 6 (Dec. 2020),
1–16. https://doi.org/10.1145/3414685.3417831

Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tatlock, Justin
Solomon, and Adriana Schulz. 2022. Co-Optimization of Design and Fabrication
Plans for Carpentry. ACM Transactions on Graphics 41, 3 (March 2022), 32:1–32:13.
https://doi.org/10.1145/3508499

A ANALYSIS OF THE DESIGN SPACE OF HOME HACKS
The concept of “home hacking” covers a variety of topics. To better
understand this design space, we first analyzed a collection of hacks
and defined our problem domain, which informed our DSL design.
Next, we go over research work relevant to home hacks design and
existing tools that can be used to model home hacks.
We first gathered over 400 examples of hacks across 17 sources

(includingDIY blogs, videos, and individual designs from colleagues).
After eliminating hacks that are repeated, or essentially the same
but used under different scenarios, we selected 48 distinct hacks for
further analysis.
Our analysis started with identifying each hack’s functionality.

This gives us two main categories: hacks that hold or fix some
objects in a specific location and orientation – or fixtures (27 out of
48), and hacks which typically make creative reuse of a single item
to change the shape or feel (material property) of an existing object
to allow for better grasping or easier interaction, e.g., a pool noodle
used to organize wires and hide them, cover sharp saw edges, or
create padding on furniture corners for a baby-proof environment. In
contrast to the latter category, fixture hacks usually involve multiple

parts, e.g., several wire baskets chained together with doublehooks
to organize items above a kitchen sink. And since their goal is
to hold a part at a specific location and orientation relative to its
environment, gravity will affect the design’s stability. Thus, fixture
design can be hard to reason with intuition and is well-suited as a
computational design problem. Since deformable objects are difficult
to model and simulate efficiently compared to rigid bodies, and it is
unclear how end users can accurately specify manual modifications,
we further limit the domain to rigid fixtures with only undeformed
constituting objects because they are the majority of fixtures and
present a well-scoped subset (24 out of 27). We show the complete
set of 24 rigid (or can be seen as rigid) fixture hacks in Figure 16.

No. Hack Source Short Description
1 [Sullivan and

Heumann 2019]
soap bottle bag

2 [Stanley 2021] bottle holder on mower
3 nonslip hanger
4 hangers chained with rings
5 magazine on a hanger
6 glass light holder
7 [Crafts 2022] toothbrush holder
8 pants hanger with clothes clips
9 phone holder from clothes clips
10 binder clips stoppers in fridge
11 bathroom organizer
12 tissue box towel hanger
13 Colleague A dish sponge hanger
14 pen over pins on a board
15 shower essentials holder
16 hang clothes parallel to wall
17 [Caylor 2019] hangers chained with soda can tabs
18 [Fiyaa 2013] charger holder
19 Colleague B kitchen tools rack
20 oven mitten holder
21 wire baskets chained with S-hooks
22 [Piro 2015] scarf organizer
23 [Karo 2019] bed slat as rack
24 cup hanger

Table 3. Hacks and their sources.

We then analyzed how the individual objects, which we call
“parts”, were connected in the subset of rigid undeformed fixtures.
Although many different parts are involved in the hack examples,
connections typically form between common types of connector
primitives. These connector primitives connect in ways that are in-
dependent of the objects that they are part of. From our analysis, we
extract the following categories of connector primitives (Figure 2):
rod, hook, hole, tube, clip, edge, surface, and hemisphere.
Further analyzing the hack designs by looking at the parts and

the connecting shapes of the parts, we determined the relationship
between these connector primitives on whether they connect and
how they align with each other when they connect. We summarized

https://www.familyhandyman.com/list/20-home-hacks-hangers-rubber-bands-and-cardboard-tubes/
http://karenandjimsexcellentadventure.blogspot.com/p/fiddly-bits.html
http://karenandjimsexcellentadventure.blogspot.com/p/fiddly-bits.html
https://doi.org/10.1145/2807442.2807467
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3355089.3356518
https://doi.org/10.1145/3313831.3376227
https://doi.org/10.1145/3586182.3617433
https://doi.org/10.1145/3586182.3617433
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1145/3414685.3417831
https://doi.org/10.1145/3508499

16 • Mei et al.

Fig. 16. As ordered in the image, the hacks or hack groups in black boxes are from [2022; 2021; 2019], one of the colleagues, [2019; 2013], another one of the
colleagues, [2019; 2015]. We provide a short description for each hack and its source in Table 3.

hook hole hemi. edge rod tube clip surf.
hook 1 5 12 1
hole 4 *
hemi. 2
edge 3
rod 2 5
tube # *
clip
surf. 7

Table 4. This table shows the number of hacks each connection type ap-
peared in from the 24 rigid undeformed fixture hacks (Figure 16). * means
this connection type didn’t appear but we deduced that it is compatible
based on similar connection types. # means this connection type didn’t
appear in rigid fixture hacks but appeared in a non-rigid fixture hack. Light
grey means this connection type did not appear or cannot be deduced. We
ignore the lower-triangular region (dark grey) as it is redundant with the
upper-triangular region.

the common design patterns of how objects can be connected in Ta-
ble 4. The eight connector primitives and the relationships between
them become the basis for the design of the DSL and the underlying
logic for assembly building in our system, which is introduced in
Section 4.

B PROGRAMS FOR GALLERY EXAMPLES

B.1 Toothbrush Holder
ASSEMBLY_toothbrush_holder = Assembly()

surface = Surface({"width": 400, "length": 400})
ENV_start = Environment({"surface": surface})
ENV_end = Environment({"toothbrush": Toothbrush()})

start_frame = Frame()
ASSEMBLY_toothbrush_holder.add(ENV_start, start_frame)

PART_clip = PlasticClip()
ASSEMBLY_toothbrush_holder.connect(PART_clip.hemisphere1, ENV_start.surface)
ASSEMBLY_toothbrush_holder.connect(PART_clip.hemisphere2, ENV_start.surface)
ASSEMBLY_toothbrush_holder.connect(ENV_end.rod, PART_clip.clip)
ASSEMBLY_toothbrush_holder.connect(ENV_end.hemisphere, ENV_start.surface)

end_frame = Frame([-10, -62.5, 50], [-65,0,0])
ASSEMBLY_toothbrush_holder.end_with(ENV_end, end_frame)

B.2 Charger Holder
ASSEMBLY_cable_holder = Assembly()

edge = Edge({"width": 100, "length": 200, "height": 1.5})
ENV_start = Environment({"edge": edge})
ENV_end = Environment({"cable": Cable()})

start_frame = Frame([0,0,150],[0,0,0])
ASSEMBLY_cable_holder.add(ENV_start.edge, start_frame)

PART_binderclip = BinderClip()
ASSEMBLY_cable_holder.connect(PART_binderclip.clip, ENV_start.edge, is_fixed=True)
ASSEMBLY_cable_holder.connect(ENV_end.rod1, PART_binderclip.hole1)
ASSEMBLY_cable_holder.connect(ENV_end.rod1, PART_binderclip.hole2)

end_frame = Frame([0,57.5,163], [0,0,0])
ASSEMBLY_cable_holder.end_with(ENV_end.rod2, end_frame)

B.3 Soap Bottle Holder
ASSEMBLY_soapbottle_holder = Assembly()

rod = Rod({"length": 500, "radius": 5})
ENV_start = Environment({"door": rod})
ENV_end = Environment({"soapbottle": SoapBottle()})

start_frame = Frame([0,0,500], [90,0,90])
ASSEMBLY_soapbottle_holder.add(ENV_start.door, start_frame)

FabHacks • 17

PART_hookeye1 = HookEyeLeftS()
ASSEMBLY_soapbottle_holder.connect(PART_hookeye1.hole, ENV_start.door)
PART_basket = Basket()
ASSEMBLY_soapbottle_holder.connect(PART_basket.rod1, PART_hookeye1.hook)
PART_hookeye2 = HookEyeLeftS()
ASSEMBLY_soapbottle_holder.connect(PART_hookeye2.hole, ENV_start.door, alignment="flip")
ASSEMBLY_soapbottle_holder.connect(PART_hookeye2.hook, PART_basket.rod2)
ASSEMBLY_soapbottle_holder.connect(ENV_end.surface, PART_basket.surface)

end_frame = Frame([0,0,253], [0,0,180])
ASSEMBLY_soapbottle_holder.end_with(ENV_end, end_frame)

B.4 Mug Hanger
ASSEMBLY_mug_hanger = Assembly()

rod = Rod({"length": 500, "radius": 2})
ENV_start = Environment({"rod": rod})
surface = Surface({"length": 800, "width": 600})
ENV_wall = Environment({"wall": surface})
ENV_end = Environment({"mug": Mug()})

start_frame = Frame([0,0,200], [90,0,90])
ASSEMBLY_mug_hanger.add(ENV_start.rod, start_frame)
wall_frame = Frame([0,50,0], [90,0,0])
ASSEMBLY_mug_hanger.add(ENV_wall.wall, wall_frame)

PART_doublehook1 = DoubleHook()
PART_doublehook2 = DoubleHook()
PART_doublehook3 = DoubleHook()
ASSEMBLY_mug_hanger.connect(PART_doublehook1.hook2, ENV_start.rod)
ASSEMBLY_mug_hanger.connect(PART_doublehook2.hook2, PART_doublehook1.hook1)
ASSEMBLY_mug_hanger.connect(PART_doublehook3.hook1, PART_doublehook2.hook1)
ASSEMBLY_mug_hanger.connect(ENV_end.hook, PART_doublehook3.hook2)

end_frame = Frame([0,0,50], [-35,0,-90])
ASSEMBLY_mug_hanger.end_with(ENV_end.hook, end_frame)

B.5 Paper Towel Holder
ASSEMBLY_paper_towel_holder = Assembly()

ENV_start = Environment({"env": TowelHangingEnv()})
ENV_end = Environment({"paper_towel_roll": PaperTowelRoll()})

wall_frame = Frame([0,0,300], [0,0,0])
ASSEMBLY_paper_towel_holder.add(ENV_start, wall_frame)

PART_hookeye1 = HookEyeLeft()
PART_hookeye2 = HookEyeLeft()
PART_broomrod = BroomRod()
ASSEMBLY_paper_towel_holder.connect(PART_hookeye1.hole, ENV_start.hook1)
ASSEMBLY_paper_towel_holder.connect(PART_hookeye2.hole, ENV_start.hook2)
ASSEMBLY_paper_towel_holder.connect(PART_broomrod.tube, PART_hookeye1.hook, is_fixed=True)
ASSEMBLY_paper_towel_holder.connect(ENV_end.tube, PART_broomrod.tube)
ASSEMBLY_paper_towel_holder.connect(PART_hookeye2.hook, PART_broomrod.tube, is_fixed=True)

end_frame = Frame([53,0,160], [-90,-60,0])
ASSEMBLY_paper_towel_holder.end_with(ENV_end.tube, end_frame)

B.6 Diaper Caddy
ASSEMBLY_diaper_caddy = Assembly()

ENV_start = Environment({"backseat": BackSeats()})
ENV_end = Environment({"diaper_caddy": DiaperCaddy()})

start_frame = Frame([0,0,0], [0,0,0])
ASSEMBLY_diaper_caddy.add(ENV_start, start_frame)

PART_doublehook1 = DoubleHook()
PART_doublehook2 = DoubleHook()
PART_doublehook3 = DoubleHook()
PART_doublehook4 = DoubleHook()
ASSEMBLY_diaper_caddy.connect(PART_doublehook1.hook1, ENV_start.rod1)
ASSEMBLY_diaper_caddy.connect(PART_doublehook2.hook2, ENV_start.rod2)
ASSEMBLY_diaper_caddy.connect(PART_doublehook3.hook1, PART_doublehook1.hook2)
ASSEMBLY_diaper_caddy.connect(PART_doublehook4.hook1, PART_doublehook2.hook1)
ASSEMBLY_diaper_caddy.connect(ENV_end.hook2, PART_doublehook3.hook2)
ASSEMBLY_diaper_caddy.connect(ENV_end.hook1, PART_doublehook4.hook2)

end_frame = Frame([124.3,580,717.1], [-135.5,-40,20.5])
ASSEMBLY_diaper_caddy.end_with(ENV_end.hook2, end_frame)

C ADDITIONAL IMAGE CREDITS
We used the following online images for three figures in this work:

(1) Figure 1: hula hoop image from Walmart.
(2) First inset figure in Section 1: Image by Peggy und Marco

Lachmann-Anke from Pixabay, Image by user15245033 on

Freepik, Image by rawpixel.com on Freepik, Image by to-
hamina on Freepik, binder clip image from Office Depot.

(3) Inset Figure 3: middle from okfarmhousedecor, right from
architectureartdesigns.

https://www.walmart.com/ip/kids-hula-hoop-body-building-plastic-children-gymnastics-toys-diameter-25-inch-blue/286284542
https://pixabay.com/users/peggy_marco-1553824/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1019808
https://pixabay.com/users/peggy_marco-1553824/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1019808
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1019808
https://www.freepik.com/free-vector/realistic-vector-icon-set-dark-dress-cupboard-with-two-doors-open-closed-isolated-white_43092619.htm#page=2&query=open%20closet&position=30&from_view=search&track=ais&uuid=a68e94f8-b1c1-4ac8-8906-f346dfc47038
https://www.freepik.com/free-vector/illustration-shopping-online_2606536.htm#query=basket&position=36&from_view=search&track=ais&uuid=38425ea8-e4b3-4945-b42e-d9e6ad19b01a
https://www.freepik.com/free-psd/basket-isolated-transparent-background_81702435.htm#page=3&query=round%20handle%20basket%20empty%20cartoon&position=31&from_view=search&track=ais&uuid=859be015-3a18-4f58-bfe1-5496e7ed42b5
https://media.officedepot.com/images/f_auto,q_auto,e_sharpen,h_450/products/561339/561339
https://www.okfarmhousedecor.com/product/idesign-curved-metal-shower-curtain-rod-adjustable-customizable-curtain-rod-for-bathtub-stall-closet-doorway-41-72-inches-matte-black79077/
https://www.architectureartdesigns.com/wp-content/uploads/2014/11/62.jpg

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 An S-DSL for FabHacks
	4.1 Connector Primitives
	4.2 Language Constructs and Hack Construction
	4.3 Solver-aided Evaluation
	4.4 DSL Implementation and Parametric FabHaL Programs

	5 Interfacing with FabHaL
	5.1 The FabHacks Interface and User Workflow

	6 Evaluation of FabHacks
	6.1 Implementation
	6.2 User Study with FabHacks Interface

	7 Limitations and Future Work
	8 Conclusion
	References
	A Analysis of the Design Space of Home Hacks
	B Programs for Gallery Examples
	B.1 Toothbrush Holder
	B.2 Charger Holder
	B.3 Soap Bottle Holder
	B.4 Mug Hanger
	B.5 Paper Towel Holder
	B.6 Diaper Caddy

	C Additional Image Credits

