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a) b) c)
Figure 1. PenSight concept: (a) prototype pen input device with pen-top downward-facing fisheye camera; b) example wide-angle view captured by 
camera; c) corresponding interaction postures formed by the user with their pen-holding hand and resting hand. 

ABSTRACT 
We propose mounting a downward-facing camera above the 
top end of a digital tablet pen. This creates a unique and prac-
tical viewing angle for capturing the pen-holding hand and 
the immediate surroundings which can include the other hand. 
The fabrication of a prototype device is described and the en-
abled interaction design space is explored, including dominant 
and non-dominant hand pose recognition, tablet grip detection, 
hand gestures, capturing physical content in the environment, 
and detecting users and pens. A deep learning computer vi-
sion pipeline is developed for classification, regression, and 
keypoint detection to enable these interactions. Example ap-
plications demonstrate usage scenarios and a qualitative user 
evaluation confirms the potential of the approach. 
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INTRODUCTION 
Increasing the interaction vocabulary of pen input is an impor-
tant goal. Commercial pens have features to switch modes, 
like tapping the pen barrel with the second generation Apple 
Pencil, or methods to enter a temporary “quasimode” [41], 
such as using the eraser end of the Microsoft Surface Pen. Re-
searchers have proposed many more sensing and interaction 
techniques in the pursuit of this goal, such as using tilt [50], 
controlled barrel rolling [6], motion [21], and how fingers 
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grip the pen [46, 48]. Pen manipulations can further be com-
bined with multitouch input on the tablet to create a hybrid 
“pen+touch” interaction vocabulary, for instance, using coor-
dinated touch input with the other hand [23, 31, 7], or even 
detecting different hand postures while holding the pen, such 
as extending the pinkie finger against the multitouch surface 
[8]. However, the potential pen manipulations, grips, and hand 
postures are limited by the sensing capabilities of the pen and 
the multitouch device. Techniques using grip sensors on the 
pen can only rely on how fingers are pressed against the barrel 
[46, 48], while the tablet can only detect touch contact patterns 
on the screen [8]. 

Using a camera as a sensor makes it possible to capture more 
diverse hand poses, including in-air postures [47], and hand 
actions away from the tablet or the pen in the surrounding 
environment [55]. However, mounting a camera for such 
situations is challenging. Placing it in the environment, like 
an overhead camera mounted on the ceiling, may provide a 
broad view of both hand and surrounding area, but fine-grained 
tracking is problematic and mobile pen and tablet usage is not 
supported. Placing a camera on the tablet preserves mobility, 
but even wide-angle or omnidirectional lenses have a restricted 
view defined by the plane of the device [58, 55]. 

To achieve both breadth of view and high mobility, we propose 
mounting a camera on the pen itself. Unlike pens with cameras 
in the tip for localisation (e.g. Anoto Livescribe [2]) or pens 
with cameras facing out from the side of the barrel (so-called 
“spy camera pens”), we fix a camera with a wide-angle “fisheye” 
lens above the top end of the pen, facing downward. This 
creates a unique and practical viewing angle to capture both 
the pen-holding hand and immediate surroundings, including 
the other hand (Figure 1). We call this approach PenSight. 

In this paper, we describe the fabrication of a prototype Pen-
Sight device, and use it to explore the interaction design space 
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enabled by a pen-top camera viewpoint. This includes domi-
nant and non-dominant hand pose recognition for mode activa-
tion and action triggers, tablet grip detection, hand gestures for 
continuous parameter control, capturing of physical content 
in the environment, and detecting users and pens. To enable 
these interactions, we leverage deep learning and computer 
vision techniques: classification to detect postures, regression 
to determine relative distances between hand and pen, and 
keypoint detection to identify a fingertip. Finally, we provide 
example application demonstrations and usage scenarios, with 
a qualitative user evaluation confirming the potential of this 
approach. 

Our contributions are: (1) using a novel downward-facing 
pen-top camera viewpoint; (2) an exploration of the associated 
design space with applications; (3) the detection pipeline. 

RELATED WORK 
Our work relates to literature on enhanced pen input, hand 
pose estimation, and around-device interaction. 

Enhanced Pen Input 
Multiple methods to enhance direct single-point pen input have 
been proposed and developed. Touchscreens with separate 
digitisers or recognisers differentiating pen and touch input 
have inspired combinations of the two modalities. In the 
context of bimanual interaction, touch input performed by 
the non-dominant hand can be used to efficiently assist or 
complement the dominant hand manipulating the pen [23, 7, 
39, 34]. For instance, different modes can be associated with 
different hand or finger contact patterns of the non-dominant 
hand on the surface to support rapid switching [31]. 

Hybrid pen and touch interaction has also been applied to 
single-hand pen input with the fingers of the pen-holding hand 
itself forming the mode-determining touch patterns [8]. 

To track the actions of the pen and the hand manipulating it, 
sensors can be directly integrated into an “active pen”. This 
enables sensing movements like pen motion and tilt, which has 
been used to support various orientation-based interactions [6, 
50, 21, 24, 19]. Menus can be invoked and controlled above 
the surface using hovering [16]. Grip sensors can detect how 
users grasp the pen [46, 48], with the combination of grip 
and motion sensing enabling context-based interactions and 
dynamic interface adaptations [22, 61]. FlexAura senses grasp 
with hand proximity, but the range is limited to 30mm [30]. 
Beyond grip, the pen can be made deformable to add expres-
sivity through tactile manipulations [15]. Finally, VersaPen is 
a modular pen with attachable parts integrating different types 
of sensors to customisable input capabilities [49]. 

All the above techniques involve some form of grip or close-
range sensing on the pen or the tablet. This precludes gestures 
outside that scope or interaction with the surrounding environ-
ment, both of which can be useful in a mobile context. Aslan 
et al. explored mid-air gestures of the non-dominant hand 
to assist pen input using a Leap Motion placed next to the 
tablet [4], but the tracking range is limited by the stationary 
sensor. With PenSight, we seek to support mode-triggering 
postures with both the pen-holding hand and the other hand, 

which are not limited by grip and where the postures can be 
formed rapidly and comfortably from normal hand-writing 
and hand-resting poses. 

Mid-air Hand Interaction 
Techniques have been proposed to create “around-device in-
teraction” by detecting mid-air gestures using cameras built 
in, or attached to, a mobile device [47, 12, 58]. Using an 
omnidirectional lens has also been shown to extend the view 
to include the surrounding environment [55]. While effective 
for broad contextual sensing, a camera mounted on the mobile 
device itself still has a limited view angle and cannot track 
hands moving across devices and media. 

Cameras or sensors worn directly on the hand or the arm allow 
more ubiquitous sensing, but at the cost of instrumenting the 
user. Wearable sensors used for hand pose estimation include 
mini cameras [10], infrared [26, 35], accelerometers [52, 54], 
pressure [13], electrical impedance tomography [60], ultra-
sound [25, 36], and electromyography (EMG) [43, 59]. These 
methods seem suited to detecting pen-holding poses, but they 
have mostly been used to recognise penned content such as 
handwriting [29, 56, 45]. We attempted to recognise pen-grip 
postures using the Myo commercial EMG armband, however 
we only achieved moderate success due to the fidelity of the 
sensor [33]. But even high-precision wearable sensors are 
limited to signals directly emanating from the body. PenSight, 
with its pen-top camera, does not require user instrumentation, 
and it can recognise both hands as well as the surrounding 
context wherever the pen is taken. This means it is not limited 
to a particular setting or device, nor is it limited to a single pen 
as the mount can be detached and reattached to other pens or 
pen-like instruments. 

HARDWARE CONCEPT AND PROTOTYPE DESIGN 
We describe our prototypes created to realise the PenSight 
concept, followed by depictions of potential future designs. 

Proof-of-Concept Prototypes 
A key requirement for an active pen is that it should still 
feel comfortable to grip and manipulate. It should not be 
excessively large, have weight imbalances or be tethered for 
power or data transfer. Given those considerations, we initially 
looked for a miniature wireless wide-angle camera that could 
be fixed at a moderate height above the top end of the pen via a 
3D-printed mounting piece. We created a first prototype using 
an Aobo wireless camera combined with a 165◦ clip-on lens 
for mobile phones to increase the field of view. Although this 
was untethered, the setup significantly increased the pen length 
(8.5cm) and weight (52g), and streaming over WiFi showed a 
noticeable lag that could be detrimental to user experience. We 
therefore opted for a more lightweight design using a single 
mini USB camera module with a 180◦ fisheye lens. Without 
considering the cable, this reduced the added pen length to 
6.2cm and weight to 18g. The camera streams video at 30 fps 
in 1920 × 1080 resolution over USB2. 

The 3D-printed mount has a lower ring that fastens to the 
end of the pen and a top platform holding the camera in a 
downward direction (Figure 1). The camera platform must 
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Figure 2. 3D-printed mounts: (a) with a ring sized for an Apple pencil; 
(b) using lateral screws in the ring to adapt to different pen diameters. 

Mini wireless omni-
directional cameras
with battery and

transmitter

Transparent casing

a) b)

Mini wireless camera

Battery and transmitter

Curved mirror

Transparent casing

Figure 3. Future PenSight concept designs: (a) omnidirectional camera 
in the pen top; (b) catadioptric configuration with a camera in the barrel 
and curved mirror in the pen top. 

be “raised” above the pen-top using a structure that is robust 
and stable, while minimising occlusion of the camera view. 
Through trial-and-error we arrived at a compromise with three 
equally spaced 1mm thin blades (Figure 2). The pen-fastening 
ring can be printed in different diameters. We printed versions 
for a Wacom stylus, an Apple Pencil, and a larger ring with 
lateral screws to adapt to other pen barrels. 

Future Concept Designs 
The 3D-printed mount adds length and weight to pens, which 
raises the centre of gravity. To remedy these issues in the 
future, we propose some concept ideas of possible PenSight 
designs with pens and cameras manufactured for this purpose. 
For example, a design with a mini wireless omnidirectional 
camera consisting of two camera units, each with a 180◦ field-
of-view, one facing downwards towards the interactive surface, 
and one facing upwards to capture the environment above the 
pen including the user’s face (Figure 3a). This would deliver 
fully circular image frames with equal scene coverage similar 
to commercial 360◦ cameras. Instead of an opaque mount, 
the upper part of the pen barrel could be made transparent to 
eliminate peripheral occlusions caused by support structures. 

An alternative design for pens could be based on a catadioptric 
configuration with a camera located inside the lower part of 
the pen barrel (also containing the battery and the transmitter) 
and facing upwards towards a curved mirror fixed to the pen 
top (Figure 3b). Curved mirrors for catadioptric systems can 
support very wide viewing angles so that coverage similar 
to fisheye lens and omnidirectional cameras can be achieved 
[38]. In both future concept configurations, there is a tradeoff 
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between achieving the necessary height of the captured view 
for sufficient coverage of the hands and the environment with 
minimal occlusions versus a practical pen length and weight. 

INTERACTION TECHNIQUES 
Since our focus is on exploration rather than exhaustiveness, 
we examine a selection of example interactions from different 
situations of pen and tablet use. These are representative of a 
broader support for many related grips, postures, and positions 
adopted by users in each case. The interactions that we con-
sider can be divided into three categories: hand-posture-based 
interactions, interaction with the environment and identifica-
tion. We first give a description of these interactions and later 
propose potential associations with actual modes and interface 
actions in example applications. 

Hand Posture-Based Interactions 
Prior work showed that hand postures can be used to efficiently 
switch pen modes or trigger interface actions upon detection 
[23, 31, 48, 46, 22]. These shortcut-like actions avoid time-
consuming round-trips of the pen between the main workspace 
and mode-selection widgets commonly placed on the edges 
of the interface. Trigger postures can be formed by the non-
writing hand (non-dominant hand) or the pen-holding hand 
(dominant hand). A popular theoretical framework ground-
ing the design of interactions in the former case is the kine-
matic chain or asymmetric division of labour [17], where the 
non-dominant hand sets the frame of reference in which the 
dominant hand operates. For bimanual pen interaction, this 
can translate to non-dominant hand postures defining so-called 
quasimodes, defined as modes that remain active as long as 
the corresponding posture is formed [41]. For example, the 
pen is in selection mode while four fingers of the other hand 
are touching the screen [31]. For unimanual interaction, where 
mode-switching postures are formed by the pen-holding hand 
using different pen grips, quasimode triggers are also possible. 
However, for some postures and grips, the dexterity, switching 
speed, and fatigue may make this less appealing [8]. When 
using variations of pen grips for temporary mode changes, it 
is better to associate them with instant actions [33]. 

We support postures made both by the pen-holding hand and 
the other hand. To avoid the above issues, we assign postures 
of the other hand to quasimodes and pen-gripping postures to 
single actions. This clear separation of the hand roles should 
also reduce confusion for the user. In addition to interactions 
associated with either the pen hand or the other hand, we also 
propose a novel category of techniques combining both hands 
to form single postures. 

Normal Hand-Resting Poses 
When using a tablet with a pen on a desk, the other hand is 
mostly inactive, except when used for occasional multitouch 
actions like pinch-to-zoom. When not active, the hand is often 
resting on the table or on the user’s lap [51]. We are not 
aware of any study investigating typical poses of the passive 
non-dominant hand and arm during pen tasks on tablets. Our 
informal observations suggest many people place their hand 
near the device, either on the opposite side or below, with the 
palm down, flat on the surface, or with lightly curled fingers 
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Normal pose

g) Raised index h) Vertical hand i) Fist

Other Hand Pointing at Off-Tablet Content

a) Other hand left of tablet b) Other hand below tablet c) Extended pinkie d) Extended index e) Ext. mid. ring pinkie f) Curled up index

l) With pen hand m) With other hand

Pen Hand

j) Tap on wrist k) Index pen sawing

Both Hands

n) Left grip o) Left grip raised index q) Top grip raised indexp) Top grip

Tablet Grips

r) Thumb in s) Thumb out

Touch with Pen Tucked

Figure 4. Supported hand postures, interactions, and tablet grips. 

(Figure 4a,b). We build on these normal resting poses of the 
other hand to create our mode-setting postures. 

Pen Hand Distinct Actions 
Considering the position of the camera immediately above the 
pen hand, interactions based on gripping postures formed by 
this hand were a natural first choice in our exploration. Our 
previous study of alternative pen grips for mode-switching 
offer a number of possible candidates [33]. However, the 
viewing angle of the camera limits postures to those that can 
be distinguished from the top. Together with the requirement 
that it should be possible to form these postures rapidly for 
instant action triggers while maintaining pen grip stability, 
this leaves us mostly with poses consisting of extending one 
or more fingers. For our pen grips, we therefore consider 
extended index finger and extended pinkie, to which we add 
two new postures: extended middle, ring and pinkie and index 
curled up (Figure 4c-f). 

Touch with Pen Tucked 
Interaction with the dominant hand is not limited to pen input 
if the tablet also supports touch. For instance, pen interaction 
is often interleaved with touch input for panning and zooming. 
To perform touch operations with the pen-holding hand, the 
pen can be temporarily tucked between the fingers. There are 
several pen-stowing strategies, which depend on user prefer-
ences and context [22]. PenSight can be used to detect such 

postures. We show an example using two variations of one 
popular grip: tucking the pen with the index finger, or with 
adducted or abducted thumb (Figure 4r,s). The position of the 
thumb can be used to control an additional mode when per-
forming touch operations with the tucked pen, such as locking 
2D panning to one direction. 

Other Hand Quasimode Postures 
The wide viewing angle of the fisheye camera can extend 
posture-based interaction to the other hand when located near 
the device. As described above, if the tablet is placed on a 
table, the non-dominant hand has a more or less passive role 
depending on how frequently it is involved in touch operations. 
In our case, the non-dominant hand actively participates in 
the interactions by triggering quasimodes using particular pos-
tures. Since quasimodes are by definition maintained, we seek 
non fatiguing postures, where the hand still rests on the surface, 
but can be differentiated from casual resting poses for robust 
detection. Ideally, transitions from normal resting (passive) 
poses and mode-setting (active) postures should be smooth 
and effortless to support rapid switching [34]. Following these 
considerations, we selected three mode-setting postures: a fist 
and a vertical hand, which have been used previously for touch 
input on tabletops [53, 32] and mid-air interaction [5], and a 
resting hand with a raised index finger, which we believe to be 
new (Figure 4g-i). There are of course other possible postures 
that also fulfil the desired requirements. 
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Tablet Grips 
Another important role of the non-dominant hand in tablet 
interaction is holding the device in mobile situations. Previous 
work showed that grip patterns provide useful contextual infor-
mation about tablet use for situated interactions [57, 22, 61]. 
If the hand is holding the tablet from one of the sides, then the 
pen-top camera can capture it and recognise the gripping pos-
ture. Furthermore, unlike tablet prototypes with grip sensors 
that are limited to recognising touch patterns, PenSight can de-
tect mid-air variations of grip postures, such as raising a finger, 
to support additional actions triggered by the tablet-gripping 
hand. We propose to use the index finger for such actions as 
it is arguably the most capable of independent movement in 
these scenarios. We use index-based triggers as extensions of 
two tablet gripping poses: left and top grips (Figure 4n-q). 

Both Hands 
Both hands can also be combined to form single bimanual 
postures. These are better suited for instant actions, since 
maintained poses would require moving the other hand along 
with the pen hand. As an example, we propose a gentle tap of 
the other hand on the wrist of the pen hand (Figure 4j). This 
action requires little effort if the other hand is resting below 
the tablet (Figure 4b). 

Interactions are not limited to triggering single modes or dis-
crete actions, but can also be used to control continuous pa-
rameters. One idea, proposed by Aslan et al. [3], is to use 
the distance between the other hand and a sensor close to the 
side of the tablet. Reliably inferring distance on the depth 
axis using only an RGB camera is challenging considering 
the different sizes and appearances of hands. Distances can 
be more robustly measured from a top view, and in our con-
text this means that a hand moving to modify a continuous 
parameter would do so just under the camera. Therefore, we 
propose a gestural action in which the extended index finger 
of the other hand orthogonally contacts the pen and the dis-
tance between the fingertip and the pen (i.e. the centre of the 
image) determines the value of the continuous parameter to 
control. To increase or decrease a value, the user rubs their 
finger against the pen towards or away from them in a “sawing” 
motion (Figures 4k and 6c). 

Interaction with the Environment 
Apart from the hands, PenSight can also “see” the environment, 
including objects around the tablet, such as documents, which 
can be involved in the task. The camera can further be used to 
identify the user and the pen it is attached on. 

Capturing Off-Tablet Content 
Perhaps the most straightforward way to capture content in the 
environment would be to pick up the tablet and use its camera. 
If only a portion of the image is required, it can be cropped out 
using any standard photo editing application. However, this 
operation can be tedious for repeated acquisitions and when 
the captured content is used as a basis for further operations, 
like image search or OCR. A pen with a camera seems like 
a convenient tool to capture and reuse, or “pick-and-drop” 
[42] selected elements in the vicinity. For example, the user 
might want to circle items in a magazine to copy or search 
for, or underline a word in a book, to look up the definition. 

Unfortunately, the camera is unable to see the pen tip, as it is 
occluded by the holding hand. The pen, therefore, cannot be 
directly used to point at and select artifacts. 

As an alternative method, we consider pointing with the index 
finger of the pen-holding hand or the other hand. Pointing 
with the pen hand requires extending the index while tilting 
the pen forward and above the content so that the camera can 
capture it (Figure 4l). Since we use a camera with a fisheye 
lens, the desired content can still be fully framed, even at a 
low tilt angle. This creates a pose similar to a touch with 
pen-tucked posture. If pointing with the index finger of the 
other hand, the pen hand simply needs to be held above or 
close to the content to capture (Figure 4m). The advantage 
is that each hand has a separate role: one points, the other 
frames, but at the same time, both hands are monopolised for 
the interaction. As for the action to execute the image capture, 
a trigger posture, such as a tap on the wrist, can be used in the 
first case and an extended finger in the second. 

Pointing with the index finger only provides a single x-y point 
in the image and it does not explicitly define a complete re-
gion of interest for the desired content. There are many ways 
to extend single-point selections to lines and even bounding 
boxes. Among possible interactions that we considered are 
underlining with the finger, using three fingers together, or 
detecting three successive taps using the same finger to define 
the three corners of a rectangular region. All these options are 
feasible, but they either require more complex positioning of 
the hands and fingers or time-based detection. In our initial 
proof-of-concept implementation, we use a single-finger po-
sition captured in a single image frame to select content with 
well-defined boundaries, such as a photograph or isolated text. 

Detecting Users and Pens 
The camera can identify its own context as well. For example, 
anticipating that people have different preferences with regard 
to postures and their mappings to modes and shortcuts [33], 
a shared PenSight pen can detect which person is currently 
using it. This way, personalised preferences and custom set-
tings can be loaded accordingly. Another application of user 
identification could be to prevent a pen from being used by 
unauthorised people. 

One possible and immediate biometric method to identify 
users with a pen-top camera is to recognise their hand. Previ-
ous work has used the geometry and features of the back of the 
hand to identify users in collaborative tabletop scenarios [40, 
44]. Since the pen-holding hand is very close to the camera, 
we hypothesise users can be easily and reliably identified using 
machine learning, given enough training data. Alternatively, 
if training on hand data is impossible or too cumbersome, the 
user’s face can be used as the biometric identifier instead. For 
that, the pen camera can simply be pointed at the user’s face. 
Since facial recognition is a more established identification 
method, existing databases can be used to recognise users, 
without the need for ad hoc training with hand image data. 

Finally, another customisation that PenSight can support is 
detecting the pen on which the camera is attached. Many pens 
can be distinguished from their top end only, so analysing and 
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Figure 5. Tool identification using the central area of the camera image. 

comparing the central region of the camera image in which the 
pen end appears can enable coarse identification (Figure 5). 
Pens that look too similar can be differentiated or personalised 
by adding recognisable markers. 

While in this work, we only look at digital pens, the camera 
mount can also conceivably be fixed to regular pens and even 
to other pen-like instruments as well. Again, different settings 
can be loaded depending on the capabilities or security proper-
ties of the connected instrument. For instance, attached to a 
light stylus, only quick pen hand postures might be activated, 
whereas if coupled with a brush, different holding grips used 
by artists might become available [1]. 

DETECTION PIPELINE 
Hand pose estimation involves recognising the location of 
hands, fingers and their joints in RGB or depth images using 
computer vision [28]. In recent years, techniques based on 
deep learning have enabled robust real-time hand keypoint 
detection from individual RGB frames, with frameworks like 
OpenPose [9] including code, datasets and pre-trained neural 
network models made publicly available [11]. Our camera lens 
and capturing angle differ markedly from those used to train 
public models, however, and our tests with these frameworks 
did not give satisfactory results, especially for the pen hand. 
We therefore develop our own machine learning pipeline for 
our specific needs. 

Data Gathering 
To be able to robustly detect postures from different users, a 
large amount of training data is required. This data should 
ideally come from a diversity of people with different hand 
sizes, skin tones, clothes, and be captured in various envi-
ronments with different backgrounds and lighting conditions. 
The goal of this work is not to produce a general dataset, but 
merely to prove the feasibility of the PenSight concept and its 
interactions. To keep data gathering to a reasonable level for 
this purpose, we limit ourselves to collecting data in our lab 
using one tablet and with 15 people. 

Data Capture Environment 
We record our posture data with the tablet placed on a desk 
and when gripped by participants. We do so in two different 
settings: one with a white desk and the other with a table and 
enclosure covered by a green sheet. This green backdrop can 
then be artificially removed using chroma keying and replaced 
with random images so that the neural network learns to ignore 
the background. We use the white desk for 12 participants and 
the green environment for 5, with therefore two participants 
using both setups. We use an iPad Pro for the tablet (size 10.5", 
weight 469g) and an Apple Pencil for the pen (length 175.7 
mm, diameter 8.9 mm, weight 20.7g). 
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To record data, participants are asked to move the pen on the 
tablet while forming postures successively. When performing 
postures with the other hand (fist, chop, vertical hand etc.), 
the pen is held normally. In addition to creating data for those 
other hand postures, this also increases the amount of data for 
normal poses of the pen-holding hand. We use that data later 
to train our models for user identification. Normal postures 
further need to include transitory phases between resting poses 
on the table and mode-activation postures requiring more hand 
movement, such as index pen sawing. Since that posture 
should only become active when the index finger touches the 
pen barrel, we need to record data up to that point: from the 
hand resting next to the tablet to the moment just before the 
finger contacts the pen. It is crucial for a neural network to 
be exposed to many of these negative examples in order to 
mitigate misrecognitions. 

No specific tasks are given to participants when recording data. 
Participants form and hold postures while drawing randomly 
on the tablet. They are requested to move their hands as much 
as possible in order to cover different positions, orientations, 
and tilting angles for the pen. Unfortunately, the camera does 
not capture frames showing the full circle covered by the fish-
eye lens as the top and bottom parts are partially cropped out 
(see Figure 1b). This, and the three visible support blades, re-
sult in the camera view being angle-dependent, which makes 
it difficult to programmatically rotate images for data augmen-
tation. We therefore ask participants to physically rotate the 
camera to cover different rotation angles. 

Data 
After capturing the data, to make sure we obtain clean datasets 
for training, we manually inspect and remove all images where 
postures are not visible or correctly formed. After cleaning, 
there were 338,891 images with amounts ranging from 15,000 
to 23,600 for each of the 17 posture classes and roughly 45,000 
images for normal handwriting poses. About 20% of the 
data was acquired with the green backdrop and thus subject 
to artificial background replacement. Images for index pen 
sawing and pointing actions are manually labelled with the x-y 
coordinates of the fingertip. For index pen sawing, we further 
compute the distance between the fingertip and the pen (the 
centre of the image) to be used for regression. 

We create seven datasets for different hands and their interac-
tions: five for posture classification, Pen Hand, Other Hand, 
Tablet Grip, Left Grip Mode, Top Grip Mode; one for re-
gression, Index-pen Distance; and one for keypoint detection, 
Fingertip Location. Postures included in each set are listed 
in Table 1. We arbitrarily include the tap on wrist and index 
pen sawing postures, which involve both hands, in the Pen 
Hand and Other Hand sets respectively. Note that images for 
index pen sawing are used for both classification and regres-
sion, as it is first required to know when that mode is active 
(classification in Other Hand set), before the continuous value 
can be inferred from the fingertip coordinates (regression in 
Index-pen Distance). 

Neural network models are trained for each of the above 
datasets resulting in multiple recognisers that can be activated 
and deactivated in applications when needed. We describe 
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when the recognisers are enabled and how they are used in our 
demonstration applications further below. 

We create an eighth dataset, User ID Hand, for hand-based 
user identification consisting of all other hand postures, which 
were recorded when the dominant hand was holding the pen 
normally. This makes it easier to conduct fairer and easier 
accuracy assessments by splitting training and validation sets 
according to postures sets, but of the same type (e.g. “normal” 
postures used for validation, the rest for training). 

Neural Network Models 
We use neural network models based on a ResNet-50 archi-
tecture [20], a type of convolutional neural network (CNN) 
that has proven successful for classification and regression 
tasks on image data. The base layers of the models are pre-
trained on ImageNet [14]. To these base layers we add a single 
fully-connected layer after the last pooling layer, whose di-
mensions correspond to the number of desired output classes 
or values. This is equal to the number of postures included in 
the dataset, except for Tablet Grip where we merge the left 
and top postures together (i.e. grip with and without raised 
index), since the purpose of that set is to determine where the 
user is holding the tablet, irrespective of the index position. 

For the classification models, we use softmax and cross en-
tropy as the loss function and match rate as the accuracy metric. 
For the regression models, mean squared error is used for the 
loss and coefficient of determination for accuracy. 

We use the Adam [27] optimiser to train all models. The learn-
ing rate coefficients for the base layers and the last layer are set 
to 5× 10−5 and 1 × 10−3 respectively. Posture classification 
models are trained for 10 epochs and regression models for 50 
epochs. 

We perform 5-fold cross-validation to evaluate each trained 
model. For the validation of the seven posture dataset models, 
we leave out three participants chosen pseudo-randomly such 
that one belongs to the green background condition, and two to 
the regular desk group. Two pilot testers, who provided a large 
amount of data for both conditions are always included in the 
training set. For the User ID Hand model, we validate on one 
of the four included posture sets, and train on the remaining 
three. 

Results 
Results are shown in Table 1. Rates are all above 79% with 
the main dataset models Pen Hand and Other Hand showing 
accuracies above 90%. This is theoretically sufficient for 
prototype testing, although these results do not reflect badly 
formed and occluded postures. We provide estimates of the 
impact of these factors later when evaluating the postures 
within applications. 

The results for user identification using hand images is close 
to 100%, which is encouraging, but is admittedly based on 
a large amount of data and few users. In a real deployment, 
robust performance would need to be achieved with only a few 
training samples. 

Dataset Included Postures Accuracy 

Pen Hand 
normal, ext. pinkie, ext. index, ext. mid. 
ring pinkie, curled up index, tap on wrist, 
pen tucked thumb in, pen tucked thumb out 

93.6% 

Other Hand normal, raised index, vertical hand, fist, 
index pen sawing 90.8% 

Tablet Grip top grip, top grip raised index, left grip, left 
grip raised index 96.1% 

Left Grip Mode left grip, left grip raised index 79.6% 

Top Grip Mode top grip, top grip raised index 87.2% 

Index-pen Distance 
(regression) index pen sawing 0.90 (R2) 

Fingertip Location 
(keypoint) pointing with pen hand 0.84 (R2) 

User ID Hand normal, raised index, vertical hand, fist 99.5% 

Table 1. Posture dataset and model recognition accuracy (error rate for 
classification, coefficient of determination (R2) for regression and key-
point detection). 

For our demonstration applications, we train models for each 
posture dataset using all data (combining training and testing 
partitions used above), since with deep learning, more data 
generally translates to more robust models. 

DEMONSTRATION APPLICATIONS 
We create two tablet applications to demonstrate the interac-
tions enabled by the PenSight concept, a sketching application 
and a map application. We use these applications to evaluate 
the usability of our techniques when sitting with the tablet 
placed on a desk and sitting while holding the tablet with the 
other hand. Posture-to-action assignments for each application 
are made with one of these two settings in mind: the sketching 
application for the desk condition and the map application 
when holding the tablet. This allocation is somewhat arbi-
trary and mainly serves the purpose of providing two different 
testing contexts to experience PenSight interactions. 

Since current tablets are not sufficiently powerful for a posture 
recognition pipeline based on multiple ResNet-50 networks, 
we opt for a client-server architecture. The server, a Windows 
PC with a Geforce GTX 1080 GPU, runs the various posture 
recognisers in Python. The client is an iOS Swift application 
running on an iPad Pro. The server and the client are connected 
via WebSockets. When running the required recognisers for 
each application in parallel, the frame rate averages 12fps, 
which is sufficient for testing purposes. 

Sketching Application 
The first application is a sketching app. The default mode is 
inking, when both hands are in their normal pen-holding and 
resting poses. In this mode the pen inputs freeform strokes 
on the canvas. For other modes and actions, we utilise our 
recognisers with the Pen Hand, Other Hand, Index-pen Dis-
tance, and Fingertip Location models described above. Active 
modes are displayed in a status bar at the bottom of the screen, 
so that the user can confirm that postures have been correctly 
detected. 

Pen Hand Model for Instant Actions 
The pen-holding hand is used mainly to trigger instant actions 
as it is fatiguing to maintain non-conventional pen gripping 
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a) b) c) d)c)

Figure 6. Example applications and interactions: a) sketching application with other-hand posture setting a mode; b) Pointing at off-tablet content to 
perform searches; c) pen “sawing” action with fingertip distance (blue circle) mapped to a continuous parameter; d) map application with raised finger 
of the tablet-gripping hand setting a mode. See the accompanying video for full demonstrations. 

postures for quasimodes [33]. Among the basic functional-
ity of our application, we support undo and redo. Those are 
frequent and symmetric operations so we assign them to ex-
tended index finger and pinkie respectively. The user can thus 
perform multiple undo/redo operations by repeatedly lifting 
the required finger. A menu with a colour palette and other 
actions can be invoked in place (it appears where the pen last 
touched the screen) with curled up index. This is a very fre-
quent operation, and curled up index seems most suitable since 
it requires comparatively little finger movement. However, pi-
lot tests revealed that it was not always easy to perform or 
detect that posture, so we add a backup possibility to call the 
menu with extended middle ring and pinkie. This is perhaps 
more costly in terms of finger movement, but seems to be 
more reliable for some users. The application also supports a 
clear-all function, which is less frequent but consequential if 
mistakenly triggered, so we map it to the tap on wrist action, 
which requires more movement from the other hand. 

The canvas can be scrolled using touch with the pen tucked. 
When the thumb is kept in, scrolling in any direction is pos-
sible. Extending the thumb with the pen tucked thumb out 
posture locks scrolling to vertical or horizontal axis-aligned 
directions. These postures need to be maintained to keep the 
quasimode active, but because the pen is tucked, they are 
likely less taxing compared to a finger kept extended while 
writing. This design might not be suitable for applications 
with zooming or scaling capabilities, as the thumb is often 
used in combination with the index finger for the common 
pinch-spread gesture. We use these postures to test the feasi-
bility of thumb adduction and abduction for mode-switching 
while the pen is tucked. 

Other Hand Model for Quasimodes 
The other hand is mainly used to set quasimodes, similar to 
pen and touch applications [23, 31, 7]. Erasing mode can be 
activated with raised index, a low-cost posture for a frequent 
operation. When that mode is active, the pen deletes instead of 
inking. Further quasimode operations include the insertion of 
rectangles and circles. We map those to vertical hand and fist 
respectively, given their shapes roughly match and therefore 
mental association is likely facilitated (Figure 6a). 

Finally, we map index pen sawing, our posture for continuous 
parameter control, to stroke width. While arguably also costly 
in terms of hand movement, we believe it is intuitive and easy 
to perform. To change the width of the stroke the user first 
brings the index finger of their other hand against the pen 
(detected by the other Hand recogniser), then moves their 

finger forward to increase the distance between the fingertip 
and the pen, or pulls it towards them to decrease it. The length 
is determined by the index-pen distance model and mapped 
to a stroke width value. The status bar shows a preview of a 
stroke with the currently selected thickness (Figure 6c). 

Fingertip Location to Point at Off-Tablet Content 
The last model used in the sketching application is Fingertip 
Location to detect where the index finger of the pen-holding 
hand is pointing. We use this to support the capture of physical 
off-tablet content such as documents and photographs that 
may be lying on the desk. Among the functionality that the 
application supports is pick-and-drop [42] by copy-pasting the 
image of the content, and image and text search from selected 
content (Figure 6b). For the latter feature, it is necessary 
to determine what region to crop from the captured image. 
In this proof-of-concept application, we use artifacts with 
clear boundaries such as photographs and single lines of large 
text. Rudimentary computer vision techniques based on Canny 
edge detection and contour-finding can then be used to extract 
the element that is the closest to the pointing fingertip. This 
approach does not work for text, so we use the EAST detector 
[62] to obtain the bounding box of detected text elements in 
images. These text boxes can then be converted to machine-
readable text using the Google OCR API. The captured image 
or extract text is used in a Google web search with results 
shown in a browser. 

To use the capture tool, the user first activates it in the menu 
and then points the index finger of their pen hand underneath 
the artifact they wish to capture. With our current hardware 
prototype, it is necessary to carefully position the camera so 
that the element to capture is fully visible in the image. In 
particular, it should not be partially occluded by a support 
blade of the mount, otherwise content extraction fails. A 
preview screen on the tablet shows the camera view to facilitate 
adjustments. 

Map Application 
Our second application features interactions with a map when 
holding the tablet with the other hand. Casual navigation 
of digital maps on tablets is usually performed with touch 
input, but a pen can be useful for precise tapping, tracing, 
and annotating. In our map application, the default pen mode 
is panning, where dragging the pen causes the map to scroll 
in any direction. Other modes and actions are enabled by 
recognisers based on Tablet Grip, Left Grip Mode, Top Grip 
Mode, and a subset of the postures of the Pen Hand model. 

Paper 20 Page 8



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Mode-Switching with Tablet-Gripping Hand 
Since panning is the default mode, zooming support is re-
quired. We assign the raised index posture of the tablet-
gripping hand to the zooming mode (Figure 6d). When the 
index finger of the other hand is raised, the pen can be dragged 
up and down the screen to zoom in and out. Since extending 
the index finger is quick, users can rapidly change between 
panning and zooming. Any posture recognition errors also 
have limited impact. 

To demonstrate a typical pen task, the application also sup-
ports annotations. In this scenario, the default mode is inking, 
with the raised index posture mode used for erasing. Panning 
and zooming can then be performed using traditional touch 
gestures with the pen tucked. For technical reasons, we im-
plemented inking as a switched mode and left panning as the 
default. While this design is arguably less logical, the main 
purpose is to informally test pen interaction in regular and 
switched modes. 

Pen Hand Model for Triggering Actions 
We reuse some of the postures of the Pen Hand set to support 
typical map operations such as changing the terrain type and 
performing route searches. Switching between terrain types is 
achieved by extended index. To search for routes, the user first 
taps two or more locations on the map. Forming the extended 
middle ring pinkie posture then triggers the route calculation 
between the locations in the order they were selected. 

QUALITATIVE EVALUATION 
We conduct a qualitative evaluation to assess the usability of 
PenSight techniques within our two applications. 

Participants 
We recruited 16 participants (12 male, 4 female) of mean 
age 30 years old (SD 6.1). Seven of these participants also 
completed the data gathering sessions earlier. Six participants 
reported using a tablet on a weekly or daily basis, four once or 
twice every couple of months, and the rest rarely or never. One 
participant was left-handed and since our models were trained 
for right-handed people, we flipped the frames streamed from 
the camera to support that user. 

Natural Pen Postures 
Before beginning the main part of the session, we asked the 
participant to show how they naturally hold a pen, and where 
they place their other hand while writing or sketching. We 
also asked them to demonstrate how they would tuck the pen 
for temporary touch input with the pen hand, and how they 
usually hold a tablet. 

We found 11 participants used the dynamic tripod, three lateral 
tripod, and two dynamic quadrupod as their natural pen grip 
(see [33] for a description of these grip types). Regarding how 
participants naturally placed their other hand, two participants 
put it on their cheek or lap, and all others placed it on the 
table: either flat (9 people), with lightly curled fingers (4 
people), or forming a fist (1 person). Pen tucking strategies 
varied between pinching with the index (8 participants, our 
supported posture), tucking with the ring finger (1 person), 
and palm grips (3 people). Two people used their normal 

writing pose and grazed the tablet with the pinkie or the ring 
finger to perform touch operations. Two used a combination 
of different tucking strategies. As for the normal tablet grip, 
the left grip was the most common (11 people), then top left 
or right corner (4 people), and bottom (1). 

We instructed participants to use the “normal postures” as-
sumed by the models during the rest of the study. For example, 
to avoid conflicts with Other Hand postures (especially fist), 
we instructed participants to adopt the flat hand resting pose. 
We recorded comments regarding potential discomforts when 
forming these unfamiliar poses. 

Main Task and Protocol 
We performed the study in the same conditions in which the 
data was captured, with people either sitting at a desk with 
the tablet placed on it or holding the device while sitting back. 
In each session, we demonstrated each group of techniques, 
starting with the postures for the sketching application. After 
showing each set of interactions, the participant was given 
the opportunity to freely use the applications and PenSight 
techniques in a self-directed way. They were asked to actively 
provide feedback at any time during and after the experiments. 

A session lasted approximately 50 minutes. Participants were 
given a choice of snacks as a thank you. 

Results 
Overall, participants enjoyed the Other Hand postures the 
most as they proved the easiest to perform. They particularly 
liked the postures for the geometric shapes (vertical Hand and 
fist) as the mapping was intuitive. The pen tucking postures 
were also generally comfortable, even though 4 participants 
who naturally extend the thumb to stabilise the pen felt they 
lost some of that stability when moving the thumb in. 

The most disliked posture was raising the index finger with the 
other hand while holding the tablet. All but two participants 
said it reduced gripping stability. Using the raised index with 
the top grip was better, but people who usually hold the tablet 
from the side are not used to that grip and so were not entirely 
comfortable with it. 

From the Pen Hand set, the best posture was extended index 
with 11 participants finding it easy to execute. Preferences for 
curled index were split, with four people stating that it was 
the most difficult pen hand posture to perform (4 people), but 
five people finding it efficient. The extended mid ring pinkie 
was preferred by 7 people to invoke the menu. Opinions 
were equally divided for extending the pinkie, with 4 people 
finding the posture comfortable and 4 others finding it difficult, 
especially when the pen is close to the screen and the pinkie 
cannot unfold without hitting it. Both tap on wrist and index 
pen sawing were deemed natural and practical (5 people for 
both), despite requiring more hand and arm movement. For 
the pen sawing action, 4 participants said it was difficult to 
aim for a precise value. There is indeed some limitations as to 
the precision that can be achieved with this technique. 

One of the other main concerns was that the pen felt heavy 
(8 participants) and that it may have affected how easily they 

Paper 20 Page 9



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

can perform some of the Pen Hand postures. Using one of the 
designs of Figure 3 would hopefully remedy this issue. 

Pen Hand versus Other Hand 
Participants were asked if given the choice to execute instant 
actions with postures from one of the hands only, which hand 
they would prefer. 9 favoured the other hand, since it is un-
constrained when forming postures, while 3 people would 
select postures formed by the pen-holding hand. They stated 
they are used to their other hand not participating in any in-
put actions when operating a touchscreen. This dichotomy is 
also reflected in the preferred interactions to point at external 
content. 9 people declared preferring holding the pen with 
one hand while pointing with the other, whereas 2 people felt 
the dominant hand should be the only one actively engaged 
in manipulation tasks. When the other hand is gripping the 
tablet, however, participants all agreed that Pen Hand postures 
are more convenient. 

Reverting to Natural Resting Pose 
Participants who do not adopt the flat resting hand on the 
surface as their normal resting pose (and were forcibly re-
quired to do so) tended to revert to their natural pose after a 
while or when returning from postures like tap on wrist or 
index pen saw. While these behaviours might gradually dis-
appear through habit, postures could also be adapted to user 
constraints and preferences. 

Detection Accuracy 
From our observations, extended index, fist, and vertical hand 
were the most robustly detected postures. Conversely, raised 
index when gripping the tablet, extended pinkie, and curled up 
index suffered from recognition issues. For a large part, this 
was due to occlusions or because differences between other 
postures were too small. For some postures, misrecognitions 
can be mitigated by allowing slight variations. For instance, 
raising both the index and the middle finger was still detected 
as a raised index. Furthermore, these modified postures are 
also sometimes more comfortable to execute, so this is an 
added benefit. 

Discussion 
With some caveats, posture-based interaction can be a pow-
erful addition to classic user interfaces. PenSight techniques 
seem strongest for Other Hand postures, which, contrary to 
touch or grip-based actions, can be performed around the de-
vice. Pen Hand postures are also practical for users who do 
not want to interact using both hands. The extended index is 
the most comfortable of our tested postures. It can be assigned 
to a common shortcut such as menu invocation or undo, de-
pending on the application needs. Other finger extensions are 
also possible, but reduced visibility becomes an issue for the 
pinkie. Interaction techniques requiring both hands demand 
more movement but they are perceived as intuitive and so 
should not be discarded. Postures for continuous parameter 
control can be used to a limited extent using only an RGB 
camera. As for grip-based postures, while detecting where 
the user holds the tablet is feasible (it does not even need to 
occur at each frame, since people do not frequently switch grip 
locations), extending a finger of the gripping hand to trigger a 

mode is not recommended. This means that in such contexts, 
posture interaction is mostly limited to the pen-holding hand. 

As for interactions with the environment, possibilities are 
also constrained by what the camera can see, considering the 
occlusion of the pen hand. Pointing at content in documents 
can be achieved with fingers instead of the pen tip, preferably 
by dividing the roles between the two hands: The pen hand 
positions the camera while the other hand selects the content 
to be captured. Further interactions can be considered to 
precisely indicate which portion of an artifact should be used 
for capture. For text, this could be running the finger on or 
under the term or phrase. For images, tapping the corners of 
the region could extract the desired area. 

As for detection accuracy, hand pose estimation has made 
tremendous progress thanks to advanced deep learning tech-
niques. It is now possible to infer hand and finger keypoints 
using a single RGB frame. To achieve this level of accuracy, 
however, considerable amounts of data are required and it 
is not clear how much of the existing public datasets can be 
successfully leveraged for the rather uncommon viewpoint of 
a pen-top fisheye camera. But data acquisition and labelling 
techniques are also improving, with methods that can auto-
matically train or pre-train neural networks using synthetically 
generated data [18, 37]. As camera and sensor technology im-
proves, and machine learning techniques evolve, more precise 
and accurate, yet cost-effective solutions, will likely emerge. 

CONCLUSION 
We presented PenSight, a concept to enhance pen interac-
tion for tablets by attaching a camera to the top of the pen. 
We built prototypes using a fisheye camera and 3D-printed 
mounts to explore several examples of techniques enabled 
by this paradigm. These include posture-based interaction 
using both hands, individually or in tandem, interacting with 
physical documents in the surrounding environment and iden-
tifying users and the attached pen. We examined postures and 
off-tablet interaction in more depth with two demonstration 
applications. The results of our qualitative evaluation demon-
strate potential for postures formed by the other hand when not 
holding the tablet and for some poses of the pen-holding hand. 
There are doubtless many other possible techniques that can 
be realised. Overall, we believe PenSight provides a simple 
holistic mobile sensing solution for capturing and interpret-
ing interactions of the two hands as well as the surrounding 
environment. 
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