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Fig. 1. LookinGood leverages recent advances in real-time 3D performance capture and machine learning to re-render high quality novel viewpoints of a
captured scene. A textured 3D reconstruction is first rendered to a novel viewpoint. Due to imperfections in geometry and low-resolution texture, the 2D
rendered image contains artifacts and is low quality. Therefore we propose a deep learning technique that takes these images as input and generates more
visually enhanced re-rendering. The system is specifically designed for VR and AR headsets, and accounts for consistency between two stereo views.

Motivated by augmented and virtual reality applications such as telepres-
ence, there has been a recent focus in real-time performance capture of
humans under motion. However, given the real-time constraint, these sys-
tems often suffer from artifacts in geometry and texture such as holes and
noise in the final rendering, poor lighting, and low-resolution textures. We
take the novel approach to augment such real-time performance capture
systems with a deep architecture that takes a rendering from an arbitrary
viewpoint, and jointly performs completion, super resolution, and denoising
of the imagery in real-time. We call this approach neural (re-)rendering, and
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our live system “LookinGood". Our deep architecture is trained to produce
high resolution and high quality images from a coarse rendering in real-time.
First, we propose a self-supervised training method that does not require
manual ground-truth annotation. We contribute a specialized reconstruction
error that uses semantic information to focus on relevant parts of the sub-
ject, e.g. the face. We also introduce a salient reweighing scheme of the loss
function that is able to discard outliers. We specifically design the system for
virtual and augmented reality headsets where the consistency between the
left and right eye plays a crucial role in the final user experience. Finally, we
generate temporally stable results by explicitly minimizing the difference
between two consecutive frames. We tested the proposed system in two
different scenarios: one involving a single RGB-D sensor, and upper body
reconstruction of an actor, the second consisting of full body 360◦ capture.
Through extensive experimentation, we demonstrate how our system gen-
eralizes across unseen sequences and subjects. The supplementary video is
available at http://youtu.be/Md3tdAKoLGU.

CCS Concepts: • Computing methodologies→ Computer vision;Ma-
chine learning; Volumetric models;

Additional Key Words and Phrases: re-rendering, super-resolution, image
enhancement, image denoising.
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1 INTRODUCTION
The rise of augmented reality (AR) and virtual reality (VR) has
created a demand for high quality 3D content of humans using
performance capture rigs. There is a large body of work on offline
multiview performance capture systems [Carranza et al. 2003; Collet
et al. 2015; Prada et al. 2017]. However, recently, real-time perfor-
mance capture systems [Dou et al. 2017, 2016; Newcombe et al. 2015;
Orts-Escolano et al. 2016; Zollhöfer et al. 2014] have opened-up new
use cases for telepresence [Orts-Escolano et al. 2016], augmented
videos [Suwajanakorn et al. 2017; Thies et al. 2016] and live per-
formance broadcasting [Intel 2016]. Despite all of these efforts, the
results of performance capture systems still suffer from some com-
bination of distorted geometry [Orts-Escolano et al. 2016], poor
texturing and inaccurate lighting, making it difficult to reach the
level of quality required in AR and VR applications. Ultimately, this
affects the final user experience (see Fig. 2).
An alternative approach consists of using controlled lighting

capture stages. The incredible results these systems produce have
often been used in Hollywood productions [Debevec et al. 2000;
Fyffe and Debevec 2015]. However these systems are not suitable for
real-time scenarios and often the underlying generated geometry
is only a rough proxy, rather than an accurate reconstruction. This
makes the methods difficult to apply to AR and VR scenarios where
geometry and scale play a crucial role.
In this paper, we explore a hybrid direction that first leverages

recent advances in real-time performance capture to obtain approx-
imate geometry and texture in real time – acknowledging that the
final 2D rendered output of such systems will be low quality due to
geometric artifacts, poor texturing and inaccurate lighting. We then
leverage recent advances in deep learning to “enhance" the final
rendering to achieve higher quality results in real-time. In particular,
we use a deep architecture that takes as input the final 2D rendered
image from a single or multiview performance capture system, and
learns to enhance such imagery in real-time, producing a final high
quality re-rendering (see Fig. 1). We call this approach neural re-
rendering, and we demonstrate state of the art results within two
real-time performance capture systems – one single RGB-D and one
multiview.
In summary the paper makes the following contributions:
• A novel approach called neural re-rendering that learns to
enhance low-quality output from performance capture sys-
tems in real-time, where images contain holes, noise, low
resolution textures, and color artifacts. As a byproduct we
also predict a binary segmentation mask at test-time that
isolates the user from the rest of the background.

• A method for reducing the overall bandwidth and compu-
tation required of such a deep architecture, by forcing the

Fig. 2. Limitations of state of the art, real-time performance capture systems.
Left: low resolution textures where the final rendering does not resemble
a high quality picture of the subject. Middle: coarse geometry leads to
overly smooth surfaces where important details such as glasses are lost.
This also limits the quality of the final texture. Right: incomplete data in
the reconstruction creates holes in the final output.

network to learn the mapping from low-resolution input
images to high-resolution output renderings. At test time,
however, only the low-resolution images are used from the
live performance capture system.

• A specialized loss function that uses semantic information
to produce high quality results on faces. To reduce the effect
of outliers we propose a saliency reweighing scheme that
focuses the loss on the most relevant regions.

• A specialized design for VR and AR headsets, where the goal
is to predict two consistent views of the same object.

• Temporally stable re-rendering by enforcing consistency be-
tween consecutive reconstructed frames.

• Exhaustive experiments using two different real-time capture
systems: one involving a full 360 multi-view reconstruction
of the full body, and another using a single RGB-D sensor for
upper body reconstructions.

2 RELATED WORK
Generating high quality output from textured 3D models is the ulti-
mate goal of many performance capture systems. Here we briefly
review methods as follows: image-based approaches, full 3D recon-
struction systems and finally learning based solutions.

Image-based Rendering (IBR). IBR techniques [Debevec et al. 1996;
Gortler et al. 1996] warp a series of input color images to novel
viewpoints of a scene using geometry as a proxy. Zitnick et al. [2004]
expanded these methods to video inputs, where a performance is
captured with multiple RGB cameras and proxy depth maps are
estimated for every frame in the sequence. This work is limited to
a small 30◦ coverage, and its quality strongly degrades when the
interpolated view is far from the original cameras.

More recent works [Casas et al. 2014; Eisemann et al. 2008; Volino
et al. 2014] introduced optical flow methods to IBR, however their
accuracy is usually limited by the optical flow quality. Moreover
these algorithms are restricted to off-line applications.

Another limitation of IBR techniques is their use of all input im-
ages in the rendering stage, making them ill-suited for real-time VR
or AR applications as they require transferring all camera streams,
together with the proxy geometry. However, IBR techniques have
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been successfully applied to constrained applications like 360◦ de-
gree stereo video [Anderson et al. 2016; Richardt et al. 2013], which
produce two separate video panoramas — one for each eye — but
are constrained to a single viewpoint.

Volumetric Capture. Two recent works from Microsoft [Collet
et al. 2015; Prada et al. 2017] use more than 100 cameras to gener-
ate high quality offline volumetric performance capture. Collet et
al. [2015] used a controlled environment with green screen and care-
fully adjusted lighting conditions to produce high quality renderings.
Their method produces rough point clouds via multi-view stereo,
that is then converted into a mesh using Poisson Surface Recon-
struction [Kazhdan and Hoppe 2013]. Based on the current topology
of the mesh, a keyframe is selected which is tracked over time to
mitigate inconsistencies between frames. The overall processing
time is ∼ 28 minutes per frame. Prada et al. [2017] extended the
previous work to support texture tracking. These frameworks then
deliver high quality volumetric captures at the cost of sacrificing
real-time capability.
Recent proposed methods deliver performance capture in real-

time [Dou et al. 2017, 2016; Du et al. 2018; Newcombe et al. 2015;
Orts-Escolano et al. 2016; Zollhöfer et al. 2014]. Several use single
RGB-D sensors to either track a template mesh or reference vol-
ume [Innmann et al. 2016; Newcombe et al. 2015; Yu et al. 2017;
Zollhöfer et al. 2014]. However, these systems require careful mo-
tions and none support high quality texture reconstruction. The
systems of Dou et al. [2016] and Orts-Escolano et al. [2016] use fast
correspondence tracking [Wang et al. 2016] to extend the single view
non-rigid tracking pipeline proposed by Newcombe et al. [2015] to
handle topology changes robustly. This method however, suffers
from both geometric and texture inconsistency, as demonstrated by
Dou et al. [2017] and Du et al. [2018].
Even in the latest state of the art work of Dou et al. [2017] the

reconstruction suffers from geometric holes, noise, and low quality
textures. Du et al. [2018] extend previous work and propose a real-
time texturing method that can be applied on top of the volumetric
reconstruction to improve quality further. This is based on a simple
Poisson blending scheme, as opposed to offline systems that use
a Conditional Random Field (CRF) model [Lempitsky and Ivanov
2007; Zhou et al. 2005]. The final results are still coarse in terms of
texture. Moreover these algorithms require streaming all of the raw
input images, which means it does not scale with high resolution
input images.

Learning Based Methods. Learning-based solutions to generate
high quality renderings have shown very promising results since
the groundbreaking work of Dosovitskiy et al. [2015]. That work,
however, models only a few, explicit object classes, and the final
results do not necessary resemble high-quality real objects. Followup
work [Kulkarni et al. 2015; Tatarchenko et al. 2016; Yang et al. 2015]
use end-to-end encoder-decoder networks to generate novel views
of an image starting from a single viewpoint. However, due to the
large variability, the results are usually low resolution.

More recent work [Ji et al. 2017; Park et al. 2017; Zhou et al. 2016]
employ some notion of 3D geometry in the end-to-end process
to deal with the 2D-3D object mapping. For instance, Zhou et al.
[2016] use an explicit flow that maps pixels from the input image

Fig. 3. Training data for neural re-rendering: Rendering from a volumet-
ric reconstruction used as input, image from a witness camera used as
reconstruction target, and the corresponding ground truth segmentation.

to the output novel view. In Deep View Morphing [Ji et al. 2017]
two input images and an explicit rectification stage, that roughly
aligns the inputs, are used to generate intermediate views. Park et
al. [2017] split the problem between visible pixels, i.e. those that can
be explicitly copied from the input image, and occluded regions, i.e.
areas that need to be inpainted. Another trend explicitly employs
multiview stereo in an end-to-end fashion to generate intermediate
view of city landscapes [Flynn et al. 2016].

3D shape completion methods [Dai et al. 2017; Han et al. 2017;
Riegler et al. 2017] use 3D filters to volumetrically complete 3D
shapes. But given the cost of such filters both at training and at
test time, these have shown low resolution reconstructions and
performance far from real-time. PointProNets [Riccardo et al. 2018]
show impressive results for denoising point clouds but again are
computationally demanding, and do not consider the problem of
texture reconstruction.
The problem we consider is also closely related to the image-

to-image translation task [Chen and Koltun 2017; Isola et al. 2016;
Zhu et al. 2017], where the goal is to start from input images from
a certain domain and “translate" them into another domain, e.g.
from semantic segmentation labels to realistic images. Our scenario
is similar, as we transform low quality 3D renderings into higher
quality images.

Despite the huge amount of work on the topic, it is still challeng-
ing to generate high quality renderings of people in real-time for
performance capture. Contrary to previous work, we leverage recent
advances in real-time volumetric capture and use these systems as
input for our learning based framework to generate high quality,
real-time renderings of people performing arbitrary actions.

3 LOOKINGOOD WITH NEURAL RE-RENDERING
Existing real-time single andmultiview performance capture pipelines
[Dou et al. 2017, 2016; Newcombe et al. 2015; Orts-Escolano et al.
2016], estimate the geometry and texture map of the scene being
captured; this is sufficient to render that textured scene into any
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arbitrary (virtual) camera. Although extremely compelling, these
rendering usually suffer from final artifacts, coarse geometric de-
tails, missing data, and relatively coarse textures. Examples of such
problems are depicted in Fig. 2. We propose to circumvent all of
these limitations using a machine learning framework called neu-
ral re-rendering. The instantiation of this machine learning based
approach is a new system called LookinGood that demonstrates
unprecedented performance capture renderings in real-time.
We focus exclusively on human performance capture and apply

the proposed technique to two scenarios: a) a single RGB-D image
of a person’s upper body and b) another one where a person’s
complete body is captured by a 360◦ capture setup. In the following
we describe the main components of our approach.

3.1 Learning to Enhance Reconstructions
In order to train our system, we placed, into the capture setup, addi-
tional ground-truth cameras that can optionally be higher resolution
than the ones already in the capture rig. The proposed framework
learns to map the low-quality renderings of the 3D model, captured
with the rig, to a high-quality rendering at test time.

The idea of casting image denoising, restoration or super-resolution
to a regression task has been extensively explored in the past [Dai
et al. 2015; Fanello et al. 2014; Jancsary et al. 2012; Riegler et al. 2015;
Schulter et al. 2015]. Compared with previous work, the problem
at hand is significantly more challenging than the tasks tackled by
prior art since it consists of jointly denoising, superresolving, and
inpainting. Indeed, the rendered input images can be geometrically
imprecise, be noisy, contain holes and be of lower resolution than
the targeted output.

Witness Cameras as Groundtruth. Ultimately, our goal is to output
a high quality image in real-time given low quality input. A key
insight of our approach is the use of extra cameras providing ground
truth, that allow for evaluation and training of our proposed neural
re-rendering task. To this end, we mount additional “witness” color
cameras to the existing capture rigs, that capture higher quality
images from different viewpoints. Note that the images captured by
the witness cameras are not used in the real-time system, and only
used for training.

3.2 Image Enhancement
Given an image I rendered from a volumetric reconstruction, we
want to compute an enhanced version of I , that we denote by Ie .

When defining the transformation function between I and Ie we
specifically target VR and AR applications. We therefore define the
following principles: a) the user typically focuses more on salient
features, like faces, and artifacts in those areas should be highly
penalized, b) when viewed in stereo, the outputs of the network
have to be consistent between left and right pairs to prevent user
discomfort, and c) in VR applications, the renderings are compos-
ited into the virtual world, requiring accurate segmentation masks.
Finally, like in any image synthesis system, we will require our
outputs to be temporally consistent.

We define the synthesizing function F (I ) to generate a color image
Ipred and a segmentation mask Mpred that indicates foreground
pixels such that Ie = Ipred ⊙ Mpred where ⊙ is the element-wise

product, such that background pixels in Ie are set zero. In the rest
of this section, we define the training of a neural network that
computes F (I ).
At training time, we use a state of the art body part semantic

segmentation algorithm [Chen et al. 2018] to generate Iseд , the
semantic segmentation of the ground-truth image Iдt captured by
the witness camera, as illustrated in the right of Fig. 3. To obtain
improved segmentation boundaries for the subject, we refine the
predictions of this algorithm using the pairwise CRF proposed by
Krähenbühl and Koltun [2011].

Note that at test time, this semantic segmentation is not required.
However, our network does predict a binary segmentation mask as
a biproduct, which can be useful for AR/VR rendering.
To optimize for F (I ), we train a neural network to optimize the

loss function
L =w1Lr ec +w2Lmask +w3Lhead+

+w4Ltemporal +w5Lstereo ,
(1)

where the weightswi are empirically chosen such that all the losses
provide a similar contribution.

Reconstruction Loss Lr ec . Following recent advances in image re-
construction [Johnson et al. 2016], instead of using standard ℓ2 or
ℓ1 losses in the image domain, we compute the ℓ1 loss in the feature
space of VGG16 trained on ImageNet [Deng et al. 2009]. Similar
to related work [Johnson et al. 2016], we compute the loss as the
ℓ-1 distance of the activations of conv1 through conv5 layers. This
gives very comparable results to using a GAN loss [Goodfellow
et al. 2014], without the overhead of employing a GAN architecture
during training [Chen and Koltun 2017]. We compute the loss as

Lr ec =

5∑
i=1

∥VGGi (Mдt ⊙ Iдt ) −VGGi (Mpred ⊙ Ipred )∥∗. (2)

where Mдt = (Iseд , background) is a binary segmentation mask
that turns off background pixels (see Fig. 3), Mpred is the predicted
binary segmentation mask, VGGi (·) maps an image to the activa-
tions of the conv-i layer of VGG and ∥ · ∥∗ is a “saliency re-weighted”
ℓ1-norm defined later in this section. To speed-up color convergence,
we optionally add a second term to Lr ec defined as the ℓ1 norm
between Iдt and Ipred that is weighed to contribute 1

10 of the main
reconstruction loss. See examples in Fig. 4, first row.

Mask Loss Lmask . The mask loss Lmask encourages the model to
predict an accurate foreground maskMpred . This can be seen as a
binary classification task. For foreground pixels we assign the value
y+ = 1, whereas for background pixels we use y− = 0. The final loss
is defined as

Lmask = ∥Mдt −Mpred ∥∗ (3)
where ∥ · ∥∗ is again the saliency re-weighted ℓ1 loss. We also con-
sidered other classification losses such as a logistic loss but they
all produced very similar results. An example of the mask loss is
shown if Fig. 4, second row.

Head Loss Lhead . The head loss focuses the network on the head to
improve the overall sharpness of the face. Similar to the body loss,
we use VGG16 to compute the loss in the feature space. In particular,
we define the crop IC for an image I as a patch cropped around the
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Fig. 4. Visualization of each term used in the loss function. See text for
details.

head pixels as given by the segmentation labels of Iseд and resized

to 512 × 512 pixels. We then compute the loss as

Lhead =

5∑
i=1

∥VGGi [MC
дt ⊙ ICдt ] −VGGi [MC

pred ⊙ ICpred ]∥∗ . (4)

For an illustration of the head loss, please see Fig. 4, third row.

Temporal Loss Ltemporal . To minimize the amount of flickering
between two consecutive frames, we design a temporal loss between
a frame I t and I t−1. A simple loss minimizing the difference between
I t and I t−1 would produce temporally blurred results, and thus we
use a loss that tries to match the temporal gradient of the predicted
sequence, i.e. I tpred −I

t−1
pred , with the temporal gradient of the ground

truth sequence, i.e. I tдt − I t−1дt . In particular, the loss is computed as

Ltemporal = ∥(I tpred − I t−1pred ) − (I tдt − I t−1дt )∥1 . (5)

Although recurrent architectures [Jain andMedsker 1999] have been
proposed in the past to capture long range dependencies in tem-
poral sequences, we found our non-recurrent architecture coupled
with the temporal loss was able to produce temporally consistent
outputs, with the added advantage of reduced inference time. An-
other viable alternative consists of using optical flow methods to
track correspondences between consecutive frames in the predicted
images as well as in the groundtruth ones. The norm between these
two motion fields can be used as a temporal loss. However this is
bound to the quality of the flow method, and requires additional
computation during the training. The proposed approach, instead,
does not depend on perfect correspondences and works well for the
purpose, i.e. to minimize the temporal flicker between frames. Please
see Fig. 4, fifth row, for an example that illustrates the computed
temporal loss.

Stereo Loss Lstereo . The stereo loss is specifically designed for VR
and AR applications, when the network is applied on the left and
right eye views. In this case, inconsistencies between both eyes
might limit depth perception and result in discomfort for the user.
One possible solution is to employ a second stereo “witness” camera
placed at interpupillary distance with respect to the first one.

However, this might be unpractical due to bandwidth constraints.
Therefore we propose an approach for those scenarios where such a
stereo ground-truth is not available by proposing a loss that ensures
self-supervised consistency in the output stereo images.
In particular, we render a stereo pair of the volumetric recon-

struction and set each eye’s image as input to the network, where
the left image IL matches ground-truth camera viewpoint and the
right image IR is rendered at 65 mm along the x-coordinate. The
right prediction IRpred is then warped to the left viewpoint using
the (known) geometry of the mesh and compared to the left pre-
diction IRpred . We define a warp operator Iwarp using the Spatial
Transformer Network (STN) [Jaderberg et al. 2015], which uses a
bi-linear interpolation of 4 pixels and fixed warp coordinates. We
finally compute the loss as

Lstereo = ∥ILpred − Iwarp (IRpred )∥1 . (6)

Please see the fourth row of Fig 4 for examples that illustrate the
stereo loss.
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Fig. 5. LookinGood’s fully convolutional deep architecture. We train the model for both left and right view that simulate a VR or AR headset. The architecture
takes as input a low resolution image and produces a high quality rendering together with a foreground segmentation mask.

Saliency Re-weighing for Outlier Rejection. The proposed losses re-
ceive a contribution from every pixel in the image (with the ex-
ception of the masked pixels). However, imperfections in the seg-
mentation mask, may bias the network towards unimportant areas.
Recently Lin et al. [2017] proposed to weigh pixels based on their
difficulty: easy areas of an image are down-weighted, whereas hard
pixels get higher importance. Conversely, we found pixels with the
highest loss to be clear outliers, for instance next to the boundary of
the segmentation mask, and they dominate the overall loss (see Fig.
4, bottom row). Therefore, we wish to down-weight these outliers
and discard them from the loss, while also down-weighing pixels
that are easily reconstructed (e.g. smooth and textureless areas). To
do so, given a residual image x of sizeW × H ×C , we set y as the
per-pixel ℓ1 norm along channels of x, and define minimum and
maximum percentiles pmin and pmax over the values of y. We then
define pixel’s p component of a “saliency” reweighing matrix of the
residual y as

ϒp (y) =
{
1 if y ∈ [Γ(pmin , y), Γ(pmax , y)]
0 otherwise.

(7)

where Γ(i, y) extracts the i’th percentile across the set of values in y
and pmin , pmax , αi are empirically chosen and depend on the task
at hand (see Section 3.4). We apply this saliency as a weight on each
pixel of the residual y computed for Lr ec and Lhead as:

∥y∥∗ = ∥ϒ(y) ⊙ y∥1 . (8)

where ⊙ is the elementwise product.
Note that the we do not compute gradients with respect to the

re-weighing function, and thus it does not need to be continuous for
SGD to work. We experimented with a more complex, continuous
formulation of ϒp (y) defined by the product of a sigmoid and an
inverted sigmoid, and obtained similar results.

The effect of saliency reweighing is shown in the bottom row of
Fig. 4. Notice how the reconstruction error is along the boundary of
the subject when no the saliency re-weighing is used. Conversely,
the application of the proposed outlier removal technique forces
the network to focus on reconstructing the actual subject. Finally,
as byproduct of the saliency re-weighing we also predict a cleaner

foreground mask, compared to the one obtained with the semantic
segmentation algorithm used. Note that the saliency re-weighing
scheme is only applied to the reconstruction, mask and head losses.

3.3 Deep Architecture
Our choice of the architecture is guided by two specific requirements:
1) the ability to perform inference in real-time 2) and effectiveness
in the described scenario. Based on these requirements we resort to
a U-NET like architecture [Ronneberger et al. 2015]. This model has
shown impressive results in challenging novel viewpoint synthesis
from 2D images problems [Park et al. 2017] and, moreover, can be
run in real-time on high-end GPUs architectures.
As opposed to the original system, we resort to a fully convolu-

tional model (i.e. no max pooling operators). Additionally, since it
has been recently showed that deconvolutions can result in checker-
board artifacts [Odena et al. 2016], we employed bilinear upsampling
and convolutions instead. The overall framework is shown in Fig. 5.
In more detail, our U-NET variation has a total of 18 layers (9

encoding and 9 decoding), with skip connections between the en-
coder and decoder blocks. The encoder begins with an initial 3 × 3
convolution with Ninit filters followed by a sequence of four “down-
sampling blocks”. Each such block i ∈ {1, 2, 3, 4} consists of two
convolutional layers each with Ni filters. The first of these layers
has a filter size 4× 4, stride 2 and padding 1, whereas the second has
a filter size of 3× 3 and stride 1. Thus, each of the four block reduces
the size of the input by a factor of 2 due to the strided convolution.
Finally, two dimensionality preserving convolutions are performed
(see far-right of Fig. 5). In all cases, the outputs of the convolutions
are implicitly assumed to immediately pass through a ReLU acti-
vation function. Unless noted otherwise, we set Ninit = 32 and
Ni = G

i · Ninit , where G is the filter size growth factor after each
downsampling block.
The decoder consists first of four “upsampling blocks” that mir-

ror the “downsampling blocks” but in reverse. Each such block
i ∈ {4, 3, 2, 1} consists of two convolutional layers. The first layer bi-
linearly upsamples its input, performs a convolution with Ni filters,
and leverages a skip connection to concatenate the output with that
of its mirrored encoding layer. The second layer simply performs a
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convolution using 2Ni filters of size 3 × 3. Optionally, we add more
upsampling blocks to produce images at a higher resolution than
the input.

The final network output is produced by a final convolution with
4 filters, whose output is, as per usual, passed through a ReLU
activation function to produce the reconstructed image and a single
channel binary mask of the foreground subject.

When our goal is to produce stereo images for VR and AR head-
sets, we simply run both left and right viewpoints using the same
network (with shared weights). The final output is an improved
stereo output pair.

3.4 Training Details
We train the network using Adam [Kingma and Ba 2014] and weight
decay [Golub et al. 1999] until convergence (i.e. until the point
where we no longer consistently observe drops in our losses). This
was typically around 3 millions iterations for us. Training with
Tensorflow on 16 NVIDIA V100 GPUs with a batch size of 1 per
GPU takes 55 hours.

We use random crops for training, ranging from 512×512 to 960×
896. Note that these images are crops from the original resolution
of the input and output pairs. In particular, we force the random
crop to contain the head pixels in 75% of the samples, and for which
we compute the head loss. Otherwise, we disable the head loss as
the network might not see it completely in the input patch. This
gives us the high quality results we seek for the face, while not
ignoring other parts of the body as well. We find that using random
crops along with standard ℓ-2 regularization on the weights of the
network is sufficient to prevent over-fitting. When high resolution
witness cameras are employed the output is twice the input size.

The percentile ranges for the saliency re-weighing are empirically
set to remove the contribution of the imperfect mask boundary and
other outliers without affecting the result otherwise. We set pmax =

98, and found that setting pmin to values in [25, 75] was acceptable,
ultimately choosing pmin = 50 for the reconstruction loss and
pmin = 25 for the head loss. We finally set both α1 = α2 = 1.1.

4 EVALUATION
In this section we evaluate our system on two different datasets:
one for single camera (upper body reconstruction) and one for multi
view, full body capture.

The single camera dataset comprises 42 participant of which
32 are used for training. For each participant, we captured four 10
second sequences, where they a) dictate a short text, with and with-
out eyeglasses, b) look in all directions, and c) gesticulate extremely.

For the full body capture data, we recorded a diverse set of
20 participants. Each performer was free to perform any arbitrary
movement in the capture space (e.g. walking, jogging, dancing, etc.)
while simultaneously performing facial movements and expressions.
For each subject we recorded 10 sequences of 500 frames.
We left 5 subjects out from the training datasets to assess the

performances of the algorithm on unseen people. Moreover, for
some participants in the training set we left 1 sequence (i.e. 500 or
600 frames) out for testing purposes.

Fig. 6. Full body capture system. We implemented the method in [Dou
et al. 2017] where 8 cameras are placed around the performer, who is re-
constructed and tracked in real-time. We also added high resolution RGB
cameras that are not used by the reconstruction system, but only at training
time by the proposed machine learning method.

4.1 Volumetric Capture
A core component of our framework is a volumetric capture system
that can generate approximate textured geometry and render the
result from any arbitrary viewpoint in real-time. For upper bodies,
we leverage a high quality implementation of a standard rigid-fusion
pipeline. For full bodies, we use a non-rigid fusion setup similar
to Dou et al. [2017], where multiple cameras provide a full 360◦
coverage of the performer.

Upper Body Capture (Single View). The upper body capture set-
ting uses a single 1500 × 1100 active stereo camera paired with a
1600 × 1200 RGB view. To generate high quality geometry, we use a
newly proposed method [Nover et al. 2018] that extends PatchMatch
Stereo [Bleyer et al. 2011] to spacetime matching, and produces
depth images at 60Hz. We compute meshes by applying volumetric
fusion [Curless and Levoy 1996] and texture map the mesh with the
color image as shown in Fig. 1 (top row).

In the upper body capture scenario, we mount a single camera at
a 25◦ degree angle to the side from where the subject is looking at
at, of the same resolution as the capture camera. See Fig. 3, top row,
for an example of input/output pair.

Full Body Capture (Multi View). For full body volumetric capture we
implemented a system like the Motion2Fusion framework [Dou et al.
2017]. Following the original paper, we placed 16 IR cameras and 8
‘low’ resolution (1280 × 1024) RGB cameras as to surround the user
to be captured. The 16 IR cameras are built as 8 stereo pairs together
with an active illuminator as to simplify the stereo matching prob-
lem (see Fig. 6 top right image for a breakdown of the hardware). We
leverage fast, state of art disparity estimation algorithms [Fanello
et al. 2016, 2017a,b; Kowdle et al. 2018; Tankovich et al. 2018] to
estimate accurate depth. The non-rigid tracking pipeline follows
the method of Dou et al. [2017]. All the stages of the pipeline are
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Table 1. Quantitative evaluations on test sequences of subjects seen in training and subjects unseen in training. Photometric error is measured as the ℓ1-norm,
and perceptual is the same loss based on VGG16 used for training. We fixed the architecture and we compared the proposed loss function with the same loss
minus a specific loss term indicated in each columns. On seen subjects all the models perform similarly, whereas on new subjects the proposed loss has better
generalization performances. Notice how the output of the volumetric reconstruction, i.e. the input to the network is outperformed by all variants of the
network.

Proposed −Lhead −Lmask -Saliency -Lstereo −Ltemp Rendered Input
Seen subjects Photometric Error 0.0363 0.0357 0.0371 0.0369 0.0355 0.0355 0.0700

PSNR 29.2 29.2 28.2 28.5 29.0 29.2 25.0
MS-SSIM 0.956 0.958 0.954 0.954 0.957 0.957 0.93
Perceptual 0.0658 0.121 0.121 0.103 0.0963 0.110 0.1748

Unseen subjects Photometric Error 0.0464 0.0498 0.0506 0.0510 0.0465 0.0504 0.0783
PSNR 26.2 25.9 25.5 25.5 26.0 25.8 24.05
MS-SSIM 0.94 0.938 0.929 0.932 0.937 0.936 0.9107
Perceptual 0.0795 0.168 0.167 0.136 0.133 0.157 0.1996

performed in real-time. The output of the system consists of tempo-
rally consistent meshes and per-frame texture maps. In Fig. 6, we
show the overall capture system and some results obtained.

In the full body capture rig, wemounted 8 ‘high’ resolution (4096×
2048) witness cameras1 (see Fig. 6, top left image). Examples of
training examples are shown in Fig. 3, bottom.

Note that both studied capture setups span a large number of use
cases. The single-view capture rig does not allow for large viewpoint
changes, but might be more practical, as it requires less processing
and only needs to transmit a single RGBD stream, while the multi-
view capture rig is limited to studio-type captures, but allows for
complete free viewpoint video experiences.

Experiments and Metrics. In the following, we test the performance
of the system, analyzing the importance of each component. We per-
form two different analyses. The first analysis is qualitative where
we seek to assess the viewpoint robustness, generalization to dif-
ferent people, sequences and clothing. The second analysis is a
quantitative evaluation on the proposed architectures. Since a real
groundtruth metric is not available for the task, we rely on multiple
perceptual measurements such as: PSNR, MultiScale-SSIM, Photo-
metric Error, e.g. ℓ1-loss, and Perceptual Loss [Johnson et al. 2016].
Our experimental evaluation supports each design choice of the
system and also shows the trade-offs between quality and model
complexity.
Many more results, comparisons and evaluations can be seen in

the supplementary video (http://youtu.be/Md3tdAKoLGU). Note
that all results shown in the paper and in the supplementary video
are on test sequences that are not part of the training set.

4.2 Qualitative Results
Here we show qualitative results on different test sequences and
under different conditions.

Upper Body Results (Single View). In the single camera case, the
network has to learnmostly to in-paint missing areas and fixmissing
fine geometry details such as eyeglasses frames. We show some
results in Fig. 7, top two rows. Notice how the method preserves

1Although our witness cameras resolution is 4096 × 2048 this does not fit in memory
during the training, therefore we downsample the images to 2048 × 1024.

the high quality details that are already in the input image and is
able to in-paint plausible texture for those unseen regions. Further,
thin structures such as the eyeglass frames get reconstructed in the
network output. Note, that no super-resolution effects are observed,
as the witness camera in the single view setup is of similar effective
resolution than of the capture camera.

Full Body Results (Multi View). The multi view case carries the
additional complexity of blending together different images that
may have different lighting conditions or have small calibration
imprecisions. This affects the final rendering results as shown in
Fig. 7, bottom two rows. Notice how the input images have not only
distorted geometry, but also color artifacts. Our system learns how
to generate high quality renderings with reduced artifacts, while at
the same time adjusting the color balance to the one of the witness
cameras.

Viewpoint Robustness. Although our groundtruth viewpoints are
limited to a sparse set of cameras, in this sectionwe demonstrate that
the system is also robust to unseen camera poses. We implemented
this by simulating a camera trajectory around the subject and show
the results in Fig. 8. More examples can be seen in the supplementary
video.

Super-resolution. Our model is able to produce more details com-
pared to the input images. Results can be appreciated in Fig. 9, where
the predicted output at the same input resolution contains more
subtle details like facial hair. Increasing the output resolution by a
factor of 2 leads to slightly sharper results and better up-sampling
especially around the edges.

Generalization: People, Clothing. Generalization across different sub-
jects are shown in Fig. 10. For the single view case, we did not ob-
serve any substantial degradation in the results. For the full body
case, although there is still a substantial improvement from the input
image, the final results look less sharp. We believe that more diverse
training data is needed to achieve better generalization performance
on unseen participants.

We also assessed the behavior of the system with different clothes
or accessories. We show in Fig. 11 examples of such situations: a
subject wearing different clothes, and another with and without
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Fig. 7. Generalization on new sequences. We show here some results on
known participant but unseen sequences. Notice how the method is able to
in-paint missing areas correctly in the single camera case (top rows). Full
body results show an improved quality and robustness to imprecision in the
groundtruth mask (third row, right). The method also recovers from color
and geometry inconsistencies (forth row, left).

eyeglasses. The system correctly recovers most of the eyeglasses
frame structure even though they are barely reconstructed by the
traditional geometrical approach due to their fine structures.

4.3 Ablation Study
We now show the importance of the different components of the
method. The main quantitative results are summarized in Table 1,
where we computed multiple statistics for the proposed model and
all its variants. In the following we comment on the findings.

Segmentation Mask. The segmentation mask plays an important
role in in-painting missing parts, discarding the background and
preserving input regions. As shown in Fig. 12, the model without

the foreground mask hallucinates parts of the background and does
not correctly follow the silhouette of the subject. This behavior
is also confirmed in the quantitative results in Table 1, where the
model without the Lmask performs worse compared to the pro-
posed model.

Head Loss. The loss on the cropped head regions encourages sharper
results on faces. Previous studies [Orts-Escolano et al. 2016] found
that artifacts in the face region are more likely to disturb the viewer.
We found the proposed loss to greatly improve this region. Although
the numbers in Table 1 are comparable, there is a huge visual gap
between the two losses, as shown in Fig. 13. Notice how without
head loss the results are oversmoothed and facial details are lost.
Whereas the proposed loss not only upgrades the quality of the
input, but it also recovers unseen features.

Temporal and Stereo Consistency. Stable results across multiple view-
points have already been shown in Fig. 8. The metrics in Table 1
show that removing temporal and stereo consistency from the opti-
mization sometimes may outperform the model trained with the full
loss function. However, this is somehow expected since the metrics
used do not take into account important factors such as temporal
and spatial flickering. The effects of the temporal and stereo loss
are visualized in Fig. 14.

Saliency Reweighing. The saliency reweighing reduces the effect of
outliers as shown in Fig. 4. This can also be appreciated in all the
metrics in Table 1: indeed the models trained without the saliency
reweighing perform consistently worse. Figure 15 shows how the
model trainedwith the saliency reweighing is more robust to outliers
in the groundtruth mask.

Model Size. We also assess the importance of the model size. We
trained three different networks, starting with Ninit = 16, 32, 64
filters respectively. In Fig. 16 we show qualitative examples of the
three different model. As expected, the biggest network achieves the
better and sharper results on this task, showing that the capacity of
the other two architectures is limited for this problem.

5 REAL-TIME FREE VIEWPOINT NEURAL
RE-RENDERING

We implemented a real-time demonstration of the system, as shown
in Fig. 17. The scenario consists of a user wearing a VR headset
watching volumetric reconstructions. We render left and right views
with the head pose given by the headset and feed them as input to
the network. The network generates the enhanced re-renderings
that are then shown in the headset display.
Latency is an important factor when dealing with real-time ex-

periences. Instead of running the neural re-rendering sequentially
with the actual display update, we implemented a late stage repro-
jection phase [Evangelakos and Mara 2016; Van Waveren 2016]. In
particular, we keep the computational stream of the network decou-
pled from the actual rendering, and use the current head pose to
warp the final images accordingly.
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Fig. 8. Viewpoint Robustness. Notice how the neural re-rendering generalizes well w.r.t. to viewpoint changes, despite no training data was acquired for those
particular views.

Fig. 9. Super-resolution experiment. The predicted output at the same reso-
lution of the input shows more details. If we double the final resolution the
final output is slightly sharper and it leads to better up-sampling especially
around the edges.

5.1 Neural Re-Rendering Runtime
We assessed the run-time of the system using a single NVIDIA Titan
V. We considered the model with Ninit = 32 filters where input and
output are generated at the same resolution (512 × 1024). Using the
standard TensorFlow graph export tool, the average running time to
produce a stereo pair with our neural re-rendering is around 92ms,

which is not sufficient for real-time applications. Therefore we lever-
aged NVIDIA TensorRT, which performs inference optimization for
a given deep architecture. Thanks to this tool, a standard export
with 32bits floating point weight brings the computational time
down to 47ms. Finally, we exploited the optimizations implemented
on the NVIDIA Titan V, and quantize the network weights using
16-bit floating point. This allows us reaching the final run-time of
29ms per stereo pair, with no loss in accuracy, hitting the real-time
requirements.

We also profiled each block of the network to find potential bot-
tlenecks. We report the analysis in Fig. 18. The encoder phase needs
less than 40% of the total computational resources. As expected, most
of the time is spent in the decoder layers, where the skip connec-
tions (i.e. the concatenation of encoder features with the matched
decoder), leads to large convolution kernels. Possible future work
consists of replacing the concatenation of the skip connections with
sum, which would reduce the features size.

5.2 User Study
We performed a small qualitative user study on the results of the out-
put system, following an approach similar to [Shan et al. 2013]. We
recruited 10 subjects and prepared 12 short video sequences show-
ing the renderings of the capture system, the predicted results and
the target witness views (masked with the semantic segmentation
as described in Section 3.2). The order of the videos was random-
ized and we selected sequences containing both seen subjects and
unseen subjects.

We asked the participants whether they preferred the renders of
the performance capture system (i.e. the input to our algorithm),
the re-rendered versions using neural re-rendering, or the masked
ground truth image, i.e.Mдt ⊙Iдt . Not surprisingly, 100% of the users
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Fig. 10. Generalization on unseen subjects. The method correctly fills miss-
ing areas in the single camera case while maintaining high quality regions in
the input. Full body results enhance the input and are robust to groundtruth
mask outliers.

agreed that the output of the neural re-rendering was better com-
pared to the renderings from the volumetric capture systems. Also,
the users did not seem to notice substantial differences between seen
and unseen subjects. Unexpectedly, 65% of the subjects preferred
the output of our system even compared to the groundtruth: indeed
the participants found the predicted masks using our network to be
more stable than the groundtruth masks used for training, which
suffers from more inconsistent predictions between consecutive
frames. However all the subjects agreed that groundtruth is still
sharper, therefore higher resolution than the neural re-rendering
output, and more must be done in this direction to improve the
overall quality.

Fig. 11. The method performance is robust to changes in clothing (top) and
eyewear (bottom).

Fig. 12. Effect of the predicted foreground mask. Notice how when no mask
is used the network tries to predict a noisy version of the background.
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Fig. 13. Effect of the proposed head loss Lhead . Notice how the predicted
output is sharper when the head loss is used. Best viewed in the digital
version.

Fig. 14. Effects of temporal and stereo consistency: two consecutive frames
where the input flickers due to a texture atlas change. On the left, a model
trained without consistency losses exhibits the input temporal inconsistency
shown in the highlighted region. However, this is significantly reduced in
the model trained with consistency losses.

6 DISCUSSION, LIMITATIONS AND FUTURE WORK
We presented “LookinGood”, the first system that uses machine
learning to enhance volumetric videos in real-time. We carefully
combined geometric non-rigid reconstruction pipelines, such as
[Dou et al. 2017], with recent advances in deep learning, to produce
higher quality outputs. We designed our system to focus on people’s
faces, discarding non-relevant information such as the background.
We proposed a simple and effective solution to produce temporally
stable renderings and devoted particular attention to VR and AR
applications, where left and right views must be consistent for an
optimal user experience.
We found the main limitation of the system to be the lack of

training data. Indeed, whereas unseen sequences of known subjects

Fig. 15. The proposed saliency reweighing scheme of the losses in the bottom
reduces the influence of the mask outliers around the silhouette of the
subject in the bottom row, while the model trained without reweighing
displays white artifacts in silhouette due to outliers in the segmentation
mask (top). Best seen in the digital version of the paper.

Fig. 16. Model complexity analysis. The model starting with Ninit = 64
filters in the first layer leads to the sharpest results.

still produce very high quality results, we noticed a graceful degra-
dation of the quality when the participant was not in the dataset
(see Fig. 10). When the input is very partially corrupted, the model
hallucinates blurry results, as shown in Fig. 19, top row. In addition,
missing parts are sometimes oversmoothed. Although a viable so-
lution consists of acquiring more training examples, we prefer to
focus our future efforts on more intelligent deep architectures. We
will, for instance, reduce the capture infrastructure by leveraging
recent deep architectures for accurate geometry estimation [Khamis
et al. 2018; Zhang et al. 2018]; furthermore, we will introduce a cali-
bration phase where a new user will be able to quickly personalize
the system for better run-time performance and accuracy. Finally,
by leveraging semantic information, such as pose estimation and
tracking [Joo et al. 2018], we will make the problem even more
tractable when multi-view rigs are not available.
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Fig. 17. Real-time demo showing neural re-rendering on a single camera
reconstruction (top) and full body volumetric reconstruction (bottom).

Fig. 18. Running time breakdown in percentage of the current model. No-
tice how most of the time is spent at the decoding stages due to the skip
connections.
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