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ABSTRACT 
Smartphones and tablets are often used in dynamic 
environments that force users to break focus and attend to 
their surroundings, creating a form of “situational 
impairment.” Current mobile devices have no ability to 
sense when users divert or restore their attention, let alone 
provide support for resuming tasks. We therefore introduce 
SwitchBack, a system that allows mobile device users to 
resume tasks more efficiently. SwitchBack is built upon 
Focus and Saccade Tracking (FAST), which uses the front-
facing camera to determine when the user is looking and 
how their eyes are moving across the screen. In a controlled 
study, we found that FAST can identify how many lines the 
user has read in a body of text within a mean absolute 
percent error of just 3.9%. We then tested SwitchBack in a 
dual focus-of-attention task, finding that SwitchBack 
improved average reading speed by 7.7% in the presence of 
distractions. 
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INTRODUCTION 
Mobile computing devices such as smartphones and tablets 
are now some of the most common devices in our 
environment. The ubiquity of mobile devices allows users 
to consume information everywhere. Although these 
devices are being used in a variety of environments, they do 
not have any significant awareness of the differences 
among environments or how these differences affect their 
users’ behaviors. When users are negatively impacted in 
their ability to interact with technology by environmental 
conditions, they can be said to be situationally impaired 

[31]. Situational impairments may be caused by a number 
of factors, such as motion, temperature, ambient noise, etc. 

One of the most significant contextual factors that affects 
people’s mobile device usage is divided attention. For 
example, if pedestrians are checking email on their 
smartphones while walking across the street, they must 
break their attention from their devices to maintain 
awareness of their surroundings, or else they put themselves 
at risk of physical injury. Studies have shown that mobile 
phone related injuries among pedestrians doubled between 
2005 and 2010, reaching almost 4% of all pedestrian 
accidents [27]. Some cities have even begun issuing tickets 
to pedestrians who are caught texting while walking [28]. 
Although safety is of the utmost concern when it comes to 
situational impairments, damage to users’ productivity is 
also a concern. In the aforementioned scenario, it is likely 
that when pedestrians return their attention to their mobile 
devices, they will have lost track of their progress. Context-
switching incurs a startup cost that can accumulate to the 
point where users’ comprehension is negatively affected 
[25].  

To address these concerns, we present SwitchBack (Figure 
1), a system that uses the camera on a mobile device to 
determine when the user is unable to pay visual attention to 
the device, pause the task (if applicable), and then help the 
user to efficiently resume the task when the user returns his 
or her gaze to the device. SwitchBack is built upon our 
underlying camera-based attention-tracking algorithm 

Figure 1. SwitchBack highlights where the user was last looking in a
body of text before he or she turned away to handle a distraction. 
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called Focus and Saccade Tracking (FAST), which, through 
the front-facing camera, approximates when and how the 
user is looking at the screen, even if users are wearing 
corrective lenses or glasses.  

A high-level description of FAST is as follows. FAST first 
determines whether or not the user is looking at the screen. 
If the user is looking, FAST measures the movement of the 
user’s pupil relative to the rest of the eye to track where the 
user is looking on the screen. In cases when the screen is 
displaying text (e.g., emails or web articles), FAST detects 
quick, horizontal jumps. These gaze jumps, or saccades, are 
used as a proxy to determine when the user moves to a new 
line and to estimate where the user is in a body of text. 
FAST continually audits its estimate by checking whether 
the user’s observed reading speed is within the expected 
range (200 – 400 wpm [16]).  

Once SwitchBack detects that the user has returned from a 
distraction by looking back at the screen, it guides the user 
back to where he or she last left off by highlighting the 
appropriate region of text. FAST can also be used to enable 
automatic scrolling when the user reaches the end of the 
text visible on the screen. This capability can prove very 
helpful in a number of situations, for example, when a user 
has gloves on and the capacitive touchscreen will not work. 

We evaluated FAST to quantify its performance for 
attention and saccade tracking, and for supporting reading 
task resumption. By incorporating information about the 
user’s reading speed, FAST is able to estimate how many 
lines the user has read in a body of text within a mean 
absolute percent error of just 3.9%. We evaluated the 
effectiveness of SwitchBack in helping the user complete 
their mobile tasks in the presence of external distractions. In 
a controlled user study, participants, while experiencing 
distractions, improved their average reading speed during a 
reading task by 7.7% (roughly 19 words per minute) when 
using SwitchBack compared to the control condition.  

The main contribution of this paper is to demonstrate that 
SwitchBack can be used in reading applications to facilitate 
the user resuming the reading of a body of text after 
attending to an outside distraction. This contribution comes 
in three parts: (1) the FAST algorithm for detecting when 
and where the user is looking at the screen using the camera 
found on commodity mobile phones and without the need 
for any additional illumination hardware; (2) the ability of 
FAST to track a user’s reading pattern and guide them to 
the most recently read line of text when they return from 
another task; and (3) an evaluation of SwitchBack showing 
that it improves reading speed in situations of divided 
attention. 

RELATED WORK 
SwitchBack uses FAST to detect when and how the user is 
looking at the screen. FAST is related to, and can leverage, 
any sort of gaze tracking technique. Since SwitchBack is 
intended to help users with their mobile devices, we also 

discuss prior research regarding attention tracking for 
interface interactions. 

Gaze-Tracking Technologies and Techniques 
The most similar work to SwitchBack is EyePhone [24], a 
hands-free interfacing system intended for mobile 
applications that are used while the user is driving a 
vehicle. EyePhone uses the front-facing camera of a 
smartphone to monitor the user’s gaze on the screen. Rather 
than tracking relative changes in the user’s gaze, however, 
EyePhone monitors the absolute position of the user’s gaze 
to make selections on the screen. While absolute position 
provides more information about the user’s attention, gaze-
tracking accuracy quickly degrades as the phone moves 
further away from the user’s face (<20% accuracy for 
button selection at ~45 cm). By comparison, our use of 
relative changes can be easily extracted from the noisy eye-
tracking signal, particularly the large ones that occur as the 
user’s eyes travel from one side of the screen to the other. 
We will demonstrate how relative tracking results in a 
robust system suitable to use in motion. 

Thorough reviews of gaze-tracking have been written by 
Hansen and Ji [12] and Morimoto and Mimica [26]. We 
briefly highlight a few innovations and direct readers to 
their surveys for more detail. Active gaze-tracking systems 
typically use infrared (IR) light because of the glint that 
appears when IR light is reflected off of the boundary of the 
lens and the cornea. Off-the-shelf devices1,2 and wearable 
sensors integrated with eyeglasses [35] are normally used to 
shine IR light onto the user’s face. From there, either Pupil 
Center Corneal Reflection [11] or machine learning [2] is 
used to learn resulting gaze coordinates. Passive gaze-
tracking systems do not rely on any extra hardware, but 
rather process video and images from the camera using 
computer vision techniques. Machine learning methods like 
neural networks [33] have been used to develop a mapping 
from high dimensional image data in pixel space to low 
dimensional data in gaze-coordinate space.  

Beyond EyePhone, gaze-tracking has not been heavily 
investigated in mobile computing. Drewes et al. [6] devised 
gaze-based gestures for a mobile device, but utilized an 
external IR tracker. Commercial entities have perhaps 
advanced development most. Companies like the Eye 
Tribe2 sell active IR-based eye-trackers that are small 
enough to be mobile device accessories. Samsung gives the 
appearance of gaze-tracking through their Smart Scroll and 
Smart Pause features, but these systems actually monitor 
the orientation of the user’s face. Recently, Qualcomm3 has 
integrated a passive method of gaze-tracking in the facial 
processing SDK included on their Snapdragon processor. 

                                                           
1 http://www.tobii.com/ 
2 https://theeyetribe.com/ 
3 https://developer.qualcomm.com/mobile-development/add-

advanced-features/snapdragon-sdk-android 

Task Interruption & Resumption CHI 2015, Crossings, Seoul, Korea

2954



F
e

A
T
d
m
w
t
m
S
ta
th

V
m
h
S
h
a
s
d
a
o

J
a
th
g
s
W
u

T
th
[
s
G
g
o
s
W
b
th
f

FAST uses t
extraction. 

Attention and 
The design o
draws inspirat
modified user i
widget setting
echniques hav

migrate users 
SwitchBack sh
asks on their m
hese technique

Visual fixatio
measurement o
have been used
Scanpaths, or s
how a user sea
and Kotval [9
scanning behav
design. Blink ra
as an indexes o
outside factors 

Just and Carpen
as they read sc
hat readers ma

greater (e.g., lo
showed that pe
We use this l
underlying our 

The motivation
hat of the wo
18] observed 

situations by 
Gazemarks tra
gaze-tracker an
of shadowed ci
switch tasks. W
We observe th
better suited f
han absolute g

for desktops, w

Figure 2. The 
or not. If the us
user’s gaze in
detection to ide
 

this Qualcomm

Interface Inter
of SwitchBack
tion from Ph
interfaces on de
s that users m
ve been used 

between dif
hows similar t
mobile devices
es is aware of u

ons have be
of interest and 
d to reveal ma
sequences of sa
arches through
9] showed th
vior indicates p
ate [5] and pup

of cognitive wo
like ambient li

nter [16] monit
cientific passag
ake longer pau
onger words, c
eople read in a
latter fact to 
system.  

n behind Swit
rk demonstrat

that people 
using placeho

acks the user’s
nd provides dig
ircles, to guide
We differ from
hat relative gaz
for monitoring
gaze coordinat
which presum

FAST algorithm
ser is facing the 
n the horizontal 
entify saccades. 

m library fo

raction 
k’s task-resum
hosphor [4], 
esktops to high
may otherwis

to draw atte
fferent interfa
ransitions whe
s. Unlike Switc
users’ attention

een interprete
uncertainty [1

arked shifts in 
accades and fix

h an interface [
hat deviation 
poor user traini
pil size [22,29]
orkload, but ma
ight. 

tored the eye f
ges. Their main
uses when proc
confusing phra
a saccadic, seq
design the re

tchBack follow
ted in Gazema

manage mult
olders like fi
s gaze using 
gital placehold
 the user’s atte

m Gazemarks in
ze changes (i.e
g attention on 
tes. Gazemarks

me a stable en

. (1) The user’s f
screen, (2) the p
and vertical dir

or gaze featu

mption feedba
a system th

hlight changes 
e miss. Simil
ention [23] an
ce layouts [3
en users resum
chBack, none 

n. 

ed as both 
15,16]. Saccad
behavior [9,10
xations, describ
[1,10]. Goldbe
from a norm

ing or bad layo
] have been us
ay be affected b

fixations of use
n discovery w

cessing loads a
ases). They al
quential manne
ading algorith

ws closely wi
arks. Kern et a
titasking sear
ingers or pen
an off-the-she

ders, in the for
ention when th
n two ways: (
e., saccades) a

mobile devic
s was develop
nvironment wi

face and eyes ar
pupils are identifi
rections. (4) The

ure 

ck 
hat 
in 

lar 
nd 
3]. 
me 
of 

a 
des 
0]. 
be 

erg 
mal 
out 
ed 
by 

ers 
was 
are 
lso 
er.  

hm 

ith 
al. 
ch 
ns. 
elf 
rm 
ey 
(1) 
are 
ces 
ed 
ith 

large s
them to
To m
Switch
similar
case th
develo

THE D
Switch
which 
trackin
the scr
the pos
eye to 
We co
apply h

Focus 
Focus
FAST 
them 
proces
those f
useful 
screen,
the use
Even if
may n
bounds
accord
from t

re detected in ord
ed and compare
ese measureme

Figure
are det
either n
focused

screens and of
o use absolute 

motivate our 
hBack applicati
r to the one ap
that Kern et 
op. 

DESIGN OF SW
hBack is built 

has two ma
ng, which deter
reen. The secon
sition of the u
determine ho

ombine these 
highlighting to

 and Saccade
Tracking 
takes frames f
through the 

sing. The SDK
faces. Both fa
for focus trac

, there is no w
er is probably n
f the user’s fac

not be attendin
s on the yaw

ding to the typi
the user’s face

der to establish w
ed relative to the 
ents are applied 

e 3. (a) If the use
tected. (b) When
no longer detec
d on the screen.

ff-the-shelf eye
gaze coordina
FAST techni
ion. While our
pplied in Gaze
al. only brie

WITCHBACK 
upon our FAS

ajor componen
rmines whethe
nd is saccade 

user’s pupil rel
ow the user’s 

components 
o aid task resum

e Tracking (FA

from the front-f
Qualcomm 

K detects face
ace detection 
cking. If a fac
ay for the user
not attending t
ce is in the view
ng to the scre

w (i.e., side-to-
ical angle form
e to the cente

whether the user
bounding box of
through low-pa

er is looking at th
n the user begin

cted or has turne
 

e-trackers, thu
ates to track att
ique, we des
r interface mod
emarks, readin

efly mention, 

ST algorithm 
nts. The first

er or not the use
tracking, whic
lative to the re
gaze changes 
within Switch

mption.  

AST) 

facing camera 
Snapdragon 

es and the orie
and face orien

ce is not detec
r’s eyes to be t
to the screen (F
w of the camer

een. In this ca
-side angle) o

med between th
er of the scree

r is focused on th
f the eye to (3) id
ass filtering and 

he screen, his fac
ns to look away,
ed too much fo

us allowing 
tention. (2) 
signed the 
dification is 
ng is a use 

but never 

(Figure 2), 
t is focus 
er is facing 

ch observes 
est of their 
over time. 

hBack and 

and passes 
SDK for 

entation of 
ntation are 
cted on the 
tracked and 
Figure 3b). 
ra, the user 

ase, we set 
of the face 
he distance 
en and the 

he screen
dentify the

(5) peak

ce and eyes
, his face is
r him to be

Task Interruption & Resumption CHI 2015, Crossings, Seoul, Korea

2955



d
s
th

E
b
b
h
s
th
d
th
n
u
a

S
O
s
m
o
n
S
d

W
b
h
[
d
u
e
e
th
d
in
o
th
m

G
th
h
th
a
p
w
o
c

F
c

distance from 
screen. If the u
hat the user’s a

Even when the 
briefly fail due
by hands. To p
has turned awa
seconds (overla
he user’s atten

detected for a 
han that durati

not lost their fo
user is facing
attention is bac

Saccade Track
Once SwitchB
screen, the sy
movements. In
on their scree
number of line
SwitchBack tri
darkest portion 

With the face, 
be quantified u
have inspired 
6,12,26]. Figu

depending on w
use this fact to
encode the po
eyes. Feature v
hat the eye 

dimension. Th
nfinite impulse

of roughly 2.5 
hat suppresse

measurements. 

Gaze coordina
hrough calibra

head in the cam
he bounding b

a grid and uses
pupil locations
we do not need
on the screen. I
changes, imply

Figure 4. The po
changes as the u

the user’s fac
ser turns his fa
attention is dire

user is facing 
e to transient li
prevent false tr
ay, FAST mai
ap of 1/16 fps 
ntion has left th
window’s dura
ion are so brie
ocus from their
g the screen 
k on the screen

king 
ack detects th
stem tries to 

n cases where 
en, saccades c
es that the user
ies to detect th
of his eye. 

eyes, and pup
using the same

gaze trackin
ure 4 shows tha
where the use
o form horizo
sition of each
values range fr
is in the ex
e features are
e response (IIR
Hz; this is a l

es high-frequ
 

ates on the s
ation or know
mera’s field of
box around the 
s a one-to-one 
 to targets on 
d to know exa
Instead, we are

ying that a sacc

osition of the pu
ser looks from (a

ce to the outs
ace past these b
ected elsewher

the screen, fac
ighting conditio
riggers indicati
intains a slidin
= 62.5 ms). It

he screen whe
ation. Any dis

ef that the user 
r previous task
again, FAST 
n. 

hat the user is
detect saccad

the user is rea
can be used 
r has read. To 
he user’s pupi

pil detected, ga
e geometrical o
ng technolog
at the center of
r is looking at
ntal and vertic

h pupil within 
from 0 to 1, w
xact center al
e passed throu
R) filter with a 
low-complexity
ency noise 

creen can be 
ing the positio
f view. EyePho
user’s eye and
grid cell mapp
the phone. Fo

actly where the
e only intereste
ade has occurr

upil relative to th
a) the top left to (

side edge of th
bounds, we inf
re.  

ce detection ma
ons or occlusio
ing that the us
ng window of 
t only infers th
n the face is n

stractions short
likely will hav

k. As soon as th
infers that h

s looking at th
des, or fast ey
ading somethin
to estimate th
detect saccade

il by finding th

aze direction c
observations th
y in the pa
f the pupil shif
t the screen; w
cal features th
their respectiv

with 0.5 meanin
long a specif

ugh a first-ord
cutoff frequen
y low-pass filt
in time seri

inferred eith
on of the user
one [24] divid
d the screen in
ping to associa
or our purpose
e user is lookin
ed in drastic ga
red. 

he rest of the ey
(b) the bottom. 

he 
fer 

ay 
on 
ser 
f 2 
hat 
not 
ter 
ve 
he 
his 

he 
ye 
ng 
he 
es, 
he 

an 
hat 
ast 
fts 
we 
hat 
ve 
ng 
fic 
der 
cy 
ter 
ies 

her 
r’s 

des 
nto 
ate 
es, 
ng 

aze 

Figure 
pupil w
pauses
eyes. L
looking
corresp
user’s 
detects
optima
agnosti
be pron
from a
is only
signific
signific
through
data co
local o
by the 
optima
exhibit

FAST 
While
when u
saccad
their ga

Despit
where 
inferre
saccad
like th
recentl
brief p
missed
reading
correct
frustrat

To rem
know t

ye

Figure 
but only
large. L
looking 
looking 

5 plots the es
with respect t
s for a few seco
Low magnitude
g to the righ
pond to lookin
gaze changes d

s these movem
a within a win
tic to the ampli
ne to noise ap

affecting FAST
y counted as a
cantly afterwa
cant changes w
h different val
ollected in our 
optima marked

algorithm, wh
a that are reject
ts less deviatio

in the Context
reading Englis
users begin to

des, users’ gaz
aze gradually s

te the filtering 
noise in the 

ed as saccades b
des when the u
hese would adv
ly read line too

period of time, 
d. False negat
g position to la
tion, the errors
ting results for

medy this issue
the arrangemen

5. Peaks and t
y indicate sacca
Low magnitude 
to the right, whe
left. 

stimated horizo
to time as the
onds, and then
e values corres
ht, whereas h
ng left. The sig
drastically and

ments in real-ti
ndow. Note th
itude of the sig
ppearing in flat
T’s line predict
a saccade if th
ards. The thr
was determined
lues and optimi
technology ev

d with circles 
hile the crosses
ted by the algo

on during those

t of Reading 
sh prose, right

o read a new l
ze exhibits sa
sweeps across 

described ear
signal and sp

but not necessa
user looks at a 
vance the esti
o far. If face an
it is also possi

tives cause the
ag behind. If th
s can accumul
r the user. 

e, we take adva
nt of the text w

troughs are dete
ades when the 

values corresp
ereas higher mag

ontal location 
e user moves 
n continues to 
spond to when 

higher magnitu
gnal jumps wh
d a saccade occ
ime by lookin
hat saccade d

gnal, so such a 
t signals. To p
tion, a detected

he gaze locatio
reshold for d
d empirically b
izing the result

valuation. In Fi
are considered

s mark some o
orithm because
e times. 

t-to-left saccad
line (Figure 5)
awtooth-like b
the screen. 

rlier, there are 
poradic glance
arily correspon
new line. Fals

imate of the u
nd eye detectio
ible that saccad
e estimate of 
here is no mec
late over time 

antage of the f
within the app

ected throughout
amplitude of th

pond to when 
gnitude values co

of a user’s 
their eyes, 
move their 
the user is 

ude values 
henever the 
curs. FAST 
g for local 

detection is 
system can 

prevent this 
d optimum 
on changes 
determining 
by iterating 
ts from the 
igure 5, the 
d saccades 
of the local 
e the signal 

des indicate 
). Between 
ehavior as 

still cases 
es may be 
nd to actual 
se positives 
user’s most 
on fail for a 
des will be 
the user’s 

chanism for 
and cause 

fact that we 
lication. In 

t the signal,
he signal is
the user is
orrespond to

Task Interruption & Resumption CHI 2015, Crossings, Seoul, Korea

2956



o
li
r
p
t
m
th

I
r
th
o
b
a
c
s

T
ta
th
i
n
f
b
m
a
r
a
(
th
s
c

T
P
S
in

  
4 

other words, w
ine. Combinin

reading speeds 
predict how lon
ext, comparing

measured inter
hree possibiliti

1. tmin < 
within
saccad
the lin

2. tmeasure

the ex
time h
saccad
line es

3. tmeasure

than e
missed
than w
ahead 
update
surrou

If the user look
reading a line, 
he user to read

out of the tim
because they d
as the readin
calculated usi
sawtooth-like b

There are a cou
aken into acco
he current line
f the first five 

no way that th
fact to correc
becomes very 
make about the
a user was able
read the first. T
able to read the
(marked by the
his by ignorin

screen (includ
calculations.  

Technology Ev
Prior to cond
SwitchBack, w
nform our des

                      

We use “word”
with terminolog

we know how 
ng this with kn

(200-400 word
ng it expects a
g that expecte
rval between 
ies: 

tmeasured < tmax

n the expecte
de as a proxy 
ne estimate acc

ed < tmin: The m
xpected range, 
has passed be
de as a false p
stimate.  

ed > tmax:  The 
expected, so at
d. This means
what appears 

in the text, i
e tmin and tm

unds tmeasured. 

ks away, pause
tmeasured will ov
d the line. The
me-varying sig
do not share the
ng moments. 
ing segments 
behavior and th

uple of further
ount when incr
e for the user m

lines of an art
e user is readi

ct SwitchBack
large. Anothe

e text is line len
e to jump dire
This is caused
e second line d

e red arrow in F
ng lines that s
ding line bre

valuation of FA
ducting our 
we conducted 
ign and quanti

                       

” to mean a gro
gy used in text an

many words4

nowledge abou
ds per minute 
a user to read 
ed range, <tmin

saccades, tmea

x: The measur
ed range, so 

for a new line
ordingly.  

measured interv
so we infer 

etween line br
positive, and d

measured inte
t least one sac
s that the user
on the curren
increment the 
ax until the 

es, or backtrack
verestimate the 
se moments ca
gnal, as show
e same sawtoo

Therefore, t
when the 

he user is readin

r consideration
rementing the l
must lie within
ticle appear on
ing the sixth li
k’s estimate w
er important c
ngth. In Figure
ectly to the thi
d by the fact th
during the righ
Figure 6). We h
span less than

eaks) in the 

AST 
primary user
a technology

ify the accurac

            

oup of five cha
nalysis. 

4 appear in ea
ut typical huma
[16]), FAST c
the next line 

n, tmax> with th
asured. There a

red interval fal
we accept th

e and increme

val falls short 
that not enoug
reaks, label th
o nothing to th

erval was long
ccade was like
r read more te
t line. We loo
line count, an
expected rang

ks slightly whi
time it takes f

an be segment
wn in Figure 
oth-like behavi
tmeasured is on
signal has th
ng.  

ns that should b
line count. Fir
the screen; e.g

n a page, there 
ine. We use th
when the err
consideration 
e 6, for exampl
ird line after sh
hat the user w
ht-to-left sacca
handle cases lik
n a third of th

aforemention

r evaluation 
y evaluation
cy of FAST. W

aracters, consiste

ch 
an 
an 
of 
he 

are 

lls 
he 

ent 

of 
gh 
hat 
he 

ger 
ely 
ext 
ok 
nd 
ge 

ile 
for 
ed 
5, 

ior 
nly 
he 

be 
st, 
g., 
is 

his 
ror 
to 
le, 
he 

was 
de 
ke 
he 
ed 

of 
to 

We 

ent 

collect
female
session
experim

We co
(Figure
inch sc
facing 
smartp
excerp
(rough
contigu
in leng
contigu
to estim
travel a
on the
Particip
and 3 a
pace. 
The w
perform
walkin
by the 

Line p
the nu
predict
absolut
lines o
found 
indicat
positio

To del
analysi
fixed 
random
when 
represe
meant 
approp
subject
[21].)

We ex
were s
relative
the sha
would 

Figure
can fol

ted reading d
es), each of 
n. Two of the
ment. 

ollected data u
e 1) on a Sony
creen, 1080×1

camera. Par
phone in lands
pts of text from
hly 1.8 mm in
uous paragraph
gth so the user 
uous text in th
mate the time 
across the widt
e screen with 
pants were as
articles while w
The study wa

walking conditi
ms in the pres
ng. Horizontal

application an

prediction error
umber of line
tion. Our resu
te prediction e

of text per tria
that most o

ting that FAS
on slightly. 

lve deeper int
is of variance
effects for W

m effect for Su
levels of a fa
ent a larger p

to be drawn
priate for hand
ts due to their 

xpected FAST 
standing than 
e, and not abs
aking of the fr
still affect ou

e 6. When there
low the arrow an

data from 8 p
whom volunt

e participants 

using our cus
y Xperia Z sm
1920 pixel dis
rticipants wer
scape mode w

m the New York
n height) and
h. Each article
did not have to

his experiment 
it takes for th

th of the screen
black text o

sked to read 3
walking on a tr
as counterbala
ion was added
sence of extra
and vertical g

nd processed of

r is defined as
es in the exc

ults show that 
error of 0.8 (S
al, translating 
f the errors 
ST overestima

to our results,
e was used to

Walking, Glass
ubject. (Random
actor are not 

population abo
n [7]. Mixed-e
dling repeated 

ability to mod

to be more ac
n walking. Al
solute, pupil po
front-facing cam
ur performance

 is spacing betw
nd still read the s

participants (5
teered for a 
wore glasses 

stom reading a
martphone, whic
splay, and 2.3
re asked to 

while reading 
k Times with s
d presented a
e was clipped 
o scroll. We ch
to gather suff

he typical user
n. The text was
on a white ba
3 articles whil
readmill at a c
anced across 
d to evaluate h
aneous vibratio
gaze angle wer
ffline using MA

s the differenc
cerpt and FA
FAST achiev

SD = 1.1) out
to 3.9% error
tended to be

ated the user

, a mixed-effe
o analyze the 
ses, and Gend
m effects are a
of specific in

out which infe
effects model
measures over

del covariance 

ccurate while p
lthough FAST
osition, we be
mera caused b
e. However, th

ween lines, the 
second line. 

5 males, 3 
20-minute 
during the 

application 
ch has a 5-
MP front-
hold the 

6 different 
size 15 font 
s a single 
to 20 lines 
hose to use 
ficient data 
r’s eyes to 
s displayed 
ackground. 
le standing 
omfortable 
conditions. 
how FAST 
ons due to 
re recorded 
ATLAB.  

ce between 
AST’s line 
ves a mean 
t of the 20 
r. We also 
e positive, 
r’s reading 

ects model 
data, with 

der, and a 
appropriate 
nterest, but 
erences are 
s are also 
r the same 
in the data 

participants 
T looks at 
elieved that 
by walking 
he average 

user’s eyes 

Task Interruption & Resumption CHI 2015, Crossings, Seoul, Korea

2957



lines-of-error while walking was 0.30 (SD = 0.92), and 
while standing was 0.29 (SD = 1.42), so there was no 
detectable difference (F(1,29.9) = 0.00, n.s.). 

We also expected FAST to perform worse for users who 
wore glasses because we believed that the computer vision 
component within FAST might perform poorly. The 
average error for people wearing glasses was 0.50 (SD = 
1.83), and the error for those not wearing glasses was 0.21 
(SD = 0.82), but that difference was also not statistically 
significant (F(1,4.1) = 0.52, n.s.). 

We did not expect any difference in performance across 
gender. The average error for males was 0.36 (SD = 1.32) 
and for females was 0.19 (SD = 0.98). This difference was 
not statistically significant (F(1,4.7) = 0.18, n.s.). 

SwitchBack Reading Application 
We developed a reading application to guide the user’s 
attention back to where they were last looking in a body of 
text after attending to an outside distraction (Figure 1). 
While users are reading, FAST keeps track of where they 
are looking using saccade tracking corrected with 
information about the text. FAST detects when users look 
away from the screen and saves the estimated line a user 
was last reading. Once a user turns her attention back to the 
screen, SwitchBack highlights the line that was saved, 
aiding task resumption.  

USER EVALUATION OF SWITCHBACK 
We conducted a user study for our SwitchBack reading 
application with the intent of demonstrating that 
SwitchBack allows users to more easily resume reading on 
mobile devices after looking away due to distraction. 

Participants 
Seventeen participants (9 male, 8 female) ranging from 19 
to 52 years old (M = 26.7, SD = 7.2) were recruited for our 
study. The participants were evenly distributed between 
Caucasian, Asian, and South-Asian races. Five participants 
wore glasses during the study, and all but two of the 
participants owned and used a smartphone on a daily basis. 

Apparatus 
Participants used our custom application on a Sony Xperia 
Z smartphone with a 5-inch capacitive touch screen, 

1080×1920 pixel display, and 2.3 MP front-facing camera. 
The reading application was the same as the one developed 
for the FAST evaluation study. The only difference was that 
SwitchBack would be enabled in one condition. When 
active, SwitchBack guided the user’s focus of attention by 
highlighting a line of text, as shown on the right side of 
Figure 1. The text was highlighted whenever the user turned 
away from the screen and then disappeared 5 seconds after 
they returned to the application. Eight New York Times 
articles between 500 and 600 words  (M = 522, SD = 18) 
were chosen for the study; their average readability score 
was 46.3 according to the Flesch Reading Ease test [19]. A 
diffused light source subtly illuminated the experiment area, 
ensuring consistent lighting conditions for all participants; 
special care was exercised to ensure that the lighting would 
not affect participants’ reading ability.   

To study the effect of SwitchBack in the presence of 
distractions, we devised a secondary distraction task and 
introduced it as a condition. The task was adapted from an 
attentionally-demanding task used by Yokoyama et al. [36]. 
The software for the task was written in C++ and ran on a 
Windows desktop with two monitors placed on either side 
of the user (Figure 7). Both screens began completely 
black. Every 25-40 seconds, one of the two screens played a 
tone to direct the user’s attention away from the phone. The 
screen then displayed a combination of T’s and L’s (always 
9 in total) with white text and at different orientations 
(Figure 8). Time intervals, screen selection, letter rotations, 
and letter selections were all randomized to simulate 
unexpected distractions and prevent anticipation.  

To simulate a natural setting where users might face 
distractions, participants were asked to walk on a treadmill 
(Figure 7) for a portion of the experiments. The treadmill 
was set to a speed of about 1.4 m/s. 

Procedure 
The procedure was designed to fit in a single 45-minute 
session. Each session began with a pre-study questionnaire 
about the participant’s mobile device experience and habits. 
Once completed, participants were introduced to the 
experimental setup and asked to familiarize themselves 
with the application. We also informed participants that 
they would be tested for reading comprehension through a 

Figure 7. To support the different conditions, the experimental
setup included a treadmill for walking, a lamp for consistent
lighting, and a monitor on either side for distractions. 

Figure 8. The distraction task required participants to distinguish
between rotated T’s and L’s within a fixed amount of time. 
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four question multiple choice test at the end of each trial. 
Participants read a different article per trial to avoid 
familiarization with the text or encouraging them to skim. 
The order of the articles was randomized using Latin 
Squares to ensure that specific articles did not impose a bias 
on a particular set of conditions.  

At the beginning of each trial, the experimenter ensured that 
the participant began reading with their face within the 
front-facing camera’s field of view when the phone was 
held in landscape mode. Participants were asked to read 
each article in its entirety and to scroll whenever they 
desired. When the distraction task was active, participants 
were asked to verbally report either the number of T’s or 
L’s to the experimenter whenever letters appeared on one of 
the two outside monitors before returning to the reading; 
since the number of letters on the screen remained constant, 
we allowed participants to report the number of either letter. 
On average, participants experienced 4.4 distractions per 
trial (SD = 1.7) when the distraction task was active.  

At the end of each trial, participants were asked to complete 
a short multiple choice test of reading comprehension and a 
NASA Task Load Index (TLX) questionnaire [13] to 
provide feedback concerning their experience. 

Design & Analysis 
The study was a within-subjects 2×2×2 factorial design. 
The factors and levels were:  

 Posture: Sitting and Walking. 

 Distraction: Distraction and No Distraction. 

 Interface: SwitchBack and Control. 

Posture was the first factor that was counterbalanced. 
Within each posture, Distraction was counterbalanced, 
followed by Interface. Each participant completed every 
unique combination of conditions, leading to 17×2×2×2 = 
136 total trials for the study.  

Average reading speed, measured in words per minute 
(WPM), was the main measure for assessing SwitchBack’s 
performance. To calculate reading speed, we divided the 
total number of characters in the text read by the time the 
user spent reading and divide that by 5, the standard for 
characters per word used in text analysis. Our calculation 
excludes the time spent completing the distraction task, 
when applicable.  

A mixed-effects model analysis of variance was used to 
analyze our data, with fixed effects for Distraction, 
Posture, and Interface, and random effects for Article and 
Subject [7,21]. Overall, reading speed was normally 
distributed according to a nonsignificant Shapiro-Wilk W-
test (W = 0.989, p = .383) [32]. 

Being ordinal in nature, Likert ratings (1-20) for the NASA 
TLX instrument were analyzed using the nonparametric 
Aligned Rank Transform procedure [14,30]. This procedure 
allows for an analysis of variance (ANOVA) to be used to 

test for main and interaction effects after aligning and 
ranking the data separately for each effect. Despite using 
analysis of variance, the procedure is considered 
nonparametric due to its ranking preprocessing step. The 
ARTool by Wobbrock et al. [34] was used to prepare the 
data for analysis using the Aligned Rank Transform 
procedure. Each of the 17 subjects filled out the 6 NASA 
TLX workload scales (1-20) after each of 8 articles, 
resulting in 17×6×8 = 816 individual ratings. 

RESULTS 

Reading Speed 
Reading speed results are shown in Figure 9. Across all 
trials, the average reading speed was 252.0 WPM. This rate 
is near the lowest quarter of the expected range for typical 
reading rates, 200 – 400 WPM [16], which we believe can 
be attributed to the fact that users were asked to read for 
comprehension, rather than speed. 

We looked at the Interface × Distraction interaction to 
evaluate the performance of our system. We found this 
interaction to have only a marginal effect on reading speed 
(F(1,105) = 2.93, p = .09). Without our distraction task, 
SwitchBack never has to modify the interface, so we dug 
deeper into this trend by looking at the effect of 
SwitchBack just in the presence of distractions. As we 
expected, a pairwise comparison shows that SwitchBack 
significantly increased reading speeds (F(1,107.8) = 4.61, p < 
.05) in those cases. This translated to an extra +19.0 WPM 
increase in users’ reading speed when SwitchBack was used 
in the presence of distractions, a +7.7% increase from the 
average reading speed across all users. Although the 
interaction was only a trend, prior work has convincingly 
argued for the appropriateness of doing post hoc 
comparisons on trend-level interactions [8]. 

We also gathered findings that confirmed that our 
experimental treatments did indeed increase workload, as 
intended. The Distraction × Posture interaction had a 
marginal effect on reading speed (F(1,110.6) = 2.83, p = .09), 

 

Figure 9. SwitchBack resulted in 19.0 WPM (7.7%) faster reading 
speeds than the control condition in the presence of distractions. 
Error bars show standard deviations. 
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and in the presence of distractions, walking lowered reading 
speeds (F(1,111.7) = 4.01, p < .05). 

NASA TLX Questionnaire 
It was our hope that through our NASA TLX 
questionnaires, we would demonstrate that SwitchBack 
generally decreased perceived workload. While we were 
not able to detect any significant differences, we found that 
SwitchBack marginally lessened the mental demand 
experienced by our users (F(1,112) = 3.25, p = .07). This 
finding corroborates the findings concerning improvement 
in average reading speed; that is, reading speed should 
increase if mental demand decreases since the user is 
allowed to focus more on reading. 

The NASA TLX questionnaires were more revealing about 
the effects of our dual focus-of-attention study design. For 
example, both walking (F(1,112) = 21.56, p < .0001) and the 
distraction tasks (F(1,112) = 21.09, p < .0001) significantly 
increased frustration for users. Similar trends can be 
observed across all the other aspects of the survey: mental 
demand, physical demand, temporal demand, 
success/failure, and effort. 

DISCUSSION 
Our goal was to develop a system that eases the user back 
into a task on their mobile device. To demonstrate this, we 
developed a SwitchBack reading application that identifies 
the user’s reading pattern through gaze tracking and guides 
the user back to the proper location in the text after turning 
away. SwitchBack’s FAST algorithm was able to identify 
the appropriate line to highlight with a mean absolute 
percent error of 3.9%. In an evaluation of SwitchBack’s 
effect on performance during a reading task with 
distractions, SwitchBack improved average reading speeds 
by 7.7% in the presence of distractions. 

We focused on smartphones for our user study because 
smartphones are currently one of the most pervasive 
devices in the world and we wanted to explore the 
constraints of working with small screens. SwitchBack is 
even better suited for devices like the Amazon Kindle, 
which are made specifically for long-form reading. In fact, 
we are confident that FAST would have higher accuracy 
with such devices because larger screens create more 
smooth and noticeable saccades. By tackling the hardest set 
of conditions for validating FAST (i.e., a small screen and 
walking), we informally demonstrated that FAST would 
work on larger devices; doing the converse would not have 
been possible. 

While evaluating the performance of the FAST algorithm 
alone, we found that it performed sub-optimally in roughly 
15% of the trials. These can be attributed to two causes. 
The first cause was occlusion when the user unknowingly 
covered the camera with their thumb. We conducted our 
experiments in the device’s landscape orientation because 
the Snapdragon SDK did not have the accuracy to support 
the narrower portrait news article width. Future mobile 

devices with multiple front-facing cameras, like the 
Amazon Fire, may alleviate such issues. The second cause 
relates to situations when participants were unable to tell if 
their face was within the camera’s field of view while 
reading. We considered adding visual feedback to remedy 
this issue, similar to the approach taken by Samsung for 
their Smart Scroll feature [17]; however, we found this to 
be a distraction in itself that led to extraneous saccades. A 
wide-angle camera lens would alleviate the issue of the 
user’s face moving out of the camera frame in most cases. 

While testing SwitchBack’s reading application, we found 
that some of our users had already developed their own way 
to keep track of where they were in a large body of text. For 
instance, one participant told us that she scrolled so that the 
line she was reading was always at the top of the screen; of 
course, she could not rely on this once she had scrolled to 
the bottom of the page. Other participants stated that they 
kept track of where they were by remembering a key phrase 
in the article as a “mental bookmark,” despite our 
complicated distraction task. While such bookmarks should 
impose more cognitive load on the user and impair their 
ability to complete other tasks, a field study with 
ecologically valid distractions would be insightful towards 
examining more realistic cognitive load tradeoffs.  

Our use of FAST in the SwitchBack application ignores 
gaze position in the vertical direction because of its poor 
accuracy, which may be partially attributed to the short 
height of the smartphone screen while it is the landscape 
orientation. In ignoring the vertical gaze position, we were 
forced to concede a few assumptions involving the 
advancement of the line count. First, we assume that the 
user begins reading from the first line of text. We believe 
this is fair for new bodies of text that the user has not seen 
previously, but there is a solution for accommodating other 
starting locations without vertical gaze position. Since 
SwitchBack is implemented on devices with touchscreens, 
the user can double tap a word to simultaneously activate 
the gaze-tracking and notify the system of their starting 
point. The second assumption we concede in SwitchBack is 
that the user reads each line in sequential order. This 
assumption is confirmed by research in psychology that 
focuses on reading analysis [16], but the possibility still 
remains that users will go back and reread missed portions 
of their text. If the saccade is small and occurs quickly after 
the user reaches a new line, FAST will treat it as a false 
positive and continue tracking as normal; however, our 
algorithm does not address jumps when the user goes back 
multiple lines.  

Currently, SwitchBack is a one-size-fits-all system (i.e., no 
training or customization for each user); however, one 
could imagine a system that learns the device owner’s 
reading habits over time. SwitchBack could begin by 
checking if the user’s reading speed falls within the wide 
range of typical human speeds, as in our implementation, 
but then narrow that window to the particular user’s reading 
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speed to ensure more reliable line prediction. The 
performance of SwitchBack could also be improved by 
taking into account the text being read. Currently, 
SwitchBack uses word count to estimate the amount of time 
it expects the user will take to read a line. Lines with larger 
words and more complicated content require a heavier 
cognitive load [20], causing the user to spend more time 
reading them. We examined articles from The New York 
Times that were of medium cognitive load according to the 
Flesch Reading Ease test [19]. Accounting for the content 
of the text on a deeper level would improve SwitchBack’s 
estimation of the user’s reading speed and allow our system 
to scale to text of varying cognitive load (e.g., scientific 
articles and children’s stories) and different reading 
behaviors (e.g., skimming). Even further, techniques like 
Kalman filtering could account for the content of the text 
and personalize predictions. 

FUTURE WORK 
The SwitchBack reading application modifies a user 
interface by highlighting where the user was last reading 
after he or she attends to an outside distraction. There are 
other reading application modifications that can be applied 
using FAST. One that was explored, but not tested in our 
user study, was automatic scrolling once the user reaches 
the bottom of the text, similar to Samsung’s Smart Scroll 
[17]. Currently, Smart Scroll and Smart Pause only use face 
detection and orientation to control the screen, but 
incorporating information about the user’s eyes could 
provide a better experience. Another possible modification, 
geared primarily towards users with poor eyesight, could be 
a magnifying glass-like feature that enlarges the current line 
of text for the user. 

Testing the SwitchBack outside of a laboratory setting 
would validate the application’s robustness. We did not 
evaluate SwitchBack outdoors because of the lack of 
control over conditions like the number of distractions 
encountered. We simulated walking with the treadmill to 
introduce some of the factors that would be met outdoors, 
but we have yet to test SwitchBack in different lighting 
conditions. We are confident that applications involving 
relative gaze changes are more robust to such conditions 
than applications involving absolute gaze position since 
saccades may be inferred with missing or incorrect data.  

We have used FAST in the context of reading, but we 
believe that it enables a broader range of applications. For 
instance, SwitchBack could be used by advertising 
companies to gauge whether or not their advertisements are 
engaging to users. FAST can be applied to any combination 
of text and images so long as the layout of the content on 
the screen is known. 

CONCLUSION 
As people become more attached to their mobile devices, 
the ability to balance attention towards their devices and 
awareness of their surroundings deteriorates. We have 
presented SwitchBack, a generalizable system for easing 

the user’s focus-of-attention back into a mobile device task 
after attending to an outside distraction. To evaluate 
SwitchBack, we focused on reading applications. We 
performed a technology evaluation to determine the 
performance of our Focus and Saccade Tracking (FAST) 
algorithm and found that we were able to estimate how 
many lines participants had read in a body of text to within 
a mean absolute percent error of just 3.9%. We then 
conducted a user study on our custom SwitchBack reading 
application. SwitchBack increased participants’ reading 
speeds by 7.7% in the presence of distractions. It is our 
hope that SwitchBack and FAST will prove useful towards 
realizing more situationally-aware mobile devices in the 
future. 
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