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a b s t r a c t 

Indoor environment reconstruction is a challenging task in Computer Vision and Computer Graphics, es- 

pecially when Extended Reality (XR) technologies are considered. Current solutions that employ dedi- 

cated depth sensors require scanning of the environment and tend to suffer from low resolution and 

noise, whereas solutions that rely on a single photo of a scene cannot predict the actual position and 

scale of objects due to scale ambiguity. The proposed system addresses these limitations by allowing the 

user to capture single views of objects using an Android smartphone equipped with a single RGB cam- 

era and supported by Google ARCore. The system includes 1) an Android app tracking the smartphone’s 

position relative to the world, capturing a single RGB image for each object and estimating depth infor- 

mation of the scene, 2) a program running on a server that classifies the framed objects, retrieves the 

corresponding 3D models from a database and estimates their position, vertical rotation, and scale factor 

without deforming the shape. The system has been assessed measuring the translational, rotational and 

scaling errors of the considered objects with respect to the physical ones acting as a ground truth. The 

main outcomes show that the proposed solution obtains a maximum error of 18% for the scaling factor, 

less than nine centimeters for the position and less than 18 ◦ for the rotation. These results suggest that 

the proposed system can be employed for XR applications, thus bridging the gap between the real and 

virtual worlds. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Indoor environment reconstruction is a fundamental problem 

n computer graphics and computer vision. Conventional computer 

ethods for generating the digital counterpart of a scene can be 

ased on merging a large number of depth images [1–3] or us- 

ng photogrammetry [4,5] , which again requires a large number of 

hotos from different points of view. A popular smartphone app 

as Autodesk 123D Catch [6] , which required 26 photos from dif- 

erent angles to reconstruct an object. 

Scanning solutions based on LiDAR or Time-of-Flight (ToF) 

ensors such as Kinect tend to suffer from low resolution, 

oise [7] and missing parts. Following the success of deep learning 

DL) methods in image classification and generation tasks [8] , re- 

earchers have been trying to apply these techniques to several 3D 

asks [9,10] . DL methods add semantics and can overcome some of 

he limitations of the conventional solutions: they can reconstruct 

 scene from a single RGB image by predicting room layout, ob- 

ect location, pose and shape [11,12] , they can add missing parts of 
∗ Corresponding author. 
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n incomplete scan [13] , they can retrieve and align 3D models of 

bjects to the scan to overcome low resolution [14] . 

However, when thinking about fast scene reconstruction for Vir- 

ual Reality (VR) and Augmented Reality (AR) applications using a 

ommon smartphone, a full scan of the environment, which takes 

ime and requires depth sensors that are only available on a few 

ecent high-end devices, should be avoided. Furthermore, position 

nd scale of the objects are crucial, and therefore DL methods that 

se a single RGB image for scene reconstruction are not suitable, 

ince they do not solve the global scale ambiguity that arises when 

nferring depth from a 2D image. In fact, it is an ill-posed problem 

nd an open challenge. In addition, reconstructing the entire scene 

rom a single RGB image would probably result in heavily occluded 

bjects whose shapes and poses would be hard to predict. 

In many disciplines, from education to entertainment, from 

ealthcare to industry, VR and AR are some of the most promis- 

ng emerging technologies. In VR, users are immersed in virtual 

orlds, whereas AR allows users to see an augmented version of 

he real world; in both cases, being able to generate a virtual ver- 

ion of a real object can be extremely useful. For instance, for VR 

sers having a virtual representation of the physical space is im- 

ortant for safety concerns. 

https://doi.org/10.1016/j.cag.2021.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.07.014&domain=pdf
mailto:andrea.sanna@polito.it
https://doi.org/10.1016/j.cag.2021.07.014
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Fig. 1. The proposed system. An Android smartphone is used to capture a single 

RGB picture for each object, which is augmented with the depth information pro- 

vided by Google ARCore. Then, a server processes these data in order to classify 

the object in the picture and retrieve the most similar synthetic 3D object from a 

database; position, vertical orientation and scale factor are estimated and applied 

to the model. Finally, an AR app and a desktop app can be used to visualize the 

reconstructed scene. 
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On the other hand, an AR user might want to share the physical 

nvironment with a remote VR user so that both can move and in- 

eract in a common space. In this case, scene understanding can be 

undamental for a better experience, as it can provide both users 

ith spatial and semantic information about the objects. 

Building on these considerations, a novel semi-automatic sys- 

em allowing users to reconstruct the digital version of a real in- 

oor scene using a smartphone is presented in this paper. A smart- 

hone is used to capture images of those objects for which a 3D 

epresentation is to be retrieved from a database. The images, 

long with depth information, are then sent to a server for pro- 

essing. The system is semi-automatic, as the user still has to per- 

orm some tasks manually: 1) capturing one picture for every ob- 

ect and 2) specifying a point belonging to the framed object. All 

he other steps related to the process are automatically executed 

y the server. Specifically, the first step is the object segmenta- 

ion and classification, which assigns a semantic label to each pixel 

nd allows the system to distinguish among different objects in 

he frame. Then, after isolating the target object, the server finds 

he most similar 3D CAD model available in a model database. Fi- 

ally, the object pose and scale factor is estimated, computing the 

bject rotation and position in the world reference system defined 

y the smartphone. The object is scaled according to the computed 

cale factor without performing any other mesh deformation. An 

verview of the system is shown in Fig. 1 . 

To the best of the authors’ knowledge, this work is the first sys- 

em capable of estimating the 7-DoF pose (3-DoF position, 3-DoF 

cale and 1-DoF rotation around the vertical axis) of objects from 

 single view using a smartphone with a single RGB camera to re- 

onstruct an indoor environment. 

The most relevant works related to the scene reconstruction 

roblem are discussed in Section 2 . Section 3 presents the pro- 

osed system, whereas the conducted experiments and related re- 

ults are presented and discussed in Section 4 and in Section 5 , 

espectively. Finally, the future developments are discussed in 

ection 6 . 
117 
. Related work 

During the last two decades, the researchers have conducted 

xtensive work on the reconstruction of 3D objects or of entire 

cenes from single and multiple images or RGB-D scans. 

Following the success of deep learning in image-related tasks, 

any large-scale datasets of 3D models such as ShapeNet [15] or 

odelNet [16] were made available to the academic commu- 

ity in order to develop new learning-based methods for 3D re- 

onstruction. Other commonly used datasets are ScanNet [17] , 

hich contains annotated 3D scans of indoor scenes, NYU Depth 

ataset [18] and SUN RGB-D [19] , which contain annotated RGB-D 

mages. 

.1. Single and multiple view scene reconstruction 

Some works [20–22] discretize the 3D space using voxels, 

hich are then predicted by neural networks (NNs) similar to 

hose used for images. When using voxels, the reconstruction qual- 

ty is severely affected by memory constraints [21] ; data compres- 

ion structures that take advantage of the sparsity of the data, such 

s octrees, can be used to increase the output resolution [23,24] . 

Some researchers tried to devise networks that output meshes 

irectly; some works [25–27] consider the object as a whole, 

hereas the object is managed as the union of simple parts 

n [28,29] ; each part is modeled separately, thus producing higher 

uality results. These approaches suffer from bad topology, and 

hey do not really take advantage of the ability of meshes to ef- 

ciently scale with the shape complexity. 

Some of the most recent works use implicit representations in 

he forms of occupancy functions [30–32] or signed distance func- 

ions [33] , avoiding the discretization of the 3D space. Methods 

ased on implicit representations do not generalize well to unseen 

bjects (i.e., objects that do not appear in the training dataset) and 

oses; moreover, they tend to produce overly smooth shapes [34] . 

Izadinia et al. [35] use Convolutional Neural Networks (CNNs) to 

rain comparison metrics, which are used in an iterative algorithm 

o optimize placement and scale of objects, in order to match the 

eference image of an indoor scene. Although the generated scene 

s similar to the reference image, it is not possible to determine 

he real sizes of objects from a single RGB image. 

Guo et at. [36] can predict position, orientation and size of in- 

ividual objects in a scene from a single RGB-D image, but small 

bjects tend to be missing from the reconstructed scene and oc- 

lusion can lead to erroneous estimates. 

Holistic approaches [11,12] do not consider one object at a time, 

ut they reason about the scene as a whole, trying to understand 

he relationships (e.g., support, symmetry, etc.) among the objects. 

uang et al. [11] jointly recover room layout, camera pose, and ob- 

ect bounding boxes of an indoor scene, whereas the solution pro- 

osed in [12] can also reconstruct the mesh of objects. 

FroDO [37] can estimate the pose of an object and reconstruct 

ts shape, but it requires a series of localized RGB images. 

CoReNet [38] can predict the shape, relative pose and class of 

ll objects depicted in a single image, but the quality of the gen- 

rated geometry is affected by the discretization step, which is re- 

uired in order to reconstruct the object shape. 

Given an input image containing multiple objects, Kuo 

t al. [39] first find object instances through segmentation, then 

hey retrieve the most similar CAD model to any object instance 

y using a shared embedding space for image-CAD pairs. In addi- 

ion to shape retrieval, they predict the object pose. 

Vid2CAD [40] integrates single-frame predictions by NNs with 

lobally-consistent poses obtained by solving the alignment prob- 

em as a temporally global, multi-view constraint optimization 

roblem. 
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Fig. 2. The reconstruction pipeline of the proposed system. Stage 1 is executed by the client whereas stages 2, 3 and 4 are executed by the server. 
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.2. Reconstruction from RGB-D scan 

SG-NN [13] takes as input partial RGB-D scans and predicts 

issing geometry in a self-supervised manner. The result is a high 

esolution 3D reconstruction of the scene. RevealNet [41] , given an 

ncomplete RGB-D scan, detects the objects in the scene and infers 

heir complete geometry. 

Scan2CAD [14] predicts correspondence heatmaps between re- 

ions of an RGB-D scan and 3D CAD models using a 3D CNN, then

t finds the 9-DoF poses for 3D CAD model alignment to the scan. 

he main disadvantage of this approach is that it requires to com- 

are each model in the database to each scanned region to recon- 

truct the whole scene. Scan2CAD is extended in [42] by the addi- 

ion of layout estimation, which also helps in improving the overall 

ccuracy. 

. The proposed solution 

The proposed system recognizes the framed objects and re- 

rieves the 3D CAD models (represented as polygonal meshes) cor- 

esponding to the object classes from a database. Let M = { m n }
e the model set, with 1 ≤ n ≤ N and N be the number of 3D

AD models. Each model m n belongs to a specific category or class 

 k ∈ C = { c k } . For each object, the goal is to infer its class c k , find

he most similar 3D CAD model m n and estimate its 7-DoF pose: 3- 

oF for translation, 3-DoF for scale, and 1-DoF for rotation around 

he vertical axis. 

The system operates in indoor scenes using a handheld Android 

evice running a Google ARCore-based app [43] . ARCore is a collec- 

ion of tools for creating AR experiences. For each physical object, 

 snapshot consisting of 1) the RGB image, 2) the depth data, 3) 

he device pose, and 4) the lowest horizontal plane is acquired. 

The system does not require a depth sensor since it leverages 

he Visual-SLAM and the depth map estimation algorithms in- 

luded in the ARCore Depth API. Specifically, a Samsung Galaxy S8 

tted with a single RGB camera was used in this work. Fig. 2 illus-

rates the four stages of the proposed system. 

.1. Snapshots acquisition 

The first stage of the presented solution consists in taking snap- 

hots of the objects by using the Android smartphone. Starting 

rom the utilities implemented in the DepthLab app [44] provided 

y Google, an Android app was developed using Unity3D 

1 and the 

RCore Depth API SDK. The developed app tracks the smartphone 

n the Unity3D world coordinates, it predicts the depth maps in 

eal-time and it detects the horizontal planes. When the app starts, 
1 https://unity.com/ . 

118 
RCore defines a coordinate frame W = { O, xyz} by fixing its origin 

nd orientation to the starting position P de v ice (0) ∈ R 

3 and orienta- 

ion R de v ice (0) ∈ R 

3 of the device: 

 = P de v ice (time = 0) (1) 

yz = R de v ice (time = 0) (2) 

By moving the smartphone, the device pose is computed by the 

RCore Visual-SLAM algorithm. When the user wants to retrieve a 

igital version of an object, they should target the object on the 

martphone screen by using the fixed virtual red cursor shown in 

ig. 2 . Then, the user can acquire the snapshot by tapping on the 

Snap!” button, which triggers four events: 

1. The app saves the i -th single-view RGB image F 
rgb 

i 
of the scene 

in camera resolution Res 
rgb 
cam 

. 

2. The app checks the detected horizontal planes P 

h 
i 

= { p i, j } , ∀ j ∈
{ 1 , 2 , . . . , J } , where J is the number of detected planes in the

given snapshot. The lowest plane is considered as a candidate 

ground plane, and its height h l p,i relative to the smartphone ini- 

tial position is stored in a CSV file called SnapInfo : 

h l p,i = min 

j∈{ 1 , 2 , ... ,J} height(p i, j ) (3) 

The rotation about the vertical axis R v 
de v ice,i 

of the smartphone is 

also stored and later used to estimate the rotation of the object. 

3. The app stores in a CSV file called ScreenToDepth the mapping 

between the screen space coordinates of the captured frame 

F 
rgb 

i 
and the coordinates of the estimated depth map F 

depth 
i 

of that frame. This is necessary because the depth map esti- 

mated by ARCore has a resolution of 160x90px, which is differ- 

ent and much less than the color frame resolution Res 
rgb 
cam 

, equal 

to 2220x1080px. 

4. In order to construct the point cloud in camera space Q 

cam 

i 
cor- 

responding to a given depth map (see Section 3.2 ), the program 

uses the camera intrinsic parameters, i.e. principal point (c u , c v ) 

and focal length f . If Q(u, v ) denotes the point of the point 

cloud corresponding to the pixel (u, v ) of the depth map, and 

z(u, v ) is the depth value, then its x, y and z coordinates are 

computed using the following equation: 

Q(u, v ) = 

⎡ 

⎣ 

u −c u 
f z(u, v ) 

v −c v 
f 

z(u, v ) 
z(u, v ) 

⎤ 

⎦ (4) 

5. The app stores in another CSV file called PointCloud the map- 

ping between the screen space coordinates of the estimated 

depth map F 
depth 

i 
and the world space 3D points. The world 

space 3D points have been computed starting from the cam- 

era space 3D points using the utilities provided by [44] . The 
generated point cloud has approximately 140 0 0 points. 

https://unity.com/
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Fig. 3. The depth maps and point clouds. (a-b) The depth map acquired with a 

generic ToF sensor and the related point cloud, respectively. (c-d) The same ToF 

depth map processed with ARCore and the related point cloud, respectively. The 

ARCore processing creates flying points on the object contour. 
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These operations are repeated for each object that the user 

ishes to replace with a 3D model. This stage ends after the user 

licks on the “Finish” button, which instructs the smartphone to 

orward all generated files to the server. 

.2. Object classification and estimation of object position and scale 

The server automatically processes the files generated by the 

martphone application in the second stage. In this stage, the goal 

s both to classify the selected object in each snapshot and to es- 

imate its position P i ∈ R 

3 and size S i ∈ R 

3 
> 0 

in the world space.

n order to extract from the RGB image only the object targeted 

y the user, the system performs a semantic segmentation, which 

orks by assigning a semantic label (i.e., an object class label) to 

ach pixel in the image. 

It is possible to find several DL solutions to accomplish this 

ask for indoor environments. In particular, there are well-known 

atasets such as COCO [45] , ADE20K [46] and SUN RGB-D [19] on 

hich Deep Neural Networks are trained. The presented solution 

ses MSeg [47] , which combines all the mentioned datasets plus 

apillary [48] , IDD [49] , BDD [50] and Cityscapes [51] into a sin-

le composite dataset with 194 categories. The neural network ar- 

hitecture is HRNet–W48 [52] , which was pre-trained with Mseg–

m–1080p model shared by [47] . 

The output of the segmentation network is a gray scale im- 

ge F 
gray 

i 
, whose pixels have a gray color code corresponding to a 

pecific semantic class. Since the segmentation network returns an 

mage with a different resolution than the input image, the image 

s scaled back to the resolution of the frame F 
rgb 

i 
acquired by the 

martphone using the nearest-neighbor interpolation to avoid in- 

roducing artifacts such as gray tones not present before. The pixel 

n the center of the image carries the color code of the targeted 

bject. If the color code represents a class of objects managed by 

he system, the server processes the image further, otherwise it 

iscards it. 

The system is now able to retrieve from the raw point cloud 

 i of the single view snapshot the point cloud of the object Q 

′ 
i 

ighlighted in the mask, by using the pixel-by-pixel mapping be- 

ween the mask, the relative estimated depth map and then the 

orld space point cloud. The point cloud is transformed from cam- 

ra space to world space using a transformation matrix T cam → world 

s shown in the following equation: 

 

world 
i = T cam → world · Q 

cam 

i (5) 

Then, the set of points belonging to the object is extracted from 

he original point cloud by using a binary mask that can be ob- 

ained by performing a flood fill operation on the segmentation 

mage starting from its central pixel. 

For small objects (e.g., mice, remotes, bowls, cups, etc.), it is 

ufficient to compute a 3D oriented bounding box of the seg- 

ented point cloud Q 

world 
i 

to obtain the centroid and the 3D 

ize of the object. The system uses the algorithm implemented 

n Open3D [53] , which is an approximation to the minimum vol- 

me box containing a set of points. On the other hand, large-size 

bjects present several challenges: 1) they may consist of differ- 

nt parts, 2) they may have outliers in the point cloud caused by 

he single view of the object and 3) they may have flying points 

aused by the smoothing that ARCore applies to the depth maps. 

he ARCore smoothing process cannot be disabled and it is shown 

n Fig. 3 . 

For such objects, a RANdom SAmple Consensus (RANSAC) al- 

orithm is applied to the segmented point cloud, detecting only 

he horizontal planes. Then, the 3D oriented bounding box is com- 

uted considering the points positioned on the detected plane. 

his operation returns the extent of the object and the position 
119 
f the centroid where the value of its vertical axis represents the 

eight of the object. 

When objects are composed of parts with holes, the ARCore 

moothing process creates flying points that could affect the size 

f the 3D oriented bounding box. Chairs are particularly challeng- 

ng objects because the backrest can present cavities and also be- 

ause the 3D oriented bounding box would not provide informa- 

ion about the height of the seat (a correctly aligned collider could 

e useful in AR/VR applications). To overcome these problems, the 

ystem proceeds in three steps. The first step creates a mask of 

epth discontinuities in the depth map to remove most of the 

oint cloud outliers: an automatic Canny edge detection algorithm 

imilar to the one presented in [54] is applied to a gray scale ver-

ion of the depth map that is normalized to enhance the depth 

ariations. Then, two morphological transformations, dilation and 

losing, are used. The kernel of the Canny edge varies with the 

istance of the object center from the smartphone, as shown in 

ig. 4 . 

The generated binary mask is used to remove the outliers in 

he point cloud, which are concentrated in depth discontinuities. 

he RANSAC algorithm detects the horizontal plane of the seat in 

he second step, whereas a statistical outlier removal algorithm is 

pplied to the point cloud segmented by the plane in the third 

tep, removing the remaining outliers left over from the previous 

tep. The whole process is shown in Fig. 5 . 

At this point, the system computes the 3D oriented bounding 

ox of the segmented plane found by RANSAC, which provides the 

xtent of the seat and the centroid falling on the seat; this gives 

he seat’s height. The overall height of the chair is also determined 

y finding the highest point of the segmented point cloud data. On 

he other hand, cabinets, dressers, and nightstands are treated dif- 

erently by the system due to three factors: 1) the segmentation 

etwork does not always predict the correct label, 2) objects lying 

n the small surface of a nightstand might create artifacts on the 
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Fig. 4. Depth images (represented as normalized gray scale images) and relative 

edge masks obtained using a Canny edge detection operator. 
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Fig. 6. Query segmented images and top-3 models retrieved. The first column rep- 

resents the segmented photos of real objects used as queries, whereas the second to 

forth columns represent the most similar retrieved models (best from left to right). 
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oint cloud data and the RANSAC algorithm may not detect the 

orizontal plane and 3) the camera might not frame the top sur- 

ace of a cabinet due to its height, so the RANSAC algorithm will 

ail to find a plane in this case either. For these classes of objects, 

he system finds the highest point of the segmented point cloud, 

hich is assumed to be the height of the top surface, and then it 

reates an artificial horizontal plane by moving the points on the 

ertical axis. The algorithm provided by Open3D for the estimation 

f the 3D oriented bounding box is used to obtain the extent of the 

bject and the 2D position of the centroid, which is not affected by 

he previous operations. 

.3. 3D model retrieval 

Image-based 3D model retrieval is the task of retrieving a rele- 

ant 3D synthetic object from a database that is similar to a query 

hoto captured in real world. The domain gap between 3D shapes 

nd natural images is a major challenge [55–58] . There are dif- 

erent ways to perform 3D model retrieval: Chen et al. [59] in- 

roduced LightField Descriptors (LFDs) to represent 3D shapes, 

hereas other approaches use CNNs [60,61] . In this work, A 

GG–19 [62] CNN was used as it provides better fine-grained 3D 

odel retrieval with respect to other approaches such as LFDs. A 

ubset of 3D models from the ShapeNetCore dataset [15] is ren- 
ig. 5. Canny edge-based outlier removal. The (a) input depth map estimated by ARCo

utliers highlighted in red in (c) are detected and removed; in (d) it is shown how the bo

anny edge detection algorithm on the (e) normalized depth map, whose result is shown

nd the bounding box is correctly estimated (i). (For interpretation of the references to co

120 
ered from 12 viewpoints, then the VGG–19 CNN pre-trained on 

mageNet is used to extract their features. These features are com- 

uted and stored once. The most similar object is determined by 

omputing the Euclidean distance between the extracted features 

f the segmented target object and the features computed for the 

enderings associated to 3D models of the same category. To re- 

uce the noise of natural images, the system removes most of 

he background and other elements by extracting the query ob- 

ect from the snapshot using the binary mask generated in stage 2, 

ollowed by a blurring operation to soften the borders and a final 

ropping operation to center the object. The features of the seg- 

ented objects are extracted by the VGG–19 CNN, then the Eu- 

lidean distance between the query image and all the renderings 

elonging to the objects under the category given by the segmen- 

ation network is calculated. The 3D object associated to the ren- 

ering with the shortest distance to the real RGB image is selected 

an example of 3D model retrieval is shown in Fig. 6 ). 

.4. Object pose estimation 

The system predicts the rotation of the object around the ver- 

ical axis in the fourth stage. Several DL solutions try to solve the 

roblem of object pose estimation from a single RGB image, but 

any require that the neural network has to be trained on the spe- 

ific object whose pose is to be estimated. This approach is incom- 
re is converted to a point cloud (b-g). With statistical outlier removal (SOR), the 

unding box is not correct because some outliers were left by the SOR. By using the 

 in (f), the outliers generated by the ARCore smoothing process can be removed (h) 

lour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Some 3D models from ShapeNet Core dataset. The models are in a canonical 

pose. 
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Fig. 8. The AR view. Two chairs visualized by the AR app: the occlusions are taken 

into account. 
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2 https://youtu.be/SW0JWhPBX50 . 
atible with the conditions under which the system is intended to 

perate: an indoor environment where never-before-seen objects 

ave to be considered. For this reason, the proposed system uses 

oseFromShape [63] . This DL solution can predict the viewpoint of 

n object in an RGB image with respect to known viewpoints. For 

his work, PoseFromShape uses the model provided by [63] trained 

n ShapeNetCore, a subset of ShapeNet ( Fig. 7 illustrates some 

odels of the ShapeNet dataset). From this dataset, the 3D models 

f the considered category were taken and rendered from different 

iewpoints using Blender. 

The background of the RGB snapshot could impact on the ac- 

uracy of the prediction, thus the system uses the image of the 

egmented object obtained in the previous stage. 

Since the system has already retrieved the 3D object from the 

revious step, it feeds the neural network with the collection of 

enderings associated to that object and the segmented photo of 

he object. 

The output of the PoseFromShape network is the camera’s 

iewpoint, which is composed of the Euler angles for azimuth, el- 

vation and in-plane rotation. The system only considers the az- 

muth that is going to be applied to the 3D model used to repre-

ent the physical object. 

.5. Scene reconstruction and AR visualization 

For each snapshot, the system generates three CSV files contain- 

ng: 1) position and size of the object, 2) vertical rotation of the 

bject and 3) rotation of the smartphone. Furthermore, the height 

f the floor h f loor valid for the whole reconstructed scene system 

s stored in an additional CSV file named Floor . The height of the 

oor is the average of all the values that differ from the lowest of 

he list { h l p,i } by 4 cm or less: 

 l p = min 

i 
h l p,i (6) 

 f loor = avg (h l p,i ) if abs (h l p,i − h l p < 4 cm ) (7) 

It has been observed that when the tracking of a plane is lost 

nd then detected again, there is a difference of less than 4 cm 

rom previous detection. 

A desktop application has been developed using Unity3D to vi- 

ualize the reconstructed scene. The 3D models were taken from 

he ShapeNetCore dataset [15] . The 3D models have been pre- 

rocessed to present real world sizes and centroid positions con- 

istent with the one estimated by the system. The Unity3D desktop 
121 
pp parses all the CSV files, selecting the 3D models and comput- 

ng the appropriate rotation, scale and position values. To qualita- 

ively evaluate the accuracy of the reconstruction, all 3D models 

re also visualized by a mobile AR app. The user can freely move 

round the scene to verify whether the 3D models correctly over- 

ap with the real objects. The geometry-aware occlusion feature 

f ARCore facilitates the evaluation. In fact, since a dense depth 

ap is estimated at almost every frame, it is possible to check 

hether a 3D model is correctly superimposed on the physical 

bject ( Fig. 8 ). At the following link it is possible to find a video

howing the proposed system. 2 

. Experimental validation 

To evaluate the accuracy of the system, a new dataset is in- 

roduced. The dataset consists of 500 snapshots of several objects 

ith different shapes. The objects are divided in categories and the 

napshots were taken from different points of view. 

.1. Scaling error 

The ground truth (GT) is represented by the physical object 

ize. To determine the scaling error of each category, several snap- 

hots have been taken from different views. Then, the root mean 

quared error (RMSE) between the GT and the estimated size is 

omputed for each snapshot. Finally, the average of all the RMSE 

alues is computed, determining the category scaling error. The er- 

or is computed for each dimension ( x , y , and z) and it is expressed

s a percentage of absolute difference from the ground truth value. 

.2. Position error 

The position GT of the object is determined using a marker 

laced at the center of the physical object. The marker is used to 

reate a mask that segments the points at the center of the object. 

https://youtu.be/SW0JWhPBX50
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Table 1 

The main outcomes. The average of the root mean squared errors of position, scaling, vertical rotation and the average size error in 3D. Objects marked with ∗ may have 180 ◦

rotation error. PS and R stand for the number of position-scaling and rotation snapshots, respectively. 

Avg. RMSE Position (m) Avg. RMSE Scaling (%) Avg. RMSE Scaling Factor Error (%) Avg. RMSE Rotation ( ◦) 

Object (PS/R) x y z x y z (x, y, z) y 

Chair (61/11) 0.03 0.02 0.02 10 2 13 10 9 

Swivel chair (24/6) 0.02 0.02 0.03 6 6 12 8 15 

Armchair (33/8) 0.05 0.02 0.07 13 4 12 10 9 

Table (62/9) 0.05 0.02 0.04 7 3 10 7 12 

Nightstand (31/6) 0.04 0.06 0.05 13 7 23 14 18 ∗

Chest of drawers (12/7) 0.03 0.07 0.08 6 5 8 6 8 

Cabinet (57/5) 0.06 0.03 0.05 15 6 14 12 14 

Bed (24/7) 0.09 0.04 0.1 7 8 17 10 14 

Laptop (22/12) 0.02 0.02 0.02 7 8 21 12 10 

Bowl (17/-) 0.05 0.03 0.04 14 22 7 14 - 

Mouse (25/6) 0.02 0.01 0.02 11 26 11 16 2 ∗

Remote (22/5) 0.03 0.02 0.01 6 20 25 17 6 ∗

Book (33/8) 0.02 0.01 0.02 17 23 15 18 6 ∗

Fig. 9. (a) Captured photo showing an object with the marker used to determine 

the ground truth pose; (b) the estimated pose of the same object obtained with the 

proposed system. 
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ence, the 3D bounding box can be computed finding the center 

oordinates of the object. Then, the same procedure as the one in- 

roduced in Section 4.1 is applied to determine the category posi- 

ion error, expressed in meters. 

.3. Vertical rotation error 

The GT value of the object vertical rotation is determined us- 

ng the same marker recognition process as used in Section 4.2 . 

owever, the smartphone is mounted on a fixed support to ensure 

onsistency during the evaluation process. The rotation assessment 

s computed using two different images: the GT image (with the 

arker, see Fig. 9 ) and the evaluated one (without the marker). 

he GT rotation is determined by computing the marker rotation, 

hereas the rotation of the evaluated object is computed by the 

roposed solution. Finally, the rotational error is obtained by cal- 

ulating the average of all RMSE values, expressed in degrees. 

. Discussion 

The position, rotational and scaling errors are shown in Table 1 . 

t appears that the position and scaling errors along the Y axis 

row if the surface of the object is not flat or there are obstacles

hat partially occlude the object surface, thus interfering with the 

epth map estimation algorithm. Small occlusions, such as a laptop 

overing part of a table, are tolerated, whereas a heavily occluded 

able may lead to a failure in the segmentation stage. Regarding 

he rotation error, some inconsistencies have been detected in ob- 

ects with symmetric shapes, resulting in wrong rotations of 180 ◦
122 
round the vertical axis. These wrong predictions seem to hap- 

en regardless of the dataset used to train the network. Gener- 

lly, the errors increase when the object is not fully captured in 

he snapshot, and thus the 3D oriented bounding box does not 

erfectly align to the segmented point cloud of the object itself. 

atte black surfaces pose a challenge since the stereo matching 

lgorithm [43] fails to provide consistent correspondences among 

rames composed by a large amount of dark pixels, thus creating 

econstruction errors and artifacts on the depth map. The proposed 

ystem reconstructs a scene using single snapshots for each object, 

hus it is important to capture the object from views that cover 

he essential parts of the object (e.g., to estimate the position and 

ize of a chair, the seat should be visible). It has been noted that 

hests of drawers and nightstands may be misclassified as cabinets 

y the segmentation network. This is probably due to the fact that 

he evaluated image regions considered by HRNet do not contain 

nough information to discern the differences among some classes 

f objects having similar features [52] . 

Finally, regarding the execution time, the system has been eval- 

ated using a laptop equipped with a CPU Intel Core i7–8750h and 

n NVIDIA RTX 2060 GPU. The proposed solution can reconstruct 

 scene with five objects in 21 seconds: 15 seconds for the seg- 

entation task, approximately 2 seconds for 3D model retrieval, 

ess than 2 seconds for objects processing and 2.25 seconds for the 

ose inference. 

. Conclusion 

This paper presents a system able to reconstruct a scene cap- 

ured by an Android smartphone supported by ARCore. With re- 

pect to the current state of the art, the proposed solution exploits 

nly the RGB camera, without employing traditional depth sensors. 

he system consists of an ARCore-based app that takes snapshots 

f objects in an indoor environment from a single viewpoint. The 

napshots are then processed on a server: the target object in the 

rame is classified and the most similar 3D model is retrieved from 

 database; then, scale, position and vertical rotation of the object 

re estimated. All DL modules can be replaced as better solutions 

ecome available. In addition, two Unity3D applications have been 

resented: 1) a desktop app that populates the virtual scene with 

nstances of 3D models using the estimated pose without deform- 

ng object meshes and 2) an AR app that superimposes the virtual 

bjects over their real counterparts. These applications can be used 

n online multiplayer mode, thus visualizing the AR instance of the 

esktop/VR player from the smartphone and vice-versa the desk- 

op/VR instance of the tracked AR user in the reconstructed scene. 
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Several techniques have been described to overcome the chal- 

enges posed by the single view snapshots and the poor resolution 

f the depth maps. A dataset of more than 500 snapshots was in- 

roduced to evaluate the system accuracy. 

Future work will include a wider model dataset, which in com- 

ination with non-trivial deformation of meshes could allow more 

ne-grained shape retrieval. Furthermore, the scene layout will be 

lso determined, providing the ability to detect and reconstruct 

alls, floors and ceilings. Finally, other methods that overcome the 

ertical rotation constraint could be investigated in order to detect 

otations around any axis. 
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