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Figure 1: Given a single photograph, we can reconstruct a high-quality textured 3D face with neutral expression and nor-
malized lighting condition. Our approach can handle extremely challenging cases and our generated avatars are animation
friendly and suitable for complex relighting in virtual environments.

Abstract

We introduce a highly robust GAN-based framework for
digitizing a normalized 3D avatar of a person from a sin-
gle unconstrained photo. While the input image can be of a
smiling person or taken in extreme lighting conditions, our
method can reliably produce a high-quality textured model
of a person’s face in neutral expression and skin textures
under diffuse lighting condition. Cutting-edge 3D face re-
construction methods use non-linear morphable face mod-
els combined with GAN-based decoders to capture the like-
ness and details of a person but fail to produce neutral head
models with unshaded albedo textures which is critical for
creating relightable and animation-friendly avatars for in-
tegration in virtual environments. The key challenges for
existing methods to work is the lack of training and ground
truth data containing normalized 3D faces. We propose a
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two-stage approach to address this problem. First, we adopt
a highly robust normalized 3D face generator by embed-
ding a non-linear morphable face model into a StyleGAN2
network. This allows us to generate detailed but normalized
facial assets. This inference is then followed by a perceptual
refinement step that uses the generated assets as regulariza-
tion to cope with the limited available training samples of
normalized faces. We further introduce a Normalized Face
Dataset, which consists of a combination photogrammetry
scans, carefully selected photographs, and generated fake
people with neutral expressions in diffuse lighting condi-
tions. While our prepared dataset contains two orders of
magnitude less subjects than cutting edge GAN-based 3D
facial reconstruction methods, we show that it is possible to
produce high-quality normalized face models for very chal-
lenging unconstrained input images, and demonstrate supe-
rior performance to the current state-of-the-art.
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1. Introduction

Figure 2: Automated digitization of normalized 3D avatars
from a single photo.

The creation of high-fidelity virtual avatars have been
mostly reserved to professional production studios and typ-
ically involves sophisticated equipment and controlled cap-
ture environments. Automated 3D face digitization meth-
ods that are based on unconstrained images such as selfies
or downloaded internet pictures are gaining popularity for
a wide range of consumer applications, such as immersive
telepresence, video games, or social media apps based on
personalized avatars.

Cutting-edge single-view avatar digitization solutions
are based on non-linear 3D morphable face models
(3DMM) generated from GANs [66, 65, 28, 45], outper-
forming traditional linear models [10] which often lack fa-
cial details and likeness of the subject. To successfully train
these networks, hundreds of thousands of subjects in vari-
ous lighting conditions, poses, and expressions are needed.
While highly detailed 3D face models can be recovered,
the generated textures have the lighting of the environment
baked in, and expressions are often difficult to neutralize
making these methods unsuitable for applications that re-
quire relighting or facial animation. In particular, inconsis-
tent textured models are obtained when images are taken
under different lighting conditions.

Collecting the same volume of 3D face data with neu-
tral expressions and controlled lighting condition is in-
tractable. Hence, we introduce a GAN-based facial digitiza-
tion framework that can generate a high-quality textured 3D
face model with neutral expression and normalized lighting
using only thousands of real world subjects. Our approach
consists of dividing the problem into two stages. The first
stage uses a non-linear morphable face model embedded
into a StyleGAN2 [40] network to robustly generate de-
tailed and clean assets of a normalized face. The likeness
of the person is then transferred from the input photograph

using a perceptual refinement stage based on iterative op-
timization using a differentiable renderer. StyleGAN2 has
proven to be highly expressive in generating and represent-
ing real world images using an inversion step to convert im-
age to latent vector [3, 60, 4, 33] and we are adopting the
same two step GAN-inversion approach to learn facial ge-
ometry and texture jointly. To enable 3D neutral face in-
ference from an input image, we connect the image with
the embedding space of our non-linear 3DMM using an
identity regression network based on identity features from
FaceNet [58]. To train a sufficiently effective generator, we
introduce a new Normalized Face Dataset which consists
of a combination of high-fidelity photogrammetry scans,
frontal and neutral portraits in diffuse lighting conditions,
as well as fake subjects generated using a pre-trained Style-
GAN2 network with FFHQ dataset [39].

Despite our data augmentation effort, we show that our
two-stage approach is still necessary to handle the large
variation of possible facial appearances, expressions and
lighting conditions. We demonstrate the robustness of our
digitization framework on a wide range of extremely chal-
lenging examples, and provide extensive evaluations and
comparisons with current state-of-the-art methods. Our
method outperforms existing techniques in terms of digitiz-
ing textured 3D face models with neutral expressions and
diffuse lighting conditions. Our normalized 3D avatars can
be converted into parametric models with complete bodies
and hair, and the solution is suitable for animation, relight-
ing, and integration with game engines as shown in Fig. 2.
We summarize our key contributions as follows:

• We propose the first StyleGAN2-based approach for
digitizing a 3D face model with neutral expressions
and diffusely lit textures from an unconstrained image.

• We present a two-stage digitization framework which
consists of a robust normalized face model inference
stage followed by a perception-based iterative face re-
finement step.

• We introduce a new data generation approach and
dataset based on a combination of photogrammetry
scans, photographs of expression and lighting normal-
ized subjects, and generated fake subjects.

• Our method outperforms existing single-view 3D face
reconstruction techniques for generating normalized
faces, and we also show that our digitization approach
works using limited subjects for training.

2. Related Works
While a wide range of avatar digitization solutions exist

for professional production, they mostly rely on sophisti-
cated 3d scanning equipment (e.g., multi-view stereo, pho-
tometric stereo, depth sensors etc.) and controlled capture
settings [8, 30, 25]. We focus our discussion on monocular
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3D face reconstruction methods as they provide the most ac-
cessible and flexible way of creating avatars for end-users,
where only a selfie or downloaded internet photo is needed.

3D Morphable Face Models. Linear 3D Morphable
Models (3DMM) have been introduced by Blanz and Vet-
ter [10] two decades ago, and have been established as the
de-facto standard for 3D face reconstruction from uncon-
strained input images. The linear parametric face model en-
codes shape and textures using principal component analy-
sis (PCA) built from 200 laser scans. Various extensions of
this work include the use of larger numbers of high-fidelity
3D face scans [12, 11], web images [41], as well as facial
expressions often based on PCA or Facial Action Coding
Systems(FACS)-based blendshapes [9, 68, 16].

The low dimensionality and effectiveness of 3DMMs
make them suitable for robust 3D face modeling as well
as facial performance capture in monocular settings. To
reconstruct a textured 3D face model from a photograph,
conventional methods iteratively optimize for shape, tex-
ture, and lighting condition by minimizing energy terms
based on constraints such as facial landmarks, pixel col-
ors [10, 57, 26, 61, 15, 37, 64, 27, 17, 48], or depth in-
formation if available such as for the case of RGB-D sen-
sors [70, 69, 13, 46, 35, 50, 36].

While robust face reconstruction is possible, linear face
models combined with gradient optimization-based opti-
mization are ineffective in handling the wide variation of
facial appearances and challenging input photographs. For
instance, detailed facial hair and wrinkles are hard to gen-
erate and the likeness of the original subject is typically
lost after the reconstruction. Deep learning-based inference
techniques [71, 28, 21, 29, 63, 67, 22, 7, 63] were later in-
troduced and have demonstrated significantly more robust
facial digitization capabilities but they are still ineffective
in capturing facial geometric and appearance detail due to
the linearity and low dimensionality of the face model. Sev-
eral post-processing techniques exist and use inferred linear
face models to generate high-fidelity facial assets such as
albedo, normal, and specular maps for relightable avatar
rendering [43, 18, 72]. AvatarMe [43] for instance uses
GANFIT [28] to generate a linear 3DMM model as input
to their post processing framework. Our proposed method
can be used as alternative input to AvatarMe, and we com-
pare it to GANFIT later in Section 4.

More recently, non-linear 3DMMs have been introduced.
Instead of representing facial shapes and appearances as a
linear combination of basis vectors, these models are for-
mulated implicitly as decoders using neural networks where
the 3D faces are generated directly from latent vectors.
Some of these methods use fully connected layers or 2D
convolutions in image space [66, 6, 24, 65, 47], while oth-
ers use decoders in the mesh domain to represent local ge-

ometries [51, 55, 76, 19, 5, 45, 49]. With the help of differ-
entiable renderers [63, 29, 56], several methods [66, 65, 45]
have demonstrated high-fidelity 3D face reconstructions us-
ing non-linear morphable face models using fully unsuper-
vised or weakly supervised learning, which is possible us-
ing massive amounts of images in the wild. While the re-
constructed faces are highly detailed and accurate w.r.t. the
original input image, the generated assets are not suitable
for relightable avatars nor animation friendly, since lighting
conditions of the environment and expressions are baked
into the output. Our work focuses on producing normalized
3D avatars with unshaded albedo textures and neutral ex-
pressions. Due to the limited availability of training data
with normalized faces and the wide variation of facial ap-
pearances and capture conditions, the problem is signifi-
cantly more challenging and ill-posed.

Generative Adversarial Network. We adopt Style-
GAN2 [40] to encode our non-linear morphable 3D face
model. Among all generative models in deep learning, Gen-
erative Adversarial Networks (GANs) [31] have achieved
a great success in producing realistic 2D natural images,
nearly indistinguishable from real world images. After
a series of advancements, state-of-the-art GANs like PG-
GAN [38], BigGAN [14] and StyleGAN/StyleGAN2 [39,
40] have proven to be also effective in generating high res-
olution images and the ability to handle an extremely wide
range of variations. In this work, we mainly focus on adopt-
ing StyleGAN2 [40] to jointly learn facial geometry and
texture, since its intermediate latent representation has been
proven effective to best reconstruct a plausible target image
with clean assets [3, 60, 4, 33].

Facial Image Normalization. To address the problem
of unwanted lighting and expressions during facial digiti-
zation, several methods have been introduced to normal-
ize unconstrained portraits. Cole et al. [20] introduced
a deep learning-based image synthesis framework based
on FaceNet’s latent code [58], allowing one to generate a
frontal face with neutral expression and normalized lighting
from an input photograph. More recently, Nagano et al [53]
improved the method to generate higher resolution facial
assets for the purpose generating high-fidelity avatars. In
particular, their method breaks down the inference problem
into multiple steps, solving explicitly for perspective undis-
tortion, lighting normalization, followed by pose frontal-
ization and expression neutralization. While the successful
normalized portraits were demonstrated, their method rely
on transferring details from the input subject to the gener-
ated output. Furthermore, both methods rely on the linear
3DMMs for expression neutralization and thus cannot cap-
ture detailed appearance variations. Neutralizing expres-
sion from nonlinear 3DMM, however, is not straightforward
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since the feature space of identity and expression are often
entangled. Our new normalization framework with GAN-
based reconstruction fills in this gap.

3. Normalized 3D Avatar Digitization

Input image
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Figure 3: Two-stage facial digitization framework. The
avatar is firstly predicted in the inference stage, and then
improved to match the input image in the refinement stage.

An overview of our two-stage facial digitization frame-
work is illustrated in Fig. 3. At the inference stage,
our system uses a pre-trained face recognition network
FaceNet [58] to extract a person-specific facial embedding
feature given an unconstrained input image. This identity
feature is then mapped to the latent vector w ∈ W+ in
the latent space of our Synthesis Network using an Identity
Regressor. The synthesis network decodes w to an expres-
sion neutral face geometry and a normalized albedo texture.
For the refinement, the latent vector w produced by the in-
ference is then optimized iteratively using a differentiable
renderer by minimizing the perceptual difference between
the input image and the rendered one via gradient descent.

3.1. Robust GAN-Based Facial Inference

Our synthesis network G generates the geometry as well
as the texture in UV space. Each pixel in the UV map repre-
sents the 3D position and the RGB albedo color of the cor-
responding vertex using a 6-channel tuple (r,g,b, x, y, z).
The synthesis network is first trained using a GAN to en-
sure robust and high quality mapping from any normal dis-
tributed latent vector Z ∼ N (µ, σ). Then, the identity re-
gression network R is trained by freezing G to ensure ac-
curate mapping from the identity feature of an input image.
Further details of each network are described below.

We train our synthesis network to embed a nonlinear 3D
Morphable Model into its latent space, in order to model
the cross correlation between the 3D neutral face geometry
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Figure 4: GAN-based geometry and texture synthesis.

and the neutral albedo texture, as well as to generate high
fidelity and diverse 3D neutral faces from a latent vector. In-
spired by [47], we adopt the StyleGAN2 [40] architecture to
train a morphable face model using 3D geometry and albedo
texture as shown in Fig. 4. Rather than predicting vertex
positions directly, we infer vertex position offsets relative
to the mean face mesh to improve numerical stability. To
jointly learn geometry and texture, we project the geome-
try representation of classical linear 3DMMs S ∈ R3×N ,
which consists of a set of N = 13557 vertices on the face
surface, onto a UV space using cylindrical parameteriza-
tion. The vertex map is then rasterized to a 3-channel posi-
tion map with 256×256 pixels. Furthermore, we train 3 dis-
criminators jointly, including 2 individual ones for albedo
and vertex position as well as a joint discriminator taking
both maps as input. The individual discriminators ensure
the quality and sharpness of each generated map, while the
joint discriminator can learn and preserve their correlated
distribution. This GAN is trained solely from the provided
ground truth 3D geometries and albedo textures without any
knowledge of the identity features.
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Figure 5: Our GAN-inversion searches a corresponding w,
which can reconstruct the target geometry and texture.

After obtaining G, we retrieve the corresponding input
latent code via our code inversion algorithm. Inspired by [3,
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77], we choose the disentangled and extended latent space
W+ := R14×512 of StyleGAN2 as the inversion space to
achieve better reconstruction accuracy. As shown in Fig. 5,
we adopt an optimization approach to find the embedding of
a target pair of position and albedo map with the following
loss function:

Linv = Lpix + λ1LLPIPS + λ2Ladv (1)

where Lpix is the L1 pixel error of the synthesized position
and texture maps, LLPIPS is the LPIPS distance [74] as a
perceptual loss, and Ladv is the adversarial loss favoring re-
alistic reconstruction results using the three discriminators
trained with G. Note that while LPIPS outperforms other
perceptual metrics in practice [74], it is trained with real
images and measuring the perceptual loss directly on our
UV maps would lead to unstable results. Therefore, we use
a differentiable renderer [56] to render the geometry and
texture maps from three fixed camera viewpoints and com-
pute the perceptual loss based on these renderings. Finally,
the identity regressor R can be trained using the solved la-
tent codes of the synthesis network and their corresponding
identity features from the input images.

3.2. Unsupervised Dataset Expansion

Figure 6: Examples of synthetic faces from our Normalized
Face Dataset.

While datasets exist for frontal human face images in
neutral expression [52, 23, 32, 42], the amount of such
data is still limited and the lighting conditions often vary
between datasets. Instead of manually collecting more
images from the Internet for expanding our training data,
we propose an automatic approach to produce frontal neu-
tral portraits based on the pre-trained StyleGAN2 network
trained with FFHQ dataset. Similar to a recent technique
for semantic face editing [60], we train a neural network
to predict identity attributes α of an input image in latent
space. We used images collected from internet as input
and estimate each α and apply it to wmean. wmean is a
fixed value in latent space, which could generate a mean
and frontalized face. We then use a latent editing vec-
tor β to neutralize the expressions. The final latent value
w′ = wmean + α + β produces a frontalized and neutral-
ized face by feeding into StyleGAN2. Some examples are

shown in Fig. 6. We further emphasize that all images in our
Normalized Face Dataset are frontal and have neutral ex-
pressions. Also, these images have well conditioned diffuse
scene illuminations, which are preferred for conventional
gradient descent-based 3D face reconstruction methods.

For each synthesized image, we apply light normaliza-
tion [53] and 3D face fitting based on Face2Face [64] to
generate a 3D face geometry and then project the light nor-
malized image for the albedo texture. Instead of using
the linear 3DMM completely, which results in coarse and
smooth geometry, we first run our inference pipeline to gen-
erate the 3D geometry and take it as the initialization for the
Face2Face optimization. After optimization, the resulting
geometry is in fact the non-linear geometry predicted from
our inference pipeline plus a linear combination of blend-
shape basis optimized by Face2Face, thus preserving its
non-linear expressiveness. Also note that the frontal poses
of the input images facilitate our direct projections onto UV
space to reconstruct high-fidelity texture maps.

The complete training procedure works as follows: we
first collect a high quality Scan Dataset with 431 subjects
with accurate photogrammetry scans, with 63 subjects from
3D Scan Store [1] and 368 subjects from Triplegangers [2].
The synthesis network G0 is then trained from such scan
data, and is then temporarily frozen for latent code inversion
and the training of identity regressor R0. These bootstrap-
ping networks (R0, G0) trained on the small Scan Dataset
are applied onto our Normalized Face Dataset to infer the
geometry and texture, which are then optimized and/or cor-
rected by the Face2Face algorithm. Next, the improved
geometry and texture are added back into the training of
(R0, G0) to obtain the fine-tuned networks (R1, G1) with
improved accuracy and robustness.

Our final Normalized Face Dataset consists of 5601
subjects, with 368 subjects from Triplegangers, 597 from
Chicago Face Dataset (CFD) [52], 230 from the com-
pound facial expressions (CFE) dataset [23], 153 from The
CMU Multi-PIE Face Dataset [32], 67 from Radboud Faces
Database (RaFD) [42], and the remaining 4186 generated
by our method. We use most of the frontal and neutral face
images that are available to increase diversity, but still rely
on the large volume of synthetic data for the training.

3.3. Perceptual Refinement

While the inference pipeline described in Sec. 3.1 with
training data from Sec. 3.2 can reliably infer the normal-
ized texture and geometry from an unconstrained image, a
second stage with perceptual refinement can help determine
a neighbor of the predicted latent code in the embedding
space that matches the input image better. The work from
Shi et al. [62] shows that an embedding space learned for
face recognition is often noisy and ambiguous due to the
nature of fully unconstrained input data. While FaceNet
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Figure 7: Qualitative comparison with other state-of-the-art 3D face reconstruction method. The first row shows the input
images and the second row shows our results, and the third row are the reconstructed 3D faces obtained by [45].

predicts the most likely latent code, the variance (or uncer-
tainty in Shi et al.’s work) could be large. A small pertur-
bation of the latent code may not affect the identity feature
training at all. On the other hand, such a small error in the
identity code may cause greater inconsistency in our infer-
ence pipeline after passing R and G.

An “end-to-end” refinement step is introduced, to han-
dle never seen before images while ensuring consistency
between the final renderings using the predicted geometry
and texture, and the input image. Fig. 3 shows the end-
to-end architecture for this refinement step. We reuse the
differentiable renderer to generate a 2D face image Î from
the estimated 3D face, and compute the perceptual distance
with the input image I . To project the 3D face back to
the head pose in image I , we train a regression network
with ResNet50 [34] as backbone to estimate the camera
c = [tx, ty, tz, rx, ry, rz, f ]

T from I , where [tx, ty, tz]T and
[rx, ry, rz]

T denote the camera translation and rotation and
f is the focal length. The network is trained using the accu-
rate camera data from the Scan Dataset and the estimated
camera data from Normalized Face Dataset, computed by
Face2Face. Furthermore, in order to blend the projected
face only image with the background from the original im-
age I , we train a PSPNet [75] with ResNet101 [34] as back-
bone using CelebAMask-HQ [44]. We then blend the ren-
dered image Î into the segmented face region from I to pro-
duce I0. The final loss is simply represented as:

Lrefine = Lw + λ1LLPIPS + λ2Lid , (2)

where Lw is a regularization term on w, i.e., the Euclidean
distance between the variable w and its initial prediction de-
rived by R, enforcing the similarity between the modified

latent and the initial prediction. LLPIPS is the perceptual
loss measured by LPIPS distance [74] between I0 and I ,
which enables improved matching in terms of robustness
and better preservation of semantically meaningful facial
features compared to using pixel differences. Lid is the co-
sine similarity between the identity feature of Î and I , to
preserve consistent identity.

4. Results

We demonstrate the performance of our method in Fig. 1
and 7, and show how our method can handle extremely chal-
lenging unconstrained photographs with very harsh illumi-
nations, extreme filtering, and arbitrary expressions. We
can produce plausible textured face models where the like-
ness of the input subject is preserved and visibly recog-
nizable. Compared to the state-of-the-art 3D face recon-
struction method (see Fig. 7) based on non-linear 3DMMs,
our method can neutralize expressions and produce an un-
shaded albedo texture suitable for rendering in arbitrary
lighting conditions as demonstrated using various HDRI-
based lighting environments. We also show in Fig. 2 how
we can obtain a fully rigged 3D avatar from a single photo
including body and hair, by adopting the hair digitization
algorithm in [36] (see accompanying video for live demo).

Evaluations. Sec. 3.2 further improves the performance
of G and R using more training data. Fig. 8 compares the
default Face2Face optimization using a linear 3DMM with
the improved ones using an initialization from R0 and G0.

With such synthetic training data, Fig. 9 shows improved
expressiveness of G1 than G0. Several artifacts from G0
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Figure 8: Face2Face optimization results. The first row is
the original implementation [64]. The second row is our
proposed improvement with nonlinear initialization.
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Figure 9: Expressiveness of the synthesis network trained
with different datasets. From top to bottom: The ground
truth; The GAN-inversion results based on G0 trained with
Scan Dataset only; The same process based on G1, trained
with Normalized Face Dataset.

s
c
a
n
s

s
c
a
n
s
 +

 f
2
f

Figure 10: Quality of the regression network trained with
different datasets. The first row shows the inference results
by R0m trained with Scan Dataset. The second row shows
the results by R1, trained with Normalized Face Dataset.
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Figure 11: Qualitative comparison with different initializa-
tion schemes for iterative refinement. The mean initializa-
tion starts optimization from a mean latent vector of our
training dataset. The inference initialization starts from the
latent vector predicted by R.

around eyes and the lack of facial hair are fixed in G1. In
Fig. 10, R1 also shows higher diversity of face shapes and

superior accuracy compared to R0 after training with the
Normalized Face Dataset. Fig. 11 demonstrates the effect
of both the inference stage in Sec. 3.1 and the refinement
stage. For each row of the experiment, the end-to-end itera-
tive refinement can always improve the likeness and expres-
siveness of the 3D avatar. However, notice that the refine-
ments from the mean latent vector would fail to produce
a faithful result after 200 iterations, while the refinements
from an accurate initial prior by R converges to a highly
plausible face reconstruction.
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Figure 12: Consistent reconstructions of the same person
under different environments.

Since our proposed pipeline simply rely on the identity
and perceptual features from I , the reconstructed 3D avatar
is invariant to the factors FaceNet filters, such as occlusion,
image resolution, lighting environment, and facial expres-
sion. Fig. 12 demonstrates how we can obtain consistent
geometries from different lighting, viewpoints, and facial
expressions. Further results of more challenging images,
such as low resolution or largely occluded ones are provided
in the supplemental material.

Comparisons. Fig. 7 compare our method with the most
recent single view face reconstruction method [45]. Lee et
al. [45] adopts a state-of-the-art nonlinear 3DMM on both
geometry and texture. They also use a Graph Convolutional
Neural Network to embed geometry and a Generative Ad-
versarial Network to synthesize texture. However, they train
two networks separately with different datasets, where fa-
cial shape and appearance are uncorrelated. More impor-
tantly, their results show that expressions and lighting are
baked in, which makes their method unsuitable for relight-
ing and facial animation purposes. More comparisons with
other monocular face reconstruction methods [21, 28, 65]
can be found in the supplemental material.

Fig. 13 shows our results compared to the deep face nor-
malization method [53]. While some successful normalized
results were demonstrated, their image-to-image translation
architecture transfers details from the input subject to the
generated output. If those details are deteriorated, then face
normalization would fail.

Quantitative experiments on FaceScape [73] using high
resolution 3D scans and corresponding images are shown in
Tables 1 and 2. For geometric accuracy, we randomly select
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(a) (b) (c) (d)

Figure 13: Qualitative comparison with state-of-the-art face
normalization method [53]. From left to right, we show (a)
input image; (b) our reconstructed result; (c) image-based
face normalization result generated by Nagano et al. [53];
(d) Face2Face reconstruction result based on (c).

Tran et al. [65] Deng et al. [21] Ours
1.935mm 1.568mm 1.557mm

Table 1: Quantitative comparison of with other 3D face re-
construction methods.

Tran et al. [65] Deng et al. [21] Ours
0.304 0.392 0.205

Table 2: Quantitative comparison on texture.

20 scans from FaceScape, and for each method, we compute
the average point to mesh distance between the monocular
reconstructed geometry and the ground truth scan. The pro-
posed model has smaller reconstruction errors than other
state-of-the-art ones. For texture evaluation, we augment
the input images with lighting variations and compute the
mean L1 pixel loss between generated textures from each
method and the ground truth. Our method generates tex-
tures that are less sensitive to lighting conditions.

Implementation Details. All our networks are trained on
a desktop machine with Intel i7-6800K CPU, 32GB RAM
and one NVIDIA TITAN GTX (24GB RAM) GPU using
PyTorch [54]. The StyleGAN2 network training takes 13
days with the Normalized Face Dataset. We use the Py-
Torch implementation [59] and remove the noise injection
layer in the original implementation to remove the stochas-
tic noise inputs and enable full control of the generated re-
sults from the latent vector. Our identity regression net-
work is composed of four fully connected layers with Leaky
ReLU activations, and the training takes 1 hour to converge
with the same training data. At the testing stage, inference
takes 0.13 s and refinement takes 45 s for 200 iterations.

(a) (b)

Figure 14: Failure cases in our experiments. (a) shows a
failure where the specularity at the chin is baked into the
generated result; (b) shows that the robustness of the recon-
struction result is affected by the exaggerated expression.

5. Discussion
We have demonstrated a StyleGAN2-based digitization

approach using a non-linear 3DMM that can reliably gener-
ate high-quality normalized textured 3D face models from
challenging unconstrained input photos. Despite the lim-
ited amount of available training data (only thousands of
subjects), we have shown that our two-stage face inference
method combined with a hybrid Normalized Face Dataset
is effective in digitizing relightable and animation friendly
avatars and can produce results of quality comparable to
state-of-the-art techniques where generated faces are not
normalized. Our experiments show that simply adopting
existing methods using limited normalized facial training
data is insufficient to capture the likeness and fine-scale
details of the original subject, but a perceptual refinement
stage is necessary to transfer person-specific facial charac-
teristics from the input photo. Our experiments also show
that perceptual loss enables more robust matching using
deep features than only pixel loss, and is able to better pre-
serve semantically meaningful facial features. Compared
to state-of-the-art non-linear 3DMMs, our generated face
models can produce lighting and expression normalized
face models, which is a requirement for seamless integra-
tion of avatars in virtual environments. Furthermore, our
experiments also indicate that our results are not only per-
ceptually superior, but also quantitatively more accurate and
robust than existing methods.

Limitations and Future Work. As shown in Fig. 14, the
effectiveness of our method in generating faces with nor-
malized expressions and lighting is limited by imperfect
training data and challenging input photos. In particular,
some expressions and specularities can still be found in the
generated results. Furthermore, the fundamental problem of
disentangling identity from expressions, or lighting condi-
tions from skin tones is ill-posed. Nevertheless, we believe
that such disentanglement can be improved using superior
training data. In the future, we would like to explore how
to increase the resolution and fidelity of the digitized assets
and potentially combine our method with high-fidelity fa-
cial asset inference techniques such as [43, 18, 72].
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Figure 15: Additional comparisons. The first row shows the
input images and the second row our results. The remaining
rows are the reconstructed 3D faces obtained by [45, 28, 65,
21, 29, 64], respectively.

In Fig. 15, we compare our method with several recent
state-of-the-art single view face reconstruction approaches.
Thies et al. [64] extend the seminal work of Blanz and Vet-
ter [10] with facial expression blendshapes and iteratively
optimize for shape, texture, and lighting condition by min-
imizing energy terms based on facial landmark and pixel
color constraints. We visualize the avatars with and with-
out the facial expressions of the corresponding input photo.
Neutralizing facial expressions is straightforward by setting
all the blendshape coefficients to 0. We notice that the lin-
ear morphable face model is unable to recover features such
as facial hair, as well as high-frequency geometry and ap-
pearance details. As a result, the face renderings often lack
the likeness of the original subject and often fall within the
so called “uncanny valley”. Genova et al. [29] predict
identity coefficients of linear 3DMM using a deep neural
network and Deng et al. [21] predict the lights and face
poses simultaneously using additionally linear 3DMM co-
efficients. Their models are still restricted to the linear sub-
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space which has limited capabilities for representing facial
details. Gecer et al. [28] introduce an unsupervised training
approach to regress linear 3DMM coefficients for geome-
try and adopt a Generative Adversarial Network model for
generating nonlinear texture. Tran et al. [65] present an ap-
proach to learn additional proxies as means to avoid strong
regularization, which efficiently captures high level details
for geometry and texture with a simple decoder architecture.
They do not separate identity and expressions in the train-
ing. Lee et al. [45] demonstrate the latest work for gener-
ating 3D face models from a single input photograph using
non-linear 3DMMs and an uncertainty-aware mesh decoder.
The resulting 3D faces are very faithful to the input image,
but the lighting and expressions are baked into the texture
and mesh. As a result, neither Lee et al. [45] nor the above
non-linear 3DMM techniques produce normalized results as
shown in our paper. Notice that the results in Fig. 15 from
row 3 to row 7 were taken directly from the paper of [45],
and the renderings may have slight inconsistencies.

Appendix II. Additional Evaluations
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Figure 16: Algorithmic choice justification on the loss func-
tion for GAN-inversion. From top to bottom: Ground truth
geometry and texture; Reconstruction results optimized by
pixel loss and adversarial loss; Reconstruction results with
perceptual loss in addition.

In Sec. 3.1, we adopt a two step training method by first
trainingG and then freezingG in order to compute the code
inversion and to train R. Fig. 16 shows that the latent codes
can be effectively found out with our choice of loss func-
tion in Eq. 2. Specifically, while pixel loss and adversarial
loss cannot preserve the overall similarity, adding the per-
ceptual loss improves the high-level appearance in the ren-
dering views.

Face Interpolation. In Fig. 17, we show interpolation re-
sults of multiple 3D avatars. The four input avatars are
shown at the corners. All the interpolation results are
obtained via bi-linearly interpolation of the embedding w
computed from the four images. As shown in the results, re-
alistic, plausible, and artifact free avatar assets can be gen-
erated using our method, which can be useful for a wide
range of avatar manipulation and synthesis tasks.

Figure 17: Illustration of latent vector interpolation. The
four input 3D avatars are shown at the corners, while all
the in-between interpolations are based on bi-linear inter-
polated weights.

(a) (b) (c) (d)

Figure 18: Visual comparison illustrating the effects of
losses in the perceptual refinement step, where the full
model leads to better results. From left to right: (a) input
image; (b) refinement result with identity loss and w regu-
larization; (c) refinement result with perceptual loss and w
regularization; (d) refinement result with all three losses.

Optimization Loss. Fig. 18 shows the benefit of each loss
term in Lrefine for the perceptual refinement. Combining
identity loss, perceptual loss, and w regularization allows
us to generate clean assets, where the resulting subject pre-
serves the likeness of the subject in the original input photo,
but at the same time, ensures consistent and detailed assets
with normalized lighting and neutral expressions.

Illumination Consistency. Fig. 19 demonstrates consis-
tent face reconstructions of albedo textures from varying il-
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Figure 19: Consistent reconstructions of albedo texture un-
der varying extreme illuminations.

luminations conditions. In this experiment we move around
a light with different extreme colors around the subjects and
demonstrate how a consistent 3D avatar with a nearly iden-
tical dark skin tone is correctly reconstructed for each input
photo.
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Figure 20: Consistent reconstructions of 3D avatars from
images with different expressions.

Expression Consistency. We demonstrate how consistent
faces are reconstructed from input images with different ex-
pressions in Fig. 20. In particular, our method digitizes con-
sistent 3D avatars with neutral expressions despite a wide
range of diverse and extreme facial expressions of the same
person as shown in the first row and the third row. While
some amount of the input expressions are reflected in the
normalized results, the overall neutralization is significantly
superior than existing techniques, especially for extreme in-
put facial expressions.

Pose Consistency. Fig. 21 shows consistent reconstruc-
tions from varying head poses. For side views, our method
can still generate highly consistent textures and geometries
despite non-visible face regions in the input image.

Appendix III. Additional Results
To demonstrate the robustness of the our technique, we

provide 156 additional examples with a wider range of ex-
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Figure 21: Consistent reconstructions under different poses.

tremely challenging input photographs in Fig. 22, Fig. 23,
Fig. 24, and Fig. 25. These figures illustrate input pictures,
successful normalized 3D face reconstructions, as well as
renderings using HDRI-based lighting environments. Our
results include diverse ethnicity, both genders, and varying
age groups, ranging from children to old people. We also
showcase a wide range of complex lighting conditions, styl-
ized photographs, black and white portraits, drawings and
paintings, facial occlusions, as well as a wide range of ex-
treme head poses and facial expressions. Notice that we also
show several results of the same person, but reconstructed
from entirely different input images.
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Figure 22: Batch 1 additional results of normalized 3D avatars from a single input image. None of these subjects have been
used in training for our networks.
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Figure 23: Batch 2 additional results of normalized 3D avatars from a single input image. None of these subjects have been
used in training for our networks.
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Figure 24: Batch 3 additional results of normalized 3D avatars from a single input image. None of these subjects have been
used in training for our networks.
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Figure 25: Batch 4 additional results of normalized 3D avatars from a single input image. None of these subjects have been
used in training for our networks.
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