
MediaPipe: A Framework for Building Perception Pipelines

Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays,
Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua,

Manfred Georg and Matthias Grundmann
Google Research

mediapipe@google.com

Abstract

Building applications that perceive the world around
them is challenging. A developer needs to (a) select and
develop corresponding machine learning algorithms and
models, (b) build a series of prototypes and demos, (c) bal-
ance resource consumption against the quality of the so-
lutions, and finally (d) identify and mitigate problematic
cases. The MediaPipe framework addresses all of these
challenges. A developer can use MediaPipe to build pro-
totypes by combining existing perception components, to
advance them to polished cross-platform applications and
measure system performance and resource consumption on
target platforms. We show that these features enable a de-
veloper to focus on the algorithm or model development and
use MediaPipe as an environment for iteratively improving
their application with results reproducible across different
devices and platforms. MediaPipe will be open-sourced at
https://github.com/google/mediapipe.

1. Introduction
MediaPipe is a framework for building pipelines to per-

form inference over arbitrary sensory data. With Medi-
aPipe, a perception pipeline can be built as a graph of mod-
ular components, including model inference, media pro-
cessing algorithms and data transformations, etc. Sensory
data such as audio and video streams enter the graph, and
perceived descriptions such as object-localization and face-
landmark streams exit the graph. An example is shown in
Figure 1.

MediaPipe is designed for machine learning (ML) practi-
tioners, including researchers, students, and software devel-
opers, who implement production-ready ML applications,
publish code accompanying research work, and build tech-
nology prototypes. The main use case for MediaPipe is
rapid prototyping of perception pipelines with inference
models and other reusable components. MediaPipe also fa-
cilitates the deployment of perception technology into de-

Figure 1: Object detection using MediaPipe. The trans-
parent boxes represent computation nodes (calculators)
in a MediaPipe graph, solid boxes represent external in-
put/output to the graph, and the lines entering the top and
exiting the bottom of the nodes represent the input and out-
put streams respectively. The ports on the left of some nodes
denote the input side packets. See Section 6.1 for details.

mos and applications on a wide variety of different hard-
ware platforms. MediaPipe enables incremental improve-
ments to perception pipelines through its rich configuration
language and evaluation tools.

Modifying a perception application to incorporate addi-
tional processing steps or inference models can be difficult,
due to excessive coupling between steps. In addition, devel-
oping the same application for different platforms is time
consuming and usually involves optimizing inference and

1

ar
X

iv
:1

90
6.

08
17

2v
1 

 [
cs

.D
C

] 
 1

4 
Ju

n 
20

19

https://github.com/google/mediapipe


processing steps to run correctly and efficiently on a target
device.

MediaPipe addresses these challenges by abstracting and
connecting individual perception models into maintainable
pipelines. All of the steps necessary to infer from the sen-
sory data and get the perceived results are specified in the
pipeline configuration. It is easy to re-use MediaPipe com-
ponents in different pipelines across successive applications
as these components share a common interface oriented
around time-series data. Each pipeline can then run with
the same behavior on a variety of platforms, enabling the
practitioner to develop the application on workstations, and
then deploy it on mobile, for example.

MediaPipe consists of three main parts: (a) a framework
for inference from sensory data, (b) a set of tools for perfor-
mance evaluation, and (c) a collection of re-usable inference
and processing components called calculators. We describe
the framework in Sections 3 and 4, and the set of tools in
Section 5. We also present example MediaPipe perception
applications in Section 6.

2. Related work
Media analysis is an active area of research in both

academia and industry. Typically, a media file or camera
input containing both audio and video is extracted into sep-
arate streams via a media decoder which are then analyzed
separately. Neural net engines like TensorFlow [4], Py-
Torch [10], CNTK [11], MXNet [6] represent their neural
networks in forms of directed graphs whose nodes are sim-
ple and deterministic, i.e. one input generates one output,
which allows very efficient execution of the compute graph
consisting of such lower level semantics. MediaPipe on the
other hand, operates at much higher level semantics and al-
lows more complex and dynamic behavior, i.e. one input
can generate zero, one or multiple outputs, which cannot
be modeled with neural networks. This complexity allows
MediaPipe to excel at analyzing media at higher semantics.

Other forms of graph processing and data flow frame-
works such as Beam [1] and Dataflow [5] operate on clus-
ters of compute machines. While the dependency of each
operation is defined in the form of graphs as well, Beam [1]
and Dataflow [5] handle big chunks of data in a batching
fashion rather than in a streaming fashion, which makes
them unsuitable for the audio/video processing domain.

The research project Ptolemy [7] studies concurrent sys-
tems, but it heavily focuses on modeling and simulation for
the purpose of studying such systems. With MediaPipe,
a developer can build and analyze concurrent systems via
graphs, and further deploy such systems as performant ap-
plications. However, MediaPipe is targeted towards appli-
cations in the audio/video processing domain and not lim-
ited to the scope of modeling the performance of concurrent
systems.

In the field of robotics, ROS [3] allows the definition of
the processing logic in the form of graphs, where each node
is a process, communicating with other nodes via inter-
process communication (IPC) calls. With MediaPipe, we
avoid the additional overhead and complexity of IPC calls.

GStreamer [8] is a framework for constructing arbitrary
graphs of media-handling components with low-level oper-
ations. However, GStreamer primarily targets audio/video
media editing rather than analysis. MediaPipe with its
higher level semantics makes it more suitable audio/video
analysis and understanding.

OpenCV 4.0 introduced the Graph API (G-API) [9]
which allows specification of sequences of OpenCV image
processing operations in the form of a graph. In contrast,
our framework allows operations on arbitrary data types
and has native support for streaming time-series data which
makes it much more suitable for analyzing audio and sensor
data.

3. Architecture

MediaPipe allows a developer to prototype a pipeline
incrementally. A pipeline is defined as a directed graph
of components where each component is a Calculator.
The graph is specified using a GraphConfig protocol
buffer and then run using a Graph object.

In the graph, the calculators are connected by data
Streams. Each stream represents a time-series of data
Packets. Together, the calculators and streams define a
data-flow graph. The packets which flow across the graph
are collated by their timestamps within the time-series.

The pipeline can be refined incrementally by inserting
or replacing calculators anywhere in the graph. Developers
can also define custom calculators. While the graph exe-
cutes calculators in parallel, each calculator executes on at
most one thread at a time1. This constraint, coupled with the
immutability of data packets, ensures that custom calcula-
tors can be defined without specialized expertise in multi-
threaded programming.

3.1. Packets

The basic data unit in MediaPipe is a Packet. A packet
consists of a numeric timestamp and a shared pointer to an
immutable payload. The payload can be of any C++ type,
and the payload’s type is also referred to as the type of
the packet. Packets are treated as value classes and can be
copied cheaply. Each copy shares ownership of the payload,
with reference-counting semantics. Each copy has its own
timestamp.

1An advanced feature enables parallel execution of a calculator on sev-
eral threads assuming temporal independence of the time-series

2



3.2. Streams

Each node in the graph is connected to another node
through a Stream. A stream carries a sequence of pack-
ets whose timestamps must be monotonically increasing.
An output stream can be connected to any number of in-
put streams of the same type. Each input stream receives
a separate copy of the packets from an output stream, and
maintains its own queue to allow the receiving node to con-
sume the packets at its own pace.

3.3. Side packets

A side-packet connection between nodes carries a single
packet with an unspecified timestamp. It can be used to pro-
vide some data that will remain constant, whereas a stream
represents a flow of data that changes over time. For exam-
ple, the string defining the file path for an ML model can be
fed into a node through a side packet.

3.4. Calculators

Each node in the graph is implemented as a
Calculator. The bulk of graph execution happens in-
side its calculators. A calculator may receive zero or more
input streams and/or side packets and produces zero or more
output streams and/or side packets.

Each calculator included in a program is registered with
the framework so that the graph configuration (further dis-
cussed in Section 3.6) can reference it by name.

Calculators are highly customizable; all calculators de-
rive from the same base Calculator class, and comprise
of four essential methods: GetContract(), Open(),
Process() and Close().

Calculator authors can specify the expected types of
inputs and outputs of a calculator in GetContract().
When a graph is initialized, the framework calls a static
method to verify if the packet types of the connected inputs
and outputs match the information in this specification.

After a graph starts, the framework calls Open(). The
input side packets are available to the calculator at this
point. Open() interprets the node configuration (see Sec-
tion 3.6) operations and prepares the calculator’s per-graph-
run state. This function may also write packets to calculator
outputs. An error during Open() can terminate the graph
run.

For a calculator with inputs, the framework calls
Process() repeatedly whenever at least one input stream
has a packet available. The framework by default guaran-
tees that all inputs have the same timestamp (see Section 4.1
for more information). Multiple Process() calls can be
invoked simultaneously when parallel execution is enabled.
If an error occurs during Process(), the framework calls
Close() and the graph run terminates.

After all calls to Process() finish or when all input
streams close, the framework calls Close(). This func-

tion is always called if Open() was called and succeeded
and even if the graph run terminated because of an error. No
inputs are available via any input streams during Close(),
but it still has access to input side packets and therefore
may write outputs.2 After Close() returns, the calcula-
tor should be considered a dead node. The calculator object
is destroyed as soon as the graph finishes running.

3.5. Graph

In MediaPipe, all processing takes places within the con-
text of a Graph. A graph contains a collection of nodes
joined by directed connections along which packets can
flow. Various resources required for the execution of nodes,
such as the scheduler (further discussed in Section 4.1), are
also attached to the graph. A graph is typically defined via
a graph configuration as a separate file or can be built pro-
grammatically in code.

In a graph, data flow can originate from source nodes
which have no input streams and produce packets sponta-
neously (e.g., by reading from a file). Data flow can also
originate from graph input streams which allow an applica-
tion to feed packets into a graph (e.g., passing in camera tex-
ture obtained from the operating system). Similarly, there
are sink nodes that receive data and write it to various des-
tinations (e.g., a file, a memory buffer, etc.). An application
can also receive outputs from the graph using callbacks or
poll any output streams via output stream polling functions.

When a graph is initialized, the following constraints are
checked:

1. Each stream and side packet must be produced by one
source.

2. The type of an input stream/side packet must be com-
patible with the type of the output stream/side packet
to which it is connected.

3. Each node’s connections are compatible with its con-
tract.

The function returns an error if the graph fails the validation
step.

During a single graph run, the framework constructs cal-
culator objects corresponding to a graph node and calls
Open(), Process() and Close() methods on these
objects as discussed in Section 3.4. The graph can stop run-
ning when:

• Calculator::Close() has been called on all cal-
culators, or

• All source calculators indicate that they have finished
sending packets and all graph input streams have been
closed, or

• Any error occurs (the graph returns an error with a
message in this case).

2A use case here is a media decoder reaching the end of file but still
having additional images in its encoding state.

3



3.6. GraphConfig

A GraphConfig is a specification that describes the
topology and functionality of a MediaPipe graph.

In the specification, a node in the graph represents an in-
stance of a particular calculator. All the necessary configu-
rations of the node, such its type, inputs and outputs must be
described in the specification. Description of the node can
also include several optional fields, such as node-specific
options, input policy and executor, discussed in Section 4.1.

To modularize a GraphConfig into sub-modules and
assist with re-use of perception solutions, a MediaPipe
graph can be defined as a Subgraph. The public inter-
face to a subgraph consists of a set of input and output
streams similar to the public interface of a calculator. The
subgraph can then be included in an GraphConfig as if
it were a calculator. When a MediaPipe graph is loaded
from a GraphConfig, each subgraph node is replaced by
the corresponding graph of calculators. As a result, the se-
mantics and performance of the subgraph is identical to the
corresponding graph of calculators.

GraphConfig has several other fields to configure
the global graph-level settings, e.g., graph executor con-
figs, number of threads, and maximum queue size of input
streams. Several graph-level settings are useful for tuning
the performance of the graph on different platforms (e.g.,
desktop v.s. mobile). For instance, on mobile, attaching a
heavy model-inference calculator to a separate executor can
improve the performance of a real-time application since
this utilizes thread locality.

4. Implementation

This section discusses MediaPipe’s scheduling logic and
powerful synchronization primitives to process time-series
in a customizable fashion.

4.1. Scheduling

4.1.1 Scheduling mechanics

Data processing in a MediaPipe graph occurs inside Calcu-
lators (nodes). The scheduling system decides when calcu-
lator code is ready and should be run.

Each graph has at least one scheduler queue. Each sched-
uler queue has exactly one executor. Nodes are statically as-
signed to a queue (and therefore to an executor). By default
there is one queue whose executor is a thread pool with a
thread count based on the system’s capabilities.

Each node has a scheduling state which can be either
not ready, ready or running. A readiness function deter-
mines whether a node is ready to run, as discussed below.
This function is invoked at graph initialization, also when a
node finishes running or when the state of an input to a node
changes.

The readiness function used depends on the type of node.
Source nodes (i.e., nodes with no input streams) are always
ready to run until they inform the framework that they have
no more data to provide, at which point they are closed.

Non-source nodes are ready if they have inputs to pro-
cess, and if those inputs form a valid input set according to
the conditions described by the node’s input policy (e.g. all
inputs with matching timestamps are available, discussed in
detail below). Most nodes use the default input policy, but
developers can specify a different one. 3

When a node becomes ready for execution, a task is
added to the corresponding scheduler queue, which is a pri-
ority queue. When the graph is initialized, nodes are topo-
logically sorted and assigned a priority based on the graph’s
layout; for example, nodes closer to the output side of the
graph have higher priority, while source nodes have the low-
est priority.

Executors are responsible for actually running the task
by invoking the calculator’s code. By configuring different
executors the developer can gain finer control on the use of
execution resources; for example, assigning certain nodes
to run on lower priority threads.

4.1.2 Synchronization

MediaPipe graph execution is decentralized: there is no
global clock, and different nodes can process data from
different timestamps at the same time. This allows higher
throughput via pipelining.

However, time information is very important for many
perception workflows. Nodes that receive multiple input
streams generally need to coordinate them in some way. For
example, an object detector may output a list of boundary
rectangles from a frame, and this information may be fed
into a rendering node, which should process it together with
the original frame.

Therefore, one of the key responsibilities of the Medi-
aPipe framework is to provide input synchronization for
nodes. In terms of framework mechanics, the primary role
of a timestamp is to serve as a synchronization key.

Furthermore, MediaPipe is designed to support deter-
ministic operations, which is important in many scenarios
(testing, simulation, batch processing, etc.), while allowing
graph authors to relax determinism where needed to meet
real-time constraints.

The two objectives of synchronization and determin-
ism underlie several design choices. Notably, the packets
pushed into a given stream must have monotonically in-

3Changing the input policy changes what guarantees the calculator’s
code can expect from its inputs. It is generally not possible to mix and
match calculators with arbitrary input policies. Thus, a calculator that uses
a special input policy should be written for it, and declare it in its contract.

4



creasing timestamps4: this is not just a useful assumption
for many nodes, but it is also relied upon by our synchro-
nization logic. Each stream has a timestamp bound, which
is the lowest possible timestamp allowed for a new packet
on the stream. When a packet with timestamp T arrives, the
bound automatically advances to T+1, reflecting the mono-
tonic requirement. This allows the framework to know for
certain that no more packets with timestamp < T will ar-
rive.

4.1.3 Input policies

Synchronization is handled locally on each node, using the
input policy specified by the node.

The default input policy provides deterministic synchro-
nization of inputs, with the following guarantees:

• If packets with the same timestamp are provided on
multiple input streams, they will always be processed
together regardless of their arrival order in real time.

• Input sets are processed in strictly ascending times-
tamp order. 5

• No packets are dropped, and the processing is fully de-
terministic.

• The node becomes ready to process data as soon as
possible given the guarantees above.

To explain how it works, we introduce the definition of
a settled timestamp. We say that a timestamp in a stream
is settled if it is lower than the timestamp bound. In other
words, a timestamp is settled for a stream once the state
of the input at that timestamp is irrevocably known: either
there is a packet, or it is certain that a packet with that times-
tamp will not arrive. 6

Given this definition, a calculator with the default input
policy is ready if there is a timestamp which is settled across
all input streams and contains a packet on at least one input
stream. The input policy provides all available packets for
a settled timestamp as a single input set to the calculator.7

For example, see Figure 2. A node has two input streams,
FOO and BAR. At this time, the node has received packets
on FOO at timestamps 10 and 20, and on BAR at timestamps
10 and 30. All timestamps up to 20 are settled, and the
node’s Process() method can be invoked for timestamp
10 (with a packet for FOO and one for BAR) and for times-
tamp 20 (with a packet for FOO, and no packet for BAR).

4This constraint is applied at the level of the individual stream: there is
no global timestamp.

5An important consequence of this is that if the calculator always uses
the current input timestamp when outputting packets, the output will in-
herently obey the monotonically increasing timestamp requirement.

6For this reason, MediaPipe also allows a stream producer to explicitly
advance the timestamp bound farther that what the last packet implies, i.e.
to provide a tighter bound. This can allow the downstream nodes to settle
their inputs sooner.

7Note that it is not guaranteed that an input packet will always be avail-
able for all streams.

FOO

BAR

0 10 20 30 40

Settled

bound

bound

P

P

P

P

Figure 2: Input policy example. FOO and BAR are input
streams, P denotes a packet, packets with settled timestamps
shown in green. See text for details.

Flow Limiter Preprocess Detect

in
out

finish

Figure 3: Flow limiter example. See text for details.

However, timestamp 30 cannot be processed yet, because
the state of FOO is unknown past 20. For instance, if FOO
sends a packet with timestamp 25, it will have to be pro-
cessed before 30 can be processed.

Besides the default synchronization policy, we allow
nodes to specify other input policies. For example, a node
can choose to receive all inputs immediately (sacrificing
several of the guarantees listed earlier), or group its in-
puts into separate sets, enforcing timestamp synchroniza-
tion only within but not across sets.

4.1.4 Flow control

Since packets may be generated faster than they can be pro-
cessed, flow control is necessary to keep resource usage un-
der control. Two mechanisms are available: a simple back-
pressure system and a richer node-based system.

The back-pressure mechanism throttles the execution of
upstream nodes when the packets buffered on a stream reach
a limit. This mechanism maintains deterministic behavior
and includes a deadlock avoidance system that relaxes con-
figured limits when needed. It is suitable for reducing re-
source usage in batch operations.

The second system consists of inserting special nodes
which can drop packets according to real-time constraints.
Typically, these nodes use special input policies to be able
to make fast decisions on their inputs. This node-based ap-
proach lets the graph author control where packets can be
dropped, and allows flexibility in adapting and customizing
the graphs behavior depending on resource constraints.

For example, Figure 3 shows a common pattern that
places a flow-limiter node at the input of a subgraph, with
a loopback connection from the final output to the flow-
limiter. The flow-limiter is thus able to keep track of how
many timestamps are being processed in the downstream

5



graph, and can drop packets if this count hits a limit. Since
packets are dropped upstream, we avoid the wasted work
that would result from partially processing a timestamp and
then dropping packets between intermediate stages.

4.2. GPU support

MediaPipe supports GPU compute and rendering nodes,
and allows combining multiple GPU nodes, as well as mix-
ing them with CPU based nodes. There exist several GPU
APIs on mobile platforms (e.g., OpenGL ES, Metal and
Vulkan). MediaPipe does not attempt to offer a single cross-
API GPU abstraction. Individual nodes can be written using
different APIs, allowing them to take advantage of platform
specific features when needed. Our GPU support enables
GPU nodes to enjoy the same advantages of encapsulation
and composability as CPU nodes, while maintaining effi-
ciency.

4.2.1 Opaque buffer type

GPU nodes in MediaPipe use an opaque buffer type to rep-
resent data accessible by the GPU (e.g., a video frame). This
opaque type has multiple concrete implementations (e.g.,
depending on the platform). When a node wants to access
the buffer using some API, it uses a helper class to obtain
an API-specific view of the buffer, e.g., an OpenGL texture.
This view object is ephemeral, and is released as soon as the
node is done with its current processing task.

The creation and destruction of this view object provides
the system with an opportunity to perform required tasks, to
bind the data for the desired API and for synchronization.

4.2.2 OpenGL support

MediaPipe supports OpenGL ES up to version 3.2 on An-
droid and up to ES 3.0 on iOS. In addition, MediaPipe also
supports Metal on iOS. We discuss the OpenGL implemen-
tation on Android in more detail here.

MediaPipe allows graphs to run OpenGL in multiple GL
contexts. For example, this can be very useful in graphs that
combine a slower GPU inference path (e.g., at 10 FPS) with
a faster GPU rendering path (e.g., at 30 FPS): since one GL
context corresponds to one sequential command queue, us-
ing the same context for both tasks would reduce the render-
ing frame rate. One challenge MediaPipe’s use of multiple
contexts solves is the ability to communicate across them.
An example scenario is one with an input video that is sent
to both the rendering and inferences paths, and rendering
needs to have access to the latest output from inference.

An OpenGL context cannot be accessed by multiple
threads at the same time. Furthermore, switching the ac-
tive GL context on the same thread can be slow on some
Android devices. Therefore, our approach is to have one

dedicated thread per context. Each thread issues GL com-
mands, building up a serial command queue on its context,
which is then executed by the GPU asynchronously.

Multiple OpenGL contexts can share resources (e.g., tex-
tures) if they are properly connected when they are created.
However, OpenGL does not synchronize the state of these
objects across contexts. For example, if a texture is written
to in context A and then read from in context B, the read
operation may not see the updates made by context A. It
is therefore not sufficient to introduce synchronization be-
tween the CPU threads serving the two contexts - even if
the CPU issues the write commands for context A before
the read commands for context B, there is no guarantee that
the GPU will obey the same ordering when executing the
two command sets.

OpenGL offers sync fence objects as a low-level mech-
anism for cross-context synchronization. A sync fence can
be created in context A’s command stream, and context B
can then insert a wait operation on A’s fence in its own
command stream. This ensures commands in B’s command
queue following the wait will only be executed once all
commands in A’s queue predating the sync fence finished
execution on the GPU.

Managing this normally requires additional effort from
the programmer. MediaPipe reduces the workload by auto-
matically inserting synchronization operations in the GPU
command streams where appropriate.

For each buffer, we keep track of one producer sync
fence, and multiple consumer sync fences. The producer
fence is inserted when the producer node outputs a buffer,
after the commands used to write the buffer’s contents; in
other words, it marks a “write complete” point. When con-
sumers on a different GL context request read access to the
buffer, a wait operation on the producer fence is inserted.
Consumer fences are inserted when a consumer node is
done with a buffer, and mark “read complete” points. These
are used when the buffer is recycled: before passing it to a
new producer for writing, the framework waits for all exist-
ing consumers to finish reading the old contents.

Note that synchronization is done in the GPU command
stream whenever possible, without forcing a CPU sync.
The framework tries to avoid GPU/CPU sync operations as
much as possible, and allows pipelining between GPU and
CPU tasks.

5. Tools
This section describes some developer tools that help

MediaPipe users analyze the performance of their percep-
tion pipelines.

5.1. Tracer

The MediaPipe tracer module follows individual pack-
ets across a graph and records timing events along the way.

6



With each event, it records a TraceEvent structure with
several data fields event time, packet timestamp,
packet data id, node id, and stream id. This
TraceEvent information is sufficient to follow the flow
of data and execution across the graph. The tracer also re-
ports histograms of various resources, such as the elapsed
CPU time across each calculator and across each stream.

The timing data recorded by the tracer module enables
reporting and visualization of individual packet flows and
individual calculator executions. The recorded timing data
can be used to diagnose a variety of problems, such as
unexpected real-time delays, memory accumulation due to
packet buffering, and collating packets at different frame
rates. The timing data can also be aggregated to report aver-
age and extreme latencies which is useful for performance
tuning. Furthermore, the timing data can be explored to
identify the calculators along the critical path, whose per-
formance determines end-to-end latency.

The tracer module records timing information on de-
mand, and can be enabled using a section of the
GraphConfig. Also, a MediaPipe user can completely
omit the tracer module code using a compiler flag. The
tracer module internally stores TraceEvent records in a
circular buffer. In order to avoid thread contention over the
circular buffer and to minimize the impact on timing mea-
surements, the tracer module utilizes a mutex-free thread-
safe buffer implementation.

5.2. Visualizer

MediaPipe visualizer is a tool that helps users under-
stand the topology and overall behavior of their pipelines,
as shown in Figure 4. The tool consists visualization of the
following:

• Timeline view: A user can load a pre-recorded trace
file (see Section 5.1) and see the precise timing of
packets as they move through threads and calculators.

• Graph view: A user can also visualize the topology
of a graph as inferred from the same trace file that
drives the Timeline view. This lets the user observe
the full state of the graph at any point in time, includ-
ing the state of each calculator and the packets being
processed or being held in its input queues.

6. Application examples
In this section, we discuss two different pipelines built

with MediaPipe.

6.1. Object detection

Real-time object detection from a live camera feed is
a common perception application. Depending on the tar-
get device platform, running ML-based object detection at
a full frame rate (e.g., 30 FPS) can require high resource

Figure 4: Visualizer example: The top half shows the Time-
line view illustrating the timing of packets for each thread
(row). The bottom half shows the Graph view illustrating
how the different calculators are connected together.

consumption or be potentially infeasible due to long infer-
ence times. An alternative is to apply object detection to a
temporally sub-sampled stream of frames and propagate the
detection results, i.e., bounding boxes and the correspond-
ing class labels, to all frames using a lightweight tracker.
For optimal performance, tracking and detection should be
run in parallel, so the tracker is not blocked by the detector
and can process every frame.

This perception pipeline can be easily implemented with
MediaPipe, as presented in the example graph in Figure 1.
There are two branches in the beginning of the graph: one
slow branch for detection and one fast branch for track-
ing. Calculators for these tasks can be configured to run
on parallel threads with the specification of executors in
the pipeline’s graph configuration (refer to Section 3.6 and
4.1.1). In the detection branch, a frame-selection node first
selects frames to go through detection based on limiting fre-
quency or scene-change analysis, and passes them to the
detector while dropping the irrelevant frames. The object-
detection node consumes an ML model and the associated
label map as input side packets, performs ML inference
on the incoming selected frames using an inference engine
(e.g., [12] or [2]) and outputs detection results.

In parallel to the detection branch, the tracking branch
updates earlier detections and advances their locations to
the current camera frame.

After detection, the detection-merging node compares

7



results and merges them with detections from earlier frames
removing duplicate results based on their location in the
frame and/or class proximity.

Note, that the detection-merging node operates on the
same frame that the new detections were derived from. This
is automatically handled by the default input policy in this
node as it aligns the timestamps of the two sets of detection
results before they are processed together (see Section 4.1.2
for more information). The node also sends merged detec-
tions back to the tracker to initialize new tracking targets if
needed.

For visual display, the detection-annotation node adds
overlays with the annotations representing the merged de-
tections on top of the camera frames, and the synchroniza-
tion between the annotations and camera frames is automat-
ically handled by the default input policy before drawing
takes place in this calculator. The end result is a slightly
delayed viewfinder output (e.g., by a few frames) that is
perfectly aligned with the computed and tracked detections,
effectively hiding model latency in a dynamic way.

Since MediaPipe provides cross-platform support, as an
example development flow, this graph can be first devel-
oped and tested on desktop followed by deployment and
final performance evaluation on mobile devices. Moreover,
with minimal changes to the graph specification and the as-
sociated data flow, a node in the graph can be replaced by
another node with a similar purpose but a different imple-
mentation. For instance, a heavy NN-based object detector
may be swapped out with a light template matching detec-
tor, and the rest of the graph can stay unchanged.

6.2. Face landmark detection and segmentation

Figure 6: Landmark
detection and seg-
mentation output
(ANNOTATED FRAME)

Face landmark estimation is
another common perception ap-
plication. Figure 5 depicts a Me-
diaPipe graph that performs face
landmark detection along with
portrait segmentation. To reduce
the computational load needed
to run both tasks simultaneously,
one strategy is to apply the tasks
on two disjoint subsets of frames.
This can be done easily in Me-
diaPipe using a demultiplexing
node that splits the packets in
the input stream into interleav-
ing subsets of packets, with each
subset going into a separate out-
put stream.

To derive the detected land-
marks and segmentation masks
on all frames, the landmarks and
masks are temporally interpolated across frames. The target

Figure 5: Face landmark detection and segmentation using
MediaGraph.

timestamps for interpolation are simply those of all incom-
ing frames. Finally, for visualization the annotations from
the two tasks are overlaid onto the camera frames, with syn-
chronization across the three streams handled by the input
policy of the annotation node. A snapshot of the visual an-
notation is shown in Figure 6.

The pipeline can be further accelerated with GPU com-
pute while reusing most of the pipeline configuration. For
example, the face-landmark-detection node can switch to a
GPU-based implementation, using a GPU inference engine
(e.g., [13]). Additionally, temporal re-sampling and annota-
tion can also have a GPU-based implementation. Together
with the GPU support embedded in the framework, the en-
tire data flow and compute can stay in GPU end-to-end with
no speed bottlenecks commonly observed from GPU-to-
CPU data transfer. Furthermore, it is also straightforward
to configure a pipeline where the detection branch is per-
formed on GPU while in parallel the segmentation branch is
running on CPU for potentially better overall performance.

7. Conclusion
In this paper, we presented MediaPipe, a framework for

building a perception pipeline as a graph of reusable cal-
culators. We described how the framework manages calcu-
lator execution using a comprehensive scheduling system,
enables support for GPU on multiple platforms, and pro-
vides tools for evaluating graph performance. MediaPipe
can help a developer prototype very quickly and run a per-
ception application efficiently across multiple platforms.

MediaPipe has been immensely successful at Google for

8



over 6 years. One of the main reasons for its success can
be attributed to the ecosystem of re-usable calculators and
graphs. Given this experience, our primary focus after the
open-source release will be our community support includ-
ing third-party development of calculators and curating a
set of recommended calculators and graphs. Furthermore,
we will further improve tooling to make performance and
quality evaluation easy for the users.

References
[1] Apache beam: An advanced unified programming model.

https://beam.apache.org/. Last accessed on 2019-
04-12.

[2] Caffe2. https://caffe2.ai. Last accessed on 2019-
04-12.

[3] Ros.org–powering the world’s robots. https://www.
ros.org/. Last accessed on 2019-04-12.

[4] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pages 265–283, 2016.

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Rafael J. Fernndez-Moctezuma, Reuven Lax,
Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt,
and Sam Whittle. The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proceedings of the
VLDB Endowment, 8:1792–1803, 2015.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015.

[7] Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xi-
aojun Liu, Jozsef Ludvig, Sonia Sachs, Yuhong Xiong, and
Stephen Neuendorffer. Taming heterogeneity - the ptolemy
approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[8] GStreamer. The GStreamer Library, 2001. https:
//gstreamer.freedesktop.org/, Last accessed on
2019-04-09.

[9] Dmitry Matveev. OpenCV Graph API. Intel Corporation,
2018.

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[11] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-
source deep-learning toolkit. In 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pages 2135–2135, 2016.

[12] TensorFlow. TensorFlow Lite, 2017. https://www.
tensorflow.org/lite, Last accessed on 2019-04-11.

[13] TensorFlow. TensorFlow Lite on GPU, 2019. https:
//www.tensorflow.org/lite/performance/
gpu_advanced, Last accessed on 2019-04-11.

9

https://beam.apache.org/
https://caffe2.ai
https://www.ros.org/
https://www.ros.org/
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/performance/gpu_advanced
https://www.tensorflow.org/lite/performance/gpu_advanced
https://www.tensorflow.org/lite/performance/gpu_advanced

