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Fig. 1. Given an arbitrary input audio stream, our system generates personalized and photorealistic talking-head animation in real-time. Right: May and
Obama are driven by the same utterance but present different speaking characteristics. Video May ©UK government (Open Government Licence). Video
Obama ©Barack Obama Foundation (public domain).

To the best of our knowledge, we first present a live system that generates

personalized photorealistic talking-head animation only driven by audio

signals at over 30 fps. Our system contains three stages. The first stage

is a deep neural network that extracts deep audio features along with a

manifold projection to project the features to the target person’s speech

space. In the second stage, we learn facial dynamics and motions from the

projected audio features. The predicted motions include head poses and

upper body motions, where the former is generated by an autoregressive

probabilistic model which models the head pose distribution of the target

person. Upper body motions are deduced from head poses. In the final stage,

we generate conditional feature maps from previous predictions and send

them with a candidate image set to an image-to-image translation network

to synthesize photorealistic renderings. Our method generalizes well to wild

audio and successfully synthesizes high-fidelity personalized facial details,

e.g., wrinkles, teeth. Our method also allows explicit control of head poses.
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Extensive qualitative and quantitative evaluations, along with user studies,

demonstrate the superiority of our method over state-of-the-art techniques.

.
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1 INTRODUCTION
Talking-head animation, i.e., synthesizing audio-synchronized video

frames of a target person, is valuable to interactive applications like

digital avatars, video conferencing, visual effects, virtual reality,

visual dubbing and computer games. With recent advances in deep

learning, people have made great progress in this long-standing

problem. However, achieving a realistic and expressive talking-head

animation remains an open challenge. Humans are extremely sen-

sitive to any facial artifacts, leading to high requirements for the

desired techniques.

Several factors contribute to the challenge. Firstly, attempts to

generate lip-synchronized and personalized facial dynamics face a

two-fold difficulty, due in part to the challenge of mapping from 1-D

audio signals to facial movements which lie on high-dimensional

This project was performed during Yuanxun Lu’s internship at Xmov. Project website:
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manifolds, but also due to the domain difference between wild audio

and target speech space, which makes the system fail to preserve

individual talking idiosyncrasies. Secondly, head and body motion,

another critical component of lifelike animation, is not closely cor-

related to audio. For example, one can swing his head or be still

when he says the same words, which depends on many factors - his

mood, location, or history poses. Thirdly, synthesizing controllable

photorealistic renderings of the target is non-trivial. Nowadays, tra-

ditional rendering engines are still far from desired, whose results

can be recognized as fake at a glance. Neural renderer shows great

power on photorealistic rendering but suffers from performance

degradation if the predicted motion is far outside the span of the

training corpus [Kim et al. 2018]. Last but not least, many interactive

scenarios like video conferencing and digital avatars require the

entire system to run in real-time, which makes high demands of the

system efficiency without damaging the performance.

In this paper, we propose a deep learning architecture, called

Live Speech Portraits (LSP), to address these challenges and step

further to practical applications. Our system generates personalized

talking-head animation stream, including facial expressions and

motion dynamics (head pose and upper body motion) driven by

audio and allows for photorealistic rendering in real-time.

First of all, we adopt the idea of self-supervised representation

learning, which has shown great power in learning semantic or

structural representations and benefits various downstream tasks

[Chen et al. 2020b; He et al. 2020; Oord et al. 2018], to extract speaker-

independent audio features. To achieve realistic and personalized

animation on wild audio streams, we further project the wild fea-

tures to the target feature space and reconstruct them using target

features. This process can be seen as domain adaption from source

to target. Subsequently, we are able to learn the mapping from

reconstructed audio features to facial dynamics.

Another critical component that contributes to realistic talking-

head animation is head and body motion. To generate personalized

and time-coherent head poses from audio, we make assumptions

that the current head pose is partly correlated to audio information

and also partly to history poses. We propose a novel autoregressive

probabilistic model to learn the head pose distribution of the target

person based on these two conditions. Head poses are sampled

from the estimated distribution, and upper body motions are futher

deduced from the sampled head poses.

To synthesize photorealistic renderings, we employ an image-

to-image translation network conditioned on a feature map and

candidate images. We apply the sampled rigid head poses on facial

dynamics and project the transformed facial keypoints and upper

body positions to the image plane, generating landmark images as

our intermediate representations. Although our system comprises

several modules, it is still compact enough to run in real-time at

over 30 fps. In summary, we present the following contributions:

• To the best of our knowledge, we propose Live Speech Por-

traits (LSP) as the first audio-driven talking-head animation

system with photorealistic renderings in real-time. A compre-

hensive evaluation demonstrates that our approach outper-

forms prior methods both qualitatively and quantitatively.

• A novel audio feature extraction module that generalizes

our system to wild audio signals. The key component of this

module is a manifold projection that reconstructs the deep

speech representations using target speech features.

• An elaborately designed probabilistic autoregressive archi-

tecture that predicts personalized head pose distributions

conditioned on audio signals and history motions. Our sys-

tem also allows for user-controllable head poses generation.

2 RELATED WORK
Mathematically, audio-driven facial animation aims to generate a

sequence of talking-head frames from an input audio stream. In the

following, we generally review prior work on audio-driven facial

animation, as well as related techniques on speech representation

learning, head pose estimation and facial reenactment.

Audio-driven Talking-head Animation. Audio-driven talking-head

animation is a cross-modal research topic with a long history in the

computer graphics community. Prior approaches take two different

roads depending on whether they aim for generating photorealistic

videos. In the non-photorealistic case, these methods focus on learn-

ing a mapping from input waveforms to facial movements, e.g., 3D

vertex coordinates [Cudeiro et al. 2019; Karras et al. 2017], reference

facial model parameters [Taylor et al. 2017] or rigging parameters

[Zhou et al. 2018]. These methods usually require high-quality 4D

face capture data or rigging parameters with artist interventions.

Here, we focus on the photorealistic case which our method belongs

to. More than twenty years ago, people have made groundbreaking

explorations in this field. Bregler et al. [1997] proposed Video Rewrite
to create a new person-talking video using existing footage. Brand

[1999] proposed Voice Puppetry to generate full facial animation

from an audio track. These techniques can roughly be categorized

into video-based editing methods and image-based generation meth-

ods. Video-based editing methods yield editing on a target video -

usually synthesize a mouth-related region patch and blend it into the

target frame while keeping other regions unaltered [Ezzat et al. 2002;

Garrido et al. 2015; Thies et al. 2020]. Recently, Thies et al. [2020] pro-

posed Neural Voice Puppetry as an upgrade to Voice Puppetry. They
first learned a generalized 3D face model from audio sequences and

then fine-tuned the model on the target clip via learning a person-

specific blendshape basis, in which case the talking style of the

target portrait can be preserved. Lower faces were synthesized via a

neural rendering network finally. However, these approaches have

several intrinsic limitations. First, animation length is restricted to

target video length. A heuristic post-processing to select proper

candidate frames is required for generating longer videos. Second,

head poses and upper body motions are uncontrollable since the

are directly copied from target videos, which may conflict with the

audio track and introduce barriers to real-time applications. Notably,

Suwajanakorn et al. [2017] employed a re-timing schedule to select

target frames with natural and synchronized head motions. Last but

not least, these methods rely on successful face tracking and tend to

fail when faces are partly unseen or undetected, e.g., lower faces are

obscured by hands or in a very dark environment. Skipping these

bad frames leads to a temporally inconsistent result. In contrast, our
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Fig. 2. An overview of our Live Speech Portraits method. Given an arbitrary audio stream, our method generates personalized and photorealistic talking
animation of a target person in real-time. First, deep speech representations of the input audio are extracted and reconstructed using manifold projection.
Then, mouth-related motions, head poses, and upper body motions are predicted from the reconstructed speech representations. We then generate conditional
feature maps by projecting the predicted motions and other sampled facial components. Finally, we send conditional feature maps and a candidate image set
to an image-to-image translation network to synthesize photorealistic talking portraits. Video Obama ©Barack Obama Foundation (public domain).

method synthesizes portraits directly. Obstructed frames could be

dropped before training without affecting performance.

Image-based generation methods generate a talking-head video

based on one or several cropped reference images. This kind of

method avoids the pre-mentioned drawbacks but makes the task

more challenging for the requirements of manipulating the entire im-

age, including facial details, motion dynamics, and the background.

End-to-end training [Chung et al. 2017; Wiles et al. 2018; Zhou et al.

2021] is becoming a strong trend to generate videos with the rising

of deep learning. Chuang et al. [2017] generated a talking face video

from a still image and an audio sequence by utilizing a CNN model

for the first time. Later, GANs are frequently adopted to generate

high-fidelity facial images via adversarial learning [Vougioukas et al.

2018, 2019; Zhou et al. 2019]. Instead of directly synthesizing a talk-

ing face image, Chen et al. [2019] and Zhou et al. [2020] leveraged

sparse facial landmarks as an intermediate representation. The land-

mark dynamics were first deduced from the audio input through an

audio-to-landmark module and then worked as a condition of an

image-to-image translation network to generate animated videos.

One common problem shared by these methods is that they tend to

learn average facial dynamics among the training corpus without

person-specific talking styles. Note that Zhou et al. [2020] learned

speaker-aware dynamics from speaker embedding vectors, but still

fail to learn target-aware dynamics which may generate uncanny

results. Our method focuses on capturing the person-specific talk-
ing dynamics using only a short target video (around 3 minutes).

We utilize facial landmarks as an intermediate representation and

generate controllable head poses and upper body motions, which

makes the animated videos more impressive and realistic.

Speech Representation Learning. Speech signals contain rich high-

level information, including content, timbre, and prosody. Much

prior work require accurate phoneme labels within millisecond

timestamps as input. These labels are often assembled into a se-

quence of diphones or triphones to encode neighborhood informa-

tion [Fan et al. 2015]. However, converting waveforms to phonemes

leads to information compression, along with potential performance

reduction introduced by error-prone automatic phoneme labeling

tools. People also discovered different schemes to get rid of the de-

pendence of phonemes using hand-crafted features [Suwajanakorn

et al. 2017]. Recently, modeling these semantic and structural repre-

sentations through deep neural networks has shown great success

and outperforms the traditional hand-crafted features [Devlin et al.

2018; Peters et al. 2018]. Thies et al. [2020] employed a DeepSpeech

[Hannun et al. 2014] network to extract speech features. Zhou et al.

[2020] resorted to voice conversion community [Qian et al. 2019]

to disentangle speech content and identity information. Similarly,

Our system uses a self-supervised learning method [Chung and

Glass 2020] to extract the high-level speech information. Moreover,

manifold projection is applied to improve generalization.

Head Pose Estimation from Audio. Head pose, as a significant com-

ponent of realistic animation, delivers rich information in talking-

head videos. Greenwood et al. [2018] employed a Bi-directional

LSTM model to predict character head animation from audio. Zhou

et al. [2020] predicted speaker-aware head motion dynamics as 3D

facial landmark displacements. They trained a transformer architec-

ture [Vaswani et al. 2017] in an adversarial mechanism to capture

long time dependencies and generate natural head dynamics. Re-

cently, Chen et al. [2020a] proposed a 3D-aware generative network

to learn target-aware head motion from a 3-second video clip. Dif-

ferent from most previous work which use deterministic models, we

use an auto-regressive probabilistic model conditioned on history

head poses and speech representations to predict the distribution

parameters at the current timestamp. Head poses are sampled from

the predicted probabilistic model. Besides, we further deduce upper

body motions from the predicted head pose, which shows a great
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220:4 • Yuanxun Lu, Jinxiang Chai, and Xun Cao

improvement on the animation quality.

Video-based Facial Reenactment. Video-based facial reenactment

is another technique related to audio-driven animation. Thies et al.

[2015] proposed the first real-time model-based reenactment system

using two RGBD cameras. Face2Face [Thies et al. 2016] extended

the boundary using only RGB cameras. Moreover, Liu et al. [2015]

combined both audio and visual information as input and tackles

the problem that tracking results prone to fail when face is occluded

or head pose is extreme. Fried et al. [2019] proposed a method for

text-based talking-head editing while is slow for viseme search (5

mins for three words). Yao et al. [2021] reduced the video gener-

ation time to 40 seconds for one video. Recently, GANs achieved

great success in controllable high-fidelity face synthesis [Karras

et al. 2019; Wang et al. 2018a,b]. Few shot or even one-shot facial an-

imation methods are explored via landmarks pre-defined or learned

in an unsupervised scheme [Siarohin et al. 2019; Sun et al. 2020;

Zakharov et al. 2019]. Most methods rely on an image-to-image

mechanism with semantic images as input. Kim et al. [2018] gener-

ated portrait videos including head, mouth and gaze from an input

reference video. Kim et al. [2019] trained a recurrent GAN to synthe-

size style-preserving visual dubbing. Very recently, Elgharib at al.

[2020] transferred the egocentric view videos to front facing videos

using a position conditional GAN. Different from previous methods,

our approach generates photorealistic talking head animation from

speech only and runs in real-time.

3 METHOD
Overview.Given an arbitrary speech stream, our live speech portraits

approach generates photorealistic talking-head animation of the

target person in real-time (Figure 2). Our approach consists of three

stages: deep speech representation extraction, audio-to-face predic-

tion, and photorealistic face rendering. The first stage extracts the

speech representation of the input audio (Section 3.1). The represen-

tation extractor learns the high-level speech representation and is

trained in a self-supervised manner on an unlabelled speech corpus.

We then project the representations to the target person’s speech

space to improve generalization. The second stage predicts the full

motion dynamics. Two elaborate designed neural networks predict

the mouth-related motion (Section 3.2) and head pose (Section 3.3)

from the speech representations, respectively. The mouth-related

motions are represented as sparse 3D landmarks, and head poses

are represented as rigid rotation and translation. Considering that

head poses are less related to audio information than mouth-related

motions, we employ a probabilistic autoregressive model to learn

the poses conditioned on audio information and history poses. Other

facial components which have nearly no correlation to audio (e.g.,

eyes, brows, noses, etc.) are sampled from the training set. We then

compute the upper body motion from the predicted head pose. The

final stage synthesizes the photorealistic video frames from the pre-

vious predictions and a candidate image set (Section 3.4) using a

conditional image-to-image translation network. In the following,

we introduce each module in detail.

Original
Rep.

Projected
Rep.

f1

f2

f0
f4

f3

𝑤0

𝑤3

𝑤4

𝑤2

𝑤1

𝐡

መ𝐡

Fig. 3. Manifold projection. Left: For each original deep feature, we project
it to the target feature space. Right: Zoom in of the original feature (yellow),
𝑘 = 5 nearest neighbours (brown), and the reconstructed feature (red).

3.1 Deep Speech Representation Extraction
Input information, which are speech signals in our case, plays a

crucial role because it powers the entire system. As illustrated in

Section 2, people have exploited deep learning approaches, com-

monly trained in a self-supervised mechanism, to learn high-level

speaker-independent representations of speech from surface fea-

tures. These methods greatly improve state-of-the-art performance

of downstream tasks, e.g., auto speech recognition, phone classifica-

tion, and speaker verification [Chorowski et al. 2019; Liu et al. 2020;

Oord et al. 2018].

Specifically, we use the autoregressive predictive coding (APC)

model [Chung and Glass 2020] to extract structural speech repre-

sentations. The APC model predicts future surface features given

history information. In our case, we select 80-dimensional log Mel

spectrograms as speech surface features. The model is a standard

3-layer unidirectional Gated Recurrent Units (GRUs):

h𝑙 = 𝐺𝑅𝑈
(𝑙) (h𝑙−1),∀𝑙 ∈ [1, 𝐿], (1)

where h𝑙 ∈ R512 is the hidden states of each layer in GRUs. The

hidden states in the final GRU layer are our desired deep speech

representations. We add a linear layer to map the output to predict

the future log Mel spectrograms during training, and the linear layer

is dropped during testing time.

3.1.1 Manifold Projection. Different person owns diverse speaking

styles, which are considered as personalized styles. For example,

May clip exhibits large lip movements and always the ’O’ style,

Ford clip exhibits small lip movements like whispers, and Nadella
clip exhibits adhesion of upper & lower lips like lisps. Directly

applying the deep speech representation may lead to poor results

when input speech representations locate far away from the target’s

speech feature space (e.g., animate a woman by men’s voice, foreign

languages, or even songs). We perform manifold projection after

extracting the speech representations to improve generalization.

The manifold projection operation is inspired by the recent suc-

cess in face synthesis from sketches [Chen et al. 2020c], which can

be generalized to sketches far away from human faces. We apply the

locally linear embedding (LLE) assumption on the speech represen-

tation manifold: each data point and its neighbors are locally-linear

on the high-dimensional manifold [Roweis and Saul 2000].

Given an extracted speech representation h ∈ R512, we compute

the LLE reconstructed representation ĥ ∈ R512 on each dimension.

As illustrated in Figure 3, we first find the 𝐾 nearest points of h
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in a target speech representation database D ∈ R𝑁𝑠×512
by com-

puting the Euclidean distance. 𝑁𝑠 is the number of training frames.

Then, we seek a linear combination of the 𝐾 nearest neighbours to

best reconstruct h, which is equivalent to compute the barycentric

coordinates of h based on its neighbors via solving the following

minimization problem:

min | |h −
𝐾∑︁
𝑘=1

𝑤𝑘 · f𝑘 | |22, 𝑠 .𝑡 .

𝐾∑︁
𝑘=1

𝑤𝑘 = 1, (2)

where𝑤𝑘 is the barycentric weight of 𝑘-nearest neighbor f𝑘 , which
can be computed via solving a least-squares problem. 𝐾 is chosen

as 10 empirically in our experiment. At last, we obtain the projected

speech representation ĥ:

ĥ =

𝐾∑︁
𝑘=1

𝑤𝑘 · f𝑘 . (3)

Subsequently, ĥ is sent to the motion predictors in Section 3.2 and

Section 3.3 as input deep speech representations. Our experiment

results show that the manifold projection helps improve our system

generalization ability. Non-linear projection hasn’t been considered

for the complexity.

3.2 Audio to Mouth-related Motion
Predicting mouth-related motion from audio has been widely re-

searched in the past few years. People use deep learning archi-

tectures to learn a mapping from audio features to intermediate

representations, e.g., lip-related landmarks [Greenwood et al. 2018;

Zhou et al. 2020], parameters of a parametric model [Chen et al.

2019; Suwajanakorn et al. 2017; Taylor et al. 2017], 3D vertices [Cud-

eiro et al. 2019; Karras et al. 2017], or facial blendshapes [Thies

et al. 2020; Zhou et al. 2018]. In our case, we use 3D displacements

Δv𝑚 ∈ R25×3 with respect to mean positions of the target person

in object coordinates as our intermediate representations.

To model sequence dependencies, we use Long Short Term Mem-

ory (LSTM) models to learn the mapping from speech represen-

tations to mouth-related motions. Similar to [Suwajanakorn et al.

2017], we add a 𝑑 frames delay to make the model accessible to

a short future, leading to significant improvement on the quality.

We later feed the output of the LSTM network to a Multi-Layer

Perception (MLP) and finally predict the 3D displacements Δv𝑚 . In

summary, our mouth-related prediction module works as follows:

m0,m1, ...,m𝑡 = 𝐿𝑆𝑇𝑀 (ĥ0, ĥ1, ..., ĥ𝑡+𝑑 ), (4)

Δv𝑚,𝑡 = 𝑀𝐿𝑃 (m𝑡 ), (5)

where time delay 𝑑 is set to 18 frames, equal to 300 ms delay in our

experiments (60 FPS). The LSTM is stacked into three layers, and

each layer has a hidden state of size 256. The MLP decoder network

has three layers with hidden state size of 256, 512, and 75.

3.3 Probabilistic Head and Upper Body Motion Synthesis
Head pose and upper body motion are another two components

that contribute to vivid talking-head animation. For example, people

naturally swing their heads and move their bodies when talking,

aiming to express emotion and deliver attitudes to the audience. We

Conv DConv

TanhTanh 𝜎 𝜎 

Residual

SS
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k Layers

Current
Pose

SS Probabilistic Sampling

2x

Autoregression
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Conv

Relu
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Relu

Conv
2x

Input Speech Rep. Sequences

Encoded History Sampled Poses

Fig. 4. Illustration of our probabilistic head pose estimation network. This
figure demonstrates an example architecture composed of one residual
block with three layers.

first describe the method to estimate head pose and then the upper

body motion.

Head pose estimation from audio is non-trivial since little rela-

tionship exists between them. Considering the intrinsic difficulties,

which is a one-to-many mapping from audio to head pose (one can

say the same sentence in arbitrary poses), we make two assumptions

as prior knowledge.

Assumption 1. Head poses are partly related to audio information,
like expression and intonation. For example, people tend to nod heads
when expressing agreement and look up when speaking in rising into-
nation and vice versa.

Assumption 2. Current head pose partly depends on history head
poses. For example, there is a large probability that people will turn
heads back if they have turned a large angle before.

These two assumptions simplify the problem and motivate our

architecture design. To satisfy the requirements, the proposed net-

work Φ should have the ability to see the history head poses and

current audio information as conditions. Besides, instead of consid-

ering it as a regression problem and train it using Euclidean distance

loss [Zhou et al. 2020], we should model this mapping as a proba-

bilistic distribution. Recently, probabilistic models are successfully

used in motion synthesis [Henter et al. 2020] and outperform the

deterministic models. The joint probability of the head motion can

be described as follows:

𝑝 (x|ĥ) =
𝑇∏
𝑡=1

𝑝 (𝑥𝑡 |𝑥1, 𝑥2, ..., 𝑥𝑡−1, ĥ𝑡 ) (6)

where 𝑥 is the head motion and ĥ is the speech representation.

The probabilistic model we use is a multi-dimensional Gaussian

distribution. The network architecture is inspired by recent success

in conditional probabilistic generativemodeling [Oord et al. 2016a,b].
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The detailed design of the probabilistic model is illustrated in Figure

4. The model is a stack of two residual blocks with seven layers

each. Considering the long-time dependencies required to produce

natural head motion (one swing his head from left to right may lasts

for several seconds), these residual blocks use dilation convolutions

layers to capture the dependencies instead of normal convolutions

with much fewer parameters. The dilation is doubled seven times

for each layer in our architecture and then repeated twice: 1, 2, 4,

8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64. As a result, the history receptive

field size 𝐹 of our model is 255 frames, equal to 4.25 seconds in our

experiments. The output of each layer is summed up and processed

by a post-processing network (a stack of 2 relu-conv layers) to

generate the current distribution. In particular, the model outputs

the mean values 𝜇 and the standard deviations 𝜎 of the estimated

Gaussian. Then we sample in the distribution to get final rigid head

pose 𝑃 ∈ R6, composed of 3D rotation 𝑅 ∈ R3 and translation

𝑇 ∈ R3. We also tried with a Gaussian Mixture Model but found

no obvious improvement. After sampling, we encode the current

pose as input pose information for the next time step, forming an

autoregressive mechanism. In summary, the head pose estimation

can be illustrated as follows:

P𝑝𝑎𝑟𝑎,𝑡 = Φ(P𝑡−𝐹 , ...,P𝑡−1, ĥ𝑡 ), (7)

P𝑡 = 𝑆𝑎𝑚𝑝𝑙𝑒 (P𝑝𝑎𝑟𝑎,𝑡 ) . (8)

Upper Body Motion. For upper body motion estimation, an ideal

method is to build a bodymodel and estimate the parameters [Mehta

et al. 2020]. To avoid making the algorithm too complex (upper body

always lies only at the bottom part of the image), we assign the

upper body part as a billboard [Cao et al. 2016] which is shaped

by several shoulder landmarks manually defined. The initial depth

of the billboard is set as the average depth of the landmarks in

full training sequences and same for all. We translate the billboard

model with the 50% translation part 𝑇 in the predicted head motion

𝑃 in most cases as the results.

3.4 Photorealistic Image Synthesis
The last stage of our approach is to generate the photorealistic facial

renderings from previous predictions, as illustrated in Figure 2. Our

rendering network is inspired by the recent advances in synthe-

sizing photorealistic and controllable facial videos [Elgharib et al.

2020; Isola et al. 2017; Kim et al. 2018; Thies et al. 2019]. We use a

conditional image-to-image translation network as our backbone

along with adversarial training. The network takes a channel-wise

concatenation of a conditional feature map and 𝑁 = 4 candidate

images of the target person to produce photorealistic renderings.

Conditional Feature Maps. To provide the clues of the face and

the upper body, we draw a conditional feature map for each frame

from the above predictions. An example of the conditional map is

shown in Figure 5. The feature map consists of a facial part and an

upper body part. Drawing semantic regions with colors, or even

further one region, one channel brings richer information and more

drawing time. We didn’t find obvious improvements on these two al-

ternatives. Note that both the sparse facial landmarks and the upper

body billboard we predict locate in object coordinates. Therefore,

Fig. 5. An example of our conditional feature map. Different colors are used
to illustrate different semantic subsets. For example, green denotes the eyes
and brows and blue denotes the upper body line. In practical experiments,
the conditional feature map is monochrome, as shown in Figure 2.

we need to project these 3D positions to the 2D image plane via

pre-computed camera intrinsic parameters 𝐾 . The camera model

we use is a pinhole camera model and 𝐾 = [𝑓 0 𝑐𝑥 ; 0 𝑓 𝑐𝑦 ; 0 0 1],
where 𝑓 is the focal length and (𝑐𝑥 , 𝑐𝑦) is the principal point. The
consecutive 2D projected components are line-connected in a pre-

defined semantic sequence, resulting in the conditional feature map

of size 1 × 512 × 512.

Candidate Image set. Besides the conditional feature map, we

additionally input a candidate image set of the target person to

provide detailed scene and texture clues. We found that adding such

a candidate set helps the network generate consistent backgrounds

considering the changing camera motions in the training set and

relieves the pressure of the network to synthesize subtle details, like

teeth and pores. These images are automatically selected. For the

first two, we choose the 100th minimum/maximum mouth area. For

the rest, we sample x- and y-axis rotation by uniform intervals and

choose the nearest samples from intervals. Therefore, the size of the

final concatenated input image becomes 13(1 + 3 × 4) × 512 × 512.
The network is a 8-layer UNet-like [Esser et al. 2018; Han et al.

2019; Ronneberger et al. 2015] convolutional neural network with

skip connections in each resolution layer. The resolution of each

layer are (256
2
, 128

2
, 64

2
, 32

2
, 16

2
, 8

2
, 4

2
, 2

2
) and the corresponding

numbers of feature channels are (64, 128, 256, 512, 512, 512, 512,

512). Each encoder layer consists of one convolution (stride 2) and

one residual block. The symmetric decoder layer is almost the same,

except the first convolution is replaced by a nearest up-sample

operation with a scale factor of 2. Examples of our photorealistic

renderings are shown in Figure 6.

4 IMPLEMENTATION DETAILS
In this section, we describe the aspects relevant to the implementa-

tion of our approach: dataset acquisition and pre-processing (Section

4.1), loss functions (Section 4.2), training setup (Section 4.3), and

real-time animation settings (Section 4.4).

4.1 Dataset Acquisition and Pre-processing
We apply our approach to 8 different target sequences of 7 different

subjects for training and testing. These sequences span a range of

3-5 minutes. All videos are extracted at 60 frames per second (FPS)

and the synchronized audio waves are sampled at 16𝐾 Hz frequency.
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We first crop the video to keep the face at the center and then resize

to 512 × 512. All input images and output images share the same

resolution. We split videos as 80% / 20% for training and validation.

Please refer to Appendix A for more details.

We detect the 73 pre-defined facial landmarks for all videos using

an off-the-shelf tool. To provide the groundtruth of the 3D mouth

shape and head pose, we employ an optimization-based 3D face

tracking algorithm similar to [Shi et al. 2014; Thies et al. 2016]. For

camera calibration, we use a binary search to compute the focal

length 𝑓 as demonstrated in [Cao et al. 2013]. The principle point

(𝑐𝑥 , 𝑐𝑦) is set as the center of the image. Note that we do camera

calibration and 3D face tracking on the original image and compute

a transformation matrix according to the crop and resize parameters.

The upper bodymotion feature points aremanually selected once for

first frame of each sequence and tracked for the rest frames using LK

optical flow [Bouguet et al. 2001], and the OpenCV implementation

[Bradski 2000]. For more details about monocular 3D face tracking,

we recommend readers to refer to the summary paper [Zollhöfer

et al. 2018].

To train the APC speech representation extractor, we use the Man-

darin Chinese part of the Common Voice dataset [Ardila et al. 2020]

that provides unlabelled wild utterances. Specifically, The subset

contains 889 different speakers with various accents. In total, there

are about 26 hours of unlabelled utterances. We use 80-dimensional

log Mel spectrograms as surface features. The log mel spectrograms

are computed with 1/60 second frame length, 1/120 second frame-

shift, and 512-point Short-Time Fourier Transform (STFT). Although

our APC model is trained in Mandarin, we find that our system

still works well in other languages because the model learns the

high-level and semantic information. Also the manifold projection

improves the generalization ability.

4.2 Loss Functions
4.2.1 Deep Speech Representation Extraction. The training of the
APC model is fully self-supervised via predicting the surface fea-

tures 𝑛 frames ahead. Given a sequence of log mel spectrograms

(𝑥1, 𝑥2, ..., 𝑥𝑇 ), the APC model processes each element 𝑥𝑡 at time

step 𝑡 and outputs a prediction 𝑦𝑡 , generating a predicted sequence

(𝑦1, 𝑦2, ..., 𝑦𝑇 ). We optimize the model by minimizing the L1 loss

between the input sequence and the predicted as follows:

𝑇−𝑛∑︁
𝑖=1

|𝑥𝑖+𝑛 − 𝑦𝑖 |, (9)

where 𝑛 = 3 following the setting in [Chung and Glass 2020].

4.2.2 Audio to Mouth-related Motion. To learn the mapping from

audio to mouth-related motion, we minimize the 𝐿2 distance be-

tween the groundtruth mouth displacements and the predicted dis-

placements. Specifically, the loss can be written as:

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

| |Δv𝑚,𝑡 − Δv̂𝑚,𝑡 | |22, (10)

where𝑇 = 240 represents the number of consecutive frames sent to

the model at each iteration. 𝑁 = 25 is the number of the pre-defined

sparse mouth-related 3D points in our experiments.

4.2.3 Probabilistic Head Motion Synthesis. Apart from learning the

mapping from audio to mouth-related motion, we also aim to esti-

mate the target’s head pose during training. The upper body motion

can be deduced from the head pose as mentioned in Section 3.3.

Specifically, we employ an autoregressive probabilistic model to

model the head pose distribution. We train the model by minimizing

the negative log-likelihood of the pose distribution. Given a se-

quence of history head pose (𝑥𝑡−𝐹 , ..., 𝑥𝑡 ) and speech representation

h𝑡 , the probabilistic loss is:

− ln(N (x𝑡 ,h𝑡 |𝜇𝑛, 𝜎𝑛)), (11)

where x𝑡 ,h𝑡 is the input head pose and speech representation at

time 𝑡 . This loss term forces the model to output the mean values 𝜇𝑛
and standard deviations 𝜎𝑛 of the Gaussian distribution. To increase

numerical stability, we output the negative log sigma instead of

the sigma directly. Each element x𝑡 ∈ R12 in pose sequence are

composed of the current pose p𝑡 ∈ R6 and a linear velocity term

Δp𝑡 ∈ R6. Although we only use the first six dimensions of rota-

tion and translation after sampling in the distribution, we find that

adding such a velocity term could implicitly force the model to focus

on the motion speed, leading to smoother results.

4.2.4 Photorealistic Image Synthesis. Finally, we train a neural ren-

derer to synthesis photorealistic talking-head images. The training

procedure follows the adversarial training mechanism [Goodfellow

et al. 2014]. We adopt the multi-scale PatchGAN architecture [Isola

et al. 2017; Wang et al. 2018b] as the backbone of discriminator D.
The image-to-image translation network G is trained to generate

"realistic" images to fool the discriminator D, while the discrimi-

nator D is trained to tell the generated images from groundtruth

images. Specifically, we employ LSGAN loss [Mao et al. 2017] as the

adversarial loss to optimize the discriminator D:

L𝐺𝐴𝑁 (D) = (𝑟 − 1)2 + 𝑟2, (12)

where 𝑟, 𝑟 is the discriminator classification output when input

the groundtruth image𝑦 and the generated rendering𝑦, respectively.

We additionally use a color loss, a perceptual loss [Johnson et al.

2016] and a feature matching loss [Wang et al. 2018b]:

L𝐺 = L𝐺𝐴𝑁 (G) + 𝜆𝐶L𝐶 + 𝜆𝑃L𝑃 + 𝜆𝐹𝑀L𝐹𝑀 , (13)

where L𝐺𝐴𝑁 (G) = (𝑟 − 1)2 is the adversarial loss, L𝐶 is the color

loss, L𝑃 is the perceptual loss and L𝐹𝑀 is the feature matching loss.

The weights 𝜆𝐶 , 𝜆𝑃 , 𝜆𝐹𝑀 of each loss are set to (100, 10, 1) in all

our experiments empirically. The color loss is a 𝐿1 per-pixel loss to

minimize the difference from generated images 𝑦 and groundtruth

images 𝑦 : L𝐶 = | |𝑦 − 𝑦 | |1 . We tried higher weights (x10) on

mouth, yep mouth-related errors drop, but full-image errors rise.

Considering the full-image generation task, we choose equal weight.

For perceptual loss, we adopt a VGG19 network [Simonyan and

Zisserman 2014] to extract the perceptual features from 𝑦 and 𝑦 and

minimize their 𝐿1 distance:

L𝑃 =
∑︁
𝑖∈S

| |𝜙 (𝑖) (𝑦) − 𝜙 (𝑖) (𝑦) | |1, (14)

where S = {1, 6, 11, 20, 29} denotes the layers we use and 𝜙 (𝑖)

denotes the 𝑖-th layer. Finally, to improve the training speed and
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Fig. 6. A gallery of our audio-driven talking-head animation results. Given an arbitrary audio stream, our method first generates personalized facial dynamics,
head poses, and upper body motions and then synthesizes photorealistic renderings from these predictions. Please refer to the supplementary video for full
sequences. Video (at upper left corner) Obama ©Barack Obama Foundation (public domain). Video May ©UK government (Open Government Licence). Video
Nadella ©IEEE Computer Society (public domain). Video Trump ©White House (public domain). Video (at bottom right corner) Obama ©White House (public
domain).

stability, we adopt a feature matching loss:

L𝐹𝑀 =

𝐿∑︁
𝑖=1

| |𝑟 − 𝑟 | |1 (15)

where 𝐿 is the number of spatial layers in discriminator D. The
𝐿1-based feature matching loss is designed to match the statistics

of features extracted by the discriminator from 𝑦 and 𝑦.

4.3 Training Setup and Parameters
All our models are trained on PyTorch (Python) [Paszke et al. 2019]

usingAdamoptimizerwith hyper-parameters (𝛽1, 𝛽2) = (0.9, 0.999).
The learning rate is set to 10−4 and linearly decay to 10−5 in all ex-

periments. The APC model contains 4.064𝑀 parameters, the mouth-

related position predictor contains 3.064𝑀 parameters, the head

pose estimator contains 4.267𝑀 parameters and the renderer con-

tains 76.204𝑀 parameters.

We train the first three models on a Nvidia 1080Ti GPU and takes

about (11, 0.5, 5) hours in total (200, 200, 200) epochs with a batch

size of 32, respectively. The photorealistic images renderer is trained

on 4 Nvidia 1080Ti GPUs for an average of 22 hours in 60 epochs and

a batch size of 8. During testing, we select all models with minimized

validation loss.

4.4 Real-Time Animation
We implement and test our real-time animation system using C++

on a desktop PC with an Intel Core i7-9700K CPU (32 GB RAM)

and an NVIDIA GeForce RTX 2080 (8 GB RAM). The deep speech

representation extraction module takes around 2.9 ms for inference

(1.4 ms for APC model forward pass and 1.5 ms for manifold pro-

jection). Learning facial dynamics from audio representations via

3-layer LSTM and MLP networks takes around 2.5 ms. Besides, the

Audio2Mouth module leads to around 300 ms latency for obtaining

18 frames of future audio information. We then use Tensorrt to

accelerate the last two models. Specifically, the head poses estima-

tion model takes 4.4 ms and the photorealistic renderer takes 20.1

ms after acceleration. Time of memory copying between CPU and

GPU has already been included here. Therefore, the entire system

takes about 27.4 ms for inference at over 30 FPS with 300 ms latency.

Discussion. Here we discuss the run time with related work Zhou

et al. [2020] and Thies et al. [2020]. We emphasize that our system

is the first realization of an end-to-end live system for photorealistic

audio-driven talking-head animation and step further to practical

applications, considering that these papers haven’t shown an actual

live demo. Besides, Zhou et al. [2020] is not designed for live stream-

ing generation. The self-attention network [Vaswani et al. 2017] in

speaker-aware animation works as a post weighted combination

of previous landmarks predictions and is inappropriate for live ap-

plications like video conferencing, requiring a low latency. Thies

et al. [2020] will meet more difficulties. Their method is restricted

to the target video length, and therefore a sufficiently long target

video without obstruction is required, which is hard to acquire. To

generate longer frames, an additional heuristic schedule to select

proper candidate frames is needed. Also, pose-audio inconsistency

appears for the lacking control on head motion (Section 2). These

factors result in obstacles in the live implementation.

5 RESULTS
Our live speech portraits method generates personalized and photo-

realistic talking-head animation from audio input in real-time. We

recommend readers watch the supplementary video.
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Fig. 7. Our method allows generating pose controllable results. We demon-
strate results with different poses here. The number at the left of the image
denotes the frame index of the video. Pose 1 is generated by our model, and
Pose 3 is sampled from the training set. To further evaluate the head poses
controllability, we mirror the head poses 1 and 3 to generate head pose 2
and 4. Pose 5 is self-defined. Please refer to the supplementary video for full
sequences. Video May ©UK government (Open Government Licence).

Original Rep.Original Rep.

Target Rep.Target Rep.

Reconstructed Rep.Reconstructed Rep.

Fig. 8. t-SNE visualization of Manifold Projection. As shown in the legend,
original, target and reconstructed representations aremarked using different
colors.

In the following, we present the results of our approach, evaluate

the design of our method both qualitatively and quantitatively, com-

pare to the state-of-the-art techniques, and show results of a user

study. We further demonstrate the potentials on several applications,

e.g., dubbing, video conferencing and virtual avatars.

5.1 Qualitative Evaluation
Figure 6 shows a gallery of our results. Our approach allows animat-

ing target portraits driven by audio sequences while preserving the

personal talking styles. Our method produces facial dynamics, natu-

ral head poses, and upper body motions and synthesizes temporally

coherent renderings in high-fidelity, e.g., clear teeth textures. It also

successfully works on subjects with long hair, glasses, and earrings.

Fig. 9. t-SNE visualization of head pose generation. Different targets are
marked using different colors. Left: visualization of generated poses. Right:
visualization of generated poses and head poses from training corpus.
Marker solid dot denotes training corpus poses and marker star denotes
generated poses.

LSTM
(L2)

LSTM
(Probabilistic)

Ours
(w/o Hist. Poses)

Ours
(L2)

Ours
(Full)

Fig. 10. Qualitatively evaluation of head pose estimation. We compare our
model design with several alternative variants. Please refer to the sup-
plementary video for full sequences. Video Obama ©White House (public
domain).

Figure 1 and the supplementary video show examples of our real-

time animation system and results of different people driven by the

same utterance. Results prove that we preserve their own talking

styles in the training video.

Figure 7 demonstrates the pose controllability of our method. We

synthesize results with different head poses, either generated by

our system or sampled from the training set (Columns 1 and 3).

We further evaluate our model with mirrors of the previous two

poses and a self-defined pose (Columns 2, 4, and 5). Even though

these challenging poses partly lay outside the training corpus and

therefore may lead to artifacts, our system still generates correct lip

motions and temporally smooth renderings.

We analyze the effectiveness of manifold projection in Figure 8.

The operation is designed to project the original speech representa-

tions to the target speech space by minimizing the reconstruction

loss. As shown in the figure, the reconstructed features (green) are

much closer to the target speech space than the original wild fea-

tures (blue). More quantitative comparison results of the manifold

projection can be seen in our supplementary video. We found that

using manifold projection generates more accurate lip synchroniza-

tion than not using it, especially when encountering the audio of

different genders or foreign languages.

Figure 9 depicts a qualitative evaluation of the generated head

poses using t-SNE visualization. We select 8 different targets and
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Table 1. Quantitative evaluation of input time delays. Validation losses are
computed as Euclidean distance of landmarks.

Time Delay 0ms 50ms 100ms 150ms

Val Loss (mm) 5.309 5.280 5.117 5.335

Time Delay 200ms 300ms 400ms 500ms

Val Loss (mm) 5.160 4.916 5.248 5.539

denote them with different colors. In Figure 9 (left), we visualize the

generated head poses of these targets from the same input audio.

It can be seen that our predictions for one person lie in a nearby

region and are far away from different targets. We further analyze

the connections between generated poses and training poses in

Figure 9 (right). Solid dot denotes training corpus poses and star
denote our predictions. We downsample the training poses using

K-means to 30 to reduce data size. The visualization demonstrates

that our predictions locate closely to training corpus poses.

We also qualitatively evaluate the design of the head pose es-

timation module from audio. Results are shown in Figure 10. We

recommend readers to watch the supplementary video for better

visual comparisons. To confirm our proposed two prior assumptions,

here we perform an ablative study of the input, architecture, and

loss design by training and testing four alternative variants: "LSTM
(L2)" (LSTM network trained using L2 loss), "LSTM (Probabilistic)"
(LSTM network trained using probabilistic loss), "Ours (w/o Hist.
Poses)" (Our architecture without history poses input), "Ours (L2)"
(Our architecture trained using L2 loss). A quantitative evaluation

of head pose estimation can be found in Section 5.2.

The variants "LSTM (L2)" and "LSTM (Probabilistic)" generatemore

temporal jitters than other variants, which indicates that directly

using LSTM architecture may not be a good choice in our task. A

reasonable explanation is that RNN is easy to overfit on a small

dataset, which is an around 3-minute length video in our case. On

the other hand, LSTMs have a theoretically infinite receptive field

of the history information depending on the forget and memory

mechanism. Our architecture has a fixed receptive field which intu-

itively becomes more robust to long history information and will

not easily overfit.

The variant "Ours (w/o Hist. Poses)" also performs worse than our

full model. It tends to generate unchanged poses in the Obama video
and struggled poses in the woman video (see the supplementary

video). Without modeling the history poses, the model is trained to

learn a mapping from audio to the head poses solely. Therefore, the

network generates pose with the most probability of the current

audio clip, which may be far away from adjacent ones, leading to

time-incoherent results.

The variant "Ours (L2)" generates best results among all variants

but there is still room for improvement in the term of time consis-

tency and motion variation. The only difference is that this variant

replaces the probabilistic loss with the L2 distance loss. It makes the

problem a regression problem, which means the model needs to find

the deterministic position given history poses and audio informa-

tion. Therefore, the model struggles to find the best balance point

between audio and history poses, resulting in time-inconsistency

and minor motion variations. A probabilistic model is suitable to

Table 2. Quantitative evaluation of head pose prediction. We compare our
approach with alternative methods in Section 5.1 and Zhou et al. [2020]. ↓
denotes lower is better.

Methods D-L ↓ D-V ↓ D-Rot/Pos ↓
LSTM (L2) 4.9% 1.1% 6.9/12.2%

LSTM (Probabilistic) 4.9% 1.0% 6.7/11.6%

Ours (w/o Hist. Poses) 3.9% 0.9% 4.2/8.9%

Ours (L2) 4.5% 1.1% 3.7/9.2%

[Zhou et al. 2020] 4.6% 0.9% 6.1/10.1%

Ours (Full) 3.6% 0.8% 3.6/8.9%

handle these ambiguities and finally achieves the best results both

in time consistency and motion richness.

5.2 Quantitative Evaluation
Here, we perform a thorough quantitative evaluation of the proposed

method. Table 1 evaluates the importance of time latency of input

audio. Choosing a proper latency is important for a real-time system

because it greatly affects the user experience. In this experiment, we

train the audio-to-mouth network with different time delays on a 30-

minutes subset of theObamaWeekly Address dataset [Suwajanakorn
et al. 2017]. The subset was split into a training dataset (80%) and a

validation dataset (20%). Validation losses are computed as Euclidean

distance between predicted mouth-related landmarks positions and

the tracked groundtruth. As can be seen, the time delay of 300 ms (18

frames) gives minimized validation loss. Too short or too long delays

both lead to performance reduction. When the network fails to have

access to a certain range of future information (smaller than 300 ms),

it cannot model the coarticulation. Too long delays (longer than

300 ms) always cover several phonemes and introduce redundant

information. In most real-time scenarios, e.g., video conferencing,

300 ms is a tolerable latency. Therefore, we use this latency in all

experiments.

Now we perform quantitative evaluation of our head pose estima-

tion module. We compare our method with using four alternative

variants pre-mentioned in Section 5.1 as well as Zhou et al. [2020].

We created a test set composed of 6 different videos (average lasts

for 45 seconds each clip) and the speeches and videos are unseen

during training. Specifically, We evaluate these methods on the

testing set by computing the metrics D-L, D-V and D-Rot/Pos de-
fined in [Zhou et al. 2020]. D-L and D-V denote the normalized

Euclidean position and velocity difference between predictions and

the groundtruth. D-Rot/Pos denotes the rotation angle differences

and normalized translation distances. Lower is better for all these

metrics.

Table 2 reports the evaluation results. Our model obviously out-

performs other alternative variants, tallying with the subjective

evaluation in Section 5.1. In particular, we observe that the LSTM-

based variants produce higher error than other variants ((see "LSTM
(L2)" and "LSTM (Probabilistic)")). This results confirms that LSTM

is prone to overfit in the training set. Replacing the probabilistic

modeling with L2-regression generates slightly worse results (see

"Ours (L2)"). Our full method generates similar head motion with

respect to the groundtruth, confirming that we learn the distribution
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Fig. 11. Quantitative evaluation of the conditional input of the renderer.
Video May ©UK government (Open Government Licence). Video Obama
©White House (public domain).

of the target person. We also compare with Zhou et al. [2020] which

learn speaker-aware head motions. Results demonstrate that our

method outperforms their method.

Here, we quantitatively evaluate the photorealistic renderer. Re-

sults can be found in Figure 11-13. We evaluate the model on three

videos. The first three minutes of these videos are used as training

data while the rest work as the testing set unless stated otherwise.

Note that we test models with groundtruth head poses for numeri-

cal evaluation. We report the numerical errors and corresponding

standard deviation of average L1-photometric loss (range of 0-255),

Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and

deep perceptual distance (LPIPS) [Zhang et al. 2018] in Table 3. The

standard deviation indicates the temporal stability around the mean

loss - higher variance means stronger incoherence. The L1 loss and

its standard deviation are shown directly on the top-left corner of

error heat-maps. We refer readers to the supplementary video for

better visualization. A large-version generator works as a baseline

design to test with different ablative conditions.

Figure 11 and Table 3 (top) show the importance of our two

conditional input. Removing upper body motions leads to strong

shakiness especially around the neck and shoulders. It is hard for the

network to synthesize time-consistent upper body motions without

this strong location condition. Removing the candidate image set

also leads to significant performance decrease on backgrounds and

facial contours, especially when the training videos includes camera

motions. For example, Obama video in Figure 11 consists of several

different camera motions and confuses the model to learn the one-

to-many mappings. The candidate image set works as a clue to tell

Fig. 12. Quantitative evaluation of the architecture design of the renderer.
Video (Upper) Obama ©White House (public domain). Video (Lower) Obama
©Barack Obama Foundation (public domain).

Fig. 13. Quantitative evaluation of training dataset size. Video Obama
©Barack Obama Foundation (public domain). VideoMay ©UK government
(Open Government Licence).

the model what the scene is and guides the network synthesize the

right and consistent background. Besides, it also relieve the network
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Table 3. Quantitative evaluation of photorealistic renderer design. We evaluate the results of input condition (top), architecture (middle), and training dataset
size (bottom). ↓ denotes lower is better and ↑ denotes higher is better.

Target/Term/Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ × 10

Obama1

w/o U.B.M. 6.131 ± 1.841 25.364 ± 2.259 0.850 ± 0.043 0.704 ± 0.407

w/o Cand. 6.683 ± 2.507 24.964 ± 2.483 0.845 ± 0.048 0.746 ± 0.422

w/ Both 5.713 ± 1.671 26.006 ± 2.275 0.862 ± 0.038 0.698 ± 0.348

Obama2

w/o U.B.M. 7.634 ± 5.105 23.143 ± 2.758 0.843 ± 0.102 1.136 ± 1.279

w/o Cand. 4.006 ± 0.754 27.927 ± 2.228 0.917 ± 0.020 0.366 ± 0.111

w/ Both 3.993 ± 0.732 27.576 ± 2.174 0.926 ± 0.020 0.370 ± 0.103

May

w/o U.B.M. 5.957 ± 1.322 27.171 ± 1.820 0.807 ± 0.037 0.790 ± 0.260

w/o Cand. 5.577 ± 1.246 27.979 ± 1.683 0.823 ± 0.033 0.747 ± 0.280

w/ Both 5.539 ± 1.234 28.044 ± 1.782 0.823 ± 0.035 0.746 ± 0.209

Target/Term/Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ × 10

Obama1

Unet 6.540 ± 1.743 25.087 ± 2.046 0.832 ± 0.035 0.875 ± 0.395

Normal 5.782 ± 1.687 25.920 ± 2.229 0.861 ± 0.038 0.727 ± 0.346

Large 5.713 ± 1.671 26.006 ± 2.275 0.862 ± 0.038 0.698 ± 0.348

Obama2

Unet 4.155 ± 0.794 27.414 ± 2.182 0.907 ± 0.022 0.479 ± 0.124

Normal 4.010 ± 0.763 27.406 ± 2.211 0.912 ± 0.021 0.376 ± 0.106

Large 3.993 ± 0.732 27.576 ± 2.174 0.926 ± 0.020 0.370 ± 0.103

May

Unet 6.007 ± 1.709 27.528 ± 1.835 0.806 ± 0.037 1.018 ± 0.389

Normal 5.578 ± 1.694 27.924 ± 1.882 0.818 ± 0.049 0.828 ± 0.449

Large 5.539 ± 1.234 28.044 ± 1.782 0.823 ± 0.035 0.746 ± 0.209

Target/Term/Method L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ × 10

Obama1

0.5 mins 9.403 ± 3.068 22.481 ± 2.166 0.788 ± 0.042 1.421 ± 0.533

1 min 8.259 ± 2.552 23.939 ± 2.427 0.812 ± 0.046 1.233 ± 0.523

3 mins 5.713 ± 1.671 26.006 ± 2.275 0.862 ± 0.038 0.698 ± 0.348

Obama2

0.5 mins 6.941 ± 2.015 22.960 ± 2.195 0.858 ± 0.030 0.945 ± 0.382

1 min 5.285 ± 1.303 24.873 ± 2.010 0.888 ± 0.024 0.585 ± 0.239

3 mins 3.993 ± 0.732 27.576 ± 2.174 0.926 ± 0.020 0.370 ± 0.103

May

0.5 mins 9.539 ± 2.740 23.432 ± 2.087 0.739 ± 0.033 1.731 ± 0.582

1 min 7.265 ± 2.366 25.875 ± 2.086 0.739 ± 0.050 1.175 ± 0.685

3 mins 5.539 ± 1.234 28.044 ± 1.782 0.823 ± 0.035 0.746 ± 0.209

pressure to synthesize high-fidelity details since it has included

details as input.

Figure 12 and Table 3 (middle) evaluate the generator architecture

design. We compare our model with a baseline model Unet [Isola

et al. 2017] and a larger model with 2 residual blocks each layer.

We found significant performance degradation using Unet (see red

boxes in Figure 12). They fail to synthesize clear teeth, ears and

other facial details compared to other architectures. Increasing the

res-block in each layer takes over 59% more parameters (121.790M
vs 76.204M) but obtains no significant improvements on image

quality. Considering the balance of performance and efficiency, we

use normal architecture (1 Res-block) as our default architecture.

Finally we evaluate the importance of training dataset size. In

this experiment, we train the model using 0.5/1/3 minutes frames

(see Figure 13). Larger training set generates better results since it

covers more pose and expression variations (see Table 3 (bottom)),

and the best results are achieved using the full training set.

5.3 Comparisons to the State-of-the-Art
Now we compare our method with state-of-the-art audio-driven

talking-head animation techniques. All the test input audio se-

quences are unseen during training.We strongly recommend readers

watch the supplementary video for better comparisons.

Comparisons to image-based generation methods.We first compare

our approach with image-based generation methods for synthe-

sizing talking-head videos. Specially, we compare with Chen et al.

[2019], Vougioukas et al. [2019] and Zhou et al. [2020]. Figure 14

(upper the solid line) shows results driven by wild audios, and Figure

14 ( lower the solid line) shows the results driven by voices of the

target person in images. These methods are trained to generalize to

unseen faces and therefore lack personal talking styles (they tend

to generate the same lip motions for everyone) and facial details.

Chen et al. [2019] and Vougioukas et al. [2019] generate the talking

videos in a cropped and normalized face region and therefore fail

to handle head poses. Zhou et al. [2020] generate speaker-aware

talking-head videos but not the target person style. They warp both

the background and the talking-head, giving the impression that
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 Vougioukas 
et al. [2019]

 Chen et 
al. [2019]

 Zhou et 
al. [2020]

Ours

GT

 Vougioukas 
et al. [2019]

 Chen et 
al. [2019]

 Zhou et 
al. [2020]

Ours

Fig. 14. Comparison with state-of-the-art image-based generation methods. Best viewed in the supplementary video. Upper the solid line: test using wild
audio streams. Lower the solid line: test using groundtruth audio streams in the validation set. Video May ©UK government (Open Government Licence).
Video Nadella ©IEEE Computer Society (public domain). Video Obama ©Barack Obama Foundation (public domain).
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the foreground head carries the background and moves together

(see the green boxes). Moreover, the mouth of the portrait tends

to twist and the synthesized region is blurred. Compared against

these methods, our method successfully captures the talking style

of the target personal and synthesizes sharper images with higher

fidelity, e.g., wrinkles and teeth (see the red boxes). We also note

that the head pose generated by our method is different from the

groundtruth but exhibits a similar distribution in the training set.

We further compare with Chen et al. [2020a] in the supplementary

video, which generate talking faces with rhythmic head movements.

We notice that Chen et al. [2020a] do not disentangle the head mo-

tion and the background, resulting in an associated movement of

the both. Besides, our method keeps the facial details and generates

facial images with higher quality.

Comparisons to video-based editing methods. We compare our

approach against video-based editing methods. In particular, we

compare against Suwajanakorn et al. [2017] and Thies et al. [2020].

Please watch the supplementary video for the results. These two

methods both synthesize a lower face patch and blend it into the

target frame. They rely on additional facial tracking algorithm to

provide accurate and stable rigid head motions and 3D mouth loca-

tions. Our method directly generates full head renderings as well as

backgrounds. Suwajanakorn et al. [2017] synthesize high-quality

talking videos of Obama, which is trained on a huge amount of his

weekly address videos (17 hours). Neural Voice Puppetry [Thies et al.

2020] additionally trains person-specific blendshape basis using 2-3

minute videos aside from training a general model basis on around

3 hours videos. Our method generates visually comparable and

controllable results while using only around 3 minutes videos for

training. Considering the intrinsic features of video-based editing

methods, which limits the application scenarios, our approach is

more applicable to other target person. Last but not least, our system

runs in real-time.

Comparisons to model-based methods. We also compare our ap-

proach with model-based methods [Cudeiro et al. 2019; Karras et al.

2017; Taylor et al. 2017; Zhou et al. 2018]. These methods focus on

learning a 3D face mesh or rigging parameters from audio. They

usually require a 4D training corpus obtained by a high-cost vision-

based capture system or rigging parameters with artist interven-

tions, while our method uses sparse 3D landmarks as an intermedi-

ate representation and works on internet videos. Also, our method

generates photorealistic results.

5.4 User Study
We finally conduct three user studies to quantitatively evaluate

the quality of our method. We compare our results with state-of-

the-art open-source methods [Chen et al. 2019; Vougioukas et al.

2019; Zhou et al. 2020]. We prepare 20 audio clips for each method

and generate 80 video clips in total. All audio clips are wild and

unseen in the training set. These user studies are web-based, and

48 participants with computer science backgrounds finished our

questionnaire. During the study, the web page shows one video at a

time in randomized order, and the participant is asked to evaluate
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1

Scores

1.2

2.5

4.1

4.8

1.6

3.3

2.8

3.8

3.4

4.2

 Zhou et 
al. [2020]

Vougioukas 
et al. [2019]
Vougioukas 
et al. [2019]

 Chen et 
al. [2019]

Ours

Realistic? Lip-sync?
Head 

Motion?

Fig. 15. User study results for three different tasks.

Fig. 16. Applications. Our system can be applied on many applications,
e.g., dubbing, video conferencing and virtual avatars. Please refer to the
supplementary video for full sequences. Video May ©UK government (Open
Government Licence). Video Trump ©White House (public domain). Video
Nadella ©IEEE Computer Society (public domain). Video Obama ©White
House (public domain).

the video w.r.t three statements: ’The video looks realistic to me.’,

’The mouth motion is sync with the audio.’ and ’The head motion of

the portrait is natural.’ on a scale between 1 to 5 (5-strongly agree, 4-

agree, 3-neither agree nor disagree, 2-disagree, 1-strongly disagree).

Figure 15 shows the average scores of different methods on three

statements. The head pose evaluation is only conducted on Zhou

et al. [2020] since the other two methods animate the cropped face

and hardly have any pose motions.
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As can be seen, our method achieves the highest scores over three

tasks. For the first task, our method has the highest score of 4.8,

which means our results are the most photorealistic. Meanwhile,

we have the best results in terms of lip-synchronization. We believe

that is because our manifold projection works which improves the

generalization. Finally, we compare the head motion against Zhou

et al. [2020]. Our method generates more natural head motions

because we model the target-aware head motion.

5.5 Applications
Our method synthesizes photorealistic talking-head animation from

audio streams in real-time, thus having a wide range of applica-

tions, e.g., dubbing, video conferencing, and virtual avatars. We

refer readers to our supplementary video. Figure 16 demonstrates

the potential applications. On the top of the figure, we show the

audio-driven dubbing results of the target person. Compared to

video-based dubbing methods [Kim et al. 2019], our method avoids

generating implausible facial dynamics of the target person because

we model the personal characteristics.

Video conferencing is another application (see Figure 16 (b)). In

scenarios that people cannot deliver visual signals, e.g., they are

outdoor or have limited bandwidth, our method can generate high-

fidelity video frames only driven by audio in real-time.

We finally demonstrate our potentials in virtual avatars such

as virtual anchors, assistants. Our supplementary video shows a

real-time demo of virtual avatars, e.g., the portrait of Theresa May

is animated to sing a song driven by the actor’s voice. Figure 16

(c) shows results driven by the Text-to-Speech (TTS) system. The

supplementary video also includes a comparison with Zhou et al.

[2020] and Thies et al. [2020]. Our method generates more realistic

frames and more accurate lip synchronization.

6 CONCLUSION
We presented a deep learning approach for generating photoreal-

istic talking-head animation of the target person in real-time. Our

method can handle new audio clips not seen during training and

still synthesize personalized video frames. The full system is only

needed to be trained on a several-minute length video. Our pipeline

contains three stages: deep audio features extraction, facial dynam-

ics and motion generation, and photorealistic image synthesis. The

first stage includes a manifold projection on deep audio features,

which helps generalize to wild audio. In the second stage, facial

dynamics, head poses, and upper body motions are generated. An

autoregressive probabilistic head pose estimation network is trained

to learn the target actor’s pose distribution. This network led to

personalized head pose generation and avoided the potential per-

formance degradation of the subsequent neural renderer. Finally,

we generated intermediate feature maps from these predictions and

sent them with a candidate image set to an image-to-image transla-

tion network to synthesize video frames. Thorough experiments and

a user study show that our method outperforms the state-of-the-art

techniques both qualitatively and quantitatively. Our method can

be applied in many scenarios, especially the ones required to run in

real-time, like dubbing, video conferencing, and virtual avatars. We

hope this work could open a new avenue for future researches in

this field.

Limitations and Future Work. While we have demonstrated im-

pressive results of our method in a wide variety of scenarios, there

are still several limitations to our approach. Our real-time system

does not always capture well with the plosive and nasal consonants,

e.g., /p/b/m/. The reasons behind are various. First, /p/b/m/ usually

sounds in low volumes and may be ignored by the fore-end as envi-

ronmental noise. Second, our live system runs at over 30 FPS, and it

may miss these short sounds. It also fails to capture the speakings at

a very fast speed, like a quarrel scenario. Our offine results (60FPS)

are better, which partly verifies our supposition. Applying model

pruning is a promising solution to decrease the parameters and

increase the running speed. Besides, the spectrum construction we

use tends to miss those short phonemes, which can be tackled by

using pure deep features, e.g., wav2vec [Schneider et al. 2019]. The

face tracking algorithm we used is not state-of-the-art, we believe

that better reconstruction leads to better lip-sync results.

Similar to most learning-basedmethods, the style of the generated

videos is restricted to the training corpus. Our method preserves

the talking styles in training sequences (3-5 minutes) via manifold

projection, a domain transfer method to find the most similar sam-

ples. This mechanism alleviates this problem to some extent. We

believe that a complete solution is to apply a perfect audio disentan-

glement algorithm like [Qian et al. 2020] to split each components,

i.e., content, pitch, timbre and rhythm, and find the best mapping

of these components.

Emotional audio may generate unsatisfied results when the model

was trained on a neutral-style video. Our method cannot directly

control the emotion of the generated videos. Recent work [Ji et al.

2021] shows promising emotion manipulation results when train-

ing on an emotional dataset. It would be interesting to apply such

progress to our system.

Although we successfully handle the shadows and the lighting

reflections when people swing their heads, we still can not explicitly

control these parameters. Relighting techniques [Sun et al. 2019]

can be applied directly to our rendering results to control the envi-

ronment lighting. Gestures are another important component for

people to deliver expression. We are looking forward to future work

on gesture generation driven by audio.

7 ETHICAL CONSIDERATIONS
With the rapid development of ’Deepfake’ techniques, the threshold

for people to synthesize fake videos of arbitrary person is becoming

lower. In most kinds, they facilitate the movie and entertainment

industry and reduces the bandwidth of video streaming by sending

the audio signals only. However, these techniques can be misused.

Due to the fact that it’s more difficult for people to distinguish fake

videos, the algorithm may be utilized to spread misinformation or

obtain illegal profits. Our method achieves real-time photorealistic

talking-head animation and only needs to be trained on a several-

minute length video, which can be easily found on the Internet.

For non-celebrities, their faces and voices are harder to recognize

than celebrities, and therefore generating their fake videos is more

deceptive. Potential solutions like digital face forensics methods
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[Rössler et al. 2018; Rossler et al. 2019] to detect deepfakes must be

considered. We hope the public be aware of the potential risks of

the misuse of new techniques.
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A APPENDIX
In this appendix, we describe all the sequences we used in detail

(Table 4).

Table 4. List of dataset used in our experiments. VideoMay ©UK government
(Open Government Licence). Video Obama1 ©White House (public domain).
Video Obama2 ©Barack Obama Foundation (public domain). Video Nadella
©IEEE Computer Society (public domain). Video Trump ©White House (public
domain). Video Ford ©Ontario Office (public domain). VideoMcStay ©Darren
McStay (CC BY).

Video Name Length

May 4min 02s

Obama1 2min 59s

Obama2 3min 42s

Nadella 3min 9s

Actor A 3 min 45s

Trump 3min 31s

Ford 3 min 10s

McStay 4min 30s
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