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Fig.1.Semantic mapping reconstructs and segments a scene into surfaces with semantic labels. The system allows users to
place virtual content to a target surface by referring to its semantic label. (a) the system reconstructs the scene and represents
it in point clouds (b) the system segments the point clouds into semantic groups (c) the system creates an anchor point for
each surface (d) the system project the semantic label to the associated surface

Abstract—Semantic Mapping is a semantics-based interactive
system that enables intuitive virtual content placement for
projection mapping in intelligent environments. QOur semantic
mapping system embeds semantic information of the environment
to provide a user with an easy way to control and place
projected virtual items in the physical world. In contrast to
traditional projection mapping that involves manual adjustments,
this semantic mapping system enables efficient manipulation of
virtual content through inputs from users via speech or text.
To build the system, we first use a commercial depth camera for
scene reconstruction and an end-to-end deep learning framework
for semantic segmentation at the instance level. We illustrate the
system by developing a prototype for a set of proof-of-concept,
room-scale applications. The accuracy study and user study
results show that the system can provide users with accurate
semantic information for effective virtual content placement.

I. INTRODUCTION

Placement of virtual content can be a tedious task in immer-
sive environments. Matching the virtual information with its
correlated physical objects requires careful design and manual
corrections, which poses challenges for end-users when the
physical environment is uncontrolled or dynamic. For example,
within the built environment like the workplace and home,
it is not practical to manually adjust projection mapping in
adaptation to changes in real-time. Many prior works have in-
vestigated approaches for automatic virtual content placement.
For example, researchers have built a user-centric toolkit that
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recognizes user gestures for manually defining the placement
of the interface [1]. Many studies have been done on ad hoc
virtual content placement based on the user’s perspective [2],
the geometry of the physical surfaces [3], and the state of
space [4]. However, using nonverbal communication to convey
information in human computer interaction can be ambiguous,
since an action can be interpreted many different ways due to
different context such as culture and gender [5].

Beyond low-level features such as the geometry of surfaces
and users’ position, semantics, as a high-level understand-
ing of the physical environment, can play a crucial role in
virtual content placement. For example, embedding semantic
information allows users to place virtual content naturally and
intuitively. Instead of translating cognitive goals into gestures
or body movements, users can directly define the location
of virtual content by referring to the semantic information
of a physical object. With multiple modalities of interaction
techniques such as speech recognition, the ambiguity and
information loss problems among the user commands and
intentions of where to place virtual content can be solved.
Additionally, for augmented reality applications, semantics
can provide situated information for building context-aware
interactions with virtual content and environments.

To facilitate the semantic-based virtual content placement
at room-scale, we presented a semantic-based system that is



composed of three key components: 1) 3D reconstruction 2)
3D segmentation, and 3) Labeling. First, we used a com-
mercial depth camera (Microsoft Kinect V2) for dense scene
reconstruction. Based on the KinectFusion framework [6], we
obtain a 3D model of the scene represented in a dense point
cloud. Then, we use an end-to-end semantic segmentation
model to segment the captured point cloud into clusters at
the instance-level. For each cluster, we assign a geometry ID
for coplanar point clouds and use the geometry ID to unify the
semantic label of the point cloud via majority voting. Thus,
the scene is parsed into a group of surfaces with both semantic
and geometric labels. Finally, the anchor point for virtual
content placement is placed at the center of the projectable
region. Each anchor point contains the information of its
semantic label, position ,and normal. Thus, users may place
virtual content directly onto a physical surface by referring
to its semantic label, which is automatically generated by our
proposed system (Figure 1).

In summary, this paper contributes to the topic of virtual
content placement for immersive environments by:

o We built an end-to-end 3D point cloud processing pipeline
including 3D scene reconstruction, 3D semantic segmen-
tation, 3D geometric segmentation, and labeling.

 Built upon the pipeline, we created Semantic Mapping,
a system that achieves automatic instance-level projec-
tion mapping and semantic-based interaction for virtual
content placement.

o We presented a generic prototype with a proof-of-concept
application to facilitate similar application deployment
for using natural language to place digital content in the
physical world.

We believe that by embedding semantic information of the
scene, our proposed system can provide both content creators
and end-users with a high-level and intuitive tool for arranging
virtual content in the physical environment. The system can
be applicable to a wide range of room-scale applications in
projection mapping, augmented reality and mixed-reality,

II. RELATED WORK
A. Spatially Augmented Reality

Spatial augmented reality (SAR) uses projection mapping
to augment physical objects with virtual information [7]. The
concept was initially demonstrated by Raskar et al. with
applications [8] [9]. Previous works have explored SAR from
tabletop [10] to room-scale augmentations [11].

With the increasing accessibility of commercial depth sensors
such as Kinect, intensive studies have been done to inte-
grate context-awareness into interactive projection mapping.
At room-scale, the real-time information captured by depth
sensors enables the rectification of the projector’s output to
accommodate users’ perspective [3] or the physical layout of
a room [4]. At human-scale, prior works presented elegant
approaches for gesture-based input on everyday projected
surfaces. For instance, WordKit provides a system for users
to “paint” a user interface where and when it is needed [1].

OmniTouch provides a depth camera and projection system
that enables multi-touch finger interaction on arbitrary, every
day surfaces [12].

B. Virtual Content Placement

The placement of virtual content plays a crucial role in
augmented reality (AR) and projection mapping. The topic
is closely related to the problem of view management [13].
Factors such as visibility [14] and legibility [15] [16] have
largely been investigated in previous study. Context-aware
systems automatically decide when, where and how much
information to be displayed based on users’ current cognitive
load and knowledge about their task and environment [17].
Multiple works utilize features from the real world such as
point lights [18] and visual saliency [19] for adjusting the
placement of virtual content.

Geometry-based system addresses automated content place-
ment based on the geometry of physical surfaces [20]. By
detecting planes in the real world, AR system can adapt virtual
content to the target physical surfaces and integrate physical
constraints to virtual systems. For instance, SnapToReality
extracts 3D geometric constraints from real world for snap-
ping virtual content to real 3D edges and planar surfaces in
augmented reality [21]. DepthLab uses real time depth data
for building a variety of depth-based UI/UX paradigms for
augmented reality [22]. Mobile AR systems such as ARKit
and ARCore have encapsulated plane detection for building
geometry-aware augmented reality applications.

Semantics, as a high-level understanding of the physical
environment, can provide context awareness for virtual content
placement. However, to the best of our knowledge, semantic
information of the real world is limited or undetected in
prior works. A high-level semantic-based system for content
placement remains absent. In this work, we present a system
embedded with semantic information of the real world. The
system allows end-users to interact with projected virtual
content in the physical world intuitively and naturally. For
instance, semantic-based system can support natural language
interfaces that allow users to place virtual content using a
human language.

C. Scene Understanding

Scene understanding aims to analyze objects in context
with respect to the 3D structure of the scene. Most existing
research on scene understanding is based on 2D images
enabled by the success of deep convolutional neural net-
works [23] [24] [25]. Multiple prior works leverage 2D scene
understanding for building context-aware applications in AR
applications [26] [27].

With recent advances in volumetric scan fusion techniques,
it is possible to reconstruct fine-grained 3D scenes from
scans captured by a commodity depth camera [6]. In this
work, we use a depth camera to capture 3D data of the
environment and build a framework for 3D reconstruction
and semantic segmentation. 3D segmentation is the process of
decomposing 3D model into functionally meaningful regions.



Several traditional methods, such as edge-based [28],region-
based [29], and model-fitting [30] have been proposed to
group point clouds into homogeneous groups with similar
local features. With the ever-growing amount of 3D shape
databases [31] [32] and annotated RGB-D datasets [33] [34]
becoming available, the data-driven approach starts to play an
important role in 3D object recognition and has achieved im-
pressive progress [35] [36]. Built upon prior works, we present
a learning-based pipeline for acquiring semantic information
from the scene represented in point clouds.

III. METHOD

3D Reconstruction 3D Segmentation

Labeling

(a) RGB + Depth Image (e) Label Fusion
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Fig. 2. The framework of the semantic-based system consisting of three
components: 3D reconstruction, 3D segmentation and labeling. The 3D recon-
struction component translates the acquired RGB and depth data from a Kinect
sensor into point clouds. The 3D segmentation component segments point
clouds into discrete surfaces with semantic label. The labeling component
fuses geometric and semantic labels and creates anchor point for each
segmented surface.

We use a commercial RGB-D camera Kinect V2 to acquire
the depth and color information of the physical environment.
To display virtual content, we use two projectors. Projectors
and the Kinect V2 sensor are calibrated using the RoomAlive
Toolkit [37].

As depicted in Figure 2, we first obtain RGB and depth
data from a Kinect sensor. The system then automatically
translates the low-level point cloud information into high-level
semantic information through steps such as 3D reconstruction,
3D semantic segmentation, 3D geometric segmentation and
labeling. Finally, the system places an anchor point at each
segmented surface. Users can map virtual content onto a
physical surface by referring to its semantic label. We use the
Point Cloud Library in C++ for point cloud processing and
TensorFlow Library in Python for building the deep learning
architecture.

A. 3D Reconstruction

In this work, we obtain 3D reconstruction of the physi-
cal environment through dense simultaneous localization and
mapping (SLAM). Following the KinectFusion framework [6],
we use a Kinect V2 sensor to reconstruct the scene in four
steps:

1) We obtain raw depth information at each image pixel
in the image domain. To reduce noise, we applied a
bilateral filter to the raw depth map.

2) Each frame of depth images is transformed into 3D
points and integrated into a 3D volumetric data structure.

3) Like live camera localization that involves estimating
the current camera pose for each frame, we obtain
the Kinect sensor pose by the full frame model ICP
method [38]. We assume that only a small camera
motion occurs from one frame to the next, thus we
can use a fast projective data association algorithm to
obtain correspondence points and the point-plane metric
for Kinect sensor pose estimation.

4) The point cloud reconstructed contains noise and outliers
inherent due to the errors of the depth camera, we
use statistical outlier removal algorithms to remove
outliers and prepare an effective 3D model for further
processing.

B. 3D Segmentation

The 3D segmentation component consists of two steps: 3D
semantic segmentation and 3D geometric segmentation. The
first step, 3D semantic segmentation, segments point clouds
into clusters. Points in each cluster share the same semantic
label. The second step, 3D geometric segmentation, is to
further segment the point clouds into clusters based on their
geometric properties. Each cluster contains the point clouds
that are co-planar.
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Fig. 3. Simplified architecture of PointNet [35]. (C): Concatenate (M): Max-
pooling (S): Vertical stack The network samples N points within a region (in
this case, we use 0.5 m by 0.5 m) as input, through a series of multi-layer-
perceptrons the input N points are mapped into a 64 dimensional space, these
are called local point features. Mas-pooling is applied to aggregate information
from all the points resulting in a common global features, then the global
feature is concatenated with all local features, after muti-layer perceptrons,
these combined features are used to predict M output class scores.

In this work, we have trained a deep neural network
for identifying the semantic meaning of 3D point cloud
reconstructed from the depth camera. We used the PointNet
architecture [35] for training a dataset of Stanford Large Scale
3D Indoor Scenes [39] [40]. The dataset contains 6020 square
meters of indoor areas from diversified building typologies
such as offices, conference rooms and open spaces. 12 se-
mantic elements cover most commonly seen objects indoor,



such as structural elements (ceiling, floor, wall, beam, column,
window and door) and furniture (table,chair, sofa, bookcase
and board).

PointNet is a deep neural network that directly consumes
point clouds and outputs the per point semantic class labels.
To prepare the training data, we first split the captured point
cloud with area 0.5 m by 0.5 m and randomly sample 2,048
points from each block. Each selected point is represented by
its Cartesian coordinates, color information, and its normalized
coordinates to the captured scene. The 9-dimensional vectors
are mapped into high-dimensional space via Multi-Layer-
Perceptrons (MLPs). The high-dimensional local features are
then aggregated into the global feature via Max-pooling. The
global feature and the local feature are then concatenated as
the point feature. Finally, the point feature is mapped to the
output class scores via MLPs (Figure 3 ) .

After semantic segmentation, each point of the captured
scene is classified into a given semantic class. We then segment
the point cloud into parallel or shared planes based on the
geometric properties of the point cloud (Figure 4 ).

Each point cloud is characterized by its estimated normal
and normal distance from the origin [41] [42]. The normal vec-
tor of each point cloud can be estimated based on its adjacent
point clouds. For each point p;, we pick k nearest neighbors
Npand compute the corresponding covariance matrix C, which
is defined as:

,ij € Np

p is the centroid of N, . Then we estimate surface normal
by finding the smallest eigenvalue Ay and its corresponding
eigenvector vy of the covariance matrix C . Assuming Ao <
A1 < Ap , we can estimate surface variation o; by:

_/lo+/11+/12

o; is a feature for detecting edge points. When the point clouds
are distributed in a plane, o7 is small. If o; of a point is larger
than a threshold o, the point can be categorized as a point
on edges or borders.

After normal estimation, the point clouds are grouped into
surfels based on the angle between normal vectors. The angle
fbetween vectors can be estimated by:

o

6 = cos™ ! (u,v)

u and v are the normal of two points. If 6 is within the defined
angle threshold, two point clouds are grouped as parallel
surfels. Finally, for each surfel, we use the normal distances of
points from the origin to determine if the surfel shares a plane
with other parallel surfels. Similarly, by setting a threshold d;
we find clusters of co-planar surfels from parallel surfels.

In order to obtain a robust and accurate segmentation, we
used random sample consensus algorithm (RANSAC) to find
inlier surfels and remove outliers. RANSAC algorithm first
estimates a hypothesis plane based on the randomly selected

three points from coplanar surfels. Point clouds are categorized
as inliers if the distance between points and the hypothesis
plane is below a threshold. After iterative processing, we find
the plane that categorizes the maximum fraction of points as
inliers. The outlier points are removed. The inlier points are
labeled with the plane normal and each surfel is assigned a
unique geometry ID.

C. Label Fusion

(d)

Fig. 4. Steps of 3D geometric segmentation : (a) Input point clouds (b)
Estimate normal of each point (c) Cluster point clouds by normal and normal
distance from the origin (d) Result of 3D geometric segmentation

After semantic segmentation and geometric segmentation,
each point cloud is annotated with two labels — its semantic
class and geometry ID. However, due to noise in the 3D
reconstruction, the result of semantic segmentation is a com-
bination of major correct point clouds and a small fraction of
mislabeled point clouds.

We use a majority voting scheme to unify semantic labels
of point clouds that shares the same plane. First, the result of
3D geometric segmentation is used to enclose a set of point
clouds P as voters. Then we assign a representative semantic
label Lp. The representative semantic label assigned for all of
the points in Pis determined by choosing the semantic label
with the highest probability. The final semantic label Lp is
obtained by

N
L, = argmax —
le{l, ,L}
where [ indexes through semantic labels and L is the number
of semantic labels. N is the number of points in P, N; is the
number of points with the semantic label [ .

We then determine the points that are visible from given
locations of projectors based on their field of view using
frustum culling algorithm [43]. By culling points visible from
projector locations, we can determine regions in the scene that
are projectable. For each region, we set an anchor point for
virtual content at the centroid of all points within the region.
An anchor point Pt;is annotated with its Cartesian coordinates
(xi,yi,zi), normal N;, semantic label /g, and geometric label
lg,, formatted as ((x;, yi,zi), Ni.Is;. lg,) -

IV. RESULT

Based on our proposed approach, we develop a prototype
Semantics UI for end users to set up semantic-based content
placement system. Then, we demonstrate the capability of the
system using a proof-of-concept application.
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Fig. 5. The space component of Semantics UI prototype (a) the visual
representation of 3D reconstruction point cloud of the physical world and its
semantic segmentation result (b) the control panel for scanning, segmenting
and labeling surfaces (c-e) the information panel for each segmented surface:
(c) shows the default position for digital content placement of the surface
(d) shows the server port which streams digital content to be displayed (e)
provides two options for triggering the display: distance: the content will
be projected if the distance between the user and the surface is below the
set threshold (2) frustum: the content will be projected if the user’s frustum
intersects with the surface
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Fig. 6. The user component (a-b) and display component (c-d) of Semantics
UI prototype, (a) the visual representation of the tracked user, regions that
are visible to the user are highlighted (b) the panel showing the skeletal
information of the tracked user (c) the visual representation of projectable
area, regions that can be projectable are highlighted (d) the control panel for
inputting the projector’s specifications and location

A. Semantics Mapping Ul

We developed a prototype Semantics Mapping Ul ( Fig-
ure 5) for end-users and content creators to set up a semantic-
based system for projection mapping. The prototype is com-
posed of three components: space, user and display.

o The space component allows users to access the point
cloud reconstructed from the Kinect sensor. Based on
our proposed method, users can click the segmentation
button to segment the point cloud into instances and
visualize the result. Each instance contains the informa-
tion of its anchor point for virtual content placement,
semantic label and UDP port address. Users can override
the automatically generated anchor point by inputting
arbitrary coordinate information. For each anchor point,
users can define a UDP port for wireless communicating
with an associated media server. The media server stores

and streams virtual content to be displayed at the location
of its bonding anchor point.

o The user component (Figure 6 (a-b)) can be used for
tracking the information of users. The panel shows the
user’s skeletal and proxemic information. Based on the
user’s proxemic information such as position and orien-
tation, we build a 3D isovists model to imitate human
visual perception. 3D isovists model is a computational
model ensuring that the salient visual characters can be
directly visible rather than inferred indirectly [44]. We use
the head joint position, head orientation, and the field of
view of the user to cull point clouds that are visible to the
user. The visibility of point clouds is a critical information
for choosing the placement of virtual content.

« The display component stores the information of display
devices such as projectors. Users can define the location
and field of view of the projector by text input. Semantics
Mapping UI can calculate and display point clouds that
can be projectable from the projector location (Figure 6

(c-d)).

B. Example Application: Semantic-based Placement
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Fig. 7. The semantic-based placement feature parses the user’s voice
command and projects the virtual content onto the surface with the targeted
semantic label (a) the pipeline for the semantic-based placement feature (b)
the user uses speech input to places the digital content "to-do list" at the
surface with semantic label "table"(c) the user uses speech input to places the
digital content "time" at the surface with semantic label "wall"

Semantic-based placement allows users to place virtual
content onto a target surface using human language. User
can define the target surface by calling its semantic label
(Figure 7). We build the natural language interface using
Google Speech-to-Text API. The interface decomposes the
speech input from the user into a pair of action and location
for virtual content placement. For example, as depicted in
Figure 7, the user says "project to-do list to the table”, the
system interprets speech input as a command "project”, a
content "to-do list" a referent "wall". Then the system retrieves
the content "to-do list" from the media server and maps
the media server UDP sender port to the UDP receiver port
associated with the semantic label "fable". Finally, the virtual
content "fo-do list" is projected to the table at its anchor point.
In contrast to traditional projection mapping that may require
manual adjustment, the proposed semantic-based interaction
allows end-users to place virtual content using high-level
instructions directly. Moreover, since the system segments



an object into multiple projectable planar surfaces, the user
may place virtual content at a sub-surfaces of an object. For
example, the label "(chair, 0)" represents the vertical surface
of the chair and the label "(chair, 1)" represents the horizontal
surface of the chair. Users can place virtual content at the
horizontal surface of the chair by referring to its label "(chair,
1)". To help user better understand our segmented label in real
environment, we support a wake-up phrase — "Show Labels".
After detecting such wake-up phrase, our system will project
semantic labels to all recognized objects for 10 seconds.

V. EVALUATION

To evaluate the usability of the system, we conducted both
an accuracy study and user study. The accuracy study measures
the accuracy of the 3D segmentation in both quantitative and
qualitative manner. The user study evaluates the effectiveness
of semantic-based interaction for virtual content placement.

A. Model Performance

TABLE I
MODEL EVALUATION ON SELF-SCANNED POINT CLOUD

Scene Method Mean IoUOverall Accuracy
Scene 1Semantic-Only (PointNet) 66.3% 96.3%
Label Fusion 71.1% 94.4%
Scene 2Semantic-Only (PointNet) 71.3% 93.7%
Label Fusion 86.4% 96.5%
Scene 3Semantic—Only (PointNet) 46.2% 77.8%
Label Fusion 65.7% 78.3%
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Fig. 8. Qualitative model evaluation of the semantic-only segmentation
approach and the label fusion segmentation approach the point cloud of
scanned scenes.

To evaluate the performance of our system, we evaluate
and compare the accuracy of semantic-only approach and our
proposed label fusion approach using two criteria including
intersection over union (IoU) and overall accuracy. The result

can be seen in the Table I .The mean accuracy over all classes
was calculated using the following formula:

TP+TN
TP+TN+FP+FN
where TP, TN, FP, and FN are the true positive case,
true negative case, false-positive case, and false-negative case,
respectively. Mean IoU over all classes was calculated using
the following formula:

OverallAccuracy =

Zk TP;
i=1 FP+FN:+TP;

k

where TP; is the true positive and FP; is the false positive
and FN; is the false negative for class i. k is the number of
class.

We then evaluate our trained model on point clouds obtained
from workplaces and homes using a Kinect Sensor. The
ground truth for each scene is manually labeled. We compare
semantic-only approach with the label fusion approach we
adopted for the system, which uses the majority voting to unify
the semantic label of points sharing a plane. As depicted in
Figure 8, point clouds that were misclassified by the semantic-
only approach are corrected by adding plane constraints, which
means our system can produce more uniform and accurate
result on our own environment point cloud. However, point
clouds we captured in this study are majorly composed of
objects with simple geometry. We unified the semantic label
of point clouds belonging to the same plane based on the
assumption that co-planar point clouds share the same se-
mantic class. Since our goal is to identify semantic labels of
projectable surfaces, instead of recognizing semantic labels of
every items, the geometry-priortized approach we used can
well serve for projection mapping applications. This approach
might not work for scenes that contain geometrically com-
plex objects or various semantically different objects sharing
similar geometry.

MeanloU =

B. User Study

In order to evaluate the effectiveness of the semantic
mapping system, we invited 11 undergraduate and graduate
students to perform tasks with and without the system. The
user study was done remotely, we used a commercial video
conferencing software for communication.

The participants were invited to locate the virtual content by
speech input remotely. We start a video conference, and a user
on-site walks around the workplace. The remote participant
was asked to observe the user on-site and relocate projected
virtual content to the location that is visible to the user. The
task was completed in two set-ups. In the first set up, we used
a traditional projection mapping system. The participant can
only give low-level instructions such as “move up”, “move
down”, “move left” and “move right”. An operator on-site
adjusts the location of the projected content according to the
participant’s instructions. We choose to set the distance for
each movement at 50 mm to strike a balance between speed
and granularity. In the second set up, the participant tested the



semantic mapping system. With the semantic-based system,
the participant can define the location by referring to the
surface semantic label. The semantic mapping system then
parses instructions and automatically projects the content to
the target surface. The task is considered as complete if the
participant confirms the virtual content is placed at the desired
location. We conducted ten iterations of tests and recorded
completion time for each iteration. Each iteration consists
of three tasks, according to observation, the tasks performed
by the participants included remapping the virtual content
from the chair to the wall, remapping the virtual content
from the wall to the table and remapping the virtual content
from the table to the chair. We found that semantic based
mapping system (Mean = 6.98, Std = 1.22) was significantly
faster (p<.001) overall compared to the traditional projection
mapping system (Mean = 25.71, Std = 4.58).

We found significant differences in the task completion time
between the traditional projection mapping and the semantic
mapping for virtual content placement. The semantic mapping
system allows users to remap the virtual content by referring
to the target surface’s the semantic label directly. The distance
between the current and the target surface does not affect the
completion time. However, users need to move the content
incrementally without using the semantic-based system. The
relocation of virtual content is time-consuming and sensitive
to the distance of movement.

After the test, the participants were asked to take a survey
to evaluate the semantic mapping system. In the survey, the
participants were asked about four likert-scale questions: (1)
The system can improve task performance (2) The system is
useful in my daily life (3) The system is intuitive and easy
to use (4) The system meets your expectation. Each question
can be rated from 1 (strongly disagree) to 7 (strongly agree)
with a step size of 1.

This system can
improve task
performance

O = N W s o N

This system is useful in This system is intuitive This system meets my
my daily life and easy to use expectation

m Semantic Mapping  m Projection mapping system without semantic information
Fig. 9. Results of likert-scale survey questions

As depicted in Figure 9 , all four questions got positive
results from our participants. More specifically, all participants
agreed that our system can improve their task performance
(Mean: 5.91, Std: 0.71). More than half of the participants
believe our system is useful in their daily life (Mean: 4.55,
Std: 0.52). 9 out of 11 participants agreed that our system
is intuitive and easy to use (Mean: 5.10, Std: 0.70). And all
participants agreed that the performance of our system met
their expectation (Mean: 5.55, Std: 0.52). By comparing with

speech-input projection system without semantic information,
our system is significantly better from all four perspectives (p
< 0.001 for all four questions). Also, according to the user’s
feedback, the semantic labels created by the system are similar
to the "keyboard shortcuts" that efficiently map an instruction
to an action.

VI. CONCLUSION AND FUTURE WORK

We have presented a semantic-based approach to virtual
content placement for immersive environments. We developed
a system Semantics UI that automatically reconstructs a scene
and segments it into surfaces with semantic labels. Enabled
by the system, users can directly place virtual content onto
a physical surface by referring to its semantic label. We
implement a prototype to demonstrate a framework consisting
of three components, 3D reconstruction, 3D segmentation
,and labeling. The prototype supports applications that allow
users to interact with virtual content using natural language.
To test the usability, we evaluated the system’s accuracy
and conducted a user study. According to the test results,
the semantic-based system can provide users with efficient
approaches to interact with virtual content in the real world.
We believe that our proposed system can be applied to a wide
range of applications in immersive environments, augmented
reality and mixed reality. The system that segments scenes
into surfaces with semantic labels can provide opportunities
for natural and intuitive interaction and novel interaction
techniques customized to the properties of objects.

For the next step, we aim at designing a more computation-
ally efficient semantic segmentation algorithm and migrating
the system to mobile devices. Alternative to direct point
cloud segmentation, 2D scene segmentation model such as
Faster R-CNN [45] and Mask R-CNN [46] can solve instance
segmentation in 2D images. Semantic label obtained from 2D
image can be associated with the point cloud reconstructed
from correlated RGB images and depth images. By integrating
3D scene understanding and segmentation in mobile device
applications, we can potentially use the physical world as a
shared canvas for cross-device collaborations and enable users
to interact with digital contents in immersive environments
using natural language.
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