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Figure 1: OmniQuery is able to answer complex personal questions (a) on individuals’ captured memories (b), such as captured
photos, saved screenshots, and recorded videos. It augments the captured memories by identifying and integrating contextual
information scattered across multiple interconnected memories (c). OmniQuery then uses this information to retrieve relevant
memories and leverages an LLM to generate a comprehensive answer with reference memories (d).

Abstract
People often capture memories through photos, screenshots, and
videos. While existing AI-based tools enable querying this data
using natural language, they only support retrieving individual
pieces of information like certain objects in photos, and struggle
with answering more complex queries that involve interpreting
interconnected memories like sequential events. We conducted a
one-month diary study to collect realistic user queries and gen-
erated a taxonomy of necessary contextual information for inte-
grating with captured memories. We then introduce OmniQuery,
a novel system that is able to answer complex personal memory-
related questions that require extracting and inferring contextual
information. OmniQuery augments individual captured memories
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through integrating scattered contextual information from multiple
interconnected memories. Given a question, OmniQuery retrieves
relevant augmented memories and uses a large language model
(LLM) to generate answers with references. In human evaluations,
we show the effectiveness of OmniQuery with an accuracy of 71.5%,
outperforming a conventional RAG system by winning or tying for
74.5% of the time.
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1 INTRODUCTION
People often record their everyday life by taking photos, screen-
shots, and videos for saving important information, documenting
special occasions, or simply capturing a funny moment [39]. These
recorded instances, referred to as captured memories, collectively
represent subsets of an individual’s episodic memories [61], a type of
long-term memory that contains both specific past experiences and
associated contextual details. These episodic memories are essential
for answering higher-level memory-related personal questions like
"What social events did I attend during CHI 2024?" (Figure 1a). Being
able to do so could help users reflect on past experiences and make
informed decisions in daily tasks.

However, these raw captured memories by themselves are insuf-
ficient to answer personal questions, as they lack contextual details
that are typically implicit and scattered across multiple pieces of
data. As shown in Figure 1b, memories of attending parties dur-
ing CHI 2024 are not explicitly annotated as occurring during the
event. Answering such personal questions requires extracting and
integrating contextual information not contained within a single
captured instance. For example, by integrating multiple memo-
ries that mention “CHI 2024” in their content and extracting their
metadata, it is possible to determine when the users attended the
conference and connect related social events memories from that
period to CHI 2024 (Figure 1c), enabling the answering of the query
(Figure 1d).

Advancements in AI have enable question answering (QA) on
long documents [4, 63], knowledge graph [30, 68], multimodal
databases [13, 59], and egocentric videos [29, 47]. These methods
typically rely on data-driven approaches to train powerful mod-
els for the target task. However, the private nature of captured
memories makes it difficult to curate large datasets, posing chal-
lenges for training models specifically for QA on personal data.
Recent LLM-based work has adopted retrieval augmented genera-
tion (RAG) workflows to handle external databases without specific
training [37]. However, such methods depend on explicit connec-
tions between queries and relevant external data [17]. In contrast,
captured memories are often unstructured and lack contextual an-
notations, making it difficult to establish explicit links between
queries and scattered memories.

To facilitate QA on personal captured memories, we propose
OmniQuery, a novel approach designed to robustly and compre-
hensively answer users’ queries on their captured memories. Omni-
Query has two key components: (i) a question-agnostic pipeline to
augment captured memories with contextual information extracted
from other related memories to produce context-augmented mem-
ories, and (ii) a natural language QA system that retrieves these
processedmemories and generates comprehensive answers with ref-
erenced captured memories as evidence. The design of OmniQuery
is informed by a taxonomy of contextual information that we gener-
ated from a one-month diary study with 29 participants. Specifically,
we collected and analyzed 299 user queries to identify three types
of personal questions (direct content queries, contextual filters,

and hybrid queries) and three categories of contextual informa-
tion (atomic context, composite context, and semantic knowledge).
For (ii) , OmniQuery employs a retrieval-augmented architecture:
given a user input query, it augments the query via a rewriting
strategy, retrieves related memories from the augmented data, and
generates the final answer with referenced memory instances via
an LLM.

To evaluate OmniQuery, we conducted a user evaluation with
10 participants against a generic RAG-based baseline. The par-
ticipants tested queries both logged during the diary study and
generated during the evaluation session on a subset of their own
captured memories. For each tested query, participants rated the
user perceived correctness and completeness of the answers gener-
ated by both systems in a blinded manner. The results show that
OmniQuery effectively answers different types of queries on users’
personal memories, outperforming the baseline with higher accu-
racy (71.5%, exceeding the baseline by 27.6%) and winning or tying
74.5% of the time in direct comparisons.

In summary, we contribute:
• A taxonomy of contextual information for augmenting captured
memories, derived from queries collected in a one-month diary
study with 29 participants.

• A taxonomy-based pipeline of augmenting captured memories
that leverages temporal-based reasoning to extract and infer
missing contextual information from other related memories.

• The design and implementation of an end-to-end taxonomy-
informed system for personal QA1 .

• Auser evaluation of OmniQuery against a baseline system, demon-
strating OmniQuery’s effectiveness with 71.5% accuracy and out-
performing the baseline (winning or tying 74.5% of the time).

2 Related Work
2.1 Personal Memory Augmentation
A large body of work in human-computer interaction (HCI) has
explored how to augment users’ memories. This includes devel-
oping reminder tools for elderlies or people with memory impair-
ments [8, 33, 34, 56], providing proactive support in daily tasks [11,
72], or manipulating users’ memory focus in extended reality [5].
These works typically focus on the “capturing” stage of the memory
augmentation, where researchers develop wearable devices that
continuously capture data using designated sensors, which record
various modalities such as videos [16, 26, 48], audios [25, 62], or
bio-signals [10], to augment the memory database. For example,
recent work such as Memoro developed a wearable, audio-based
device that continuously records users’ conversations and enables
memory suggestions in real-time, either through explicit queries or
query-less contextual cues [72]. Differently, OmniQuery focuses on
the “post-capturing” stage, utilizing already-existing memory data
(e.g., photos and videos users have already captured). It addresses
challenges in processing, annotating, and augmenting captured
memories with contextual information.

Prior work in natural language processing (NLP), computer vi-
sion (CV), and information retrieval (IR) has studied methods of
augmenting people’s memory. Perhaps the most related is QA on

1OmniQuery is open-source at: https://github.com/ljhnick/omniquery
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egocentric videos, which are also a form of personal data. Represen-
tative tasks include episodic memory retrieval [18, 23, 24], where
the system, given a long egocentric video and a query, localizes
the answer within the video. However, these datasets differ from
the captured data targeted by OmniQuery. The main challenge in
egocentric videos is filtering through large, often noisy data, us-
ing data-driven approaches to train models for feature extraction.
In contrast, captured memories represent a smaller, intentionally
collected dataset, where the challenge lies in integrating scattered
contextual information across multiple implicitly related memories.
Therefore, OmniQuery employs a taxonomy-based method to aug-
ment existing data without the need for specific model training,
improving QA performance.

2.2 Multimodal Question Answering
Over time, natural language QA research has shifted to more com-
plex settings, including QA across different modalities (e.g., im-
ages [2, 22], videos [45, 66, 70], tables [71] or knowledge graph [31,
69]), QA on large datasets [12, 37] and tasks that require multi-hop
reasoning [49, 67]. Recent advancements in large language mod-
els (LLMs) and multimodal foundation models (e.g., [41–43]) have
enabled improved reasoning and answer generation over large,
multimodal datasets. This is similar to OmniQuery’s use case as
answering personal questions requires handling large amounts of
captured memories and performing complex reasoning. Prior work
has used retrieval-augmented generation (RAG) workflow [37],
which retrieves relevant information from external datasets based
on a query and then generates output using the retrieved results.
For example, MuRAG leverages RAG to answer open questions
via retrieving related information from databases of images and
text [13]. VideoAgent leverages structured memories processed
from long videos to accomplish video understanding tasks [19].
However, these methods rely on datasets already rich in context
(e.g., Wikipedia2) and improvements are often achieved by design-
ing new query augmentation [9] and retrieval workflows such as
Self-RAG [3] and tree-based retrieval [54].

More recently, GraphRAG introduced a data augmentation ap-
proach that extracts a knowledge graph from raw data to tackle
tasks requiring higher-level understanding, such as query-focused
summarization [17]. While we do not explicitly employ a graph data
structure in OmniQuery, we adopt GraphRAG’s structured, hierar-
chical approach for RAG-based tasks and extend it with taxonomy-
based augmentation informed by insights from a diary study to
enhance retrieval results on personal captured memories. Finally,
when it comes to QA system design, Jim Gray proposed the “20
queries” heuristic that optimizes for answering a core set of ques-
tions to address the long tail distribution of potential queries [58].
We adopt the same design principle and replace the specific rules
with our contextual information taxonomy.

2.3 Applications Utilizing Contextual
Information

Contextual information has long been important in HCI research
from early mixed-initiative systems [28] to recent agentic work-
flows [32]. Over the past few years, there has been a surge in the
2https://www.wikipedia.org/

usage of AI and LLMs in the HCI community to extract contex-
tual information from processing raw multimodal information. For
example, Li et al. studied how visually impaired people cook and
emphasized the importance of conveying contextual information
to users through multimodal models [38]. Additionally, Human I/O
leverages egocentric perceptions of users and detect situational im-
pairments through reasoning on the multimodal sensing data [44].
GazePointAR develops a context-aware voice assistant to disam-
biguate users’ intent when interacting with real-world informa-
tion [36]. OmniActions categorizes digital follow-up actions on
real-world information and provides proactive action prediction
based on perceived context [39]. These system utilized off-the-shelf
multimodal models to process raw sensory data and leverage the
reasoning capabilities of LLMs to infer the semantic context. Om-
niQuery builds on this approach by applying these AI techniques
to extract and integrate semantic context scattered across various
unstructured, raw captured memories. This augmentation enhances
users’ memory databases, enabling them to answer personal ques-
tions about their memories through natural language queries.

3 DIARY STUDY: UNDERSTANDING USER
QUERIES

While single captured memory often lacks essential contextual
information, OmniQuery proposes to augment such memories by
extracting and inferring semantic context from other explicitly
or implicitly related memories. To understand how to effectively
augment captured memories, we need to answer the following
research question:

RQ: What contextual information is essential to integrate with
captured memory instances to ensure accurate retrieval in
response to user queries?

This question is important as “context” is a broad term, and thus
the focus should be on categorizing and identifying the most effec-
tive contextual information that enables accurate and meaningful
responses to the types of queries users generate when reflecting on
past experiences.

3.1 Method
To answer the research question above, we conducted a diary study,
a methodology that enables participants to log data whenever need
arose [57]. Specifically, we adopted the snippet-based technique
proposed by Brandt et al. [6]. We asked participants to log queries
on their past memories only when they had real intent under a
genuine context, rather than brainstorming potential questions
they might ask to retrieve specific past memories. This approach
enabled us to collect spontaneous, authentic queries that users have
in real-world scenarios.

We collect the data including: (i) the queries participants would
use to retrieve or ask about their past memories, (ii) the reasons and
contexts of these queries (e.g., wanting to show a past experience
while chatting with a friend) and (iii) (optional) whether they were
able to retrieve the corresponding memories from their album, and
if so, how they did it (e.g., by scrolling through the photo album).
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3.2 Participants
32 participants (14 male, 17 female, and one non-binary) were ini-
tially recruited through an online RSVP form distributed via the X
platform3. Participants came from North America and Asia. 11 par-
ticipants reported using Android devices, while the remainder used
iOS devices in their daily life. Additionally, 16 participants reported
actively logging their daily lives, 13 regularly logged important
events and memorable experiences, two logged only essential infor-
mation, and one seldom logged their lives. While participants were
compensated based on their participation ($50 for full participation),
they were not required to log a specific number queries each day
or over the entire study period. This approach was intentional, as
we did not want to require them to generating queries artificially.

3.3 Data Summary
During the diary study, one participant opted out during the first
week, and two participants did not log any queries. Of the remaining
participants, seven stopped logging after the first week. The rest
remained active until the end of the study. As a result, we collected
a total of 299 queries. On average, each participant contributed
10.27 queries (SD = 6.09). The highest number of queries from a
single participant was 25 and the lowest was 3.

From the collected queries, we identified three types of query:
(1) direct content queries (75 queries), (2) context-based filters
(28 queries), and (3) hybrid queries (191 queries). The remain-
ing five queries fell outside of these categories as participants at-
tempted non-memory-related tasks like“Mark yesterday pictures
as favorites”.

Direct content queries: These queries aim to get direct answers
that can be retrieved by searching for memories via description
(e.g., “skateboarding in a tie-dye shirt”) or rely on information ex-
plicitly contained within a single captured instance (e.g., “What is
my driver’s license number?”). This type of query does not require
additional context not contained in a single captured memory.

Contextual filters: These queries focus on retrieving memories
based on specific contexts, such as time, location, or event. For
example, a query like “All the photos in Hawaii” might only require
filtering based on metadata like location. However, for more com-
plex queries such as “All the photos from my graduation ceremony”,
it does require a deeper synthesis of multiple interconnected mem-
ories to reconstruct the context surrounding the event.

Hybrid queries: These queries are more complex, combining
both direct content queries and contextual filters. For example, a
participant asked “Which meat did I order the last time I came to
this Japanese BBQ restaurant?” Answering such a query typically
requires amulti-hop process: (1) filter all capturedmemories under
the specific context (e.g., dining in this Japanese restaurant) and (2)
analyze the filtered data to generate the final result.

3.4 Analysis
Inspired by the psychological memory theory [61], our data sum-
mary indicates that 74.4% of the queries (contextual filters + hybrid
queries) require more than just querying the direct content. The

3https://x.com/

Figure 2: Number of appearances of each types of context
(atomic and composite) in the logged queries. Note that a
query may contain multiple types of categories, such as
“What boba tea did I drink last week?”

complexity in these queries require integration of contextual infor-
mation in captured memories for accurate processing and filtering.
Therefore, we take a step further to build a taxonomy of contextual
information in user queries to inform the design of OmniQuery.

To identify this essential contextual information, two researchers
on the team independently analyzed the logged queries. They coded,
filtered, and categorized the types of context required to filter cap-
tured memories and better answer the queries. Their results were
compared, and discrepancies in categorizations, hierarchy, naming,
and granularity were discussed and resolved.

4 TAXONOMY OF CONTEXTUAL
INFORMATION

In this section, we present the taxonomy built from analyzing user
queries. We identified three key types of contextual information
that can be integrated with captured memories: (1) atomic context,
(2) composite context, and (3) semantic knowledge.

4.1 Atomic Context
Atomic context refers to contextual information typically obtainable
from a single captured memory. This includes data directly from
metadata, sensed from visual and auditory content, or inferred from
the content itself. Table 1 shows the seven types of atomic contexts
categorized from the queries. Among them, temporal information
and geographical info can be directly obtained from the memory
media’s metadata. People and visual elements typically require fa-
cial recognition or other vision models for detection. Environment,
activity, and emotion are more implicit and require reasoning based
on the content (e.g., a photo of a menu may suggest the person is
in a restaurant). The number of appearances of each category is
shown in Figure 2.

4.2 Composite Context
Composite context is how people remember and refer to past expe-
riences, such as "Who did I ski with in the lab retreat last year?"
These contexts can range from significant events like a wedding or
a conference trip to smaller incidents like hanging out with a friend
or a day trip to Seattle. Specifically, composite context is defined
as a combination of multiple atomic contexts. For example,
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Table 1: Categorization and examples of atomic and composite context

Category Definition Exemplar queries refers to contextual cues

Atomic context

Temporal info Specific time period or particular time of the day “What boba tea did I drink last week?”
“What is my routine in the morning?”

Geographical info Location data such as city names or venue details “How many churches did I visit in Barcelona?”

People Individuals present in the captured memories “Find the photo of me and my grandpa last year.”

Visual elements
Other directly sensible elements, including animals,

physical objects, or specific visual features
“My photo with short hair last year.”
“Photo of my dog when he was a puppy.”

Environment Inferred environment based on the content “Gym selfies from last year.”

Activities Actions or activities inferred from the content “How many cardio session did I complete last month?”

Emotion Subjective emotion or emotional cues “My happiest moment last year”

Composite context

- Combination of multiple atomic contexts “Who did I ski with in the lab retreat last year”

the composite context “lab retreat” encompasses atomic contexts
including “February, 2024” (temporal), “Lake Tahoe, California” (ge-
ographical), and “hanging out with labmates” (activity).

While atomic context is typically available within a single cap-
tured memory, composite context requires integrating multiple
memories to understand the connection between them. Since an
individual’s captured memories are linear on the timeline, memo-
ries related to a specific event tend to cluster closely together. We
leveraged this temporal proximity to identify and extract various
composite contexts from the raw captured memories. For a detailed
discussion of this approach, please refer to Section 5.2.

4.3 Semantic Knowledge
In psychology theories, semantic knowledge refers to the general
world knowledge that humans accumulate over time [50, 61], dis-
tinct from episodic memories that are tied to specific experiences
and events. Similarly, we can generate semantic knowledge from a
user’s captured memories, providing broader insights of the user’s
past experiences. For example, patterns like “Jason has a habit of
going to the gym 3-4 times a week” can be inferred from multiple
captured memories. Such patterns are helpful in answering queries
that not necessarily require specific knowledge such as “How often
do I go to the gym in April?”

5 OMNIQUERY: AUGMENTING CAPTURED
MEMORIES

Informed by the generated taxonomy, OmniQuery employs aquery-
agnostic preprocessing pipeline to augment existing capturedmem-
ories. The pipeline extracts scattered contextual information from
interconnected captured memories, synthesizes it, and augment
each memory with the enhanced context. Specifically, the aug-
mentation pipeline involves three steps (as shown in Figure 3):
(1) structuring individual captured memories via processing their

content and annotating with atomic contexts, (2) identifying and
synthesizing composite contexts from multiple captured memories
using sliding windows, and (3) inferring semantic knowledge from
multiple captured memories and the identified composite contexts.

5.1 Step 1: Structuring Individual Captured
Memories

Raw captured memories are often unstructured and lack contextual
annotation [55]. In this step, OmniQuery structures each captured
memory, making it easier to analyze and extract information. Fig-
ure 4 shows an example of structuring an single captured memory,
which involves two key parts: (1) processing and understanding
the content of the memory and (2) annotating the memory with
atomic contexts.

Processing content. Content of a captured memory includes
an overall description of the memory as caption, visible text in the
image, and transcribed speech (for videos, not shown in Figure 4).
Specifically, OmniQuery leverages multimodal models to process
and generate image captions, performs optical character recognition
(OCR) to recognize visible texts, and uses audio-to-text models to
transcribe speech.

Annotating atomic contexts. With the content processed, Om-
niQuery annotates each captured memory with each type of atomic
context. As shown in Figure 4b, OmniQuery extracts the temporal
and geographical information from the metadata and uses multi-
modal models to detect people and other visual elements. Then
OmniQuery synthesizes the processed information and infers the
environment and activities. For example, based on a photo of a sign
displaying conference Wi-Fi details, OmniQuery infers that the
user is likely attending a conference (activity) and is at the confer-
ence venue (environment). Note that due to the subjective nature
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Semantic Knowledge
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Figure 3: Augmenting captured memories involves three steps: (1) structuring memories by processing content and annotating
with atomic contexts; (2) identifying composite context through sliding windows; (3) inferring semantic knowledge from the
structured memories and identified contexts.

of emotions that often requires user input, emotion inference is
excluded from the current implementation.

5.1.1 Indexing. After each captured memory is structured, it is
indexed and stored in a database. Additionally, the annotations in
textual format are encoded into text embeddings to enable vector-
based search during the retrieval process. In the database, each data
entry corresponds to a captured memory with both the original
media (e.g., photo, video), its structured annotations in natural
language, and text embeddings.

5.2 Step 2: Identifying Composite Context
As captured memories are recorded in a linear manner along a
personal timeline, those interconnected through semantic contexts
often cluster closely together. For example, memories related to CHI
2024 are likely to occur during the event itself. Taking advantage
of this temporal proximity, OmniQuery adopts a sliding window
approach to analyze potentially interconnected memories scattered
in segments for composite context identification.

As shown in Figure 5a, a static window size of seven days is
used in our current implementation. The inference is performed via
an LLM, in which the input is the structured annotations of these
memories and the output is the identified composite contexts along
with their start and end dates and the associated captured memories
(Figure 5b). To account for cases where composite contexts are split
in half, we use a step size (4 days in the current setup) smaller
than the window size, allowing for overlap and comprehensive
processing. For longer composite contexts (e.g., lasting more than
two weeks), each segment of the context is identified separately
within the sliding windows and thenmerged into a single composite
context. Additionally, any duplicated composite contexts caused
by the overlap between sliding windows are also merged to avoid
redundancy (Figure 5c). Note that we determined the window size
heuristically. A longer sliding window can better capture extended

events or patterns, while it may underperform on shorter contexts
due to redundant information. One way to optimize is to make
the size dynamic, adjusting it based on the density of activities in
a given period. This approach would require a fixed dataset for
experiments. We further discuss this in Section 9.1.

Specifically, as opposed to including detailed predefined cate-
gories (as with atomic contexts) in the prompt for LLMs, we adopt
the few-shot prompting technique [7], providing examples of com-
posite contexts summarized from the collected questions in the
prompt. For the detailed prompt, please refer to Appendix A.1.

Explicitly mentioned contexts. Some composite contexts are ex-
plicitlymentioned in the capturedmemories. For example, a screen-
shot of a flyer may reference the upcoming "CHI 2024" event hap-
pening next month, or a transcribed conversation might discuss a
"Hawaii trip" that took place the previous year. We leverage LLMs’
pretrained world knowledge to differentiate between atomic con-
texts and composite contexts. For example, “a workout session” is
identified as an activity (atomic context) because, based on world
knowledge, it is more likely to refer to this activity alone. In con-
trast, “CHI 2024” is recognized as a composite context, as it likely
involves multiple interconnected atomic contexts. Such identified
composite contexts are either merged with an existing composite
context (e.g., if "CHI 2024" has already been identified) or directly
added as a new composite context if it is unique.

5.3 Step 3: Inferring Semantic Knowledge
Different from composite contexts, semantic knowledge focuses on
high-level general knowledge rather than specific memory details.
In the scenarios of personal memory, semantic knowledge refers
to personalized knowledge distilled from an individual’s past, as
opposed to general knowledge (e.g., “the capital of France is Paris.”).
For example, if a person’s captured memories contain photos of
attending CHI 2024, the distilled semantic knowledge might be,
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Figure 4: An example of structuring an individual captured memory (a photo of the Wi-Fi details of CHI 2024 conference).
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I was at the German HCI party.

I attended a conference in honolulu.
I was at the German HCI party and a
party in a bar.

Merge and update

I attended CHI 2024 in Honolulu in May. I was at the German HCI party and a party at Maui
Brewing Company during CHI

Party in a bar, Date: 5/16
Memory ID: 5

German HCI Party, Date: 5/15
Memory ID: 3

CHI 2024 trip in Honolulu, Date: 5/13-5/16
Memory ID: 1,2,3,4,5

Composite context and
semantic knowledge

identi ed in window 1

Composite context and
semantic knowledge
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c
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Figure 5: An example of using sliding windows to identify composite contexts and infer semantic knowledge: (a) two consecutive
sliding windows; (b) composite contexts and semantic knowledge generated in each window; (c) merging results of the windows.

"The person attended the CHI conference in Honolulu in 2024."
Additionally, semantic knowledge goes beyond summarizing past
events. It also encompasses inferred patterns and facts about the
individual’s behavior or preferences. For example, a chat message
mentioning Jason’s birthday could infer that "Jason’s birthday is on
[SPECIFIC DATE]." Similarly, analyzing multiple grocery shopping
receipts that consistently include lactose-free milk could lead to
the inference that the user is possibly lactose intolerant. We would
like to note that, while inspired by human semantic knowledge
as defined in psychology [61], the semantic knowledge referenced
here is slightly different. In OmniQuery’s setting, the semantic
knowledge is objective and derived solely from the content of the
memories. In contrast, human semantic knowledge is more implicit,

containing broader associations and longer-term effects that might
go beyond just the observable data.

Semantic knowledge is inferred in each sliding window, while
also taking into account the identified composite contexts (in Step 2)
to gain higher-level understandings of the user’s past and general-
ized information (Figure 5b bottom). The output is a list of inferred
declarative semantic knowledge independent from specific memo-
ries. The instructions provided to the model are specifically tailored
to guide the inference process toward overarching patterns and
trends rather than specific event details. The detailed prompt for
identifying semantic knowledge can be also found in Appendix A.2.
Each inferred entry of semantic knowledge is either merged with
existing entries or added to the knowledge list if new.
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5.4 Implementation Details
To deduplicate images and videos as people tend to capture similar
content multiple times, we use CLIP [53] to encode images (or the
first frame of videos) into embeddings, calculate the similarities
between images, and merge those with the similarity above 0.85.
We use the Google Cloud Vision API4 for OCR to detect text in
images and OpenAI’s Whisper model5 for audio-to-text conver-
sion. Note that Whipser is known for hallucination when there
is no speech in the audio, thus we applied further data cleaning
to validate the transcribed result using OpenAI’s GPT-4o-mini.
For other visual processing, We use GPT-4o handles multimodal
sensing, including identifying people and visual elements in im-
ages and generating scene descriptions. For video processing, as
a proof-of-concept, we consider only the first 10 seconds of each
video, sampling 10 frames to be analyzed by GPT-4o for content
understanding. Text is encoded into embeddings using OpenAI’s
text-embedding-3-small model. Currently, we utilize a custom
vector database and matrix-based similarity search implemented
with NumPy in Python. However, for real-world applications, more
advanced vector databases (e.g., Pinecone6) would be necessary to
handle larger volumes of personal data.

6 OMNIQUERY: QUESTION-ANSWERING
SYSTEM

With captured memories augmented with contextual information,
OmniQuery adopts a RAG architecture for the question answering
system. RAG-based systems are effective in handling large datasets
and mitigating hallucination issues by retrieving relevant content
and grounding the generated results in this retrieved information.
This approach ensures that the output is both relevant and accurate,
leveraging specific data rather than relying solely on the model’s
internal knowledge. This approach is chosen because, on average,
personal captured memories often exceed 30,000 photos and videos
(as reported by participants in our diary study), which exceeds the
limit of most foundation models nowadays.

As shown in Figure 6, given an input query, OmniQuery first ap-
plies a taxonomy-based augmentation of the query by disambiguat-
ing and decomposing it into specific contextual elements (Figure 6a).
Then, it retrieves the relevant captured memories from the struc-
tured captured memories and the composite contexts, along with
related knowledge from the list of semantic knowledge (Figure 6b).
The retrieved memories and knowledge, along with the augmented
query, are then sent to an LLM to generate a comprehensive answer
(Figure 6c). We discuss detailed implementations of each step below.

6.1 Taxonomy-Based Query Augmentation
As mentioned in Section 3.3, most user queries tend to be hybrid
in nature or require contextual information. This means that di-
rectly searching based solely on the content of captured memories
often results in an incomplete or insufficient retrieval of relevant
memories. To enhance the retrieval process, OmniQuery adopts
the query refinement approach [9] to augment the queries. This

4https://cloud.google.com/vision/docs/ocr
5https://github.com/openai/whisper
6https://www.pinecone.io/

query augmentation process is also informed by the taxonomy of
contextual information and it involves
(1) Rewriting the query to declarative format to improve search

accuracy of vector-based similarity matching;
(2) Decomposing the query to extract necessary contextual fil-

ters, such as time, location, or events, which are grounded in
the taxonomy. Note that only explicitly mentioned temporal
contexts like “... last week” will be recognized temporal filters.
Phrases like “... during CHI 2024” are part of a composite context
and thus not counted as a temporal filter;

(3) Inferring potential related contexts that may not be explic-
itly mentioned in the query but can enhance the filtering process
also grounded in the taxonomy.

For example, as shown in Figure 6d-g, the query “What social events
did I attend during CHI 2024?” is rewritten into a declarative format
of “The social events I attended during CHI 2024”. We leveraged an
LLM to classify thementioned contexts in the query as either atomic
or composite. Detailed prompts are provided in Appendix A.3. Since
“CHI 2024” is explicitly mentioned and identified as a composite
context, it is extracted and labeled with the appropriate composite
context tag. “Social events” is also extracted and identified as an
atomic context (activities). Additionally, because “social events”
might include various activities like parties, dancing, or casual
conversations and involve multiple people, OmniQuery infers the
relevant atomic contexts (people and activities) and annotates them
in the corresponding context category.

6.2 Retrieving Relevant Augmented Memories
The decomposed augmented query is used to comprehensively
retrieve relevant augmented captured memories. The augmented
captured memories consist of the structured captured memories
(with processed content and annotated atomic contexts), the list of
identified composite contexts, and the list of semantic knowledge.
OmniQuery uses the decomposed components from the augmented
query to perform a multi-source retrieval, pulling related memo-
ries from each of these sources. The results are then consolidated
into a comprehensive list of relevant memories, which are used to
generate an accurate and detailed answer for the user’s query.

Declarative query → Semantic knowledge & processed content.
The declarative query is encoded into text embeddings to search
for both the semantic memories and processed content (caption
and visible text) of the captured memories. This initial search step
focuses on finding knowledge and memories directly related to the
input query, without incorporating additional contextual filters.

Decomposed atomic contexts → Annotated atomic contexts.
Each element of the decomposed atomic contexts (both extracted or
inferred) is encoded into text embeddings and searched through the
corresponding categories in the structured captured memory data-
base. For example, if the query involves activities like "party" and
"dancing," OmniQuery searches for captured memories annotated
with similar activities. Any memories that have been annotated
with related or similar activities will be retrieved, ensuring that
relevant memories are included in the results. Additionally, tem-
poral contexts apply a strict filter, excluding memories outside the
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Figure 6: The question-answering system consists of: (a) taxonomy-based query augmentation by decomposing and inferring
contextual information; (b) retrieving memories and semantic knowledge; (c) generating answers with an LLM using referenced
memories. Specifically, given an input query (d), OmniQuery first augmens it via rewriting and decomposing and inferring
contextual information (e). The augmented query with different types of decomposed contextual information (f) is used to
retrieve captured memories from different memory and knowledge storage (g).

specified time frame (e.g., “last month”) from the retrieval process.

Decomposed composite contexts → Identified composite con-
texts. Any composite context decomposed in the augmenting pro-
cess is also encoded into text embeddings and searched through
the list of identified composite contexts. All captured memories
linked to the semantically similar composite contexts are retrieved.
This ensures all memories related to the composite contexts are
included. Additionally, OmniQuery leverages an LLM to assess
whether a composite context includes temporal constraints. For
example, “... during CHI 2024” implies a strict temporal filter, while
“photos related to CHI 2024” does not.

6.3 Answer Generation
The retrieved results is then sent to an LLM to generate the final
answer. Specifically, the input for the LLM consists of: (1) the aug-
mented query, (2) the retrieved semantic knowledge from the list,
(3) all the retrieved captured memory entries from the annotated
database, including both the memory content and its associated
contextual annotations.

The model analyzes and reasons which captured memories serve
as references for the generated answer. These reference memories
are also included in the final answer presented to the user. To
enhance the reasoning process, OmniQuery leverages chain-of-
thought prompting [64], ensuring the generation is more accurate
and contextually rich (specific prompts in Appendix A.4).

7 USER EVALUATION
We conducted a user evaluation to test OmniQuery’s capabilities in
handling real-world personal data by comparing it against a base-
line system implemented with a typical RAG structure for question
answering. Both systems were deployed on the participants’ local
machine to protect their personal data. In this section, we discuss
the detailed evaluation process, metrics, and results, including quan-
titative results of the two systems’ performances, representative
examples, and qualitative feedback.

7.1 Participants
We recruited 10 participants, including seven from our diary study
and three additional participants via word-of-mouth. They con-
sented to the whole process, including that their filtered personal
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Time: 05/15/2024, 10:52 PM
Location: Brian's social club, Honolulu, Hawaii
Caption: A vibrant scene with purple and pink lighting features
a DJ setup at an event with a crowd.
Text: "Welcome to the German HCI event.."
People: Crowd, DJ
Visual elements: lights, screen, DJ stand
Environment: Club
Activities: Party

Composite context: CHI 2024 Conference, Hawaii Trip, Parties
during CHI 2024, etc

Semantic knowledge: I attended German HCI event at Brian's
social club during CHI 2024

Time: 05/15/2024, 10:52 PM
Location: Brian's social club, Honolulu, Hawaii
Caption: A vibrant event with purple and pink lighting, creating
an energetic atmosphere. At the center is a stage with a DJ
setup, where two silhouetted individuals stand in front of a
screen displaying the text "Welcome to the German HCI Event
at CHI." In the foreground, silhouettes of attendees are visible,
enjoying the event. Bright beams of light radiate across the
scene, enhancing the lively and festive ambiance.

What OmniQuery sees:Captured memory What baseline RAG sees:

         Composite context & semantic knowledge not available

12/10/24, 3:47 AM baseline comparison.svg
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Figure 7: For each capturedmemory, the baseline RAG system lacks the contextual information extracted through the taxonomy-
based augmentation used in OmniQuery.

data will be processed via an API service. All 10 participants four
male, six female, age range 22 - 29, 𝑥 = 25.3, SD = 2.63) were fluent
or native English speakers. The participants rated their frequency
of logging their daily lives as ‘Only record essential information’ (1),
‘Regularly log important events andmemorable experiences’ (5) and
‘Actively log my daily life’ (4). Each participant was compensated
with $50 for completing this study.

7.2 Apparatus
Two different systems were implemented in the user evaluation:
the OmniQuery pipeline and a baseline system for comparison. The
baseline RAG is designed to differ only in OmniQuery’s core con-
tributions. As shown in Figure 7, while the baseline RAG includes
basic contextual information for each captured memory, such as
time, location, and a detailed description of the scene, the key dif-
ferences are: (1) The contextual information remains “raw” and
is not structured using the taxonomy derived in OmniQuery, and
(2) it lacks composite context and semantic knowledge, as it does
not extract contextual information from multiple related memories.
Additionally, in the question-answering phase, the baseline does
not leverage taxonomy-based retrieval. All other components, such
as the base LLM and prompt structure, remain the same. This design
ensures the delta between OmniQuery and the baseline highlights
and evaluates OmniQuery’s core contributions: taxonomy-based
augmentation and retrieval. For the detailed implementation of
the baseline, please refer to Appendix B.

As shown in Figure 8, in the studies, participants were presented
with a single text input box similar to search engine input boxes.
After they typed in the question, they would see two answers
generated by the two systems in a randomized order. Two rating
questions on the answer’s accuracy and completeness were then
shown under each answer with a scale of 1-5.

7.3 Procedure
The user evaluation has three stages: (1) system setup on partici-
pants’ local machines, (2) personal data preparation, and (3) the
main testing session.

System setup. The participants were given the source code
for OmniQuery to install the back-end and a web application on
their local machine. They had the option of an online walkthrough

Query

Anonymous
systems

Ratings

9/12/24, 2:08 AM user_interface.svg
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Figure 8: User interface used in the user evaluation.

session with the experimenters or following the setup instructions
on a self-guided manner.

Personal data preparation. To test OmniQuery on local ma-
chines, the participants were asked to transfer a set of captured
memories (both photos and videos) from their smartphones’ albums
to their laptops. To further protect participants’ privacy, they were
instructed to manually review and filter out any content deemed
sensitive or preferred to be excluded from the study. This process
needs to meet two key requirements: (1) the manual filtering should
not become an excessive burden for participants, and (2) the trans-
ferred data should be sufficiently large to simulate real-world usage,
containing diverse contexts of distant memories. It is impractical
to include all participants’ memories, which average 13630 files
as collected from the diary study. Thus we perform the following
calculation to balance the two requirements:

𝑇 ≥ 𝐶

𝐾
× 1 + 𝑅

1 + 𝐹 × 𝑅
Where 𝑇 is the total number of files, 𝐶 the context limit, 𝐾 the

token cost per frame, 𝑅 the relevant frame ratio, and 𝐹 the average
frames per video. The equation balances manual filtering and data
diversity. The rationale behind the equation is that processing all
memories at each query should exceed the limit of existing pow-
erful models, and thus motivating the need for accurate retrieval
to answer queries. Specifically, the model OmniQuery uses has a
context window of 128K7, and the minimum token cost for pro-
cessing each frame when employing low-fidelity understanding

7https://platform.openai.com/docs/models#gpt-4o

https://platform.openai.com/docs/models#gpt-4o
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Table 2: Quantitative Results of OmniQuery and Baseline, including UPA, UPC, and Accuracy (%)

OmniQuery Baseline
Metrics UPA UPC ACC UPA UPC ACC

Direct content query (24) 4.42 4.13 83.3 3.67 3.46 62.5
Contextual filter + Hybrid (113) 3.89 3.85 69.0 2.93 2.83 38.9
Queries from diary study (28) 3.93 4.14 67.9 2.39 2.61 25.0

All (137) 3.98 3.90 71.5 3.06 2.94 43.1
*ACC refers to accuracy, which is considered accurate when UPA ≥ 4 (mostly correct).

Table 3: Direct comparison between OmniQuery and baseline

Comparison Win Rate (%)
Winner OmniQuery Baseline Tie Both are bad

Direct content query (24) 50.0 8.3 33.3 8.3
Contextual filter + Hybrid (113) 53.1 11.5 19.5 15.9
Queries from diary study (28) 60.1 7.1 14.3 17.9

All (137) 52.6 10.9 21.9 14.6

is 858. Ratio represents the video-to-image ratio, which averages
0.12 (SD = 0.11) based on our diary study survey. As discussed in
Sec. 5.4, the number of frames sampled per video during processing
is 10. This calculation results in a total number of files of ~767.
To expand the memory coverage within the participants’ manual
filtering capacity, we round this up to 1,000 files.

Depending on how frequently participants logged their daily
lives, the memory coverage of the 1,000 selected photos and videos
spanned from one to four months (𝑥 = 2.3, SD = 1.03). While this
coverage is smaller than what a smartphone album can cover in
real-world scenarios (several years), it still represents a moderately
distant memory range that is not too recent to demonstrate the
capabilities of OmniQuery. These captured memories were then fed
into OmniQuery for the taxonomy-based query-agnostic augmen-
tation process. The safety of the process data is ensured following
the API’s privacy protocol9.

Main session. The main session lasts 45 minutes, in which the
participants tested OmniQuery using two types of questions: (1)
questions logged during the diary study and (2) questions they gen-
erated during the session. The participants checked on the diary
study questions manually to determine if they could be answered
using the filtered set of data on captured memories. Additionally,
the participants were encouraged to brainstorm and use new ques-
tions that were potentially answerable using the filtered data to
comprehensively test OmniQuery. Note that participants have no
access to the contextual information augmented by OmniQuery.
Instead, they follow a simple mental workflow: attempting to recall,
asking the system, and verifying the answer.

In the question-answering procedure, OmniQuery-generated
answers are accompanied with answers generated from the baseline
system implemented using RAG. Each system generated answers
anonymously, and the participants compared and rated the results
for both systems. The answers and user ratings were recorded for

8https://platform.openai.com/docs/guides/vision
9https://openai.com/policies/privacy-policy/

quantitative analysis. Throughout the process, the participants were
asked to think aloud [52], and a brief interview was conducted at
the end of the session to gather feedback and suggestions. These
results were recorded for qualitative analysis.

7.4 Comparison Metrics
After two answers were presented for a question, the participants
were asked to rate the two answers. We used the Chatbot Arena
evaluation method [14], where each participant compared answers
from the two systems and selected the better one or marked it as a
tie. More specifically, for each question, each participant rated the
user perceived accuracy (UPA) and user perceived complete-
ness (UPC) of the answers from both systems.

The UPA score was rated on a scale from 1 to 5: 1: Completely
wrong or invalid result; 2: Incorrect, but provides at least some
insight that helps answer or further refine the question; 3: Partially
correct, or contains a subset of correct answers (e.g., only listing
one meal when asked about all meals eaten last week); 4: Mostly
correct, but missing some minor details (e.g., missing one subway
trip when asked how many times I rode the subway); and 5: Com-
pletely correct. The UPC score focused on the completeness and
credibility of answers, essential for assessing reliability. Many par-
ticipant queries were complex, requiring explanations supported
by captured memory data. For example, when asked “How many
meals did I have during my last New York trip?” a system might
get the number right but miscount specific meals. Participants re-
viewed filtered data and rated answers based on their perceived
completeness and credibility.

We also directly compare OmniQuery and the baseline to analyze
performance. If both have a UPA of 2 or lower, the result is labeled
“both are bad”. If at least one scores ≥3, the system with the higher
UPA wins. In case of a tie on UPA, the system with the higher UPC
wins; otherwise, it remains a tie.
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I ordered several different types of
whiskey in NYC. What were their

names?

You ordered Nikka Coffey Grain Whisky,
Fuji Single Grain Japanese Whisky, Ohishi

Whisky, and Alevo Port Cask

Input Query

Answer

Reference
Media Files

1
What is the rst animal I pet in the

farm?

The rst animal you pet on the farm was a
sheep.

2
How many times did I practice golf

last month?

You played golf ve times in August.

3
Which lake did I play paddle board

with several friends?

4

You played paddle board with several
friends at a lake near <REDACTED>.

Explanation

In the photo with the memory ID IMG_8456.HEIC, it shows a
bar scene with several bottles of whiskey on the counter,

including Nikka Coffey Grain Whisky, Fuji Single Grain
Japanese Whisky, Ohishi Whisky, and Alevo Port Cask.

These might be the four whiskeys you ordered at the bar.

The rst instance of petting an animal on the farm occurred
on August 25, 2024, when you were at a petting zoo or farm
exhibit in <REDACTED>. The memory IMG_4829.MOV shows
you petting a sheep, which is the earliest recorded instance

of petting an animal during that visit.

Retrieved videos

Based on the memories, you played golf at <REDACTED> on
August 3rd, 4th, 7th, 21st, and at Topgolf on August 23rd.

These instances are identi ed from the memories that
mention practicing golf swings or being at a golf course.

(part of) videos of
golf swing

photo taken at
Topgolf

The memories indicate that on July 28, 2024, you were
involved in paddleboarding activities at <REDACTED>. This

is supported by the presence of a de ated paddleboard
being prepared near a lake and people engaging in leisure

activities by the lake.

paddle board
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Figure 9: Four representative examples of using OmniQuery to answer hybrid personal memory-related questions.

8 Results
We report the results of our user evaluation by presenting quanti-
tative results of comparing OmniQuery with the baseline, repre-
sentative examples from the study, and insights gathered from the
think-aloud protocol and exit interviews.

8.1 Quantitative Result
The participants tested 137 queries in total during the main ses-

sion. Among them, 28 were previously logged during the diary
study. We manually labeled each tested query using the categoriza-
tion and definition mentioned in section 3.3. As a result, 24 were
categorized as direct content query while 17 were contextual filters
and 96 were hybrid queries. We analyzed the performance metrics
of both systems (OmniQuery and baseline) using the scores rated
by the participants. Table 2 and 3 summarize our results. In addi-
tion to presenting the average UPA and UPC scores, we calculated
binary accuracy to evaluate whether the systems provided mostly
correct answers. An answer was considered accurate if its UPA
score was equal to or greater than 4 (mostly correct) (Table 2). We
also present the “comparison result" in Table 3, which compares
the two systems head-to-head on answering personal questions.

The result shows that, overall, OmniQuery outperforms the base-
line system in both the accuracy and completeness. Specifically,
OmniQuery achieves an accuracy of 71.5%, outperforming the base-
line by 28.4%, winning the comparison 52.6% of the time, and tying
21.9% of the time. For 14.6% of the time, both results are bad. We also
present the results for different categories of queries. The results
indicate that simpler techniques like the baseline handle direct con-
tent queries reasonably well (62.5 % accuracy, and winning or tying
41.6% of the time). While the baseline struggles with more complex
queries such as contextual filters or hybrid queries (38.9% accuracy,
winning or tying 31.0% of the time), OmniQuery demonstrates it
capabilities in effectively handling such queries (69.0% accuracy,
winning or tying 72.6% of the time). Specifically, for the queries
logged during the diary study, OmniQuery achieved results similar
to its overall performance (67.9% accuracy, and winning or typing
74.4% of the time).

8.2 Representative Examples
We selected four representative examples tested by the participants
in the evaluation, which are illustrated in Figure 9.
(1) P3 wanted to recall the name of the whiskey they tasted during

their trip, as they enjoyed it and wanted to check the price.
OmniQuery successfully retrieved the target memory (a photo
of the four bottles) and generated a specific answer about the
bottles they might have ordered.

(2) P6 wanted to organize the footage from their visit to a farm
and asked about the first animal they petted there. OmniQuery
accurately retrieved the memories related to the composite con-
text (“visit to the far”) and used the temporal order to generate
the correct answer: the first animal petted was a sheep.

(3) P1 wanted to estimate how many times they had practiced golf
in the past month to track their progress. OmniQuery success-
fully retrieved all relevant memories, including videos of golf
swings at the driving range and photos taken at Topgolf, and
accurately generated the answer.

(4) P9 wanted to recall the name of the lake where they went pad-
dling with friends. While no direct memory of paddling is cap-
tured, there are several related photos available, including a
paddleboard being pumped next to a lake. OmniQuery success-
fully retrieved these memories and generated the answer using
the metadata associated with them.

8.3 Qualitative Feedback and Findings
All participants had experience using smartphone album search
features, primarily for retrieving specific information like driver’s
licenses or events such as trips, aligning with direct content queries
and contextual filters (Section 3.3). However, they noted that exist-
ing tools are limited to finding specific objects and cannot handle
more complex queries. Plus, some of our participants also antici-
pated for this to happen because they “know what can be searched
and what cannot be searched” from these existing album search
tools (P2).

In the studies, a lot more challenging questions were asked. For
direct content queries, it would be challenging to answer when the
object is ambiguous or when the users can only describe the object
and do not know its exact name. For contextual filter and hybrid or
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even more open-ended and subjective questions, existing searching
tools are not comparable to OmniQuery and the baseline at all
because tools like iOS album search only return specific photos and
videos without contextual understanding or filtering.

Here we further summarize the cases that are hard to be accom-
plished by existing tools. In comparison to the high-level question
types provided in Section 3.3, we dive deeper into what these ques-
tions in the study were about and provide detailed examples.

• Exploratory Search: When users know some characteristics of
what they are searching for but cannot specify the exact object.
For instance, P1 asked, “What churches did I visit in Barcelona?”

• Look up and Locate: When users know specific references or
attributes about an item, such as date, location, or a person in
the photo, and want to quickly locate the relevant media, such
as “Can you find the photo of me on a flyer on Instagram? (P4)”

• Summarization Tasks: Participants often need answers that
summarize their collection of media, rather than finding a single
item. For instance, P7 queried, “Which subway stations in New
York have art installations?”.

• Comparative Questions: Users sometimes want to compare
different sets of media. For example, P10 asked, “Am I enjoying
beach time more or hiking more?”

• Open-ended and SubjectiveQuestions: Participants also asked
questions that require interpretation or subjective judgment,
which were even more challenging for existing tools. For ex-
ample, P5 asked, “Given the photos I took, could you analyze
what kind of person I am?”

In the meantime, we want to emphasize again that the comparison
between OmniQuery and existing tools is conceptual, given that
they serve different purposes and are designed differently in re-
trieving objects or answering questions. We provide this conceptual
comparison to demonstrate the variety of questions OmniQuery
can support answering.

8.4 Failure Cases
Among the 137 queries tested, 25 failed due to ambiguity, missing
contextual cues, information loss, retrieval redundancy, subjectivity,
or unavailable memories. Please refer to Appendix C for detailed
discussions.

9 DISCUSSION
In this section, we draw on implications from our studies to both
discuss limitations and propose future work.

9.1 Curating Fixed Dataset for Benchmarking
Benchmarking is a widely used approach to evaluate whether new
systems and algorithms achieve state-of-the-art performance on
specific tasks. It also enables ablation studies to assess the effective-
ness of individual components of the proposed design. Currently,
OmniQuery is evaluated as an integrated system to compare against
another system to demonstrate the effectiveness of its overall design.
As a future direction, curating a fixed benchmark dataset would al-
low for more granular evaluation of OmniQuery’s performance on
personal question answering over multimodal captured memories.
This would enable deeper insights into how different design choices

(both high-level and low-level) affect task performance through ob-
jective ratings. Additionally, it could enable testing multiple system
parameters (e.g., sliding window sizes, top-K values for retrieval,
or prompt designs for inferring contexts) to achieve the optimal
performance. Furthermore, it would also allow ablation studies to
assess the impact of individual components (e.g., query augmenta-
tion). We further discuss significant challenges of curating a fixed
benchmark dataset for this personal data task in Appendix D.

9.2 From Chat Interface to Multimodal
Interactions

As a system designed to answer user queries on their personal
captured memory, OmniQuery is currently designed in an ask-
and-react manner to evaluate its efficacy in a lab-study setting. In
our studies, the participants were excited about what OmniQuery
was capable of and gave feedback on having more multimodal
interactions rather than just a chat interface. We recognize the
potential of a more interactive OmniQuery in the following ways:

Multimodal Input and Output. OmniQuery could support
multimodal inputs, including audio, images, and videos, to address
limitations of text-based search. Many challenging cases for exist-
ing album search tools could benefit from this, such as locating an
oddly shaped cup or matching dresses by color. Beyond retrieval,
OmniQuery could help users relive memories by visualizing cap-
tured data, enabling interactive exploration and annotation edits.
This brings us closer to a “mind palace” style AI assistant.

Error correction. In our studies, we observed the importance
of enabling users to review and refine identified composite con-
texts and semantic knowledge. Participants expressed the need to
correct errors when the system retrieved irrelevant information.
For example, P9 asked about a K-pop store, but the system mistak-
enly included an Instagram screenshot of a Korean TV show. To
address this, we propose integrating error correction mechanisms
with explanatory insights, confidence levels, and a verification loop,
allowing users to mark errors, refine results, and enhance system
accuracy over time.

Follow-up queries. A key theme in our study is participants’
need to refine queries or ask follow-up questions, with six out
of ten mentioning the desire to clarify responses or narrow their
searches iteratively. This was particularly relevant when errors
were perceived, as discussed in Error Correction. To address this,
we propose augmenting follow-up interactions with explanations
and confidence levels to highlight uncertainties. A top-K retrieval
strategy could also provide ranked answers for ambiguous queries,
enabling iterative refinement. Future work could evaluate these
approaches through a longitudinal study.

9.3 Enriching Memory Data and Visual
Intelligence

At present, OmniQuery primarily processes media from a smart-
phone’s photo album as its main source for captured memories.
However, these media alone provide a limited view of a user’s
broader personal knowledge. For example, in one of the study’s
failure cases, OmniQuery struggled to infer personal relationships
from social interactions captured in group photos. To enhance
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memory augmentation and improve retrieval accuracy, expanding
OmniQuery’s data sources and visual intelligence is essential.

Integrating additional data structure and sources. Personal
knowledge extends beyond photo albums and exists across various
applications. While our participants’ photo albums included screen-
shots of emails, calendar events, and chat histories, these represent
only a fraction of the broader personal information available in
other communication and social interaction apps. Incorporating
data from such sources could significantly enhance OmniQuery’s
contextual understanding, allowing for more complex queries and
richer memory retrieval. While OmniQuery already extracts hierar-
chically structured information from raw photo album data in the
form of atomic and composite contexts, future work can explore
using other explicit data structures such as graphs and trees to orga-
nize data from multiple sources. Integrating these additional data
sources also presents substantial privacy and ethical challenges.
While our evaluations were conducted entirely on users’ local ma-
chines and did not explore privacy-preserving implementations
in detail, existing research efforts, such as those focused on dif-
ferential privacy and on-device machine learning, offer promising
directions for secure and privacy-aware deployment. Additionally,
commercial tools like Apple Intelligence’s private cloud computing
serve as examples of ongoing progress in protecting user data while
enabling advanced memory retrieval.

Enhancing visual intelligence. Queries related to social in-
teractions remain challenging due to the current lack of advanced
features like facial recognition for person identification. Future
iterations of OmniQuery could integrate such capabilities (with
appropriate user consent), enabling the system to track individuals
across various memories. This enhancement would support new
use cases, such as monitoring social patterns or tracking progress
over time, significantly improving the system’s capacity for mem-
ory augmentation and retrieval. Additionally, we propose exploring
the design and implementation of a comprehensive taxonomy of
personal knowledge domains. This would allow users to selectively
activate specific domains, such as enabling “Social Interactions
and Relationships” to infer personal connections while disabling
“Personally Identifiable Information” to prevent the system from
processing sensitive data like IDs or SSNs in photos. This modular
approach could enhance both user control and privacy.

Augmenting with future AR technologies. A limitation of per-
sonal memory capture is the potential for missed moments when
users either forget or are unable to document an experience. As AR
technology advances, OmniQuery’s memory augmentation and re-
trieval capabilities could be seamlessly integrated into AR systems,
allowing for more passive and context-aware memory capture. AR
devices could leverage real-time contextual triggers [39] to proac-
tively surface relevant memories or information, offering proactive
assistance in pervasive AR environments. This integration would
enhance the user experience by making memory retrieval more
intuitive and contextually relevant. However, such passive data
capture raises even more significant privacy concerns, which will
require future research into secure, privacy-preserving implemen-
tations to ensure the responsible use of AI in these settings.

9.4 Preserving Privacy
As discussed above, protecting users’ privacy is crucial in develop-
ing future personal AI assistants, including but not limited to han-
dling personal data such as media in albums and chat and browsing
histories. Users have limited control over how their data is handled
and must rely on service providers’ adherence to privacy protocols.
In this subsection, we take a step further to discuss more robust and
rigorous measures that should be adopted in real-world settings,
where the immense amount of personal data makes approaches
like manual filtering in OmniQuery’s evaluation infeasible.

One way is to incorporate more advanced data protection tech-
niques, such as data anonymization [46] and encryption [51], while
preserving the computational capabilities of large models via online
computing. The other approach is leveraging on-device computing,
where all data processing occurs locally on the user’s device, en-
suring full control over users’ own data. Recent advances in model
compression [27] have made it possible to run large model on
smaller devices like smartphones. As OmniQuery is designed to be
model-agnostic, it is able to work with different model sizes. While
smaller, compressed on-device model may result in reduced perfor-
mance, future work should focus on developing curated datasets
and benchmarks to rigorously evaluate OmniQuery ’s performance
across different model sizes (e.g., LLaMAs [60] and Phi-3 [1]). This
would provide a deeper understanding of how model size impacts
privacy and system effectiveness.

10 CONCLUSION
We present OmniQuery, a pipeline that enhances personal question
answering on captured multimodal memories. Informed by an one-
month diary study, OmniQuery’s design responds to real-world user
queries and synthesizes a contextual taxonomy of captured memo-
ries. Our pipeline design of structuring individual captured mem-
ories and identifying composite context and semantic knowledge
using a sliding window technique was used to develop a question-
answering system, which outperformed a baseline RAG system
in both perceived accuracy and completeness. Unlike existing re-
search and commercial tools focused on intelligent image retrieval
in smartphone albums, OmniQuery is the first to tackle complex and
nuanced personal queries, moving beyond simple object or informa-
tion piece retrieval. With further attention to privacy-preserving
measures, we believe OmniQuery holds significant potential to
evolve into a comprehensive multimodal interactive memory assis-
tant, empowering users to revisit, engage with, and manage their
personal memories with greater depth and control.
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A Prompts for LLMs
A.1 Identifying Composite Contexts

System instruction:

You are an intelligent agent capable of

generating a list of COMPOSITE CONTEXTS

inferred from the given memory.

Composite context refers to a combination of

time , location , people , objects ,

environment and activities. Such

composite contexts could be inferred

from the explicit content (e.g., text

showing the event info) or implicit cues

(e.g., multiple changes in location

indicating travel). Focus on relatively

important composites such as travel ,

conferences , and important meetings and

focus less on trivial events.

For each composite context , identify the

related episodic memory ids. This could

be due to time (e.g., the memory occurs

during the event), location (e.g., the

memory takes place at the event location

), or specific content (e.g., the memory

mentions the event).

Additionally , rate the importance of each

event on a scale from 1 to 3, where 3

denotes very major events (e.g., multi -

day events or highly important events),

2 denotes moderately important events ,

and 1 denotes less important events.

Exemplar composite context types include:

An academic conference: "An academic

conference ";

Recreational travel: "Trip to Salt lake city

", "Traveling to home town";

Locational change: "Location changed from

Seattle to Irvine ";

Outdoor activities: "Camping trip";

Personal milestones: "Birthday celebration",

"Graduation ceremony", "first day in

univeristy ";

etc.

Output the list of composite context in a

JSON object with the key '

composite_context '. Each event should be

represented as a sub JSON object with

the following keys: 'event_name ' (

detailed and concise), 'memory_ids ' (

list), 'start_date ', 'end_date ' (could

be the same as start_date), 'location ',

'is_multi_days ', and 'importance '.

+

<List of structured captured memories >

A.2 Inferring Semantic Knowledge

System instruction:

You are an intelligent agent capable of

generating a list of FACTS or KNOWLEDGE

(referred to knowledge in the following)

that can be inferred from the given

memory and the related composite

contexts. Focus on relatively important

high -level semantic knowledge and focus

less on trivial events. Avoid specific

details about individual media

The knowledge should be detailed and self -

contained.

Exemplar semantic knowledge includes:

<Examples of semantic knowledge >

Also identify the most representative

episodic memories that contribute to the

understanding of the knowledge.

Output a JSON object with the key 'knowledge

'. Each knowledge item should include '

knowledge ', 'memory_ids ' (list)

Input:

<Structured captured memories in the sliding

windows >

+

<Identified composite contexts identified in

the sliding window >

A.3 Query Augmentation

System instruction:

augment_query = Given a query and today 's

date , identify the contextual filters.

Contextual filters may include:

temporal information: e.g., "last week."

location information: e.g., "Hawaii ."

visible objects: e.g., "poke bowl."

people Seen: e.g., "people at the conference

."
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activities performed: e.g., "ordering in a

restaurant ."

and more complex contexts such as events or

travel which consists of multiple atomic

contexts mentioned above: e.g., "

traveling to Hawaii ." (activity: travel ,

location: Hawaii).

The query may not contain detailed

contextual filters. In such cases , make

reasonable inferences. For example , for

query "What products did I buy from

Sephora", the result could be obtained

from a Sephora receipt. Thus inferred

contextual filters for objects might be

"makeup/skincare products or receipts ."

Output a JSON object with the key '

augmented_query ', including the sub -keys

'start_date ', 'end_date ', 'location ', '

objects ', 'people ', 'activities ', and '

complex_context '. Each sub -key should be

a single string. Leave any sub -key

empty if not applicable.

A.4 Generating Answers Based on Retrieved
Results

System instruction:

Given a query , a list of memories and

personal knowledge , generate a

comprehensive answer to the query.

Identify the episodic memories that can

provide evidence to the question.

If the answer is not explicitly presented in

the memories , make a reasonable

inference.

Output a JSON object with the key 'answer ',

'explanation ' and 'memory_ids '.

The 'answer ' should be a string and '

memory_ids ' should be a list of memory

ids

Input:

<Query >

+

<Retrieved semantic knowledge >

+

<Retrieved structured knowledge >

B Baseline Implementation
While there is no already-existing system designed for answering
personal questions on captured memories, we manually designed

and implemented a system as the baseline. Similar to OmniQuery,
the baseline system also adopts an RAG architecture to adapt to the
large number of captured memories. We utilized the basic structure
of RAG illustrated in [21], which involves (1) indexing the external
data sources with embedding models, (2) leverage vector-based
search to retrieve the top K relevant data instances (3) based-on
the retrieved data, utilizing a powerful LLM to generate the final
answer. Note that typical RAG systems require a chunking phase,
where long documents are split into smaller chunks for more precise
matching and retrieval of relevant information. In our case, each
captured memory already represents a limited amount of informa-
tion and is naturally separated. Therefore, we treat each captured
memory as an individual chunk.

Figure B1 demonstrates the structure of the baseline system in
our experiment. The baseline also processes the captured memories
by leveraging a multimodal model (GPT-4o) to generate detailed
captions for each memory. Additionally, it extracts temporal and
geographical information from the metadata and processes it in
the same manner as OmniQuery. This ensures that the processed
memories include the temporal and geographical data, which are
common components in users’ queries. The temporal and geograph-
ical information is concatenated to the generated caption. Then the
concatenated text sequence is encoded into text embeddings using
embedding models (text-embedding-3-small).

In the retrieval stage, the query is first encoded into the text
embeddings using the same embedding model, and then retrieve
the top K (K=50) captured memories using vector-based similarity
search. The retrieved top K captured memories are then ordered
in temporal sequence, and then sent to the LLM (GPT-4o) for gen-
erating the answer. The prompt used for the answer generation is
the same as OmniQuery.

C Failure Cases Analysis
C.1 Failure Case Categorization
Analyzing failure cases is important to understanding the limita-
tions and improving the design of OmniQuery. Among the 137
queries tested in the study, we identified 25 queries with inaccu-
rate results (OmniQuery’s UPA ≤ 2) as failure cases. Additionally,
we reached out to participants asking them to manually retrieve
the correct memories for these failures. Through this analysis, we
categorized them and propose future solutions for each:
Case 1: Ambiguity (8 cases): Ambiguity in language-based inter-
action was the cause of failure in certain cases based on our analysis.
Specifically, such ambiguities can be categorized as follows:
(1) Wording ambiguity: P3 asked "what was the pool place I went

in NYC". While they were referring to a billiards place (less
ambiguous term), OmniQuery interpreted it as a swimming
pool, resulting in retrieval failure (Figure 2a).

(2) Reference ambiguity due to multiple valid answers: Some
queries have multiple potential answers. For example, P4 asked
"What is the price of the medicine I bought?" They were refer-
ring to the most recent hospital visit, but OmniQuery retrieved
a different medicine receipt from the memory, leading to failure
in answering users’ question.

(3) Contextual ambiguity: P6, a photographer, asked, "Howmany
times did I work as a photographer in the past few months?" As
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Figure 1: Structure of the baseline implementation.

they also enjoy personal photography, the boundary between
photos taken for work and those taken for leisure is ambiguous,
causing the system to fail.

The above presents the challenges OmniQuery faces in addressing
ambiguity, both in understanding user queries and in analyzing
retrieved results. For a detailed discussion on strategies to address
these uncertainties, please refer to Section 9.2.
Case 2: Lack of contextual cues (7 cases): Several failure cases
occurred due to insufficient contextual information to associate the
target memory with the input query. There are two types:

(1) Target context being too implicit: As shown in Figure 2b, P4
asked “What is the content of the last meeting with my advisor
last week?” The target memory, a photo of a notebook page,
lacks contextual cues to associate it with the meeting. This led
to retrieval failure. In such cases, OmniQuery should ask the
user to clarify or iterate on the query (e.g., specifying the type
of memory if the user has an idea).

(2) People Identity andMetadata: For example, P5 asked “Where
did I travel with two Korean friends last month?” OmniQuery
currently lacks access to facial recognition or metadata that
can identify and associate individuals by attributes such as race.
This also led to retrieval failure when answering this question.
Future work could integrate with platforms like Google Photos
or Apple Albums, which group photos by individuals using facial
recognition. Additionally, users could manually add metadata
via linking photos to contacts or descriptive tags (e.g., “friends
from summer school”), enabling the system to handle such
queries better.

Case 3: Information loss during text-based preprocessing (3
cases): OmniQuery currently adopts a text-based augmentation to
extract atomic, composite context and semantic knowledge, which
might lead to information loss. For example, P10 asked “What was
the brand of the golf shirt I saw in the store?” The brand logo was
barely visible in the bottom-left corner in the target memory (Fig-
ure 2c) and was not captured during the preprocessing. This led to
retrieval failures when answering the question. Future work could
integrate current text-based retrieval with advanced multimodal
retrieval models (e.g., ColPali [20]), which are capable of keeping
more details during the retrieval process.

Input Query OmniQuery Result Ground Truth

What was the brand of the golf
shirt I saw in the store？

The brand of the golf cloth you saw
in the store is not explicitly

mentioned in the memories.

I took a picture of my cat on the
desk with a red hat. Can you nd

it?

c

d

What is the pool place that I went
to in NYC?

a

What is the content of the last
meeting with my professor? 

The memories provided do not
contain any explicit mention of a

meeting with your advisor.

b

Ambiguity

Lack of context

Information loss

Redundancy-induced failure

Pool

Pool

Notes taken during
meeting with advisor

12/10/24, 4:27 PM failure_cases.svg
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Figure 2: Four exemplar failure cases: (a) lack of context, (b)
wording ambiguity, (c) information loss during processing
and (d) redundancy-induced failure.

Case 4: Redundacny-induced failure (3 cases): Similar to the
“needle in a haystack” challenge [40], OmniQuery’s performance
might degrade when too many memories are retrieved during the
retrieval phase. For example, P7 frequently takes photos of their
cats and when they asked “I took a picture of my cat on the desk
with a red hat. Can you find it?” OmniQuery tries to retrieve all
relevant memories about their cats, resulting in failure to find the
correct one (Figure 2d). In contrast, as the baseline system always
retrieves a fixed number of results, it is able to identify the correct
answer by narrowing down the search space. To address this, query-
aware filtering process such as reranking [15] could be employed
to narrow down the search space. Additionally, employing a Top-K
retrieval strategy [35] could provide users with more options to
enhance overall performance.
Case 5: Subjectivity-induced failure (1 case): P2 asked, “Give
me the best selfie I took.” However, the subjective nature of “the
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best” made it difficult for OmniQuery to determine the correct
answer. To address such cases, future systems could integrate user
preferences (e.g., leveraging marked favorites) or enable interactive
clarifications (e.g., asking, “Do you prefer an indoor or outdoor
selfie?”) to better align with user intent.
Case 6: Target memory out of scope (3 cases): In three cases,
the target memory was unavailable. In one case, the target memory
was outside the 100-file range while the participants thought it
had been included. In the other two cases, participants mistakenly
thought they had captured the memory, but it was not actually
captured. It is important to communicate such uncertainties to
users when the system believes a query to be not answerable. For
detailed discussion, please refer to Sec 9.2.

C.2 Perceived Feelings from Participants
We also present cases when participants reacted negatively to the
answers. All participants encountered cases where the answers
are inaccurate. Some were incomplete (e.g., P1 believed that they
visited mroe than a few churches on the trip to Barcelona, but
answers provided only two of them). Some were presumptive (e.g.,
P7 asked about recent social events, where the answers gave a piece
of memory on a museum visit and explained that visiting museums
is “likely with other people.” However, P7 visited the museum alone).
Some were making mistakes (e.g., P7 asked for the mostly visited
attractions but both system mistakenly answered a museum, which
was because P7 took a lot of museum pictures and both systems
failed to recognize that they were the same visit.) Some even more
challenging questions that caused failure of both systems include
questions relate to a specific person. For example, P8 asked about
her significant other and P5 asked about their “Korean friend” met
in a trip. These cases represent the difficulty of understanding the
nuances of personal relationships with personal album data.

C.3 Cases Where the Baseline RAG
Outperforms OmniQuery

As discussed above, in cases where there is redundancy in the
retrieved results before generating the answer, the baseline RAG
system may perform better than OmniQuery because it retrieves
a fixed number of memories, narrowing the input context and
reducing noise during answer generation. To further understand the
comparison, we also examined cases where the baseline performs
better even when both results are reasonably accurate (UPA ≥ 3).
Typically, in cases where there is ambiguity in the query, while
OmniQuery might provide a relatively accurate result, the baseline
often produces a more binary outcome (either highly accurate or
highly inaccurate) due to its narrower retrieval scope. This reduces
ambiguity but also limits its ability to handle complex contexts.

D Curating a Fixed Dataset Discussion
OmniQuery is evaluated through real user data, and its effectiveness
can be further evaluated on a fixed benchmark dataset. However,
curating a fixed benchmark dataset for personal data presents sig-
nificant challenges:
• Difficulties in collection of long-term personal data while
preserving privacy: Collecting diverse, long-term personal data
while preserving participants’ privacy with proper consent and

redaction is complex. Prior work like Ego4D ensures privacy by
obtaining consent for controlled indoor environments or by de-
identifying data through redaction of visible and audible PII [23].
However, personal captured memories inherently include inter-
actions with various people and sensitive personal content (e.g.,
photos of IDs or financial documents), which makes it impractical
to obtain universal consent or redact all PII without compromis-
ing the data’s utility. A promising solution is advanced generative
content replacement (e.g., Xu et al. [65]), which replaces sensitive
PII with synthetic content, ensuring privacy while preserving
the cabality of benchmarking.

• Difficulties in generating objective and unbiased QA pairs:
Personal captured memories and corresponding questions are
by definition subjective and sometimes ambiguous. Subjectiv-
ity varies across question types. Some focus on objective facts
(e.g., “What is the Wifi password?”), while others could be highly
subjective (e.g., “What sports were my favorite last year?”). To
address this, research methods can be applied to reduce ambi-
guity and bias, such as leveraging crowdsourcing to create QA
pairs from third-person perspectives or assess the objectivity of
existing pairs. Future work should aim to develop a taxonomy of
question types and explore strategies for guiding crowd workers
to assess objectivity or generate improved QA pairs based on the
taxonomy.
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