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Figure 1: In this survey, we investigate a large variety of 3D generation methods. Over the past decade, 3D generation has achieved remarkable
progress and has recently garnered considerable attention due to the success of generative AI in images and videos. 3D generation results
from 3D-GAN [WZX∗16], DeepSDF [PFS∗19], DMTet [SGY∗21], EG3D [CLC∗22], DreamFusion [PJBM23], PointE [NJD∗22], Zero-1-
to-3 [LWVH∗23] and Instant3D [LTZ∗23].

Abstract
Generating 3D models lies at the core of computer graphics and has been the focus of decades of research. With the emergence
of advanced neural representations and generative models, the field of 3D content generation is developing rapidly, enabling
the creation of increasingly high-quality and diverse 3D models. The rapid growth of this field makes it difficult to stay abreast
of all recent developments. In this survey, we aim to introduce the fundamental methodologies of 3D generation methods and es-
tablish a structured roadmap, encompassing 3D representation, generation methods, datasets, and corresponding applications.
Specifically, we introduce the 3D representations that serve as the backbone for 3D generation. Furthermore, we provide a com-
prehensive overview of the rapidly growing literature on generation methods, categorized by the type of algorithmic paradigms,
including feedforward generation, optimization-based generation, procedural generation, and generative novel view synthesis.
Lastly, we discuss available datasets, applications, and open challenges. We hope this survey will help readers explore this
exciting topic and foster further advancements in the field of 3D content generation.

1. Introduction

Automatically generating 3D models using algorithms has long
been a significant task in computer vision and graphics. This task
has garnered considerable interest due to its broad applications
in video games, movies, virtual characters, and immersive expe-

riences, which typically require a wealth of 3D assets. Recently,
the success of neural representations, particularly Neural Radiance
Fields (NeRFs) [MST∗20,BMT∗21,MESK22,KKLD23], and gen-
erative models such as diffusion models [HJA20,RBL∗22a], has led
to remarkable advancements in 3D content generation.
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In the realm of 2D content generation, recent advancements
in generative models have steadily enhanced the capacity for im-
age generation and editing, leading to increasingly diverse and
high-quality results. Pioneering research on generative adversar-
ial networks (GANs) [GPAM∗14, AQW19], variational autoen-
coders (VAEs) [KPHL17, PGH∗16, KW13], and autoregressive
models [RWC∗19, BMR∗20] has demonstrated impressive out-
comes. Furthermore, the advent of generative artificial intelligence
(AI) and diffusion models [HJA20, ND21, SCS∗22] signifies a
paradigm shift in image manipulation techniques, such as Stable
Diffusion [RBL∗22a], Imagen [SCS∗22], Midjourney [Mid], or
DALL-E 3 [Ope]. These generative AI models enable the creation
and editing of photorealistic or stylized images, or even videos
[CZC∗24, HSG∗22, SPH∗23, GNL∗23], using minimal input like
text prompts. As a result, they often generate imaginative content
that transcends the boundaries of the real world, pushing the limits
of creativity and artistic expression. Owing to their “emergent” ca-
pabilities, these models have redefined the limits of what is achiev-
able in content generation, expanding the horizons of creativity and
artistic expression.

The demand to extend 2D content generation into 3D space is
becoming increasingly crucial for applications in generating 3D as-
sets or creating immersive experiences, particularly with the rapid
development of the metaverse. The transition from 2D to 3D con-
tent generation, however, is not merely a technological evolution. It
is primarily a response to the demands of modern applications that
necessitate a more intricate replication of the physical world, which
2D representations often fail to provide. This shift highlights the
limitations of 2D content in applications that require a comprehen-
sive understanding of spatial relationships and depth perception.

As the significance of 3D content becomes increasingly evident,
there has been a surge in research efforts dedicated to this domain.
However, the transition from 2D to 3D content generation is not
a straightforward extension of existing 2D methodologies. Instead,
it involves tackling unique challenges and re-evaluating data rep-
resentation, formulation, and underlying generative models to ef-
fectively address the complexities of 3D space. For instance, it
is not obvious how to integrate the 3D scene representations into
2D generative models to handle higher dimensions, as required for
3D generation. Unlike images or videos which can be easily col-
lected from the web, 3D assets are relatively scarce. Furthermore,
evaluating the quality of generated 3D models presents additional
challenges, as it is necessary to develop better formulations for ob-
jective functions, particularly when considering multi-view con-
sistency in 3D space. These complexities demand innovative ap-
proaches and novel solutions to bridge the gap between 2D and 3D
content generation.

While not as prominently featured as its 2D counterpart, 3D
content generation has been steadily progressing with a series of
notable achievements. The representative examples shown in Fig.
1 demonstrate significant improvements in both quality and diver-
sity, transitioning from early methods like 3D-GAN [WZX∗16] to
recent approaches like Instant3D [LTZ∗23]. Therefore, This survey
paper seeks to systematically explore the rapid advancements and
multifaceted developments in 3D content generation. We present a
structured overview and comprehensive roadmap of the many re-

cent works focusing on 3D representations, 3D generation meth-
ods, datasets, and applications of 3D content generation, and to
outline open challenges.

Fig. 2 presents an overview of this survey. We first discuss the
scope and related work of this survey in Sec. 2. In the following
sections, we examine the core methodologies that form the foun-
dation of 3D content generation. Sec. 3 introduces the primary
scene representations and their corresponding rendering functions
used in 3D content generation. Sec. 4 explores a wide variety of
3D generation methods, which can be divided into four categories
based on their algorithmic methodologies: feedforward generation,
optimization-based generation, procedural generation, and genera-
tive novel view synthesis. An evolutionary tree of these methodolo-
gies is also depicted to illustrate their primary branch. As data accu-
mulation plays a vital role in ensuring the success of deep learning
models, we present related datasets employed for training 3D gen-
eration methods. In the end, we include a brief discussion on related
applications, such as 3D human and face generation, outline open
challenges, and conclude this survey. We hope this survey offers a
systematic summary of 3D generation that could inspire subsequent
work for interested readers.

In this work, we present a comprehensive survey on 3D genera-
tion, with two main contributions:

• Given the recent surge in contributions based on generative mod-
els in the field of 3D vision, we provide a comprehensive and
timely literature review of 3D content generation, aiming to offer
readers a rapid understanding of the 3D generation framework
and its underlying principles.

• We propose a multi-perspective categorization of 3D generation
methods, aiming to assist researchers working on 3D content
generation in specific domains to quickly identify relevant works
and facilitate a better understanding of the related techniques.

2. Scope of This Survey

In this survey, we concentrate on the techniques for the generation
of 3D models and their related datasets and applications. Specifi-
cally, we first give a short introduction to the scene representation.
Our focus then shifts to the integration of these representations and
the generative models. Then, we provide a comprehensive overview
of the prominent methodologies of generation methods. We also ex-
plore the related datasets and cutting-edge applications such as 3D
human generation, 3D face generation, and 3D editing, all of which
are enhanced by these techniques.

This survey is dedicated to systematically summarizing and cat-
egorizing 3D generation methods, along with the related datasets
and applications. The surveyed papers are mostly published in ma-
jor computer vision and computer graphics conferences/journals as
well as some preprints released on arXiv in 2023. While it’s chal-
lenging to exhaust all methods related to 3D generation, we hope to
include as many major branches of 3D generation as possible. We
do not delve into detailed explanations for each branch, instead, we
typically introduce some representative works within it to explain
its paradigm. The details of each branch can be found in the related
work section of these cited papers.

Related Survey. Neural reconstruction and rendering with scene
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Figure 2: Overview of this survey, including 3D representations, 3D generation methods, datasets and applications. Specifically, we introduce
the 3D representations that serve as the backbone for 3D generation. Furthermore, we provide a comprehensive overview of the rapidly
growing literature on generation methods, categorized by the type of algorithmic paradigms, including feedforward generation, optimization-
based generation, procedural generation, and generative novel view synthesis. Finally, we provide a brief discussion on popular datasets and
available applications.

representations are closely related to 3D generation. However, we
consider these topics to be outside the purview of this report. For a
comprehensive discussion on neural rendering, we direct readers to
[TFT∗20, TTM∗22], and for a broader examination of other neural
representations, we recommend [KBM∗20, XTS∗22]. Our primary
focus is on exploring techniques that generate 3D models. There-
fore, this review does not encompass research on generation meth-
ods for 2D images within the realm of visual computing. For fur-
ther information on a specific generation method, readers can refer
to [Doe16] (VAEs), [GSW∗21] (GANs), [PYG∗23, CHIS23] (Dif-
fusion) and [KNH∗22] (Transformers) for a more detailed under-
standing. There are also some surveys related to 3D generation that
have their own focuses such as 3D-aware image synthesis [XX23],
3D generative models [SPX∗22], Text-to-3D [LZW∗23] and deep
learning for 3D point clouds [GWH∗20]. In this survey, we give a
comprehensive analysis of different 3D generation methods.

3. Neural Scene Representations

In the domain of 3D AI-generated content, adopting a suitable rep-
resentation of 3D models is essential. The generation process typi-
cally involves a scene representation and a differentiable rendering
algorithm for creating 3D models and rendering 2D images. Con-
versely, the created 3D models or 2D images could be supervised in
the reconstruction domain or image domain, as illustrated in Fig. 3.
Some methods directly supervise the 3D models of the scene rep-

resentation, while others render the scene representation into im-
ages and supervise the resulting renderings. In the following, we
broadly classify the scene representations into three groups: ex-
plicit scene representations (Section 3.1), implicit representations
(Section 3.2), and hybrid representations (Section 3.3). Note that,
the rendering methods (e.g. ray casting, volume rendering, raster-
ization, etc), which should be differentiable to optimize the scene
representations from various inputs, are also introduced.

3.1. Explicit Representations

Explicit scene representations serve as a fundamental module in
computer graphics and vision, as they offer a comprehensive means
of describing 3D scenes. By depicting scenes as an assembly
of basic primitives, including point-like primitives, triangle-based
meshes, and advanced parametric surfaces, these representations
can create detailed and accurate visualizations of various environ-
ments and objects.

3.1.1. Point Clouds

A point cloud is a collection of elements in Euclidean space, rep-
resenting discrete points with addition attributes (e.g. colors and
normals) in three-dimensional space. In addition to simple points,
which can be considered infinitesimally small surface patches,
oriented point clouds with a radius (surfels) can also be used
[PZVBG00]. Surfels are used in computer graphics for rendering
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Figure 3: Neural scene representations used for 3D generation, including explicit, implicit, and hybrid representations. The 3D generation
involves the use of scene representations and a differentiable rendering algorithm to create 3D models or render 2D images. On the flip
side, these 3D models or 2D images can function as the reconstruction domain or image domain, overseeing the 3D generation of scene
representations.

point clouds (called splitting), which are differentiable [YSW∗19,
KKLD23] and allow researchers to define differentiable render-
ing pipelines to adjust point cloud positions and features, such
as radius or color. Techniques like Neural Point-based Rendering
[ASK∗20, DZL∗20], SynSin [WGSJ20], Pulsar [LZ21, KPLD21]
and ADOP [RFS22] leverage learnable features to store informa-
tion about the surface appearance and shape, enabling more accu-
rate and detailed rendering results. Several other methods, such as
FVS [RK20], SVS [RK21], and FWD-Transformer [CRJ22], also
employ learnable features to improve the rendering quality. These
methods typically embed features into point clouds and warp them
to target views to decode color values, allowing for more accurate
and detailed reconstructions of the scene.

By incorporating point cloud-based differentiable renderers into
the 3D generation process, researchers can leverage the benefits
of point clouds while maintaining compatibility with gradient-
based optimization techniques. This process can be generally cate-
gorized into two different ways: point splitting which blends the
discrete samples with some local deterministic blurring kernels
[ZPVBG02, LKL18, ID18, RROG18], and conventional point ren-

derer [ASK∗20, DZL∗20, KPLD21, RALB22]. These methods fa-
cilitate the generation and manipulation of 3D point cloud models
while maintaining differentiability, which is essential for training
and optimizing neural networks in 3D generation tasks.

3.1.2. Meshes

By connecting multiple vertices with edges, more complex ge-
ometric structures (e.g. wireframes and meshes) can be formed
[BKP∗10]. These structures can then be further refined by using
polygons, typically triangles or quadrilaterals, to create realistic
representations of objects [SS87]. Meshes provide a versatile and
efficient means of representing intricate shapes and structures, as
they can be easily manipulated and rendered by computer algo-
rithms. The majority of graphic editing toolchains utilize triangle
meshes. This type of representation is indispensable for any digi-
tal content creation (DCC) pipeline, given its wide acceptance and
compatibility. To align seamlessly with these pipelines, neural net-
works can be strategically trained to predict discrete vertex loca-
tions [BNT21, TZN19]. This ability allows for the direct importa-
tion of these locations into any DCC pipeline, facilitating a smooth
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and efficient workflow. In contrast to predicting discrete textures,
continuous texture methods optimized via neural networks are pro-
posed, such as texture fields [OMN∗19] and NeRF-Tex [BGP∗22].
In this way, it could provide a more refined and detailed texture, en-
hancing the overall quality and realism of the generated 2D models.

Integrating mesh representation into 3D generation requires
the use of mesh-based differentiable rendering methods, which
enable meshes to be rasterized in a manner that is compatible
with gradient-based optimization. Several such techniques have
been proposed, including OpenDR [LB14], neural mesh renderer
[KUH18], Paparazzi [LTJ18], and Soft Rasterizer [LLCL19]. Ad-
ditionally, general-purpose physically based renderers like Mitsuba
2 [NDVZJ19] and Taichi [HLA∗19] support mesh-based differen-
tiable rendering through automatic differentiation.

3.1.3. Multi-layer Representations

The use of multiple semi-transparent colored layers for represent-
ing scenes has been a popular and successful scheme in real-
time novel view synthesis [ZTF∗18]. Using Layered Depth Im-
age (LDI) representation [SGHS98] is a notable example, ex-
tending traditional depth maps by incorporating multiple layers
of depth maps, each with associated color values. Several meth-
ods [PZ17, CGT∗19, SSKH20] have drawn inspiration from the
LDI representation and employed deep learning advancements to
create networks capable of predicting LDIs. In addition to LDIs,
Stereomagnification [ZTF∗18] initially introduced the multiple im-
age (MPI) representation. It describes scenes using multiple front-
parallel semi-transparent layers, including colors and opacity, at
fixed depth ranges through plane sweep volumes. With the help
of volume rendering and homography projection, the novel view
could be synthesized in real-time. Building on Stereomagnification
[ZTF∗18], various methods [FBD∗19, MSOC∗19, STB∗19] have
adopted the MPI representation to enhance rendering quality. The
multi-layer representation has been further expanded to accommo-
date wider fields of view in [BFO∗20, ALG∗20, LXM∗20] by sub-
stituting planes with spheres. As research in this domain continues
to evolve, we can expect further advancements in these methods,
leading to more efficient and effective 3D generation techniques
for real-time rendering.

3.2. Implicit Representations

Implicit representations have become the scene representation of
choice for problems in view synthesis or shape reconstruction, as
well as many other applications across computer graphics and vi-
sion. Unlike explicit scene representations that usually focus on
object surfaces, implicit representations could define the entire vol-
ume of a 3D object, and use volume rendering for image synthesis.
These representations utilize mathematical functions, such as radi-
ance fields [MST∗20] or signed distance fields [PFS∗19, CZ19], to
describe the properties of a 3D space.

3.2.1. Neural Radiance Fields

Neural Radiance Fields (NeRFs) [MST∗20] have gained promi-
nence as a favored scene representation method for a wide range of
applications. Fundamentally, NeRFs introduce a novel representa-
tion of 3D scenes or geometries. Rather than utilizing point clouds

and meshes, NeRFs depict the scene as a continuous volume. This
approach involves obtaining volumetric parameters, such as view-
dependent radiance and volume density, by querying an implicit
neural network. This innovative representation offers a more fluid
and adaptable way to capture the intricacies of 3D scenes, paving
the way for enhanced rendering and modeling techniques.

Specifically, NeRF [MST∗20] represents the scene with a con-
tinuous volumetric radiance field, which utilizes MLPs to map the
position x and view direction r to a density σ and color c. To render
a pixel’s color, NeRF casts a single ray r(t) = o+ td and evaluates
a series of points {ti} along the ray. The evaluated {(σi,ci)} at the
sampled points are accumulated into the color C(r) of the pixel via
volume rendering [Max95]:

C(r)=∑
i

Tiαici, where Ti = exp

(
−

i−1

∑
k=0

σkδk

)
, (1)

and αi = 1−exp(−σiδi) indicates the opacity of the sampled point.
Accumulated transmittance Ti quantifies the probability of the ray
traveling from t0 to ti without encountering other particles, and δi =
ti − ti−1 denotes the distance between adjacent samples.

NeRFs [MST∗20, NG21, BMT∗21, BMV∗22, VHM∗22,
LWC∗23] have seen widespread success in problems such as edi-
tion [MBRS∗21,ZLLD21,CZL∗22,YSL∗22], joint optimization of
cameras [LMTL21, WWX∗21, CCW∗23, TRMT23], inverse ren-
dering [ZLW∗21, SDZ∗21, BBJ∗21, ZSD∗21, ZZW∗23, LZF∗23],
generalization [YYTK21, WWG∗21, CXZ∗21, LFS∗21, JLF22,
HZF∗23b], acceleration [RPLG21, GKJ∗21, ZZZ∗23b], and
free-viewpoint video [DZY∗21, LSZ∗22, PCPMMN21]. Apart
from the above applications, NeRF-based representation can
also be used for digit avatar generation, such as face and body
reenactment [PDW∗21, GCL∗21, LHR∗21, WCS∗22, HPX∗22].
NeRFs have been extend to various fields such as robotics
[KFH∗22, ZKW∗23, ACC∗22], tomography [RWL∗22, ZLZ∗22],
image processing [HZF∗22, MLL∗22b, HZF∗23a], and astron-
omy [LSC∗22].

3.2.2. Neural Implicit Surfaces

Within the scope of shape reconstruction, a neural network pro-
cesses a 3D coordinate as input and generates a scalar value, which
usually signifies the signed distance to the surface. This method is
particularly effective in filling in missing information and generat-
ing smooth, continuous surfaces. The implicit surface representa-
tion defines the scene’s surface as a learnable function f that spec-
ifies the signed distance f (x) from each point to the surface. The
fundamental surface can then be extracted from the zero-level set,
S = {x ∈R3| f (x) = 0}, providing a flexible and efficient way to re-
construct complex 3D shapes. Implicit surface representations of-
fer numerous advantages, as they eliminate the need to define mesh
templates. As a result, they can represent objects with unknown or
changing topology in dynamic scenarios. Specifically, implicit sur-
face representations recover signed distance fields for shape mod-
eling using MLPs with coordinate inputs. These initial propos-
als sparked widespread enthusiasm and led to various improve-
ments focusing on different aspects, such as enhancing training
schemes [DZW∗20, YAK∗20, ZML∗22], leveraging global-local
context [XWC∗19, EGO∗20, ZPL∗22], adopting specific parame-
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terizations [GCV∗19, CTZ20, YRSh21, BSKG22], and employing
spatial partitions [GCS∗20, TTG∗20, TLY∗21, WLG∗23].

NeuS [WLL∗21] and VolSDF [YGKL21] extend the basic NeRF
formulation by integrating an SDF into volume rendering, which
defines a function to map the signed distance to density σ. It attains
a locally maximal value at surface intersection points. Specifically,
accumulated transmittance T (t) along the ray r(t) = o+ td is for-
mulated as a sigmoid function: T (t) = Φ( f (t)) = (1+ es f (t))−1,
where s and f (t) refer to a learnable parameter and the signed dis-
tance function of points at r(t), respectively. Discrete opacity val-
ues αi can then be derived as:

αi = max
(

Φs ( f (ti))−Φs ( f (ti+1))

Φs ( f (ti))
,0
)
. (2)

NeuS employs volume rendering to recover the underlying SDF
based on Eqs. (1) and (2). The SDF is optimized by minimizing the
photometric loss between the rendering results and ground-truth
images.

Building upon NeuS and VolSDF, NeuralWarp [DBD∗22], Geo-
NeuS [FXOT22], MonoSDF [YPN∗22] leverage prior geometry in-
formation from MVS methods. IRON [ZLLS22], MII [ZSH∗22],
and WildLight [CLL23] apply high-fidelity shape reconstruction
via SDF for inverse rendering. HF-NeuS [WSW22] and PET-Neus
[WSW23] integrate additional displacement networks to fit the
high-frequency details. LoD-NeuS [ZZF∗23] adaptively encodes
Level of Detail (LoD) features for shape reconstruction.

3.3. Hybrid Representations

Implicit representations have indeed demonstrated impressive re-
sults in various applications as mentioned above. However, most
of the current implicit methods rely on regression to NeRF or SDF
values, which may limit their ability to benefit from explicit super-
vision on the target views or surfaces. Explicit representation could
impose useful constraints during training and improve the user ex-
perience. To capitalize on the complementary benefits of both rep-
resentations, researchers have begun exploring hybrid representa-
tions. These involve scene representations (either explicit or im-
plicit) that embed features utilizing rendering algorithms for view
synthesis.

3.3.1. Voxel Grids

Early work [WSK∗15, CXG∗16, MS15] depicted 3D shapes us-
ing voxels, which store coarse occupancy (inside/outside) values
on a regular grid. This approach enabled powerful convolutional
neural networks to operate natively and produce impressive results
in 3D reconstruction and synthesis [DRB∗18, WZX∗16, BLW16].
These methods usually use explicit voxel grids as the 3D represen-
tation. Recently, to address the slow training and rendering speeds
of implicit representations, the 3D voxel-based embedding methods
[LGZL∗20,FKYT∗22,SSN∗22,SSC22] have been proposed. These
methods encode the spatial information of the scene and decode the
features more efficiently. Moreover, Instant-NGP [MESK22] intro-
duces the multi-level voxel grids encoded implicitly via the hash
function for each level. It facilitates rapid optimization and ren-
dering while maintaining a compact model. These advancements

in 3D shape representation and processing techniques have signif-
icantly enhanced the efficiency and effectiveness of 3D generation
applications.

3.3.2. Tri-plane

Tri-plane representation is an alternative approach to using voxel
grids for embedding features in 3D shape representation and neural
rendering. The main idea behind this method is to decompose a 3D
volume into three orthogonal planes (e.g., XY, XZ, and YZ planes)
and represent the features of the 3D shape on these planes. Specifi-
cally, TensoRF [CXG∗22] achieves similar model compression and
acceleration by replacing each voxel grid with a tensor decompo-
sition into planes and vectors. Tri-planes are efficient and capable
of scaling with the surface area rather than volume and naturally
integrate with expressive, fine-tuned 2D generative architectures.
In the generative setting, EG3D [CLC∗22] proposes a spatial de-
composition into three planes whose values are added together to
represent a 3D volume. NFD [SCP∗23] introduces diffusion on 3D
scenes, utilizing 2D diffusion model backbones and having built-in
tri-plane representation.

3.3.3. Hybrid Surface Representation

DMTet, a recent development cited in [SGY∗21], is a hybrid three-
dimensional surface representation that combines both explicit and
implicit forms to create a versatile and efficient model. It segments
the 3D space into dense tetrahedra, thereby forming an explicit par-
tition. By integrating explicit and implicit representations, DMTet
can be optimized more efficiently and transformed seamlessly into
explicit structures like mesh representations. During the generation
process, DMTet can be differentiably converted into a mesh, which
enables swift high-resolution multi-view rendering. This innovative
approach offers significant improvements in terms of efficiency and
versatility in 3D modeling and rendering.

4. Generation Methods

In the past few years, the rapid development of generative mod-
els in 2D image synthesis, such as generative adversarial networks
(GANs) [GPAM∗14, AQW19], variational autoencoders (VAEs)
[KPHL17, PGH∗16, KW13], autoregressive models [RWC∗19,
BMR∗20], diffusion models [HJA20,ND21,SCS∗22], etc., has led
to their extension and combination with these scene representations
for 3D generation. Tab. 1 shows well-known examples of 3D gen-
eration using generative models and scene representations. These
methods may use different scene representations in the generation
space, where the representation is generated by the generative mod-
els, and the reconstruction space, where the output is represented.
For example, AutoSDF [MCST22a] uses a transformer-based au-
toregressive model to learn a feature voxel grid and decode this rep-
resentation to SDF for reconstruction. EG3D [CLC∗22] employs
GANs to generate samples in latent space and introduces a tri-
plane representation for rendering the output. SSDNeRF [CGC∗23]
uses the diffusion model to generate tri-plane features and decode
them to NeRF for rendering. By leveraging the advantages of neu-
ral scene representations and generative models, these approaches
have demonstrated remarkable potential in generating realistic and
intricate 3D models while maintaining view consistency.
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Table 1: Some examples of 3D generation methods. We first divide the methods according to the generative models and their corresponding
representations in generation space. The representations in the reconstruction space determine how the 3D objects are formatted and rendered.
We also list the main supervision and conditions of these methods. For the 2D supervision, a rendering technique is utilized to generate the
images.

Method Generative Model Generation Space Reconstruction Space Rendering Supervision Condition

PointFlow [YHH∗19a] Normalizing Flow Latent Code Point Cloud - 3D Uncon
3dAAE [ZZK∗20] VAE Latent Code Point Cloud - 3D Uncon
SDM-NET [GYW∗19a] VAE Latent Code Mesh - 3D Uncon

AutoSDF [MCST22a] Autoregressive Voxel SDF - 3D Uncon.
PolyGen [NGEB20a] Autoregressive Polygon Mesh - 3D Uncon./Label/Image
PointGrow [SWL∗20a] Autoregressive Point Point Cloud - 3D Uncon./Label/Image

EG3D [CLC∗22] GAN Latent Code Tri-plane Mixed Rendering 2D Uncon.
GIRAFFE [NG21] GAN Latent Code NeRF Mixed Rendering 2D Uncon.
BlockGAN [NPRM∗20] GAN Latent Code Voxel Grid Network Rendering 2D Uncon.
gDNA [CJS∗22] GAN Latent Code Occupancy Field Surface Rendering 2D&3D Uncon.
SurfGen [LLZL21] GAN Latent Code SDF - 3D Uncon.
tree-GAN [SPK19] GAN Latent Code Point Cloud - 3D Uncon.

HoloDiffusion [KVNM23] Diffusion Voxel NeRF Volume Rendering 2D Image
SSDNeRF [CGC∗23] Diffusion Tri-plane NeRF Volume Rendering 2D Uncon./Image
3DShape2VecSet [ZTNW23] Diffusion Latent Set SDF - 3D Uncon./Text/Image
Point-E [NJD∗22] Diffusion Point Point Cloud - 3D Text
3DGen [GXN∗23] Diffusion Tri-plane Mesh - 3D Text/Image
DreamFusion [PJBM23] Diffusion - NeRF Volume Rendering SDS Text
Make-It-3D [TWZ∗23] Diffusion - Point Cloud Network Rendering SDS Image
Zero-1-to-3 [LWVH∗23] Diffusion Pixel - - 2D Image
MVDream [SWY∗23] Diffusion Pixel - - 2D Image
DMV3D [XTL∗23] Diffusion Pixel Tri-plane Volume Rendering 2D Text/Image

In this section, we explore a large variety of 3D generation
methods which are organized into four categories based on their
algorithmic paradigms: Feedforward Generation (Sec. 4.1), gen-
erating results in a forward pass; Optimization-Based Generation
(Sec. 4.2), necessitating a test-time optimization for each genera-
tion; Procedural Generation (Sec. 4.3), creating 3D models from
sets of rules; and Generative Novel View Synthesis (Sec. 4.4), syn-
thesizing multi-view images rather than an explicit 3D represen-
tation for 3D generation. An evolutionary tree of 3D generation
methods is depicted in Fig. 4, which illustrates the primary branch
of generation techniques, along with associated work and subse-
quent developments. A comprehensive analysis will be discussed
in the subsequent subsection.

4.1. Feedforward Generation

A primary technical approach for generation methods is feedfor-
ward generation, which can directly produce 3D representations
using generative models. In this section, we explore these methods
based on their generative models as shown in Fig. 5, which include
generative adversarial networks (GANs), diffusion Models, autore-
gressive models, variational autoencoders (VAEs) and normalizing
flows.

4.1.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [GPAM∗14] have
demonstrated remarkable outcomes in image synthesis tasks, con-

sisting of a generator G(·) and a discriminator D(·). The gener-
ator network G produces synthetic data by accepting latent code
as input, while the discriminator network D differentiates between
generated data from G and real data. Throughout the training opti-
mization process, the generator G and discriminator D are jointly
optimized, guiding the generator to create synthetic data as realistic
as real data.

Building on the impressive results achieved by GANs in 2D
image synthesis, researchers have begun to explore the appli-
cation of these models to 3D generation tasks. The core idea
is to marry GANs with various 3D representations, such as
point clouds (l-GAN/r-GAN [ADMG18], tree-GAN [SPK19]),
voxel grids (3D-GAN [WZX∗16], Z-GAN [KKR18]), meshes
(MeshGAN [CBZ∗19]), or SDF (SurfGen [LLZL21], SDF-
StyleGAN [ZLWT22]). In this context, the 3D generation process
can be viewed as a series of adversarial steps, where the generator
learns to create realistic 3D data from input latent codes, and the
discriminator differentiates between generated data and real data.
By iteratively optimizing the generator and discriminator networks,
GANs learn to generate 3D data that closely resembles the realism
of actual data.

For 3D object generation, prior GAN methodologies, such as l-
GAN [ADMG18], 3D-GAN [WZX∗16], and Multi-chart Gener-
ation [BHMK∗18], directly utilize explicit 3D object representa-
tion of real data to instruct generator networks. Their discrimina-
tors employ 3D representation as supervision, directing the gener-
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Figure 4: The evolutionary tree of 3D generation illustrates the primary branch of generation methods and their developments in recent
years. Specifically, we provide a comprehensive overview of the rapidly growing literature on generation methods, categorized by the type of
algorithmic paradigms, including feedforward generation, optimization-based generation, procedural generation, and generative novel view
synthesis.



X. Li & Q. Zhang & D. Kang & W. Cheng & Y. Gao et al. / Advances in 3D Generation: A Survey 9

(a) Generative Adversarial Networks

G
3D Data

D

Real / Fake

(e) Normalizing Flows

Flow

In
ve
rs
e

Ὢ ὼ Ὢ ᾀ

3D Data 3D Data

(d) Variational Autoencoders

Encoder D
ec
od

er

3D Data 3D Data

(b) Diffusion Models

Multiple denoising steps

Noise 3D Data

(c) Autoregressive Models

3D Data Tokens 3D Data

Predict the next token

Encoder D
ec
od

er

Figure 5: Exemplary feedforward 3D generation models. We showcase several representative pipelines of feedforward 3D generation models,
including (a) generative adversarial networks, (b) diffusion models, (c) autoregressive models, (d) variational autoencoders and (e) normal-
izing flows.

ator to produce synthetic data that closely resembles the realism of
actual data. During training, specialized generators generate cor-
responding supervisory 3D representations, such as point clouds,
voxel grids, and meshes. Some studies, like SurfGen [LLZL21],
have progressed further to generate intermediate implicit represen-
tations and then convert them to corresponding 3D representations
instead of directly generating explicit ones, achieving superior per-
formance. In particular, the generator of l-GAN [ADMG18], 3D-
GAN [WZX∗16], and Multi-chart Generation [BHMK∗18] gener-
ate the position of point cloud, voxel grid, and mesh directly, re-
spectively, taking latent code as input. SurfGen [LLZL21] gener-
ates implicit representation and then extracts explicit 3D represen-
tation.

In addition to GANs that directly generate various 3D represen-
tations, researchers have suggested incorporating 2D supervision
through differentiable rendering to guide 3D generation, which is
commonly referred to as 3D-Aware GAN. Given the abundance of
2D images, GANs can better understand the implicit relationship
between 2D and 3D data than relying solely on 3D supervision. In
this approach, the generator of GANs generates rendered 2D im-
ages from implicit or explicit 3D representation. Then the discrimi-
nators distinguish between rendered 2D images and real 2D images
to guide the training of the generator.

Specifically, HoloGAN [NPLT∗19] first learns a 3D represen-
tation of 3D features, which is then projected to 2D features
by the camera pose. These 2D feature maps are then rendered
to generate the final images. BlockGAN [NPRM∗20] extends it
to generate 3D features of both background and foreground ob-
jects and combine them into 3D features for the whole scene.
In addition, PrGAN [GMW17] and PlatonicGAN [HMR19a] em-
ploy an explicit voxel grid structure to represent 3D shapes and
use a render layer to create images. Other methods like DIB-
R [CZ19], ConvMesh [PSH∗20], Textured3DGAN [PKHL21] and
GET3D [GSW∗22] propose GAN frameworks for generating tri-
angle meshes and textures using only 2D supervision.

Building upon representations such as NeRFs, GRAF [SLNG20]
proposes generative radiance fields utilizing adversarial frame-
works and achieves controllable image synthesis at high reso-
lutions. pi-GAN [CMK∗21a] introduces SIREN-based implicit
GANs with FiLM conditioning to further improve image quality
and view consistency. GIRAFFE [NG21] represents scenes as com-
positional generative neural feature fields to model multi-object
scenes. Furthermore, EG3D [CLC∗22] first proposes a hybrid ex-
plicit–implicit tri-plane representation that is both efficient and ex-
pressive and has been widely adopted in many following works.

4.1.2. Diffusion Models

Diffusion models [HJA20,RBL∗22a] are a class of generative mod-
els that learn to generate data samples by simulating a diffusion
process. The key idea behind diffusion models is to transform the
original data distribution into a simpler distribution, such as Gaus-
sian, through a series of noise-driven steps called the forward pro-
cess. The model then learns to reverse this process, known as the
backward process, to generate new samples that resemble the orig-
inal data distribution. The forward process can be thought of as
gradually adding noise to the original data until it reaches the tar-
get distribution. The backward process, on the other hand, involves
iteratively denoising the samples from the distribution to generate
the final output. By learning this denoising process, diffusion mod-
els can effectively capture the underlying structure and patterns of
the data, allowing them to generate high-quality and diverse sam-
ples.

Building on the impressive results achieved by diffusion models
in generating 2D images, researchers have begun to explore the ap-
plications of these models to 3D generation tasks. The core idea is
to marry denoising diffusion models with various 3D representa-
tions. In this context, the 3D generation process can be viewed as a
series of denoising steps, reversing the diffusion process from input
3D data to Gaussian noise. The diffusion models learn to generate
3D data from this noisy distribution through denoising.
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Specifically, Cai et al. [CYAE∗20] build upon a denoising score-
matching framework to learn distributions for point cloud genera-
tion. PVD [ZDW21] combines the benefits of both point-based and
voxel-based representations for 3D generation. The model learns
a diffusion process that transforms point clouds into voxel grids
and vice versa, effectively capturing the underlying structure and
patterns of the 3D data. Similarly, DPM [LH21] focuses on learn-
ing a denoising process for point cloud data by iterative denoising
the noisy point cloud samples. Following the advancements made
by PVD [ZDW21] and DPM [LH21], LION [ZVW∗22] builds
upon the idea of denoising point clouds and introduces the con-
cept of denoising in the latent space of point clouds, which is anal-
ogous to the shift in 2D image generation from denoising pixels
to denoising latent space representations. To generate point clouds
from text prompts, Point·E [NJD∗22] initially employs the GLIDE
model [NDR∗21] to generate text-conditional synthetic views, fol-
lowed by the production of a point cloud using a diffusion model
conditioned on the generated image. By training the model on a
large-scale 3D dataset, it achieves remarkable generalization capa-
bilities.

In addition to point clouds, MeshDiffusion [LFB∗23], Tetrahe-
dral Diffusion Models [KPWS22], and SLIDE [LWA∗23] explore
the application of diffusion models to mesh generation. MeshDif-
fusion [LFB∗23] adopts the DMTet representation [SGY∗21] for
meshes and optimizes the model by treating the optimization of
signed distance functions as a denoising process. Tetrahedral Dif-
fusion Models [KPWS22] extends diffusion models to tetrahedral
meshes, learning displacement vectors and signed distance values
on the tetrahedral grid through denoising. SLIDE [LWA∗23] ex-
plores diffusion models on sparse latent points for mesh generation.

Apart from applying diffusion operations on explicit 3D
representations, some works focus on performing the diffu-
sion process on implicit representations. SSDNeRF [CGC∗23],
DiffRF [MSP∗23] and Shap·E [JN23] operate on 3D radiance
fields, while SDF-Diffusion [SKJ23], LAS-Diffusion [ZPW∗23],
Neural Wavelet-domain Diffusion [HLHF22], One-2-3-
45++ [LXJ∗23], SDFusion [CLT∗23] and 3D-LDM [NKR∗22]
focus on signed distance fields representations. Specifically,
Diffusion-SDF [LDZL23] utilizes a voxel-shaped SDF repre-
sentation to generate high-quality and continuous 3D shapes.
3D-LDM [NKR∗22] creates neural implicit representations of
SDFs by initially using a diffusion model to generate the latent
space of an auto-decoder. Subsequently, the latent space is decoded
into SDFs to acquire 3D shapes. Moreover, Rodin [WZZ∗23]
and Shue et al. [SCP∗23] adopt tri-plane as the representation
and optimize the tri-plane features using diffusion methods.
Shue et al. [SCP∗23] generates 3D shapes using occupancy
networks, while Rodin [WZZ∗23] obtains 3D shapes through
volumetric rendering.

These approaches showcase the versatility of diffusion models
in managing various 3D representations, including both explicit
and implicit forms. By tailoring the denoising process to different
representation types, diffusion models can effectively capture the
underlying structure and patterns of 3D data, leading to improved
generation quality and diversity. As research in this area continues
to advance, it is expected that diffusion models will play a crucial

role in pushing the boundaries of 3D shape generation across a wide
range of applications.

4.1.3. Autoregressive Models

A 3D object can be represented as a joint probability of the occur-
rences of multiple 3D elements:

p(x0,x1, ...,xn), (3)

where xi is the i-th element which can be the coordinate of a point or
a voxel. A joint probability with a large number of random variables
is usually hard to learn and estimate. However, one can factorize it
into a product of conditional probabilities:

p(x0,x1, ...,xn) = p(x0)
n

∏
i=1

p(xi|x<i), (4)

which enables learning conditional probabilities and estimating the
joint probability via sampling. Autoregressive models for data gen-
eration are a type of models that specify the current output depend-
ing on their previous outputs. Assuming that the elements x0, x1,
..., xn form an ordered sequence, a model can be trained by provid-
ing it with previous inputs x0, ... xi−1 and supervising it to fit the
probability of the outcome xi:

p(xi|x<i) = f (x0, ...,xi−1), (5)

the conditional probabilities are learned by the model function f .
This training process is often called teacher forcing. The model can
be then used to autoregressively generate the elements step-by-step:

xi = argmax p(x|x<i). (6)

State-of-the-art generative models such as GPTs [RWC∗19,
BMR∗20] are autoregressive generators with Transformer net-
works as the model function. They achieve great success in gen-
erating natural languages and images. In 3D generation, several
studies have been conducted based on autoregressive models. In
this section, we discuss some notable examples of employing au-
toregressive models for 3D generation.

PointGrow [SWL∗20b] generates point clouds using an autore-
gressive network with self-attention context awareness operations
in a point-by-point manner. Given its previously generated points,
PointGrow reforms the points by axes and passes them into three
branches. Each branch takes the inputs to predict a coordinate value
of one axis. The model can also condition an embedding vector to
generate point clouds, which can be a class category or an image.
Inspired by the network from PointGrow, PolyGen [NGEB20b]
generates 3D meshes with two transformer-based networks, one for
vertices and one for faces. The vertex transformer autoregressively
generates the next vertex coordinate based on previous vertices.
The face transformer takes all the output vertices as context to gen-
erate faces. PolyGen can condition on a context of object classes or
images, which are cross-attended by the transformer networks.

Recently, AutoSDF [MCST22b] generates 3D shapes repre-
sented by volumetric truncated-signed distance function (T-SDF).
AutoSDF learns a quantized codebook regarding local regions of
T-SDFs using VQ-VAE. The shapes are then presented by the
codebook tokens and learned by a transformer-based network in
a non-sequential autoregressive manner. In detail, given previous
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tokens at arbitrary locations and a query location, the network pre-
dicts the token that is queried. AutoSDF is capable of completing
shapes and generating shapes based on images or text. Concurrently
with AutoSDF, ShapeFormer [YLM∗22] generates surfaces of 3D
shapes based on incomplete and noisy point clouds. A compact
3D representation called vector quantized deep implicit function
(VQDIF) is used to represent shapes using a feature sequence of
discrete variables. ShapeFormer first encodes an input point cloud
into a partial feature sequence. It then uses a transformer-based net-
work to autoregressively sample out the complete sequence. Fi-
nally, it decodes the sequence to a deep implicit function from
which the complete object surface can be extracted. Instead of
learning in 3D volumetric space, Luo et al.proposes an improved
auto-regressive model (ImAM) to learn discrete representation in
a one-dimensional space to enhance the efficient learning of 3D
shape generation. The method first encodes 3D shapes of volumet-
ric grids into three axis-aligned planes. It uses a coupling network
to further project the planes into a latent vector, where vector quan-
tization is performed for discrete tokens. ImAM adopts a vanilla
transformer to autoregressively learn the tokens with tractable or-
ders. The generated tokens are decoded to occupancy values via a
network by sampling spatial locations. ImAM can switch from un-
conditional generation to conditional generation by concatenating
various conditions, such as point clouds, categories, and images.

4.1.4. Variational Autoencoders

Variational autoencoders (VAEs) [KW13] are probabilistic genera-
tive models that consist of two neural network components: the en-
coder and decoder. The encoder maps the input data point to a latent
space that corresponds to the parameters of a variational distribu-
tion. In this way, the encoder can produce multiple different sam-
ples that all come from the same distribution. The decoder maps
from the latent space to the input space, to produce or generate data
points. Both networks are typically trained together with the usage
of the reparameterization trick, although the variance of the noise
model can be learned separately. VAEs have also been explored in
3D generation [KYLH21,GWY∗21,GYW∗19b,BLW16,KSZ∗21].

Brock et al. trains variational autoencoders directly for vox-
els using 3D ConvNet, while SDM-Net [GYW∗19b] focuses on
the generation of structured meshes composed of deformable
parts. The method uses one VAE network to model parts and
another to model the whole object. The follow-up work TM-
Net [GWY∗21] could generate texture maps of meshes in a part-
aware manner. Other representations like point clouds [KYLH21]
and NeRFs [KSZ∗21] are also explored in variational autoen-
coders. Owing to the reconstruction-focused objective of VAEs,
their training is considerably more stable than that of GANs. How-
ever, VAEs tend to produce more blurred results compared to
GANs.

4.1.5. Normalizing Flows

Normalizing flow models consist of a series of invertible transfor-
mations that map a simple distribution, such as Gaussian, to a target
distribution, which represents the data to generation. These trans-
formations are carefully designed to be differentiable and invert-
ible, allowing one to compute the likelihood of the data under the

an orangutan making a clay bowl on a throwing wheel* a raccoon astronaut holding his helmet† a blue jay standing on a large basket of rainbow macarons*

a corgi taking a selfie* a table with dim sum on it† a lion reading the newspaper*

Michelangelo style statue of dog reading news on a cellphone a tiger dressed as a doctor* a steam engine train, high resolution*

a frog wearing a sweater* a humanoid robot playing the cello* Sydney opera house, aerial view†

Figure 6: Results of text-guided 3D generation by DreamFu-
sion [PJBM23] using SDS loss. ∗ denotes a DSLR photo, † denotes
a zoomed out DSLR photo.

model and optimize the model parameters using gradient-based op-
timization techniques.

In 3D generation, PointFlow [YHH∗19a] learns a distribution
of shapes and a distribution of points using continuous normalizing
flows. This approach allows for the sampling of shapes, followed by
the sampling of an arbitrary number of points from a given shape.
Discrete PointFlow (DPF) network [KBV20] improves PointFlow
by replacing continuous normalizing flows with discrete normal-
izing flows, which reduces the training and sampling time. Soft-
Flow [KLK∗20] is a framework for training normalizing flows on
the manifold. It estimates a conditional distribution of the perturbed
input data instead of learning the data distribution directly. Soft-
Flow alleviates the difficulty of forming thin structures for flow-
based models.

4.2. Optimization-based Generation

Optimization-based generation is employed to generate 3D models
using runtime optimization. These methods usually leverage pre-
trained multimodal networks to optimize 3D models based on user-
specified prompts. The key lies in achieving alignment between
the given prompts and the generated content while maintaining
high fidelity and diversity. In this section, we primarily examine
optimization-based generation methods that use texts and images,
based on the types of prompts provided by users.

4.2.1. Text-to-3D

Language serves as the primary means of human communication
and describing scenes, and researchers are dedicated to explor-
ing the potential of text-based generation methods. These meth-
ods typically align the text with the images obtained through the
differentiable rendering techniques, thereby guiding the genera-
tion of 3D content based on the text prompts. Given a fixed sur-
face, TANGO [LZJ∗22] uses CLIP [RKH∗21a] to supervise dif-
ferentiable physical-based rendering (PBR) images and obtain tex-
ture maps that align with the specified text prompt. Inspired by
the success of NeRF [MST∗20] and diffusion models in model-
ing 3D static scenes and text-to-image tasks respectively, Dream-
Fusion [PJBM23] (as shown in Fig. 6) combines the volumetric
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Table 2: Quantitative comparison of image-to-3D methods on sur-
face reconstruction. We summarize the Chamfer distance and vol-
ume IoU as the metrics to evaluate the quality of surface recon-
struction.

Method Chamfer Distance ↓ Volume IoU ↑

RealFusion [MKLRV23] 0.0819 0.2741
Magic123 [QMH∗23] 0.0516 0.4528
Make-it-3D [TWZ∗23] 0.0732 0.2937
One-2-3-45 [LXJ∗23] 0.0629 0.4086
Point-E [NJD∗22] 0.0426 0.2875
Shap-E [JN23] 0.0436 0.3584
Zero-1-to-3 [LWVH∗23] 0.0339 0.5035
SyncDreamer [LLZ∗23] 0.0261 0.5421

representation used in NeRF with the proposed Score Distillation
Sampling (SDS) loss to achieve high-fidelity 3D content genera-
tion. SDS loss converts rendering error minimization into proba-
bility density distillation and enables 2D diffusion priors to opti-
mize 3D representations (e.g. , volumetric representation and trian-
gle mesh) via image parameterization (e.g. , differentiable render-
ing). As a concurrent work concurrent with SDS, Score Jacobian
Chaining (SJC) [WDL∗23] interprets predictions from pre-trained
diffusion models as a score function of the data log-likelihood, sim-
ilarly enabling 2D diffusion priors to optimize 3D representations
via score matching. Based on DreamFusion, Magic3D [LGT∗23]
introduces a coarse-to-fine manner and extracts the underlying ge-
ometry of the volume as a mesh. It then combines differentiable
neural rendering and SDS to refine the extracted mesh. Magic3D is
capable of exporting high-quality textured meshes and seamlessly
embedding them into the traditional graphics pipeline. Also as a
two-stage method, Fantasia3D further combines DMTet [SGY∗21]
and SDS in the first geometry modeling stage to explicitly opti-
mize surface. In the second stage, it introduces the PBR mate-
rial model and disentangle texture and environment illumination.
ProlificDreamer [WLW∗23] presents variational score distillation
(VSD) to boost text-to-3D generation. VSD adopts particles to
model the distribution of 3D scenes and derive a gradient-based
optimization scheme from the Wasserstein gradient flow, narrowing
the gap between the rendering results distribution of the modeling
distribution and pre-trained diffusion distribution. Benefiting from
the optimization of scene distribution rather than a single scene,
VSD overcomes the over-saturated and over-smoothed results pro-
duced by SDS and improves diversities. MVDream [SWY∗23] fur-
ther fine-tunes a multi-view diffusion model and introduces multi-
view consistent 3D priors, overcoming multi-face and content-drift
problems. Text-to-3D has garnered significant attention recently, in
addition to these, many other methods [ZZ23,LCCT23,MRP∗23a]
have been proposed in this field.

4.2.2. Image-to-3D

As the primary way to describe the visual effects of scenes, im-
ages can more intuitively describe the details and appearance of
scenes at a finer-grained than language. Recent works thus are
motivated to explore the image-to-3D techniques, which recon-
struct remarkable and high-fidelity 3D models from specified im-

Table 3: Quantitative comparison of image-to-3D methods on novel
view synthesis. We report the CLIP-Similarity, PSNR, and LPIPS
as the metrics to evaluate the quality of view synthesis.

Method CLIP-Similarity ↑ PSNR ↑ LPIPS ↓

RealFusion [MKLRV23] 0.735 20.216 0.197
Magic123 [QMH∗23] 0.747 25.637 0.062
Make-it-3D [TWZ∗23] 0.839 20.010 0.119
One-2-3-45 [LXJ∗23] 0.788 23.159 0.096
Zero-1-to-3 [LWVH∗23] 0.759 25.386 0.068
SyncDreamer [LLZ∗23] 0.837 25.896 0.059

ages. These methods strive to maintain the appearance of the spec-
ified images and optimized 3D contents while introducing reason-
able geometric priors. Similar to the text-to-3D methods, several
image-to-3D methods leverage the volumetric representation used
in NeRF to represent the target 3D scenes, which natively intro-
duces multi-view consistency. NeuralLift-360 [XJW∗23] uses es-
timated monocular depth and CLIP-guided diffusion prior to reg-
ularizing the geometry and appearance optimization respectively,
achieving lift of a single image to a 3D scene represented by a
NeRF. RealFusion [MKLRV23] and NeRDi [DJQ∗23] leverage
textual inversion [GAA∗22] to extract text embeddings to condi-
tion a pre-trained image diffusion model [RBL∗22b], and combine
use the score distillation loss to optimize the volumetric represen-
tation. Based on Magic3D [LGT∗23] that employs a coarse-to-fine
framework as mentioned above, Magic123 [QMH∗23] additionally
introduces 3D priors from a pre-trained viewpoint-conditioned dif-
fusion model Zero-1-to-3 [LWVH∗23] in two optimization stage,
yielding textured meshes that match the specified images. As an-
other two-stage image-to-3D method, Make-it-3D [TWZ∗23] en-
hances texture and geometric structure in the fine stage, pro-
ducing high-quality textured point clouds as final results. Sub-
sequent works [SZS∗23, YYC∗23] have been consistently pro-
posed to enhance the previous results. Recently, 3D Gaussian
Splatting (3DGS) [KKLD23] has emerged as a promising model-
ing as well as a real-time rendering technique. Based on 3DGS,
DreamGaussian [TRZ∗23] presents an efficient two-stage frame-
work for both text-driven and image-driven 3D generation. In the
first stage, DreamGaussian leverages SDS loss (i.e. 2D diffusion
priors [LWVH∗23] and CLIP-guided diffusion priors [PJBM23]) to
generate target objects represented by 3D Gaussians. Then Dream-
Gaussian extracts textured mesh from the optimized 3D Gaussians
by querying the local density and refines textures in the UV space.
For a better understanding of readers to various image-to-3D meth-
ods, we evaluate the performance of some open-source state-of-the-
art methods. Tab. 2 shows the quantitative comparison of image-to-
3D methods on surface reconstruction. We summarize the Chamfer
distance and volume IoU as the metrics to evaluate the quality of
surface reconstruction. Tab. 3 demonstrates the quantitative com-
parison of image-to-3D methods on novel view synthesis. We re-
port the CLIP-Similarity, PSNR, and LPIPS as the metrics to eval-
uate the quality of view synthesis.
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4.3. Procedural Generation

Procedural generation is a term for techniques that create 3D mod-
els and textures from sets of rules. These techniques often rely on
predefined rules, parameters, and mathematical functions to gener-
ate diverse and complex content, such as textures, terrains, levels,
characters, and objects. One of the key advantages of procedural
generation is their ability to efficiently create various shapes from a
relatively small set of rules. In this section, we mainly survey four
most used techniques: fractal geometry, L-Systems, noise functions
and cellular automata.

A fractal [Man67, MM82] is a geometric shape that exhibits de-
tailed structure at arbitrarily small scales. A characteristic feature of
many fractals is their similarity across different scales. This prop-
erty of exhibiting recurring patterns at progressively smaller scales
is referred to as self-similarity. A common application of fractal
geometry is the creation of landscapes or surfaces. These are gen-
erated using a stochastic algorithm designed to produce fractal be-
havior that mimics the appearance of natural terrain. The resulting
surface is not deterministic, but rather a random surface that ex-
hibits fractal behavior.

An L-system [Lin68], or Lindenmayer system, is a type of for-
mal grammar and parallel rewriting system. It comprises an alpha-
bet of symbols that can be utilized to construct strings, a set of
production rules that transform each symbol into a more complex
string of symbols, a starting string for construction, and a mecha-
nism for converting the produced strings into geometric structures.
L-systems are used to create complex and realistic 3D models of
natural objects like trees and plants. The string generated by the L-
System can be interpreted as instructions for a “turtle” to move in
3D space. For example, certain characters might instruct the turtle
to move forward, turn left or right, or push and pop positions and
orientations onto a stack.

Noise functions, such as Perlin noise [Per85] and Simplex noise
[Per02], are used to generate coherent random patterns that can be
applied to create realistic textures and shapes in 3D objects. These
functions can be combined and layered to create more complex pat-
terns and are particularly useful in terrain generation, where they
can be used to generate realistic landscapes with varying elevations,
slopes, and features.

Cellular automata [VN∗51,Neu66,Wol83] are a class of discrete
computational models that consist of a grid of cells, each of which
can be in one of a finite number of states. The state of each cell is
determined by a set of rules based on the states of its neighboring
cells. Cellular automata have been used in procedural generation
to create various 3D objects and patterns, such as cave systems,
mazes, and other structures with emergent properties.

4.4. Generative Novel View Synthesis

Recently, generative techniques have been utilized to tackle the
challenge of novel view synthesis, particularly in predicting new
views from a single input image. Compared to the conventional
3D generation methods, it does not explicitly utilize the 3D rep-
resentation to enforce 3D consistency, instead, it usually employs
a 3D-aware method by conditioning 3D information. In the field

Figure 7: Zero-1-to-3 proposes a viewpoint-conditioned image dif-
fusion model to generate the novel view of the input image. By
training on a large-scale dataset, it achieves a strong generalization
ability to in-the-wild images.

of novel view synthesis, a widely studied technical route will be
regression-based methods [YYTK21, WWG∗21, CXZ∗21]. Differ-
ent from them, generative novel view synthesis focuses more on
generating new content rather than regressing the scenes from a few
input images, which typically involves long-range view extrapola-
tion.

With the development of image synthesis methods, signifi-
cant progress has been made in generative novel view synthe-
sis. Recently, 2D diffusion models have transformed image syn-
thesis and therefore are also utilized in generative novel view
synthesis [WCMB∗22, TLK∗23, LWVH∗23, CNC∗23, TYC∗23,
YGMG23]. Among these methods, 3DiM [WCMB∗22] first in-
troduces a geometry-free image-to-image diffusion model for
novel view synthesis, taking the camera pose as the condition.
Tseng et al. [TLK∗23] designs epipolar attention layers to in-
ject camera parameters into the pose-guided diffusion model for
consistent view synthesis from a single input image. Zero-1-to-
3 [LWVH∗23] (as shown in Fig. 7) demonstrates the learning of
the camera viewpoint in large-scale diffusion models for zero-
shot novel view synthesis. [CNC∗23, TYC∗23, YGMG23] con-
dition 2D diffusion models on pixel-aligned features extracted
from input views to extend them to be 3D-aware. However, gen-
erating multiview-consistent images remains a challenging prob-
lem. To ensure consistent generation, [LHG∗23,LLZ∗23,SCZ∗23,
LGL∗23] propose a multi-view diffusion model that could synthe-
size multi-view images simultaneously to consider the informa-
tion between different views, which achieve more consistent re-
sults compared to the single view synthesis model like Zero-1-to-
3 [LWVH∗23].

Prior to that, the transformer which is a sequence-to-sequence
model originally proposed in natural language processing, uses a
multi-head attention mechanism to gather information from dif-
ferent positions and brings lots of attention in the vision com-
munity. Many tasks achieve state-of-the-art performance using the
attention mechanism from the transformer including generative
novel view synthesis [REO21, SMP∗22, KDSB22]. Specifically,
Geometry-free View Synthesis [REO21] learns the discrete repre-
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Table 4: Selected datasets commonly used for 3D generation.

Dataset Type Year Samples Category

ShapeNet [CFG∗15] 3D data 2015 51K objects
Thingi10K [ZJ16] 3D data 2016 10K objects
3D-Future [FJG∗21] 3D data 2020 10K furniture
GSO [DFK∗22] 3D Data 2022 1K household items
Objaverse [DSS∗23] 3D data 2022 800K objects
OmniObject3D [WZF∗23] 3D data 2023 6K objects
Objaverse-XL [DLW∗23] 3D Data 2023 10.2M objects

ScanNet [DCS∗17] multi-view images 2017 1.5K (2.5M images) indoor scenes
CO3D [RSH∗21] multi-view images 2021 19K (1.5M images) objects
MVImgNet [YXZ∗23] multi-view images 2023 219K (6.5M images) objects

DeepFashion [LLQ∗16] single-view images 2016 800K clothes
FFHQ [KLA19] single-view images 2018 70K human faces
AFHQ [CUYH20] single-view images 2019 15K animal faces
SHHQ [FLJ∗22] single-view images 2022 40K human bodies

sentation vis VQGAN to obtain an abstract latent space for training
transformers. While ViewFormer [KDSB22] also uses a two-stage
training consisting of a Vector Quantized Variational Autoencoder
(VQ-VAE) codebook and a transformer model. And [SMP∗22] em-
ploys an encoder-decoder model based on transformers to learn an
implicit representation.

On the other hand, generative adversarial networks could pro-
duce high-quality results in image synthesis and consequently are
applied to novel view synthesis [WGSJ20,KLY∗21,RFJ21,LTJ∗21,
LWSK22]. Some methods [WGSJ20, KLY∗21, RFJ21] maintain a
3D point cloud as the representation, which could be projected
onto novel views followed by a GAN to hallucinate the miss-
ing regions and synthesize the output image. While [LTJ∗21]
and [LWSK22] focus on long-range view generation from a sin-
gle view with adversarial training. At an earlier stage of deep
learning methods when the auto-encoders and variational autoen-
coders begin to be explored, it is also used to synthesize the novel
views [KWKT15, ZTS∗16, TDB16, CSH19].

In summary, generative novel view synthesis can be regarded
as a subset of image synthesis techniques and continues to evolve
alongside advancements in image synthesis methods. Besides the
generative models typically included, determining how to integrate
information from the input view as a condition for synthesizing the
novel view is the primary issue these methods are concerned with.

5. Datasets for 3D Generation

With the rapid development of technology, the ways of data acqui-
sition and storage become more feasible and affordable, resulting in
an exponential increase in the amount of available data. As data ac-
cumulates, the paradigm for problem-solving gradually shifts from
data-driven to model-driven approaches, which in turn contributes
to the growth of "Big Data" and "AIGC". Nowadays, data plays a
crucial role in ensuring the success of algorithms. A well-curated
dataset can significantly enhance a model’s robustness and perfor-
mance. On the contrary, noisy and flawed data may cause model
bias that requires considerable effort in algorithm design to rectify.

In this section, we will go over the common data used for 3D gen-
eration. Depending on the methods employed, it usually includes
3D data (Section 5.1), multi-view image data (Section 5.2), and
single-view image data (Section 5.3), which are also summarized
in Tab. 4.

5.1. Learning from 3D Data

3D data could be collected by RGB-D sensors and other technology
for scanning and reconstruction. Apart from 3D generation, 3D data
is also widely used for other tasks like helping improve classical
2D vision task performance by data synthesis, environment simula-
tion for training embodied AI agents, 3D object understanding, etc.
One popular and frequently used 3D model database in the early
stage is The Princeton Shape Benchmark [SMKF04]. It contains
about 1800 polygonal models collected from the World Wide Web.
While [KXD12] constructs a special rig that contains a 3D digitizer,
a turntable, and a pair of cameras mounted on a sled that can move
along a bent rail to capture the kit object models database. To eval-
uate the algorithms to detect and estimate the objects in the image
given 3D models, [LPT13] introduces a dataset of 3D IKEA models
obtained from Google Warehouse. Some 3D model databases are
presented for tasks like robotic manipulation [CWS∗15, MCL20],
3D shape retrieval [LLL∗14], 3D shape modeling from a single im-
age [SWZ∗18]. BigBIRD [SSN∗14] presents a large-scale dataset
of 3D object instances that also includes multi-view images and
depths, camera pose information, and segmented objects for each
image.

However, those datasets are very small and only contain hun-
dreds or thousands of objects. Collecting, organizing, and label-
ing larger datasets in computer vision and graphics communities
is needed for data-driven methods of 3D content. To address this,
ShapeNet [CFG∗15] is introduced to build a large-scale repository
of 3D CAD models of objects. The core of ShapeNet covers 55
common object categories with about 51,300 models that are manu-
ally verified category and alignment annotations. Thingi10K [ZJ16]
collects 10,000 3D printing models from an online repository Thin-
giverse. While PhotoShape [PRFS18] produces 11,000 photorealis-
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tic, relightable 3D shapes based on online data. Other datasets such
as 3D-Future [FJG∗21], ABO [CGD∗22], GSO [DFK∗22] and
OmniObject3D [WZF∗23] try to improve the texture quality but
only contain thousands of models. Recently, Objaverse [DSS∗23]
presents a large-scale corpus of 3D objects that contains over 800K
3D assets for research in the field of AI and makes a step toward
a large-scale 3D dataset. Objaverse-XL [DLW∗23] further extends
Objaverse to a larger 3D dataset of 10.2M unique objects from a
diverse set of sources. These large-scale 3D datasets have the po-
tential to facilitate large-scale training and boost the performance
of 3D generation.

5.2. Learning from Multi-view Images

3D objects have been traditionally created through manual 3D
modeling, object scanning, conversion of CAD models, or combi-
nations of these techniques [DFK∗22]. These techniques may only
produce synthetic data or real-world data of specific objects with
limited reconstruction accuracy. Therefore, some datasets directly
provide multi-view images in the wild which are also widely used
in many 3D generation methods. ScanNet [DCS∗17] introduces an
RGB-D video dataset containing 2.5M views in 1513 scenes and
Objectron [AZA∗21] contains object-centric short videos and in-
cludes 4 million images in 14,819 annotated videos, of which only
a limited number cover the full 360 degrees. CO3D [RSH∗21] ex-
tends the dataset from [HRL∗21] and increases the size to nearly
19,000 videos capturing objects from 50 MS-COCO categories,
which has been widely used in the training and evaluations of
novel view synthesis and 3D generation or reconstruction methods.
Recently, MVImgNet [YXZ∗23] presents a large-scale dataset of
multi-view images that collects 6.5 million frames from 219,188
videos by shooting videos of real-world objects in human daily
life. Other lines of work provide the multi-view dataset in small-
scale RGB-D videos [LBRF11, SHG∗22, CX∗23] compared with
these works, large-scale synthetic videos [TME∗22], or egocentric
videos [ZXA∗23]. A large-scale dataset is still a remarkable trend
for deep learning methods, especially for generation tasks.

5.3. Learning from Single-view Images

3D generation methods usually rely on multi-view images or 3D
ground truth to supervise the reconstruction and generation of 3D
representation. Synthesizing high-quality multi-view images or 3D
shapes using only collections of single-view images is a challeng-
ing problem. Benefiting from the unsupervised training of gener-
ative adversarial networks, 3D-aware GANs are introduced that
could learn 3D representations in an unsupervised way from natural
images. Therefore, several single-view image datasets are proposed
and commonly used for these 3D generation methods. Although
many large-scale image datasets have been presented for 2D gen-
eration, it is hard to directly use them for 3D generation due to the
high uncertainty of this problem. Normally, these image datasets
only contain a specific category or domain. FFHQ [KLA19], a real-
world human face dataset consisting of 70,000 high-quality im-
ages at 10242 resolution, and AFHQ [CUYH20], an animal face
dataset consisting of 15,000 high-quality images at 5122 resolu-
tion, are introduced for 2D image synthesis and used a lot for
3D generation based on 3D-aware GANs. In the domain of the

Table 5: Recent 3D human generation techniques and their corre-
sponding input-output formats.

Methods Input Condition Output Texture

ICON [XYTB22] Single-Image %

ECON [XYC∗23] Single-Image %

gDNA [CJS∗22] Latent %

Chupa [KKL∗23] Text/Latent %

ELICIT [HYL∗23] Single-Image !

TeCH [HYX∗23] Single-Image !

Get3DHuman [XKJ∗23] Latent !

EVA3D [HCL∗22] Latent !

AvatarCraft [JWZ∗23] Text !

DreamHuman [KAZ∗23] Text !

TADA [LYX∗24] Text !

human body, SHHQ [FLJ∗22] and DeepFashion [LLQ∗16] have
been adopted for 3D human generation. In terms of objects, many
methods [LSMG20, GMW17, HMR19a, ZZZ∗18, WZX∗16] ren-
der synthetic single-view datasets using several major object cat-
egories of ShapeNet. While GRAF [SLNG20] renders 150k Chairs
from Photoshapes [PRFS18]. Moreover, CelebA [LLWT15] and
Cats [ZST08] datasets are also commonly used to train the mod-
els like HoloGAN [NPLT∗19] and pi-GAN [CMK∗21a]. Since the
single-view images are easy to obtain, these methods could collect
their own dataset for the tasks.

6. Applications

In this section, we introduce various 3D generation tasks (Sec. 6.1-
6.3) and closely related 3D editing tasks (Sec. 6.4). The generation
tasks are divided into three categories, including 3D human gener-
ation (Sec. 6.1), 3D face generation (Sec. 6.2), and generic object
and scene generation (Sec. 6.3).

6.1. 3D Human Generation

With the emergence of the metaverse and the advancements in vir-
tual 3D social interaction, the field of 3D human digitization and
generation has gained significant attention in recent years. Differ-
ent from general 3D generation methods that focus on category-free
rigid objects with sample geometric structures [PJBM23,LXZ∗23],
most 3D human generation methods aim to tackle the complex-
ities of articulated pose changes and intricate geometric details
of clothing. Tab. 5 presents a compilation of notable 3D human
body generation methods in recent years, organized according to
the input conditions and the output format of the generated 3D hu-
man bodies. Some results of these methods are shown in Fig. 8.
Specifically, in terms of the input condition, current 3D human
body generation methods can be categorized based on the driv-
ing factors including latent features randomly sampled from a pre-
defined latent space [MYR∗20, CJS∗22, HCL∗22], a single refer-
ence image [APMTM19, CPA∗21, XYC∗23, HYX∗23, ZLZ∗23],
or text prompts [KKL∗23, JWZ∗23, KAZ∗23, LYX∗24]. Accord-
ing to the form of the final output, these methods can be classi-
fied into two categories: textureless shape generation [APMTM19,
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Figure 8: Examples of 3D human generation methods. 3D gen-
eration results source from ECON [XYC∗23], gDNA [CJS∗22],
Chupa [KKL∗23], TeCH [HYX∗23], Get3DHuman [XKJ∗23], and
DreamHuman [KAZ∗23].

XYTB22, XYC∗23, CJS∗22, MYR∗20, CPA∗21, KKL∗23] and
textured body generation [AZS22, LYX∗24, HYL∗23, KAZ∗23,
XKJ∗23, HYX∗23, ZLZ∗23]. While the latter focuses on generat-
ing fully textured 3D clothed humans, the former aims to obtain
textureless body geometry with realistic details.

In terms of textureless shape generation, early works [CPB∗20,
OBB20,LXC∗21] attempt to predict SMPL parameters from the in-
put image and infer a skinned SMPL mesh as the generated 3D rep-
resentation of the target human. Nevertheless, such skinned body
representation fails to represent the geometry of clothes. To over-
come this issue, [APMTM19, XYTB22, XYC∗23] leverage a pre-
trained neural network to infer the normal information and com-
bine the skinned SMPL mesh to deduce a clothed full-body geom-
etry with details. In contrast to such methods, which require ref-
erence images as input, CAPE [MYR∗20] proposes a generative
3D mesh model conditioned on latents of SMPL pose and clothing
type to form the clothing deformation from the SMPL body. gDNA
[CJS∗22] introduces a generation framework conditioned on latent
codes of shape and surface details to learn the underlying statistics
of 3D clothing details from scanned human datasets via an adver-
sarial loss. Different from the previous methods that generate an
integrated 3D clothed human body geometry, SMPLicit [CPA∗21]
adopts an implicit model conditioned on shape and pose parame-
ters to individually generate diverse 3D clothes. By combining the
SMPL body and associated generated 3D clothes, SMPLicit en-
ables to produce 3D clothed human shapes. To further improve the
quality of the generated human shape, Chupa [KKL∗23] introduces
diffusion models to generate realistic human geometry and decom-
pose the 3D generation task into 2D normal map generation and
normal map-based 3D reconstruction.

Although these methods achieve the generation of detailed
clothed human shapes, their application prospects are greatly re-
stricted due to the lack of texture-generation capabilities. To
generate textured clothed 3D human, lots of attempts have
been made in previous work, including methods conditioned
on latent codes [GII∗21, BKY∗22, ZJY∗22, NSLH22, JJW∗23,
YLWD22, XKJ∗23, CHB∗23, HCL∗22, XYB∗23, AYS∗23], sin-
gle images [SHN∗19, ZYLD21, AZS22, CMA∗22, GLZ∗23,
HYL∗23, YLX∗23, HHP∗23, AST∗23, HYX∗23, ZLZ∗23], and
text prompts [HZP∗22, JWZ∗23, CCH∗23, HWZ∗23, KAZ∗23,
ZCY∗23, LYX∗24, HSZ∗23, ZZZ∗23a, LZT∗23]. Most latent-
conditioned methods employ adversarial losses to restrict their la-
tent space and generate 3D human bodies within the relevant do-
main of the training dataset. For example, StylePeople [GII∗21]
combines StyleGAN [KLA∗20] and neural rendering to design a
joint generation framework trained in an adversarial fashion on
the full-body image datasets. Furthermore, GNARF [BKY∗22] and
AvatarGen [ZJY∗22] employ tri-planes as the 3D representation
and replace the neural rendering with volume rendering to en-
hance the view-consistency of rendered results. To improve ed-
itability, Get3DHuman [XKJ∗23] divides the human body gener-
ation framework into shape and texture branches respectively con-
ditioned on shape and texture latent codes, achieving re-texturing.
EVA3D [HCL∗22] divides the generated human body into local
parts to achieve controllable human poses.

As text-to-image models [RKH∗21b, RBL∗22b, SCS∗22] con-
tinue to advance rapidly, the field of text-to-3D has also reached
its pinnacle of development. For the text-driven human generation,
existing methods inject priors from pre-trained text-to-image mod-
els into the 3D human generation framework to achieve text-driven
textured human generation, such as AvatarCLIP [HZP∗22], Avatar-
Craft [JWZ∗23], DreamHuman [KAZ∗23], and TADA [LYX∗24].
Indeed, text-driven human generation methods effectively address
the challenge of limited 3D training data and significantly enhance
the generation capabilities of 3D human assets. Nevertheless, in
contrast to the generation of unseen 3D humans, it is also signif-
icant to generate a 3D human body from a specified single im-
age in real-life applications. In terms of single-image-conditioned
3D human generation methods, producing generated results with
textures and geometries aligned with the input reference image is
widely studied. To this end, PIFu [SHN∗19], PaMIR [ZYLD21],
and PHORHUM [AZS22] propose learning-based 3D generators
trained on scanned human datasets to infer human body geome-
try and texture from input images. However, their performance is
constrained by the limitations of the training data. Consequently,
they struggle to accurately infer detailed textures and fine geom-
etry from in-the-wild input images, particularly in areas that are
not directly visible in the input. To achieve data-free 3D human
generation, ELICIT [HYL∗23], Human-SGD [AST∗23], TeCH
[HYX∗23], and HumanRef [ZLZ∗23] leverage priors of pre-trained
CLIP [RKH∗21b] or image diffusion models [RBL∗22b, SCS∗22]
to predict the geometry and texture based on the input reference
image without the need for 3D datasets, and achieve impressive
qualities in generated 3D clothed human.
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Figure 9: Representative applications and methods of 3D face gen-
eration.

6.2. 3D Face Generation

One essential characteristic of 3D face generation tasks is to gen-
erate high-quality human face images that can be viewed from dif-
ferent viewpoints. Popular tasks can be loosely classified into three
major categories, including personalized head avatar creation (e.g.
3D talking head generation), neural implicit 3D morphable mod-
els (3DMMs), and generative 3D face models, which are shown in
Fig. 9 and Fig. 10.

Personalized head avatar creation aims at creating an animatable
avatar that can be viewed from different viewpoints of the target
person, which has broad applications such as talking head gener-
ation. Most of the existing methods take as input a sequence of
video frames (i.e. monocular video) [PSB∗21, GTZN21, GPL∗22,
ZAB∗22, ZBT23, ZYW∗23, BTH∗23, GZX∗22]. Although conve-
nient, the viewing angles of these avatars are limited in a rela-
tively small range (i.e. near frontal) and their quality is not al-
ways satisfactory due to limited data. In contrast, another stream
of works [LSSS18, MSS∗21, LSS∗21, WKC∗23, KQG∗23] aims at
creating a very high-quality digital human that can be viewed from
larger angles (e.g. side view). These methods usually require high-
quality synchronized multi-view images under even illumination.
However, both streams rely heavily on implicit or hybrid neural
representations and neural rendering techniques. The quality and
animation accuracy of the generated talking head video are usually
measured with PSNR, SSIM, and LPIPS metrics.

Neural implicit 3DMMs. Traditional 3D morphable face models
(3DMMs) assume a predefined template mesh (i.g. fixed topology)
for the geometry and have explored various modeling methods in-

Personalized Avatar Generation

Neural Implicit 3DMMs

Generative 3D face models

Figure 10: Representative 3D face generation tasks. Images adapted
from NHA [GPL∗22], NPHM [GKG∗23], and EG3D [CLC∗22].

cluding linear models (e.g. PCA-based 3DMMs) and non-linear
models (e.g. network-based 3DMMs). A comprehensive survey of
these methods has been discussed in [EST∗20]. Recently, thanks
to the rapid advances in implicit neural representations (INRs),
several neural implicit 3DMMs utilizing INRs for face modeling
emerges [YTB∗21, ZYHC22, GKG∗23] since continuous implicit
neural representations do not face discretization error and can the-
oretically modeling infinite details. Indeed, NPHM [GKG∗23] can
generate more subtle expressions unseen in previous mesh-based
3DMMs. What’s more, neural implicit 3DMMs can potentially
model hair better since the complexity of different hairstyles varies
drastically, which imposes a great challenge for fixed topology
mesh-based traditional 3DMMs.

Generative 3D face models. One key difference from 2D gen-
erative face models (e.g. StyleGAN [KLA19, KLA∗20]) is that
3D face models can synthesize multi-view consistent images (i.e.
novel views) of the same target (identity and clothes). Early at-
tempts towards this direction include HoloGAN [NPLT∗19] and
PlatonicGAN [HMR19b], which are both voxel-based methods and
can only generate images in limited resolution. Quickly, meth-
ods [SLNG20, NG21, CMK∗21b, OELS∗22, GLWT22, CLC∗22]
utilizing neural radiance fields are proposed to increase the image
resolution. For example, EG3D [CLC∗22] proposes a hybrid tri-
plane representation, which strikes a good trade-off to effectively
address the memory and rendering inefficiency faced by previous
generative 3D GANs and can produce high-quality images with
good multi-view consistency.

Thanks to the success of various 3D GANs, many down-
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Table 6: Applications of general scene generation methods.

Methods Type Condition
Texture

Generation

PVD [ZDW21] Object-Centered Latent %

NFD [SCP∗23] Object-Centered Latent %

Point-E [NJD∗22] Object-Centered Text %

Diffusion-SDF [LDZL23] Object-Centered Text %

Deep3DSketch+ [CFZ∗23] Object-Centered Sketch %

Zero-1-to-3 [LWVH∗23] Object-Centered Single-Image !

Make-It-3D [TWZ∗23] Object-Centered Single-Image !

GET3D [GSW∗22] Object-Centered Latent !

EG3D [CLC∗22] Object-Centered Latent !

CLIP-Mesh [MKXBP22] Object-Centered Text !

DreamFusion [PJBM23] Object-Centered Text !

ProlificDreamer [WLW∗23] Object-Centered Text !

PixelSynth [RFJ21] Outward-Facing Single-Image !

DiffDreamer [CCP∗23] Outward-Facing Single-Image !

Xiang et al. [XYHT23] Outward-Facing Latent !

CC3D [BPP∗23] Outward-Facing Layout !

Text2Room [HCO∗23] Outward-Facing Text !

Text2NeRF [ZLW∗23] Outward-Facing Text !

stream applications (e.g. editing, talking head generation) are en-
abled or become less data-hungry, including 3D consistent edit-
ing [SWW∗23, SWZ∗22, SWS∗22, LFLSY∗23, JCL∗22], 3D talk-
ing head generation [BFW∗23, XSJ∗23, WDY∗22], etc.

6.3. General Scene Generation

Different from 3D human and face generation, which can use ex-
isting prior knowledge such as SMPL and 3DMM, general scene
generation methods are more based on the similarity of semantics
or categories to design a 3D model generation framework. Based on
the differences in generation results, as shown in Fig. 11 and Tab. 6,
we further subdivide general scene generation into object-centered
asset generation and outward-facing scene generation.

6.3.1. Object-Centered Asset Generation

The field of object-centered asset generation has seen significant
advancements in recent years, with a focus on both textureless
shape generation and textured asset generation. For the textureless
shape generation, early works use GAN-based networks to learn
a mapping from latent space to 3D object space based on spe-
cific categories of 3D data, such as 3D-GAN [WZX∗16], Holo-
GAN [NPLT∗19], and PlatonicGAN [HMR19b]. However, limited
by the generation capabilities of GANs, these methods can only
generate rough 3D assets of specific categories. To improve the
quality of generated results, SingleShapeGen [WZ22] leverages a
pyramid of generators to generate 3D assets in a coarse to fine
manner. Given the remarkable achievements of diffusion models
in image generation, researchers are directing their attention to-
wards the application of diffusion extensions in the realm of 3D
generation. Thus, subsequent methods [LH21, ZDW21, HLHF22,
SCP∗23, EMS∗23] explore the use of diffusion processes for 3D

shape generation from random noise. In addition to these latent-
based methods, another important research direction is text-driven
3D asset generation [CCS∗19, LWQF22]. For example, 3D-LDM
[NKR∗22], SDFusion [CLT∗23], and Diffusion-SDF [LDZL23]
achieve text-to-3D shape generation by designing the diffusion
process in 3D feature space. Due to such methods requiring 3D
datasets to train the diffusion-based 3D generators, they are limited
to the training data in terms of the categories and diversity of gen-
erated results. By contrast, CLIP-Forge [SCL∗22], CLIP-Sculptor
[SFL∗23], and Michelangelo [ZLC∗23] directly employ the prior
of the pre-trained CLIP model to constrain the 3D generation pro-
cess, effectively improving the generalization of the method and the
diversity of generation results. Unlike the above latent-conditioned
or text-driven 3D generation methods, to generate 3D assets with
expected shapes, there are some works [HMR19a, CFZ∗23] that
explore image or sketch-conditioned generation.

In comparison to textureless 3D shape generation, textured
3D asset generation not only produces realistic geometric struc-
tures but also captures intricate texture details. For example,
HoloGAN [NPLT∗19], GET3D [GSW∗22], and EG3D [CLC∗22]
employ GAN-based 3D generators conditioned on latent vec-
tors to produce category-specific textured 3D assets. By contrast,
text-driven 3D generation methods rely on the prior knowledge
of pre-trained large-scale text-image models to enable category-
free 3D asset generation. For instance, CLIP-Mesh [MKXBP22],
Dream Fields [JMB∗22], and PureCLIPNeRF [LC22] employ
the prior of CLIP model to constrain the optimization process
and achieve text-driven 3D generation. Furthermore, DreamFu-
sion [PJBM23] and SJC [WDL∗23] propose a score distillation
sampling (SDS) method to achieve 3D constraint which priors ex-
tracted from pre-trained 2D diffusion models. Then, some meth-
ods further improve the SDS-based 3D generation process in terms
of generation quality, multi-face problem, and optimization effi-
ciency, such as Magic3D [LGT∗23], Latent-NeRF [MRP∗23b],
Fantasia3D [CCJJ23], DreamBooth3D [RKP∗23], HiFA [ZZ23],
ATT3D [LXZ∗23], ProlificDreamer [WLW∗23], IT3D [CZY∗23],
DreamGaussian [TRZ∗23], and CAD [WPH∗23]. On the other
hand, distinct from text-driven 3D generation, single-image-
conditioned 3D generation is also a significant research direction
[LWVH∗23, MKLRV23, CGC∗23, WLY∗23, KDJ∗23].

6.3.2. Outward-Facing Scene Generation

Early scene generation methods often require specific scene data
for training to obtain category-specific scene generators, such as
GAUDI [BGA∗22] and the work of Xiang et al. [XYHT23],
or implement a single scene reconstruction based on the input
image, such as PixelSynth [RFJ21] and Worldsheet [HRBP21].
However, these methods are either limited by the quality of
the generation or by the extensibility of the scene. With the
rise of diffusion models in image inpainting, various methods
are beginning to use the scene completion capabilities of dif-
fusion models to implement scene generation tasks [CCP∗23,
HCO∗23,ZLW∗23]. Recently, SceneScape [FAKD23], Text2Room
[HCO∗23], Text2NeRF [ZLW∗23], and LucidDreamer [CLN∗23]
propose progressive inpainting and updating strategies for gener-
ating realistic 3D scenes using pre-trained diffusion models. Sce-
neScape and Text2Room utilize explicit polygon meshes as their
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Figure 11: Some examples of general scene generation methods. 3D generation results source from Deep3DSketch+ [CFZ∗23],
NFD [SCP∗23], Diffusion-SDF [LDZL23], Make-It-3D [TWZ∗23], GET3D [GSW∗22], ProlificDreamer [WLW∗23], Diff-
Dreamer [CCP∗23], CC3D [BPP∗23], Xiang et al. [XYHT23], Text2NeRF [ZLW∗23], and LucidDreamer [CLN∗23].

3D representation during the generation procedure. However, this
choice of representation imposes limitations on the generation of
outdoor scenes, resulting in stretched geometry and blurry artifacts
in the fusion regions of mesh faces. In contrast, Text2NeRF and
LucidDreamer adopt implicit representations, which offer the abil-
ity to model fine-grained geometry and textures without specific
scene requirements. Consequently, Text2NeRF and LucidDreamer
can generate both indoor and outdoor scenes with high fidelity.

6.4. 3D Editing

Based on the region where editing happens, we classify the existing
works into global editing and local editing.

6.4.1. Global Editing

Global editing works aim at changing the appearance or geom-
etry of the competing 3D scene globally. Different from local
editing, they usually do not intentionally isolate a specific region
from a complete and complicated scene or object. Most commonly,
they only care if the resultant scene is in a desired new “style”
and resembles (maintains some features of) the original scene.
Most representative tasks falling into this category include styliza-
tion [HTS∗21,HHY∗22,FJW∗22,ZKB∗22,WJC∗23,HTE∗23], and
single-object manipulation (e.g. re-texturing [MBOL∗22, LZJ∗22,
MRP∗23b, CCJJ23]) as shown in Fig. 12.

Stylization. Early 3D scene stylization methods [HTS∗21,
HHY∗22, FJW∗22, ZKB∗22] usually require style images to pro-
vide style reference. The 3D scene is optimized either in the style
feature space using a Gram matrix [GEB16] or nearest neighbor
feature matching [ZKB∗22] loss or in the image space using the
output color of a deep image style transfer network [HB17]. Later

methods [WJC∗23, HTE∗23] can support textual format style def-
inition by utilizing the learned prior knowledge from large-scale
language-vision models such as CLIP [RKH∗21a] and Stable Dif-
fusion [RBL∗22a]. Other than commonly seen artistic style trans-
fer, there also exist some special types of “style” manipulation
tasks such as seasonal and illumination manipulations [LLF∗23,
CZL∗22, HTE∗23, CYL∗22] and climate changes.

Single-Object Manipulation. There are many papers specifically
aim at manipulating a single 3D object. For example, one rep-
resentative task is texturing or painting a given 3D object (usu-
ally in mesh format) [MBOL∗22, LZJ∗22, MRP∗23b, CCJJ23,
CSL∗23]. Except for diffuse albedo color and vertex displace-
ment [MBOL∗22, MZS∗23, LYX∗24], other common property
maps may be involved, including normal map [CCJJ23, LZJ∗22],
roughness map [CCJJ23, LZJ∗22], specular map [LZJ∗22], and
metallic map [CCJJ23], etc. A more general setting would be
directly manipulating a NeRF-like object [WCH∗22, LZJ∗22,
TLYCS22, YBZ∗22]. Notably, the human face/head is one special
type of object that has drawn a lot of interest [ATDN23, ZQL∗23].
In the meanwhile, many works focus on fine-grained local face
manipulation, including expression and appearance manipula-
tion [SWZ∗22, SWS∗22, LFLSY∗23, JCL∗22, WDY∗22, XSJ∗23,
MLL∗22a, ZLW∗22] and face swapping [LMY∗23] since human
face related understanding tasks (e.g. recognition, parsing, attribute
classification) have been extensively studied previously.

6.4.2. Local Editing

Local editing tasks intentionally modify only a specific re-
gion, either manually provided ( [MPS∗23, LDS∗23, CYW∗23])
or automatically determined ( [YZX∗21, WLC∗22, WWL∗23,
KMS22, JKK∗23]), of the complete scene or object. Common



20 X. Li & Q. Zhang & D. Kang & W. Cheng & Y. Gao et al. / Advances in 3D Generation: A Survey
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Local Editing

Figure 12: Representative 3D editing tasks. Images adapted from
ARF [ZKB∗22], Text2Mesh [MBOL∗22], NeRFShop [JKK∗23],
SKED [MPS∗23], and DreamEditor [ZWL∗23].

local editing types include appearance manipulation [YBZ∗22,
ZWL∗23], geometry deformation [JKK∗23, PYL∗22, YSL∗22,
TLYCS22], object-/semantic-level duplication/deletion and mov-
ing/removing [YZX∗21, WLC∗22, KMS22, WWL∗23]. For exam-
ple, NeuMesh [YBZ∗22] supports several kinds of texture manip-
ulation including swapping, filling, and painting since they dis-
till a NeRF scene into a mesh-based neural representation. NeRF-
Shop [JKK∗23] and CageNeRF [PYL∗22] transform/deform the
volume bounded by a mesh cage, resulting in moved or de-
formed/articulated object. SINE [BZY∗23] updates both the NeRF
geometry and the appearance with geometry prior and semantic
(image feature) texture prior as regularizations.

Another line of works (e.g. ObjectNeRF [YZX∗21], Ob-
jectSDF [WLC∗22], DFF [KMS22]) focus on automatically de-
composing the scene into individual objects or semantic parts dur-
ing reconstruction, which is made possible by utilizing extra 2D
image understanding networks (e.g. instance segmentation), and
support subsequent object-level manipulations such as re-coloring,
removal, displacement, duplication.

Recently, it is possible to create new textures and/or content

only according to text description in the existing 3D scenes due
to the success of large-scale text-to-image models (e.g. Stable Dif-
fusion [RBL∗22a]). For example, instruct-NeRF2NeRF [HTE∗23]
iteratively updates the reference dataset images modified by a ded-
icated diffusion model [BHE23] and the NeRF model. DreamEdi-
tor [ZWL∗23] performs local updates on the region located by text
attention guided by score distillation sampling [PJBM23]. Focal-
Dreamer [LDS∗23] creates new geometries (objects) in the spec-
ified empty spaces according to the text input. SKED [MPS∗23]
supports both creating new objects and modifying the existing
part located in the region specified by the provided multi-view
sketches.

7. Open Challenges

The quality and diversity of 3D generation results have experienced
significant progress due to advancements in generative models, 3D
representations, and algorithmic paradigms. Considerable attention
has been drawn to 3D generation recently as a result of the suc-
cess achieved by large-scale models in natural language process-
ing and image generation. However, numerous challenges remain
before the generated 3D models can meet the high industrial stan-
dards required for video games, movies, or immersive digital con-
tent in VR/AR. In this section, we will explore some of the open
challenges and potential future directions in this field.

Evaluation. Quantifying the quality of generated 3D models objec-
tively is an important and not widely explored problem. Using met-
rics such as PSNR, SSIM, and F-Score to evaluate rendering and
reconstruction results requires ground truth data on the one hand,
but on the other hand, it can not comprehensively reflect the quality
and diversity of the generated content. In addition, user studies are
usually time-consuming, and the study results tend to be influenced
by the bias and number of surveyed users. Metrics that capture both
the quality and diversity of the results like FID can be applied to
3D data, but may not be always aligned with 3D domain and hu-
man preferences. Better metrics to judge the results objectively in
terms of generation quality, diversity, and matching degree with the
conditions still need further exploration.

Dataset. Unlike language or 2D image data which can be easily
captured and collected, 3D assets often require 3D artists or de-
signers to spend a significant amount of time using professional
software to create. Moreover, due to the different usage scenarios
and creators’ personal styles, these 3D assets may differ greatly in
scale, quality, and style, increasing the complexity of 3D data. Spe-
cific rules are needed to normalize this diverse 3D data, making it
more suitable for generation methods. A large-scale, high-quality
3D dataset is still highly desirable in 3D generation. Meanwhile,
exploring how to utilize extensive 2D data for 3D generation could
also be a potential solution to address the scarcity of 3D data.

Representation. Representation is an essential part of the 3D gen-
eration, as we discuss various representations and the associated
methods in Sec. 3. Implicit representation is able to model com-
plex geometric topology efficiently but faces challenges with slow
optimization; explicit representation facilitates rapid optimization
convergence but struggles to encapsulate complex topology and
demands substantial storage resources; Hybrid representation at-
tempts to consider the trade-off between these two, but there are
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still shortcomings. In general, we are motivated to develop a repre-
sentation that balances optimization efficiency, geometric topology
flexibility, and resource usage.

Controllability. The purpose of the 3D generation technique is
to generate a large amount of user-friendly, high-quality, and di-
verse 3D content in a cheap and controllable way. However, em-
bedding the generated 3D content into practical applications re-
mains a challenge: most methods [PJBM23, CLC∗22, YHH∗19b]
rely on volume rendering or neural rendering, and fail to generate
content suitable for rasterization graphics pipeline. As for meth-
ods [CCJJ23, WLW∗23, TRZ∗23] that generate the content repre-
sented by polygons, they do not take into account layout (e.g. the
rectangular plane of a table can be represented by two triangles) and
high-quality UV unwrapping and the generated textures also face
some issues such as baked shadows. These problems make the gen-
erated content unfavorable for artist-friendly interaction and edit-
ing. Furthermore, the style of generated content is still limited by
training datasets. Furthermore, the establishment of comprehensive
toolchains is a crucial aspect of the practical implementation of 3D
generation. In modern workflows, artists use tools (e.g. LookDev)
to harmonize 3D content by examining and contrasting the relight-
ing results of their materials across various lighting conditions.
Concurrently, modern Digital Content Creation (DCC) software
offers extensive and fine-grained content editing capabilities. It is
promising to unify 3D content produced through diverse methods
and establish tool chains that encompass abundant editing capabil-
ities.

Large-scale Model. Recently, the popularity of large-scale models
has gradually affected the field of 3D generation. Researchers are
no longer satisfied with using distillation scores that use large-scale
image models as the priors to optimize 3D content, but directly
train large-scale 3D models. MeshGPT [SAA∗23] follows large
language models and adopts a sequence-based approach to autore-
gressively generate sequences of triangles in the generated mesh.
MeshGPT takes into account layout information and generates
compact and sharp meshes that match the style created by artists.
Since MeshGPT is a decoder-only transformer, compared with the
optimization-based generation, it gets rid of inefficient multi-step
sequential optimization, achieving rapid generation. Despite this,
MeshGPT’s performance is still limited by training datasets and
can only generate regular furniture objects. But there is no doubt
that large-scale 3D generation models have great potential worth
exploring.

8. Conclusion

In this work, we present a comprehensive survey on 3D gen-
eration, encompassing four main aspects: 3D representations,
generation methods, datasets, and various applications. We be-
gin by introducing the 3D representation, which serves as the
backbone and determines the characteristics of the generated
results. Next, we summarize and categorize a wide range of
generation methods, creating an evolutionary tree to visualize their
branches and developments. Finally, we provide an overview of
related datasets, applications, and open challenges in this field.
The realm of 3D generation is currently witnessing explosive
growth and development, with new work emerging every week

or even daily. We hope this survey offers a systematic sum-
mary that could inspire subsequent work for interested readers.
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