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Figure 1. Our approach models a generative image-space prior on scene dynamics: from a single RGB image, our model generates a neural
stochastic motion texture, a motion representation that models dense long-term motion trajectories in the Fourier domain. We show that
our motion priors enable applications such as turning a single picture into a seamlessly looping video, or simulating object dynamics in
response to an interactive user excitation (e.g., dragging and releasing a point on the object). On the right, we visualize the output videos
using space-time X-t slices through 10 seconds of video (along the scanline shown in the input picture).

Abstract

We present an approach to modeling an image-space
prior on scene dynamics. Our prior is learned from a col-
lection of motion trajectories extracted from real video
sequences containing natural, oscillating motion such as
trees, flowers, candles, and clothes blowing in the wind.
Given a single image, our trained model uses a frequency-
coordinated diffusion sampling process to predict a per-
pixel long-term motion representation in the Fourier domain,
which we call a neural stochastic motion texture. This rep-
resentation can be converted into dense motion trajectories
that span an entire video. Along with an image-based ren-
dering module, these trajectories can be used for a number
of downstream applications, such as turning still images into
seamlessly looping dynamic videos, or allowing users to real-
istically interact with objects in real pictures. See our project
page for more results: generative-dynamics.github.io.

1. Introduction

The natural world is always in motion, with even seem-
ingly static scenes containing subtle oscillations as a result
of factors such as wind, water currents, respiration, or other
natural rhythms. Motion is one of the most salient visual
signals, and humans are particularly sensitive to it: captured
imagery without motion (or even with slightly unrealistic
motion) will often seem uncanny or unreal.

While it is easy for humans to interpret or imagine motion
in scenes, training a model to learn realistic scene motion is
far from trivial. The motion we observe in the world is the
result of a scene’s underlying physical dynamics, i.e., forces
applied to objects that respond according to their unique
physical properties — their mass, elasticity, etc. These prop-
erties and forces are hard to measure and capture at scale,
but fortunately, in many cases measuring them is unneces-
sary: we can instead capture and learn from the resulting
observed motion. This observed motion is multi-modal and
grounded in complex physical effects, but it is nevertheless
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often predictable: candles will flicker in certain ways, trees
will sway, and their leaves will rustle. This predictability is
ingrained in our human perception of real scenes: by viewing
a still image, we can imagine plausible motions that might
have been ongoing as the picture was captured — or, if there
might have been many possible such motions, a distribution
of natural motions conditioned on that image. Given the fa-
cility with which humans are able to imagine these possible
motions, a natural research problem is to model this same
distribution computationally.

Recent advances in generative models, and in particu-
lar, conditional diffusion models [40, 78, 80], have enabled
us to model highly rich and complex distributions, includ-
ing distributions of real images conditioned on text [68–70].
This capability has enabled a number of previously impos-
sible applications, such as text-conditioned generation of
arbitrary, diverse, and realistic image content. Following the
success of these image models, recent work has shown that
modeling other domains, such as videos [7,39] and 3D geom-
etry [72, 90, 91, 93], can be similarly useful for downstream
applications.

In this paper, we explore modeling a generative prior
for image-space scene motion, i.e., the motion of all pix-
els in a single image. This model is trained on automati-
cally extracted motion trajectories from a large collection
of real video sequences. Conditioned on an input image,
the trained model predicts a neural stochastic motion tex-
ture: a set of coefficients of a motion basis that characterize
each pixel’s trajectory into the future. We limit our scope to
real-world scenes with natural, oscillating dynamics such as
trees and flowers moving in the wind, and therefore choose
the Fourier series as our basis functions. We predict a neu-
ral stochastic motion texture using a diffusion model that
generates coefficients for a single frequency at a time, but
coordinates these predictions across frequency bands. The
resulting frequency-space textures can then be transformed
into dense, long-range pixel motion trajectories, which can
(along with an image-based rendering diffusion model) be
used to synthesize future frames, turning still images into
realistic animations, as illustrated in Fig. 1.

Compared with priors over raw RGB pixels, priors over
motion capture more fundamental, lower-dimensional under-
lying structure that efficiently explains variations in pixel
values. Hence, our motion representation leads to more co-
herent long-term generation and more fine-grained control
over animations compared with prior methods that perform
image animation via raw video synthesis. We also demon-
strate that our generated motion representation is convenient
for a number of downstream applications, such as creating
seamless looping videos, editing the generated motion, and
enabling interactive dynamic images, i.e., simulating the
response of object dynamics to user-applied forces.

2. Related Work

Generative synthesis. Recent advances in generative mod-
els have enabled photorealistic synthesis of images condi-
tioned on text prompts [16, 17, 23, 68–70]. These generative
text-to-image models can be augmented to synthesize video
sequences by extending the generated image tensors along a
time dimension [7,9,39,58,77,96,96,101]. While these meth-
ods are effective at producing plausible video sequences that
capture the spatiotemporal statistics of real footage, the re-
sulting videos can suffer from a number of common artifacts,
such as incoherent motion, unrealistic temporal variation in
textures, and violations of physical constraints like preserva-
tion of mass.

Animating images. Instead of generating videos entirely
from text, other techniques take as input a still picture and
animate it. Many recent deep learning methods adopt a
3D-Unet architecture to produce video volumes directly
from an input image [26, 33, 37, 43, 49, 83]. Because these
models are effectively the same video generation models
(but conditioned on image information instead of text),
they exhibit similar artifacts to those mentioned above.
One way to overcome these limitations is to not directly
generate the video content itself, but instead animate an
input source image through explicit or implicit image-
based rendering, i.e., moving the image content around
according to motion derived from external sources such
as a driving video [47, 74–76, 89], motion or 3D geome-
try priors [8, 28, 42, 60, 61, 87, 91, 92, 94, 99], user annota-
tions [6,18,31,35,88,95,98] or a physical simulation [20,22].
These methods demonstrate greater temporal coherence and
realism, but require additional guidance signals or user input,
or otherwise rely on limited motion representations (e.g.,
optical flow fields, as opposed to full-video dense motion
trajectories).

Motion models and motion priors. A number of other
works leverage representations of motion beyond two-frame
flow fields, both in Eulerian and Lagrangian domains. For in-
stance, Fourier or phase-based motion representations (like
ours) have been used for magnifying and visualizing mo-
tion [63, 85], or for video editing applications [59]. These
representations can also be used in motion prediction —
where an image or video is used to inform a deterministic
future motion estimate [32, 66], or a more rich distribution
of possible motions (which can be modeled explicitly or by
predicting the pixel values that would be induced by some
implicit motion estimate) [84,86,94]. Our work can similarly
be thought of as learning priors for motion induced by under-
lying scene dynamics, where our prior is in the form of an
image-conditioned distribution over long-range dense trajec-
tories. Other recent work has demonstrated the advantages
of modeling and predicting motion using generative models
in a number of closed-domain settings such as humans and



animals [2, 19, 27, 67, 81, 97].
Videos as textures. Certain moving scenes can be thought
of as a kind of texture—termed dynamic textures by Doretto
et al. [25]—that model videos as space-time samples of a
stochastic process. Dynamic textures can represent smooth,
natural motions such as waves, flames, or moving trees, and
have been widely used for video classification, segmentation
or encoding [12–15, 71]. A related kind of texture, called a
video texture, represents a moving scene as a set of input
video frames along with transition probabilities between
any pair of frames [73]. A large body of work exists for
estimating and producing dynamic or video textures through
analysis of scene motion and pixel statistics, with the aim of
generating seamlessly looping or infinitely varying output
videos [1, 21, 30, 54, 55, 73]. In contrast to much of this
previous work, our method learns priors in advance that can
then be applied to single images.

3. Overview
Given a single picture I0, our goal is to generate a video

{Î1, Î2., ..., ÎT } of length T featuring oscillation dynam-
ics such as those of trees, flowers, or candle flames mov-
ing in the breeze. Our system consists of two modules, a
motion prediction module and an image-based rendering
module. Our pipeline begins by using a latent diffusion
model (LDM) to predict a neural stochastic motion texture
S =

(
Sf0 , Sf1 , ..., SfK−1

)
for the input image I0. A stochas-

tic motion texture is a frequency representation of per-pixel
motion trajectories in an input image (Sec. 4). The predicted
stochastic motion texture is then transformed to a sequence
of motion displacement fields F = (F1, F2, ..., FT ) using
an inverse discrete Fourier transform. These motion fields,
in turn, are used to determine the position of each input pixel
at each future time step. Given these predicted motion fields,
our rendering module animates the input RGB image us-
ing an image-based rendering technique that splats encoded
features from the input image and decodes these splatted
features into an output frame with an image synthesis net-
work (Sec. 5). Because our method explicitly estimates a
representation of motion from a single picture, it enables
several downstream applications, such as the animation of a
single still picture with varying speed and motion magnitude,
the generation of seamless looping video, and the simulation
of object dynamics response to an external user excitation
(i.e., interactive dynamics) (Sec. 6).

4. Neural stochastic motion textures
4.1. Motion textures

As proposed by Chuang et al. [20], a motion texture
defines a sequence of time-varying 2D displacement maps
F = {Ft|t = 1, ..., T}, where the 2D displacement vector
Ft(p) at each pixel coordinate p from input image I0 defines

the position of that pixel at a future time t. To generate a
future frame at time t, one can splat pixels from I0 using the
corresponding displacement map Dt, resulting in a forward-
warped image I ′t:

I ′t(p+ Ft(p)) = I0(p) (1)

4.2. Stochastic motion textures

As demonstrated by prior work in computer graphics [20,
24, 46, 64], many natural motions, especially the oscillating
motions we focus on, can be described as a superposition
of a small number of harmonic oscillators represented with
different frequencies, amplitude and phases. One way to
introduce stochasticity to the motions is to integrate noise
fields, but as observed by prior work [20], directly adding
random noise into the spatial and temporal domain of the
estimated motion fields often leads to unrealistic or erratic
animations.

Moreover, adopting motion textures in the temporal do-
main, as defined above, implies predicting T 2D displace-
ment fields in order to generate a video with T frames. To
avoid predicting such a large output representation for long
output videos, many prior animation methods either generate
video frames autoregressively [7, 28, 53, 56, 83], or predict
each future output frame independently via an extra time
embedding [4]. However, neither strategy ensures long-term
temporal consistency of generated video frames, and both
can produce videos that drift or diverge over time.

To address the above issues, we represent per-pixel mo-
tion textures (i.e., full motion trajectories for all pixels) for
the input scene in the frequency domain and formulate the
motion prediction problem as a multi-modal image-to-image
translation task. We adopt the latent diffusion model (LDM)
to generate a stochastic motion texture, comprised of a 4K-
channel 2D motion spectrum map, where K << T is the
number of frequencies modeled, and where at each frequency
we need four scalars to represent the complex Fourier coef-
ficients for the x and y dimensions. Fig. 1 illustrates these
neural stochastic motion textures.

The motion trajectory of a pixel at future time steps
F(p) = {Ft(p)|t = 1, 2, ...T} and its representation in
the frequency domain as the motion spectrum S(p) =
{Sfk(p)|k = 0, 1, ..T2 − 1} are related by the Fast Fourier
transform (FFT):

S(p) = FFT(F(p)). (2)

How should we select the K output frequencies for our
representation? Prior work in real-time animation has ob-
served that most natural oscillation motions are composed
primarily of low-frequency components [24, 64]. To validate
this hypothesis, we computed the average power spectrum of
the motion extracted from 1,000 randomly sampled 5 second
real video clips. As shown in the left plot of Fig. 2, the power
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Figure 2. Left: We visualize the average motion power spectrum
for the x and Y motion components extracted from a dataset of
real videos, shown as the blue and green curves. Natural oscillation
motions are composed primarily of low-frequency components,
and so we use the first K = 16 terms as marked by red dots.
Right: we show a histogram of the amplitude of Fourier terms at
3Hz (K = 16) after (1) scaling amplitude by image width and
height (blue), or (2) frequency adaptive normalization (red). Our
adaptive normalization prevents the coefficients from concentrating
at extreme values.

spectrum of the motion decreases exponentially with increas-
ing frequency. This suggests that most natural oscillation
motions can indeed be well represented by low-frequency
terms. In practice, we found that the first K = 16 Fourier co-
efficients are sufficient to realistically reproduce the original
natural motion in a range of real videos and scenes.

4.3. Predicting motion with a diffusion model

We choose a latent diffusion model (LDM) [69] as the
backbone for our motion prediction module, as LDMs are
more computationally efficient than pixel-space diffusion
models, while preserving generation quality. A standard
LDM consists of two main modules: (1) a Variational Au-
toencoder (VAE) that compresses the input image to a latent
space through an encoder z = E(I), then reconstructs the
input from the latent features via a decoder I = D(z), and
(2) a U-Net based diffusion model that learns to iteratively
denoise latent features starting from Gaussian random noise.
Our training applies this not to an input image but to stochas-
tic motion textures from a real video sequence, which are
encoded and then diffused for n steps with a pre-defined
variance schedule to produce noisy latents zn. The 2D U-
Nets are trained to denoise the noisy latents by iteratively
estimating the noise ϵθ(z

n;n, c) used to update the latent
feature at each step n ∈ (1, 2, ..., N). The training loss for
the LDM is written as

LLDM = En∈U [1,N ],ϵn∈N (0,1)

[
||ϵn − ϵθ(z

n;n, c)||2
]

(3)

where c is the embedding of any conditional signal, such as
text, semantic labels, or, in our case, the first frame of the
training video sequence, I0. The clean latent features z0 are
then passed through the decoder to recover the stochastic
motion textures.
Frequency adaptive normalization. One issue we ob-
served is that stochastic motion textures have particular dis-
tribution characteristics across frequencies. As visualized in

the left plot of Fig. 2, the amplitude of our motion textures
spans a range of 0 to 100 and decays approximately exponen-
tially with increasing frequency. As diffusion models require
that output values lie between 0 and 1 for stable training and
denoising, we must normalize the coefficients of S extracted
from real videos before using them for training. If we scale
the magnitudes of S coefficients to [0,1] based on image
width and height as in prior work [28, 72], almost all the
coefficients at higher frequencies will end up close to zero,
as shown in Fig. 2 (right-hand side). Models trained on such
data can produce inaccurate motions, since during inference,
even small prediction errors can lead to large relative errors
after denormalization when the magnitude of the normalized
S coefficients are very close to zero.

To address this issue, we employ a simple but effective
frequency adaptive normalization technique. In particular,
we first independently normalize Fourier coefficients at each
frequency based on statistics computed from the training set.
Namely, at each individual frequency fj , we compute the
97th percentile of the Fourier coefficient magnitudes over all
input samples and use that value as a per-frequency scaling
factor sfj . Furthermore, we apply a power transformation to
each scaled Fourier coefficient to pull it away from extremely
small or large values. In practice, we found that a square root
transform performs better than other transformations, such
as log or reciprocal. In summary, the final coefficient values
of stochastic motion texture S(p) at frequency fj (used for
training our LDM) are computed as

S′
fj (p) = sign(Sfj )

√∣∣∣∣Sfj (p)

sfj

∣∣∣∣. (4)

As shown on the right plot of Fig. 2, after applying frequency
adaptive normalization the stochastic motion texture coeffi-
cients no longer concentrate in a range of extremely small
values.
Frequency-coordinated denoising. The straightforward
way to to predict a stochastic motion texture S with K fre-
quency bands is to output a tensor of 4K channels from a
standard diffusion U-Net. However, as in prior work [7], we
observe that training a model to produce such a large number
of channels tends to produce over-smoothed and inaccurate
output. An alternative would be to independently predict a
motion spectrum map at each individual frequency by in-
jecting an extra frequency embedding to the LDM, but this
results in uncorrelated predictions in the frequency domain,
leading to unrealistic motion.

Therefore, we propose a frequency-coordinated denois-
ing strategy as shown in Fig. 3. In particular, given an input
image I0, we first train an LDM ϵθ to predict a stochastic
motion texture map Sfj with four channels to represent each
individual frequency fj , where we inject extra frequency
embedding along with time-step embedding to the LDM
network. We then freeze the parameters of this LDM model
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Figure 3. Motion prediction module. We predict a neural stochastic motion texture S through a frequency-coordinated denoising model.
Each block of the diffusion network ϵθ interleaves 2D spatial layers with frequency cross-attention layers (red box, right), and iteratively
denoises latent features zn. The denoised features are fed to a VAE decoder D to produce S . During training, we concatenate the downsampled
input I0 with noisy latent features encoded from a real motion texture via a VAE encoder E , and replace the noisy features with Gaussian
noise zN during inference (left).

ϵθ and introduce attention layers and interleave them with
2D spatial layers of ϵθ across K frequency bands. Specif-
ically, for a batch size B of input images, the 2D spatial
layers of ϵθ treat the corresponding B ·K noisy latent fea-
tures of channel size C as independent samples with shape
R(B·K)×C×H×W . The cross-attention layer then interprets
these as consecutive features spanning the frequency axis,
and we reshape the latent features from previous 2D spatial
layers to RB×K×C×H×W before feeding them to the atten-
tion layers. In other words, the frequency attention layers
are used to coordinate the pre-trained motion latent features
across all frequency channels in order to produce coherent
stochastic motion textures. In our experiments, we observed
that the average VAE reconstruction error improves from
0.024 to 0.018 when we switch from a standard 2D U-Net
to a frequency-coordinated denoising module, suggesting
an improved upper bound on LDM prediction accuracy; in
our ablation study in Sec. 7.6, we also demonstrate that this
design choice improves video generation quality compared
with simpler configurations mentioned above.

5. Image-based rendering
We now describe how we take a stochastic motion tex-

ture S predicted for a given input image I0 and render a
future frame Ît at time t. We first derive motion trajectory
fields in the time domain using the inverse temporal FFT
applied at each pixel F(p) = FFT−1(S(p)). The motion
trajectory fields determine the position of every input pixel
at every future time step. To produce a future frame Ît, we
adopt a deep image-based rendering technique and perform
splatting with the predicted motion field Ft to forward warp
the encoded I0, as shown in Fig. 4. Since forward warp-
ing can lead to holes, and multiple source pixels can map

to the same output 2D location, we adopt the feature pyra-
mid softmax splatting strategy proposed in prior work on
frame interpolation [62]. Specifically, we encode I0 through
a feature extractor network to produce a multi-scale feature
map M = {Mj |j = 0, ..., J}. For each individual feature
map Mj at scale j, we resize and scale the predicted 2D
motion field Ft according to the resolution of Mj . We use
flow magnitude, as a proxy for geometry, to determine the
contributing weight of each source pixel mapped to its desti-
nation location. In particular, we compute a per-pixel weight,
W (p) = 1

T

∑
t ||Ft(p)||2 as the average magnitude of the

predicted motion trajectory fields. In other words, we assume
large motions correspond to moving foreground objects, and
small or zero motions correspond to background objects.
We use motion-derived weights instead of learnable ones
because we observe that in the single-view case, learnable
weights are not effective for addressing disocclusion ambi-
guities, as shown in the second column of Fig. 5.

With the motion field Ft and weights W , we apply soft-
max splatting to warp feature map at each scale to pro-
duce a warped feature M ′

j,t = Wsoftmax(Mj , Ft,W ), where
Wsoftmax is the softmax splatting operation. The warped fea-
tures M ′

j,t are then injected into intermediate blocks of an
image synthesis decoder network to produce a final rendered
image Ît.

We jointly train the feature extractor and synthesis net-
works with a start and target frames (I0, It) randomly sam-
pled from real videos, where we use the estimated flow field
from I0 to It to warp encoded features from I0, and supervise
predictions Ît against It with a VGG perceptual loss [45].
As shown in Fig. 5, compared to direct average splatting
and a baseline deep warping method [42], our motion-aware
feature splatting produces a frame without holes or artifacts
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Figure 4. Rendering module. We fill in missing content and refine
the warped input image using a motion-aware deep image-based
rendering module, where multi-scale features are extracted from the
input image I0. Softmax splatting is then applied over the features
with a motion field Ft from time 0 to t (subject to the weights W
derived from motion). The warped features are fed to an image
synthesis network to produce the refined image Ît.

around disocclusions.

6. Applications

We demonstrate applications that add dynamics to single
still images using our proposed motion representations and
animation pipeline.

Image-to-video. Our system enables the animation of a
single still picture by first predicting a neural stochastic
motion texture from the input image and generating an an-
imation by applying our image-based rendering module to
the motion displacement fields derived from the stochastic
motion texture. Since we explicitly model scene motions,
this allows us to produce slow-motion videos by linear in-
terpolating the motion displacement fields and to magnify
(or minify) animated motions by adjusting the amplitude of
predicted stochastic motion texture coefficients.

Seamless looping. It is sometimes useful to generate
videos with motion that loops seamlessly, meaning that there
is no appearance or motion discontinuity between the start
and end of the video. Unfortunately, it is hard to find a large
collection of seamlessly looping videos for training diffusion
models. Instead, we devise a method to use our motion dif-
fusion model, trained on regular non-looping video clips, to
produce seamless looping video. Inspired by recent work on
guidance for image editing [3, 29], our method is a motion
self-guidance technique that guides the motion denoising
sampling processing using explicit looping constraints. In
particular, at each iterative denoising step during the infer-
ence stage, we incorporate an additional motion guidance
signal alongside standard classifier-free guidance [41], where
we enforce each pixel’s position and velocity at the start and

(a) Average-splat (b) Baseline-splat (c) Ours

Figure 5. From left to right, we show a rendered future frame with
(a) average splatting in RGB pixel space, (b) softmax splatting with
learnable weights [42], and (c) our motion-aware feature splatting.

end frames to be as similar as possible:

ϵ̂n = (1 + w)ϵθ(z
n;n, c)− wϵθ(z

n;n, ∅) + uσn∇znLn
g

Ln
g = ||Fn

T − Fn
1 ||1 + ||∇Fn

T −∇Fn
1 ||1 (5)

where Fn
t is the predicted 2D motion displacement field at

time t and denosing step n. w is the classifier-free guidance
weight, and u is the motion self-guidance weight. In the
supplemental material, we apply baseline appearance-based
looping algorithm [54] to generate looping video from our
output non-looping example, and show that our motion self-
guidance technique produces seamless looping videos with
less distortion and fewer artifacts.

Interactive dynamics from a single image. As shown in
Davis et al. [22], the image-space motion spectrum from
an observed video of an oscillating object is approximately
proportional to the physical vibration modal basis of that
object. The modal shapes capture the oscillation dynamics
of the object at different frequencies, and hence the image-
space projections of an object’s vibration modes can be used
to simulate the object’s response to a user-defined force such
as poking or pulling. Therefore, we adopt the modal analysis
technique from prior work [22, 65], which assumes that the
motion of an object can be explained by the superposition of
a set of harmonic oscillators. This allows us to write image-
space 2D motion displacement field for the object’s physical
response as a weighted sum of Fourier spectrum coefficients
Sfj modulated by the state of complex modal coordinates
qfj ,t at each simulated time step t:

Ft(p) =
∑
fj

Sfj (p)qfj ,t (6)

We simulate the state of the modal coordinates qfj ,t via
a forward Euler method applied to the equations of mo-
tion for a decoupled mass-spring-damper system (in modal
space) [22, 65]. We refer readers to our supplementary mate-
rial and the original work for a full derivation. Note that our
method produces an interactive scene from a single image,
whereas these prior methods required a video as input.



7. Experiments

7.1. Implementation details

We use an LDM [69] as the backbone for predicting
stochastic motion textures, for which we use a variational
auto-encoder (VAE) with a continuous latent space of di-
mension 4. We train the VAE with an L1 reconstruction loss,
a multi-scale gradient consistency loss [50–52], and a KL-
divergence regularization with weight 10−6. We adopt the
same 2D U-Net and variance schedule used in the original
LDM work to iteratively denoise encoded features with a
MSE loss [40]. For quantitative evaluation, we train the VAE
and LDM on images of size 256× 160, which takes around
6 days to converge using 16 Nvidia A100 GPUs. For our
main quantitative and qualitative results, we run the motion
diffusion model with DDIM [79] for 500 steps and set η = 1
to generate stochastic motion textures. For our ablation study,
we run DDIM for 200 steps and set η = 0 for all the configu-
rations. We also show generated videos of up to a resolution
of 512× 288, created by fine-tuning our models on higher
resolution data.

We adopt ResNet-34 [36] as our multi-scale feature ex-
tractor. Our image synthesis network is based on a co-
modulation StyleGAN architecture, which is a prior con-
ditional image generation and inpainting model [53, 100].
Our rendering module runs in real-time at 25FPS on a single
Nvidia V100 GPU during inference.

We adopt the universal guidance technique [3] to generate
seamless looping videos, where we set weights w = 1.5, u =
200 and the number of self-recurrence iterations to 2. We
refer reader to supplementary material for full details of
network architectures and hyper-parameter settings.

7.2. Data and baselines

Data. Since our focus is on natural scenes exhibiting oscil-
latory motion such as trees, flowers, and candles moving in
the wind, we collect and process a set of 2,631 videos of such
phenomena from online sources as well as from our own
captures, where we withhold 10% of the videos for testing
and use the remainder for training. To generate ground truth
stochastic motion textures for training our motion predic-
tion module, we apply a coarse-to-fine image pyramid-based
optical flow algorithm [10, 57] between selected starting
frames and every future frame within a video sequence. Note
that we found the choice of optical flow method to be cru-
cial. We observed that deep-learning based flow estimators
tend to produce over-smoothed flow fields, leading to blobby
or unrealistic animations. We treat every 10th frame from
each training video as a starting image and generate corre-
sponding ground truth stochastic motion textures using the
following 149 frames. We filter out samples with incorrect
motion estimates or significant camera motions by removing
examples with an average flow motion magnitude >8 pixels,

Image Synthesis Video Synthesis
Method FID↓ FIDsw↓ KID↓ FVD↓ DT-FVD↓

Stochastic I2V [26] 57.9 62.2 2.78 160.0 11.6
MCVD [83] 56.3 60.5 2.43 215.6 35.5
LFDM [61] 42.3 46.8 1.82 112.5 9.49
DMVFN [44] 28.5 36.3 1.02 104.7 8.22
Endo et al. [28] 14.3 17.3 0.19 109.9 5.35
Ours 3.23 4.23 0.04 27.41 1.54

Table 1. Quantitative comparisons on the test set. We report both
image synthesis and video synthesis quality. Here, KID is scaled
by 100. See Sec. 7.4 for descriptions of baselines and error metrics.
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Figure 6. Sliding Window FID and DT-FVD. We show sliding
window FID of window size 30 frames, and DT-FVD of size 16
frames, for videos generated by different methods.

or where all pixels have an average motion magnitude larger
than one pixel. In total, our data consists of more than 130K
samples of image-motion pairs.

Baselines. We compare our approach to several recent
single-image animation and video prediction methods. Both
Endo et al. [28] and DMVFN [44] predict instantaneous
2D motion fields and future frames in an auto-regressive
manner. Other recent work such as Stochastic Image-to-
Video (I2V) [26] and MCVD [83] adopt either VAEs or
diffusion models to predict video frames directly from a
single picture. LFDM [61] predicts flow fields in latent space
with a diffusion model, then uses those flow fields to warp the
encoded input image, generating future frames via a decoder.
We apply these models autoregressively to generate longer
videos by taking the last output frame and using it as the
input to another round of generation until the video reaches
a length of 150 frames. We train all the above methods on
our data using their respective open-source implementations.

7.3. Metrics

We evaluate the quality of the videos generated by our
approach and by prior baselines in two main ways. First, we
evaluate the quality of individual synthesized frames using
metrics designed for image synthesis tasks. We adopt the
Fréchet Inception Distance (FID) [38] and Kernel Inception
Distance (KID) [5] to measure the average distance between
the distribution of generated frames and the distribution
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Figure 7. X-t slices of videos generated by different approaches. From left to right: input image and corresponding X-t video slices from
the ground truth video, from videos generated by three baselines [26, 28, 83], and finally videos generated by our approach.

of ground truth frames. We further use a sliding window
FID FIDsw) with a window size of 30 frames, as proposed
by [53,56], to measure how generated frame quality degrades
over time.

Second, to evaluate the quality and temporal coherence
of synthesized videos in both the spatial and temporal do-
mains, we adopt the Fréchet Video Distance (FVD) [82],
which is based on an I3D model [11] trained on the Human
Kinetics datasets [48]. To more faithfully reflect synthesis
quality for the natural oscillation motions we seek to gen-
erate, we also adopt the Dynamic Texture Frechet Video
Distance (DT-FVD) proposed by Dorkenwald et al. [26],
which measures FVD with a I3D model trained on the Dy-
namic Textures Database [34], a dataset consisting primarily
of natural motion textures. Similarly, we introduce a sliding
window FVD with window size 16 to measure how gener-
ated video quality degrades over time. For all the methods,
we evaluate each error metric on a 256 × 128 central crop
of the predicted videos with 150 frames generated without
performing temporal interpolation, at 256× 128 resolution.

7.4. Quantitative results

Table 1 shows quantitative comparisons between our ap-
proach and baselines on our test set of unseen video clips.
Our approach significantly outperforms prior single-image
animation baselines in terms of both image and video synthe-
sis quality. Specifically, our much lower FVD and DT-FVD
distances suggest that the videos generated by our approach
are more realistic and more temporally coherent. Further,
Fig. 6 shows the sliding window FID and sliding window DT-

Image Synthesis Video Synthesis
Method FID↓ FIDsw↓ KID↓ FVD↓ DT-FVD↓

K = 4 3.20 4.15 0.03 30.18 1.98
K = 8 3.25 4.30 0.04 28.81 1.85
K = 24 3.26 4.25 0.04 27.50 1.58

Scale w/ resolution 3.75 4.34 0.05 35.05 1.93
Independent pred. 3.20 4.21 0.04 36.30 1.80
Volume pred. 3.56 4.61 0.04 30.67 1.80

Average splat 4.22 5.14 0.07 28.62 1.76
Baseline splat [42] 3.69 4.73 0.05 27.98 1.68

Full (K = 16) 3.21 4.21 0.04 27.63 1.60

Table 2. Ablation study. We run all configurations using a DDIM
with 200 steps. Please see Sec. 7.6 for the details of the different
configurations.

FVD distances of generated videos from different methods.
Thanks to our global stochastic motion textures representa-
tion, videos generated by our approach are more temporally
consistent and do not suffer from drift or degradation over
time.

7.5. Qualitative results

We visualize qualitative comparisons between videos gen-
erated by our approach and by baselines in two ways. First,
we show spatio-temporal X-t slices of the generated videos,
a standard way of visualizing small or subtle motions in a
video [85]. As shown in Fig. 7, our generated video dynam-
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Figure 8. Visual comparisons of generated future frames and corresponding motion fields. By inspecting differences with a reference
image from the ground truth video, we observe that our approach produces more realistic textures and motions compared with baselines. We
refer readers to the supplementary video for full results.

ics more strongly resemble the motion patterns observed in
the corresponding real reference videos (second column),
compared to other methods. Baselines such as Stochastic
I2V [26] and MCVD [83] fail to model both appearance
and motion realistically over time. Endo et al. [28] produces
video frames with fewer artifacts but exhibits over-smooth
or non-oscillation motions.

We also qualitatively compare the quality of individual
generated frames and motions across different methods by
visualizing the predicted image Ît and its corresponding mo-
tion displacement field at time t = 128. Fig. 8 shows that the
frames generated by our approach exhibit fewer artifacts and
distortions compared to other methods, and our correspond-
ing 2D motion fields most resemble the reference displace-
ment fields estimated from the corresponding real videos. In
contrast, the background content generated by other methods
tend to drift, as shown in the flow visualizations in the even-
numbered rows. Moreover, the video frames generated by
other methods exhibit significant color distortion or ghosting
artifacts, suggesting that the baselines are less stable when
generating videos with long time duration.

7.6. Ablation study

We conduct an ablation study to validate the major de-
sign choices in our motion prediction and rendering mod-
ules, comparing our full configuration with different variants.
Specifically, we evaluate results using different numbers of
frequency bands K = 4, 8, 16, and 24. We observe that
increasing the number of frequency bands improves video

prediction quality, but the improvement is marginal when
using more than 16 frequencies. Next, we remove adaptive
frequency normalization from the ground truth stochastic
motion textures, and instead just scale them based on input
image width and height (Scale w/ resolution). Additionally,
we remove the frequency coordinated-denoising module (In-
dependent pred.), or replace it with a simpler module where
a tensor volume of 4K channel stochastic motion textures
are predicted jointly via a standard 2D U-net diffusion model
(Volume pred.). Finally, we compare results where we render
video frames using average splatting (Average splat), or use
a baseline rendering method that applies softmax splatting
over single-scale features subject to learnable weights used
in Holynski et al. [42] (Baseline splat). From Table 2, we
observe that all simpler or alternative configurations lead to
worse performance compared with our full model.

8. Discussion and conclusion
Limitations. Since our approach only predicts stochastic
motion textures at low frequencies, it might fail to model
general non-oscillating motions or high-frequency vibrations
such as those of musical instruments. Furthermore, the qual-
ity of our generated videos relies on the quality of the motion
trajectories estimated from the real video sequences. Thus,
we observed that animation quality can degrade if observed
motions in the real videos consists of large displacements.
Moreover, since our approach is based on image-based ren-
dering from input pixels, the animation quality can also
degrade if the generated videos require the creation of large



amounts of content unseen in the input frame.
Conclusion. We present a new approach for modeling
natural oscillation dynamics from a single still picture.
Our image-space motion prior is represented with a neu-
ral stochastic motion texture, a frequency representation of
per-pixel motion trajectories, which is learned from collec-
tions of real world videos. Our stochastic motion textures are
predicted using our frequency-coordinated latent diffusion
model and are used to animate future video frames using
a neural image-based rendering module. We show that our
approach produces photo-realistic animations from a single
picture and significantly outperforms prior baseline methods,
and that it can enable other downstream applications such as
creating interactive animations.
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Sylvain Lamprier, and Patrick Gallinari. Stochastic latent
residual video prediction. In International Conference on
Machine Learning, pages 3233–3246. PMLR, 2020.

[32] Ruohan Gao, Bo Xiong, and Kristen Grauman. Im2Flow:
Motion hallucination from static images for action recog-
nition. In Proc. Computer Vision and Pattern Recognition
(CVPR), 2018.

[33] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu
Qiao, Dahua Lin, and Bo Dai. Animatediff: Animate your
personalized text-to-image diffusion models without specific
tuning. arXiv preprint arXiv:2307.04725, 2023.

[34] Isma Hadji and Richard P Wildes. A new large scale dy-
namic texture dataset with application to convnet under-
standing. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 320–335, 2018.

[35] Zekun Hao, Xun Huang, and Serge Belongie. Controllable
video generation with sparse trajectories. In Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7854–7863, 2018.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[37] Yingqing He, Menghan Xia, Haoxin Chen, Xiaodong Cun,
Yuan Gong, Jinbo Xing, Yong Zhang, Xintao Wang, Chao
Weng, Ying Shan, et al. Animate-a-story: Storytelling
with retrieval-augmented video generation. arXiv preprint
arXiv:2307.06940, 2023.

[38] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017.

[39] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022.

[40] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

[41] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022.

[42] Aleksander Holynski, Brian L Curless, Steven M Seitz, and
Richard Szeliski. Animating pictures with Eulerian motion
fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5810–5819,
2021.

[43] Tobias Hoppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen,
and Andrea Dittadi. Diffusion models for video prediction
and infilling. Trans. Mach. Learn. Res., 2022, 2022.

[44] Xiaotao Hu, Zhewei Huang, Ailin Huang, Jun Xu, and
Shuchang Zhou. A dynamic multi-scale voxel flow network
for video prediction. ArXiv, abs/2303.09875, 2023.

[45] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Percep-
tual losses for real-time style transfer and super-resolution.
In Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14, pages 694–711. Springer, 2016.

[46] Hitoshi Kanda and Jun Ohya. Efficient, realistic method
for animating dynamic behaviors of 3d botanical trees. In
2003 International Conference on Multimedia and Expo.
ICME’03. Proceedings (Cat. No. 03TH8698), volume 2,
pages II–89. IEEE, 2003.

[47] Johanna Karras, Aleksander Holynski, Ting-Chun Wang,
and Ira Kemelmacher-Shlizerman. Dreampose: Fashion
image-to-video synthesis via stable diffusion. arXiv preprint
arXiv:2304.06025, 2023.

[48] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017.



[49] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel,
Chelsea Finn, and Sergey Levine. Stochastic adversarial
video prediction. arXiv preprint arXiv:1804.01523, 2018.

[50] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,
Noah Snavely, Ce Liu, and William T Freeman. Learn-
ing the depths of moving people by watching frozen people.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4521–4530, 2019.

[51] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 2041–2050, 2018.

[52] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker,
and Noah Snavely. Dynibar: Neural dynamic image-based
rendering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4273–4284,
2023.

[53] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo
Kanazawa. Infinitenature-zero: Learning perpetual view gen-
eration of natural scenes from single images. In European
Conference on Computer Vision, pages 515–534. Springer,
2022.

[54] Jing Liao, Mark Finch, and Hugues Hoppe. Fast computation
of seamless video loops. ACM Transactions on Graphics
(TOG), 34(6):1–10, 2015.

[55] Zicheng Liao, Neel Joshi, and Hugues Hoppe. Automated
video looping with progressive dynamism. ACM Transac-
tions on Graphics (TOG), 32(4):1–10, 2013.

[56] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Maka-
dia, Noah Snavely, and Angjoo Kanazawa. Infinite nature:
Perpetual view generation of natural scenes from a single
image. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 14458–14467, 2021.

[57] Ce Liu. Beyond pixels: exploring new representations and
applications for motion analysis. PhD thesis, Massachusetts
Institute of Technology, 2009.

[58] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang,
Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, and
Tieniu Tan. Videofusion: Decomposed diffusion models
for high-quality video generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10209–10218, 2023.

[59] Long Mai and Feng Liu. Motion-adjustable neural implicit
video representation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10738–10747, 2022.

[60] Arun Mallya, Ting-Chun Wang, and Ming-Yu Liu. Implicit
warping for animation with image sets. Advances in Neural
Information Processing Systems, 35:22438–22450, 2022.

[61] Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and
Martin Renqiang Min. Conditional image-to-video gener-
ation with latent flow diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18444–18455, 2023.

[62] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5437–5446, 2020.

[63] Tae-Hyun Oh, Ronnachai Jaroensri, Changil Kim, Mohamed
Elgharib, Fr’edo Durand, William T Freeman, and Wojciech
Matusik. Learning-based video motion magnification. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 633–648, 2018.

[64] Shin Ota, Machiko Tamura, Kunihiko Fujita, T Fujimoto,
K Muraoka, and Norishige Chiba. 1/f/sup/spl beta//noise-
based real-time animation of trees swaying in wind fields. In
Proceedings Computer Graphics International 2003, pages
52–59. IEEE, 2003.

[65] Automne Petitjean, Yohan Poirier-Ginter, Ayush Tewari,
Guillaume Cordonnier, and George Drettakis. Modalnerf:
Neural modal analysis and synthesis for free-viewpoint navi-
gation in dynamically vibrating scenes. In Computer Graph-
ics Forum, volume 42, 2023.

[66] Silvia L. Pintea, Jan C. van Gemert, and Arnold W. M.
Smeulders. Déjà vu: Motion prediction in static images. In
Proc. European Conf. on Computer Vision (ECCV), 2014.

[67] Sigal Raab, Inbal Leibovitch, Guy Tevet, Moab Arar, Amit H
Bermano, and Daniel Cohen-Or. Single motion diffusion.
arXiv preprint arXiv:2302.05905, 2023.

[68] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
1(2):3, 2022.

[69] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022.

[70] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with
deep language understanding. Advances in Neural Informa-
tion Processing Systems, 35:36479–36494, 2022.

[71] Payam Saisan, Gianfranco Doretto, Ying Nian Wu, and Ste-
fano Soatto. Dynamic texture recognition. In Proceedings
of the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. CVPR 2001, volume 2,
pages II–II. IEEE, 2001.

[72] Saurabh Saxena, Charles Herrmann, Junhwa Hur, Abhishek
Kar, Mohammad Norouzi, Deqing Sun, and David J. Fleet.
The surprising effectiveness of diffusion models for optical
flow and monocular depth estimation, 2023.
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