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1. Implementation Details

1.1. Network Architecture

For fair comparisons, we leverage the same decoder as
NGLOD [5] in our network in the single shape fitting ex-
periment. In the 3D dataset reconstruction experiment, we
leverage a decoder with the same structure as IM-Net [2],
which is also the same practice as MDIF [3]. Note that we
only use one decoder while MDIF [3] uses a decoder for
each level, thus we have fewer parameters in decoder than
MDIF [3].

1.2. Hyperparameters

We implement our method using PyTorch and train the
network by Adam optimizer. And we apply different hyper-
parameter settings in different experiments.

In the single shape fitting experiment, we set the ini-
tial value of learning rate to be 0.001 and decay the learn-
ing rate by 0.5 every 35 epochs. We train the network
for 150 epochs with the batch size equal to 512. A set of
500K points is resampled at every epoch as training data,
in which 100K points are sampled uniformly in the space,
200K points from the object surface and the others are sam-
pled near the surfaces.

In the 3D dataset reconstruction experiments, we set the
initial value of learning rate to be 0.001 and 0.003 for pa-
rameters in decoder and latent codes, respectively. And we
decay the learning rates by 0.5 every 200 steps. We train
the network for 500 epochs. Each batch of data contains
16 shapes and 4096 query points for each shape. During

*The corresponding author is Yu-Shen Liu. This work was sup-
ported by National Key R&D Program of China (2018YFB0505400,
2020YFF0304100), the National Natural Science Foundation of China
(62072268), and in part by Tsinghua-Kuaishou Institute of Future Media
Data.

inference on test split of the dataset, we fix decoder param-
eters and optimize latent codes for 500 steps. We use an
initial learning rate of 0.01 during inference and also decay
the learning rate by 0.5 every 200 steps. In this experiment,
we sample a set of 200K points for each shape, and use the
same point set for all epochs. The point set contains 100K
points sampled uniformly in the space and the other points
sampled near the object surface.

2. Computational Cost

Our method has comparable computational cost with ex-
isting work such as NGLOD [5]. In our implementation,
the batch size B (i.e. the number of query point) is set to
512 for Thingi32 [6] and 4096 for ShapeNet [1], as given in
Sec. 1.2. Operations in our method (like interpolation and
CP loss) do not involve complex calculations and very large
tensors. And our method converges fast, as code locations
are simple and efficient to be optimized.

In the single shape fitting experiment, taking NGLOD
[5] as the comparison target, both NGLOD [5] and our
method need ∼ 100 epochs to converge when optimizing
the latent codes (and locations). We use 150 epochs for
both NGLOD [5] and our method in this experiment to en-
sure full convergence. On a single GPU (GeForce RTX
2080 Ti), NGLOD [5] takes ∼ 20 seconds to run one epoch,
while our method takes only ∼ 16 seconds. Previous meth-
ods like NGLOD [5] also need to compute Z explicitly (but
automatically done by API like from PyTorch), it seems
our interpolation runs faster than trilinear interpolation ap-
plied in NGLOD [5] under the same B. On the test split
of ShapeNet [1], our method optimizes codes and locations
for 500 iterations and takes ∼ 6 seconds for each shape dur-
ing inference. But we find that 1 ∼ 2 seconds and ∼ 150
iterations are enough to get fine results.
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3. Additional Results and Discussion

3.1. More Visualization of Optimization Process

We show more cases of optimization process on
Thingi32 [6] in Fig. 2 and Fig. 3.

3.2. Results on Large-Scale Scenes

We randomly select one room from SceneNet 1, and take
the entire room as input to briefly show the ability of our
method to scale to scenes. We compare our method with
LIG [4]. And we achieve CD = 0.96, outperforming
CD = 1.90 by LIG [4]. As shown in Fig. 1, our method
has a better reconstruction quality. We will further explore
our method for large-scale scenes and conduct more exper-
iments in our future work.

3.3. Results for Simple Shapes in ShapeNet

As shown in Table 2 of our main paper, MDIF [3] has
better results than our proposed DCC-DIF in categories
with simple shapes, such as cabinet and car. MDIF [3] has
advantages in reconstructing simple shapes, which benefits
a lot from its hierarchical architecture (especially the global
latent code in top level). In contrast, our moving codes and
CP loss demonstrate great advantages for fitting complex
shapes. But our method reconstructs simple shapes not as
well as MDIF, which is mainly due to lack of global percep-
tion from global code. It is hopeful to improve this disad-
vantage by developing hierarchical DCC-DIF.

3.4. Understanding CP Loss from Another View

As A is a ‘similarity’ whereas D is a ‘distance’, multi-
plying A and D in Eq 7 of our main paper may seem con-
fusing. It might be helpful to understand why we multiply
D for Code Position (CP) loss in the back-propagation pro-
cess.

As mentioned in our paper, we cut off gradient back
propagation to A in Eq 7. Minimizing the CP loss leads
to reduction of distances at different degrees. As the dis-
tances are computed from (x, y, z) coordinates of query
points and latent codes, the reduction of distances further
leads to updating of (x, y, z) coordinates of latent codes.
The attraction A determines which distance is more im-
portant to reduce. The distances corresponding to higher
attraction will reduce more. Intuitively, the (x, y, z) coor-
dinates of latent codes will get closer to query points with
higher errors/attractions, where complex geometry details
probably exist. Large attractions lead to reduction of corre-
sponding distances and maybe increase of distances which
correspond to small attractions, but it does not matter.

1https://robotvault.bitbucket.io

(a) LIG (b) Ours (c) Reference

Figure 1. Visualization on SceneNet. We show results of LIG and
our method in (a) and (b), respectively. And (c) is the reference.

3.5. About Faraway Points

In Fig 1(c) of our main paper, we can find several points
are placed far away from the object surface. As we compute
the interpolated feature with weights based on distances, the
faraway points almost do not contribute to the reconstruc-
tion of the boundary. We used to remove these points, but
observe no significant changes in results. Since our opera-
tions are implemented by matrix calculation, these faraway
points have little effect on computational efficiency. Thus
we still keep these faraway points to facilitate matrix calcu-
lation.
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Figure 2. Illustration of moving code positions during optimization. We typically show four states during optimization. Initial and final
states are shown in (a) and (d), respectively, while (b) and (c) show two intermediate states. The (e) shows the references. For each 3D
shape, we show our reconstruction results (below) and code positions (above), where the warmer color indicates the local codes are closer
to the surface.
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Figure 3. Illustration of moving code positions during optimization. We typically show four states during optimization. Initial and final
states are shown in (a) and (d), respectively, while (b) and (c) show two intermediate states. The (e) shows the references. For each 3D
shape, we show our reconstruction results (below) and code positions (above), where the warmer color indicates the local codes are closer
to the surface.


