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Figure 1: Color-to-depth mappings alter virtual objects’ colors (H: Hue, S: Saturation, V: Value) to refect their depths. We 
calculates intuitive mappings by inferring the confusion probability based on mapping data collected from users. Users map 
single color to a distribution of depths as illustrated by the curves, and the area under the intersected curves indicates the 
probability that they may map two colors to the same depth. 

ABSTRACT 
Despite signifcant improvements to Virtual Reality (VR) technolo-
gies, most VR displays are fxed focus and depth perception is still 
a key issue that limits the user experience and the interaction per-
formance. To supplement humans’ inherent depth cues (e.g., retinal 
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blur, motion parallax), we investigate users’ perceptual mappings of 
distance to virtual objects’ appearance to generate visual cues aimed 
to enhance depth perception. As a frst step, we explore color-to-
depth mappings for virtual objects so that their appearance difers 
in saturation and value to refect their distance. Through a series 
of controlled experiments, we elicit and analyze users’ strategies 
of mapping a virtual object’s hue, saturation, value and a combi-
nation of saturation and value to its depth. Based on the collected 
data, we implement a computational model that generates color-
to-depth mappings fulflling adjustable requirements on confusion 
probability, number of depth levels, and consistent saturation/value 
changing tendency. We demonstrate the efectiveness of color-to-
depth mappings in a 3D sketching task, showing that compared to 
single-colored targets and strokes, with our mappings, the users 
were more confdent in the accuracy without extra cognitive load 
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and reduced the perceived depth error by 60.8%. We also imple-
ment four VR applications and demonstrate how our color cues can 
beneft the user experience and interaction performance in VR. 

CCS CONCEPTS 
• Human-centered computing → User models. 
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1 INTRODUCTION 
Currently, VR devices produce the sense of virtual objects’ depths 
by providing pictorial (e.g., shading [78] and occlusion), oculomotor 
(defocus blurring [51]), and binocular cues (e.g., binocular disparity 
[60]) that humans inherently rely on to perceive depth in reality. 
Given that most current VR displays are fxed focus, however, inac-
curacies in users’ perceived depths of virtual objects are common 
and can negatively impact the user experience in interaction tasks, 
e.g., when locating targets, trying to sketch precisely, or arranging 
user interfaces). In addition to prior eforts adding visual cues such 
as light feld rendering [36] and ocular motion parallax [34] via 
advanced rendering techniques, we explore dynamically recoloring 
virtual content based on the VR user’s position in the scene and 
distance to virtual objects to stimulate depth perception. 

Mapping rendering attributes of objects (e.g., color [79], con-
trast [57, 78], opacity [59], level of blurriness [45, 46]) to depth is 
already an established technique in computer graphics research. 
However, as there are few best practices and common design guide-
lines, typically these mappings are defned manually by experienced 
visual designers, which requires professional training and expertise 
in human-computer interaction and human factors. At the core of 
this research is an investigation into how to dynamically generate 
color-to-depth mappings that are intuitive to users based on a set 
of controlled experiments. Based on our experiments, we develop 
a computational model that automatically calculates mappings so 
that it becomes easier for VR application designers and developers 
to respond to varying application requirements and user needs in 
terms of the number of distinguishable depth levels. We demon-
strate that our model efectively reduces the probability for users 
to be confused about the visual cues and enables more accurate in 
depth perception in VR scenes on current headsets. 

This paper ofers three main contributions. 

• We investigate how users intuitively map color space to 
depth axis to quantify how hue, value, and saturation should 
be altered to refect depth changes separately and jointly. 

• We construct a computational model to generate color-to-
depth mappings that fulfll requirements for the number of 
depth levels and probability of color confusions. 

• We evaluate the use and usability of the generated color-to-
depth mappings in a comparative study in a VR sketching 
task, and demonstrate the benefts in four applications. 

First, using the HSV color model instead of RGB since it is often 
regarded a more intuitive way to describe color the way users per-
ceive it, we conducted a series of controlled experiments to under-
stand how users map hue, saturation, and value channels separately, 
and colors in the combined space to depth in VR scenes. Results 
showed that hue-to-depth mappings were inconsistent across par-
ticipants, while saturation-to-depth and value-to-depth mappings 
were linear in the whole range or part of the range; when map-
ping saturation-value space to the depth axis, participants’ data 
points formed an approximate linear plane and provided more dis-
tinguishable depth levels than either single channel. As the second 
contribution, we developed a computational model that automati-
cally generates color-to-depth mappings. We frstly built a statistical 
model based on data from user studies to measure the confusion 
probability that the user may misrecognize a color cue to another, 
and thus misperceive the depth that it represents. Based on the 
model, we developed an algorithm to search for a color-to-depth 
mapping that maximizes the number of depth levels while main-
taining the confusion probability of every neighboring color cues 
under required limits. Among the candidates, the algorithm selects 
the mapping with the least average confusion probability. Using 
the algorithm, we built a color-to-depth mapping with eight dis-
tinguishable depth levels and evaluated it in a sketching task in 
comparison to a single-colored baseline method. Results showed 
that the generated mapping signifcantly increased the sketching 
accuracy by reducing the shape error by 72.98% and the depth error 
by 60.8% in 3D tasks. Further, participants were more confdent in 
control accuracy without extra cognitive load. Finally, we imple-
mented four VR applications, some of which were recreated from 
prior work, to demonstrate the potential benefts of the color-to-
depth mappings generated by our model, and discuss extensions to 
other rendering attributes in future work. 

2 RELATED WORK 

2.1 Depth perception in VR 
Inaccurate perception of depth in VR has been a long-standing 
problem [4, 29, 51, 58, 82] as studies have shown that users tend 
to underestimate the distance of further objects and overestimate 
the distance of closer objects [32, 53]. Extensive eforts have been 
devoted to identify factors causing depth misperception in VR [21, 
25, 27, 35, 43, 73, 76]. Willemsen et al. [81] and Thompson et al. [71] 
investigated how low-quality computer-generated images lead to 
depth misperception. Willemsen et al. [80] revealed that the dis-
play’s mechanical features (e.g., display weight) could also con-
tribute to distance underestimation. 

Despite the limited hardware, one main cause of depth percep-
tion is the lack of depth cues in VR. Loomis et al. [33, 42] and 
Sina Masnadi et al. [44] found that the narrow feld of view could 
signifcantly infuence the perceived depth in VR. Past research at-
tempted to build on users’ inherent depth cues, such as oculomotor 
(defocus blurring) [51], monocular [17, 26], and binocular depth 
cues [62], to alleviate depth misperception. Thomas et al. [70] lever-
aged the skybox and foor grids to provide monocular depth cues. 
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Vinnikov et al. [74] and Mauderer et al. [48] tracked the user’s gaze 
during interaction to provide the oculomotor depth cue with the 
gaze-contingent depth of feld. Though these research attempted to 
restore users’ inherent depth cues in VR, the depth misperception 
still exists [31]. 

As a result, depth misperception has a profound infuence on 
interactions in VR [38, 41]. The visual and vestibular system dis-
crepancies induce motion sickness and dizziness [12, 28]. Cheng 
et al. [15] found that the hand-eye coordination ability in VR was 
infuenced by depth perception. Nguyen et al. showed that users 
would have a depth perception confict when the stereoscopic video 
and virtual UI elements were rendered simultaneously [55]. Arora 
et al. [5] pointed out that the depth misperception in VR limited 
users’ performance in 3D sketching. 

As a supplement to providing inherent depth cues, a diferent 
strategy is adding extra visual cues to the object’s appearance to 
hint at its depth. It has been a common practice to add visual cues, 
including color [79], contrast [78], level of blurriness [45, 46] and 
other attributes to create a sense of depth in paintings, photographs, 
depth images, and virtual scenes. For instance, artists painted the 
further objects by decreasing their contrast and saturation to make 
them near to the background to simulate the atmosphere [1]. Dis-
tance fog [78] added fog in certain depth range to help users recog-
nize the depth diferences between objects in the front of, within, 
and behind the fog. Rößing et al. [65] provided the depth of feld, 
contrast, occlusion and saturation as depth cues in 2D videos. How-
ever, we argue that there lacks a thorough investigation on users’ 
perceptual mappings of distance to virtual objects’ appearance. 
Such investigations are crucial in generating appropriate mappings 
between visual cues and depth in a computational manner. So in 
this paper, we take color (hue, saturation, value) as an example 
to elicit intuitive color-to-depth mappings from users and fnally 
verify the benefts via evaluations and applications. 

2.2 Color perception in interaction 
Human beings perceive colors by using our visual system to inter-
pret light stimulation coming from objects with various colors [47]. 
Though the stimulation could be changed by the strength and 
direction of the environment’s light, users can identify colors con-
sistently based on their knowledge of color perception [20]. This 
knowledge has been commonly leveraged to visualize scientifc 
data [56, 68, 69, 86], present afective information [8, 10, 50], fa-
cilitate object recognition [14], etc. Löfer et al. leveraged color 
to increase the efciency, efectiveness, and user satisfaction of 
interaction with tangible user interfaces [40]. Bartram et al. inves-
tigated how diferent color properties (lightness, chroma, and hue) 
presented afective information in visualizations [8]. As for using 
color to represent quantitative information, depth has also been 
represented using colormaps for decades [9, 61]. Artists have been 
using lighter colors to create a sense of depth for distant objects 
in 2D paintings [1]. Troscianko et al. [72] used color to encode 
depth in the real world while Bailey et al. [6, 7] and Weiskopf and 
Ertl [77] leveraged color’s saturation and intensity to hint at virtual 
objects’ depth with designer-chosen parameters. While in the depth 
images captured by RGBD cameras, depth is mapped to various 
colors to present the scene’s morphology feature and depth at the 

same time [79]. Moreover, Angelopoulos et al. used colors to refect 
specifc ranges of depth for patients with Retinitis Pigmentosa in 
Augmented Reality [3]. Colormaps, as the encoding of color to vi-
sualized attributes mapping, is the key design that infuences the 
perceptual efciency in these applications [63]. The rainbow col-
ormap, which includes the most saturated colors, has been the most 
frequently used colormap in visualization practice for years [39]. 
However, researchers have reported that the rainbow colormap 
could hinder information presentation due to its lack of perceptual 
ordering [13, 37, 64, 75]. Turbo 1 addressed the Jet’s shortcomings 
with a hand-crafted and fne-tuned colormap and DepthLab [19] 
leveraged Turbo to integrate depth into mobile AR applications. 
Diferent from existing techniques that mapped colors to certain 
visual attributes, we propose to investigate how users perceptually 
map the 3D color space (hue, saturation, value) to the depth axis 
and generate efcient and intuitive color-to-depth mappings in a 
computational manner. 

3 MAPPING COLOR SPACE TO DEPTH AXIS 
As color can be characterized as a three-dimensional space (hue, sat-
uration, value) while depth is a one-dimensional axes, it is unclear 
how to build mappings between them so that users can easily infer 
depth information with color cues. We decided to frst disentangle 
the color dimensions by investigating how users map hue, satura-
tion, and value separately to depth. Based on the results, we further 
investigated mappings between the (saturation, value) combination 
and depth. As multiple models are valid in representing the color 
space, we used the HSV color model, a commonly used model in 
literature, which describes a color with hue(H), saturation(S), and 
value(V) [8, 30, 52]. In this model, H decides the type of the color 
while S decides the whiteness of the color, and V determines the 
darkness of the color. 

3.1 Phase 1: Mapping H to Depth 
We frst investigated how users map the hue spectrum to diferent 
depth levels. 

3.1.1 Task. First of all, the task is not to ask participants to distin-
guish diferent colors (hues in this phase), it is to form a one-to-one 
mapping where participants will assign a depth value to the target 
hue. To achieve this goal, we referred to existing studies on depth 
estimation in VR to design the task. Yet we found other than eval-
uating how participants estimated depths, previous studies also 
required accurate movement control - users are often required to 
locate objects at target depth, for example walk themselves to the 
depth [41], or throw a ball to the target location [66]. In this regard, 
we refned the design to minimize the control bias while maintain-
ing a good sense of depth. As shown in Figure 2, we rendered a trial 
square with a given color. We also put two referenced squares which 
formed a line with the trial square, one was at the front, and one 
was at the back, to rule the trial square’s moving range. Participants 
were asked to move the trial square along the one-dimensional axis 
with the controller joystick and stop at a depth where they found 
the target color refected most intuitively. This reduces the control 
requirement compared to walking or throwing balls. Meanwhile, 

1https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html 
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seeing the trial square’s depth with respect to the reference squares 
maintained the sense of depth. 

Figure 2: In the trials, we aligned two reference squares of 
the same color but with diferent hue, saturation, or value at 
opposite ends and inserted a trial square of the target color 
at a random position between the two reference points. The 
task was to move the trial square along the line between the 
reference squares such that the trial square’s depth matches 
the color in the spectrum between the two reference squares. 

3.1.2 Procedure. After ensuring the participants could observe 
the virtual environment clearly and comfortably, the researcher 
conducted a warm-up session to help them get familiar with the 
task. At the beginning of each trial, the participant was shown 
two references at the fxed positions and the trial square of the 
target color at a random initial position. The participant used the 
VR controller’s joystick to move the trial square to the goal depth 
and pressed a button to confrm. 

3.1.3 Design. The independent variable is H, and S and V are set 
as the control factors. The dependent variable is the depth where 
participants placed the trial square. We tested 18 H levels evenly 
distributed from 0 to 1 and set S and V fxed as 1 (with highest 
saturation and value). The two reference squares were white to 
only provide the depth reference. The height of all squares was set 
to 10 cm under the user’s head. We showed all the tested colors to 
the user in the warm-up session. The 18 tested hues were repeated 
5 times and appeared in a randomized order for each participant, 
resulting in 18 × 5 = 90 trials. The whole study lasted around 
15 minutes. We studied the color-to-depth mapping in a hand-
reachable depth range (10 cm to 110 cm in the front), which is 
one most frequently used space in VR applications. To control the 
infuence of the virtual background, we conducted the study with a 
virtual white background. 

3.1.4 Apparatus. We conducted the user study on the Oculus Quest 
2 headset and implemented the experimental interface using Unity 
2019. Participants sat comfortably on a chair during the experiment. 

3.1.5 Participants. We recruited 16 participants (8 females and 8 
males) from a local university. Participants were aged 19 to 32 with 
an average age of 23.38 (SD = 3.90). The average self-reported famil-
iarity with VR score was 2.88 (SD = 1.26) with a 7-point Likert scale 
(1-not familiar at all, 4-neutral, 7-very familiar). All participants 
had normal vision and did not have color weakness or blindness. 

3.1.6 Results. We calculated the average mapped depth and the 
standard deviation for each hue as shown in Figure 3a. The green-
like (hue range 0.22 - 0.55) colors’ mapped depths are 0.6 with 
a standard deviation of 0.26, which refects that the participants 
tended to map them to a similar depth level. The mapped depth 

(a) (b) 

Figure 3: (a) The mean and standard deviation of the mapped 
depth (meter) of each tested hue. The mean is texted over 
the wedge while also illustrated by its center’s position. The 
wedge length indicated the standard deviation. (b) Two par-
ticipants(P2, P16)’ hue-to-depth mapping results. 

then increased to 0.7 on average when the color became the blue 
spectrum (hue range 0.55 - 0.88) and then reduced to 0.4 on average 
with the color changed to red and yellow (hue range 0.88 - 0.22). We 
conducted Repeated-Measures ANOVA (p < 0.05) with Bonferroni-
corrected post-hoc T-test (p < 0.05) on the results to investigate if 
the H infuenced the mean of mapped depth. Results showed that 
the H signifcantly afected the mapped depth (F(17,255) = 2.79, p < 
0.001) and post-hoc results revealed that only the mapped depth of 
yellow (hue = 0.22, AVG = 0.37, SD = 0.18) was signifcantly less 
than blue’s (hue = 0.72, AVG = 0.68, SD = 0.18, t = 4.46, p < 
0.001). Therefore, the mapped depth of each tested hue overlapped 
heavily with the neighboring hues, which suggests that there might 
not exist a consistent hue-to-depth mapping that most participants 
agree on. To further probe this phenomenon, we took a further look 
at individual mappings of participants. Figure 3b visualizes the two 
mappings created by P2 and P16, which appeared to be in an almost 
reverse pattern. We found similar results in the comparison between 
other participants. We reason that as hue appears to be a circled 
spectrum without a recognized starting hue, diferent participants 
may select their own starting hue with diferent rotating orders 
around the circle and some of them also created their own order. As 
a result, although hue has been widely used as the depth cue [1, 79], 
it is difcult for users to intuitively and consistently map it to the 
depth. 

3.2 Phase 2: Mapping S and V to Depth 
separately 

Diferent from the hue channel as a circled spectrum, saturation 
and value are ordinal channels that become stronger as the channel 
value increases. So we applied the same task to elicit the partici-
pants’ mappings between S, V and depth separately in this phase. 

3.2.1 Procedure and apparatus. The procedure and apparatus re-
main the same with Section 3.1.1 and Section 3.1.4. 

3.2.2 Design. The independent variables were S and V. we con-
trolled the factor H with six tested hues. The dependent variable 
was the depth that mapped to the target color. We set the two ref-
erence squares’ colors as the extremes of the independent variable. 
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(a) (b) 

Figure 4: The errorbar’s position shows the average mapped depth and its length indicates the standard deviation. In the frst 
row, the trials were conducted with the pure color reference at the front and the second row in reverse order. 

For instance, if we tested S, one of the two references was white (S 
is 0), and the other was the pure color (S is 1). To test whether the 
front-back order of the references infuences the mapping, we set 
reference order (whether white or the pure color is at the front) as 
a minor independent variable. 

We separately tested S and V ranging from 0 to 1 with an inter-
val of 1/16, which induced 17 data points on each of the six hues 
(H = i/6, i = 1, 2, . . . , 6). We tested 6 (H values) × 2 (variables) 
× 2 (reference order) = 24 conditions and each participant thus 
completed 17 (S/V values) × 24 (conditions) = 408 trials in total. 
The order of the conditions was counter-balanced over users, and 
the order of the trials in each condition was randomized. The ex-
periment was divided into four sessions with fve-minute breaks 
between sessions. The experiment lasted around 40 minutes. Each 
participant received a 15 USD compensation. 

3.2.3 Participants. We recruited another 24 participants (11 fe-
males, 13 males) from the local university. Participants were aged 
17 to 23 with an average age of 20.12 (SD = 1.36). The average 
self-reported familiarity with VR score was 2.52 (SD = 1.48) with a 
7-point Likert scale (1-not familiar at all, 4-neutral, 7-very familiar). 
All participants had normal vision and did not have color weakness 
or blindness. 

3.2.4 Results. We calculated the average mapped depth and the 
standard deviation for each trial color which results are visualized 
in Figure 4. To compare the mappings in diferent reference orders, 
we reversed the mappings with increasing order (starting from 
pure color reference) by applying depth = 1.1 −depth for each trial 
color, and calculated the Pearson correlation coefcient to measure 
the similarity of the paired mappings. The average coefcient of 
the paired depth data was higher than 0.99, which indicated that 
the reversed reference order led to highly symmetric color-
to-depth mappings. Then we calculated the Pearson correlation 
coefcient between the S or V and the mapped depth. As shown 
in Figure 4a, V linearly correlated with the mapped depth for 
all six hues (all coefcients > 0.99), while S had a linear corre-
lation with the mapped depth for red, blue, and purple (all 
coefcients > 0.99) while the mapped depth stops increasing 
at a certain level of S for yellow, green, and cyan. (all coef-
fcients < 0.9). The standard deviation increased from 0.03 (S or 
V = 0) to 0.17 (S or V = 0.5) and then reduced to 0.04 (S or V 
= 1) in all conditions. Furthermore, when the mapped depth stops 
increasing at a certain level of S for yellow, green, and cyan, its 

standard deviation is also at around 0.04. This indicated that users 
mapped the color to depth more consistently for larger S and V 
and the confusion probability reaches the peak when S and V have 
medium values. Compared to the results with hue, participants 
achieved more consistent mappings with saturation and value in 
both reference orders. 

3.3 Phase 3: Mapping (S, V) combination to 
Depth 

Results from Phase 2 showed the potential of creating intuitive 
saturation/value-to-depth mappings that participants can consis-
tently agree to. In this phase, we further investigated whether com-
bining S and V, which essentially extends single color channels to a 
two-dimensional space, generates color-to-depth mappings where 
participants can distinguish more levels of depth. The uncertainty 
behind is whether the perception of S will be in confict with or 
can supplement that of V. 

3.3.1 Procedure and apparatus. The procedure and apparatus re-
main the same with Section 3.1.1 and Section 3.1.4. 

3.3.2 Design. The independent variables were S and V, which both 
varied from 0 to 1 with an interval of 1/11. We thus sample 12 × 
12 = 144 data points, as illustrated in Figure 5a. The control factor 
was hue with four tested hue values. We selected two hues (red and 
purple) where depth correlated linearly with tested S/V and two 
hues (green and cyan) where S behaved diferently. We tested four 
hues (instead of all six hues in Phase 2) to reduce the task load and 
avoid the infuence of perceptual as well as physical fatigue. Since 
Phase 2’s results suggested that mappings with diferent reference 
orders can be converted to each other by reversing the depth value, 
we fxed the front reference as white and the back as black in this 
phase. The dependent variable was the depth that mapped to the 
trial color. Hence each participant needed to perform 144 (data 
points) × 4 (hues) = 576 trials. The order of the hues was counter-
balanced with a Latin-square, and the order of the trial colors in 
each hue was randomized for each participant. The experiment was 
divided into four sessions with fve-minute breaks between sessions. 
The experiment lasted around 60 minutes. Each participant received 
a 15 USD compensation for the 60 minutes experiment. 

3.3.3 Participants. We recruited another 24 participants from a 
local university, including 11 females and 13 males. Participants 
were aged from 18 to 26, with an average age of 20.50 (SD = 1.62). 
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The average self-reported familiarity with VR score was 2.46 (SD 
= 1.47) with a 7-point Likert scale (1-not familiar at all, 4-neutral, 
7-very familiar). All participants had normal vision and did not 
have color weakness or blindness. 

(a) (b) 

Figure 5: (a) The tested data points sampled in red hue. (b) 
The height of each data point indicates the mapped depth. 
S = 0, V = 1 (white) is mapped to 0.1 depth. V = 0 (black) is 
mapped to 1.1 depth. 

3.3.4 Results. We interpolated the average mapped depths based 
on the collected sample points and plotted the results for red hue 
as an example in Figure 5b. Please refer to supplementary mate-
rial for the results of other hues. Observing from Figure 5b, the 
interpolation results formed a surface close to the inclined plane 
which indicated that the mapped depth was afected by S and V 
approximately linearly. The coefcient of multiple correlation [2] 
on the four hues were all over 0.96, which verifed this fnding. We 
conducted Repeated-Measures ANOVA with Greenhouse-Geisser-
corrected on the results. Analysis results showed that S and V had a 
signifcant interaction efect for green (F(121,2783) = 2.65, p = 0.01)
and cyan (F(121,2783) = 3.18, p = 0.001) while no signifcant in-
teraction efect for red (F(121,2783) = 2.10, p > 0.05) and purple 
(F(121,2783) = 1.36, p > 0.05). This indicated that V afected the S’s 
infuence on the mapped depth and made it become more linear 
with the reduction of V for green and cyan. 

4 A COMPUTATIONAL MODEL TO 
GENERATE COLOR-TO-DEPTH MAPPINGS 

4.1 Trade-of between confusion probability 
and depth resolution 

A color-to-depth mapping consists of paired colors and depths, so 
that users can infer or recognize the depth with the color as the cue. 
There exists a trade-of between the confusion probability and depth 
resolution, as a larger number of (color, depth) pairs potentially 
can support the distinguishability of more levels of depth while as 
the selected colors become more crowded in the color space, the 
probability of users confusing with the colors also becomes higher. 
For example, two colors representing two depths could express 
one-bit information. However, if users tend to map the same depth 
to these two colors, or they could not distinguish between two 
depth levels with the help of color cues, we lose the color-to-depth 
mapping’s resolution. 

The results of the user studies showed that participants might 
map a range of depths to the same trial color, which followed a 

normal distribution (p > 0.05) for all tested colors suggested by 
Shapiro-Wilk tests. As the depth range mapped to two colors may 
overlap with each other (as illustrated in Figure 6a), a color-to-
depth mapping containing the two colors will cause confusions. 
We used the overlapping area of the two normal distributions to 
calculate the confusion probability of two colors. We calculate the 
entire mapping’s average confusion probability as the mean of the 
confusion probability between every two neighboring (color, depth) 
pairs and its depth resolution as the number of pairs it contains. 

Based on the collected data in the previous studies, we set up a 
model for generating color-to-depth mappings that satisfy interac-
tion requirements. 

(a) (b) 

Figure 6: (a) An example of the distribution of the mapped 
depths for four color cues. The overlapping area between 
two distributions indicates the confusion probability. (b) 
The longest path found with Algorithm 1 that satisfed the 
requirements and the constraints. The mapped depth distri-
bution of selected point is plotted above each point. 

4.2 Generating color-to-depth mappings 
We set up a model that takes in various constraints and require-
ments, and generates applicable color-to-depth mappings. The 
model allows selecting the starting and ending reference colors 
(input 1), which regulate a color range that the selected colors will 
not be less than the starting color or more than the ending color in 
saturation or value. And the model takes in the required confusion 
level (input 2) which is the upper limit of the predicted probability 
of users confusing any of the two colors. We ensured the depth rep-
resented by the color should change monotonously with the color’s 
saturation and value (constraint 1). To enhance the mapping’s res-
olution, it should contain as many as possible (color, depth) pairs 
(constraint 2). 

Under the requirement of confusion probability between any 
two colors in the mapping, the whole mapping’s average confusion 
probability should be minimized (constraint 3). 

Algorithm 1 illustrates the algorithm procedure. We frstly in-
terpolated the mean and standard deviation of the colors tested 
in Section 3.3 and get the dmeanH (s,v) and dstdH (s,v) function. 
Then with these two functions, we resampled the color space with 
a resolution of 101 ×101. We had tested the resolution of 26 × 26, 51 
× 51, 101 × 101, and 201 × 201. The last two had the same results, 
and we thought that the resampling data point could restore the 
function accurately with a certain resolution. So we selected the 



Color-to-Depth Mappings as Depth Cues in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

Algorithm 1 Generate a color-to-depth mapping with given inputs and constraints 
1: Initialize MaxLength and PrevColor as a 101×101 matrix 
2: For s = 0, s <= 100, s = s + 1 
3: For v = 100, v >= 0, v = v - 1 {The search starts from white and ends at black.} 
4: MaxLength[s][v] = 0 {Initial the size of the biggest color-to-depth mapping that ends at (s, v).} 
5: For prev_s = 0, prev_s < s, prev_s = prev_s + 1 
6: For prev_v = 100, prev_v > v, prev_v = prev_v - 1 
7: If dmeanH, (s,v) − dstdH, (s,v) > dmeanH, (prev_s, pr ev_v) + dstdH, (prev_s, pr ev_v) and 

MaxLength[s][v] ≤ MaxLength[prev_s][prev_v] + 1 {Check if it satisfes the confusion probability} 
requirement and if this previous color could produce a new longest path. 

8: PrevColor[s][v] = (prev_s, prev_v), MaxLength[s][v] = MaxLength[prev_s][prev_v] + 1 {Update} 
the size and the previous color of the biggest color-to-depth mapping that ends at (s, v). 

′ ′ 9: {M} = {{(H , s , v , dmean ′ , dstd ′)}| (s’, v’) is in PrevColor[s][v] which (s, v) makes MaxLength[s][v] is the biggest} {Leverage Prev-
Color to fnd out the points on every longest path and record with the form of {(H , s,v,dmean,dstd)}.}Í 

=1 P (dmean ′ +dstd ′ <dmean−dstd )
10: Return arg min(pM = M ) {Return the color-to-depth mapping with the least confusion probability. M’ size 

M 
′ P(dmean ′ + dstd < dmean − dstd) is the overlapping area between two contiguous colors in M.} 

101 × 101 resolution in our algorithm. With this preparation, we 
developed a search algorithm to determine the color-to-depth map-
pings that satisfed the requirements. We convert this problem to a 
searching problem to fnd the longest path in the resampling data 
points. We initialized the data structure for the following algorithm 
(Step 1). MaxLength[s][v] saves the length of the longest path that 
ends at (s, v), and PrevColor[s][v] saves the last color before (s, v) in 
the longest path. Then the search started from white (saturation is 
0, value is 1) and ended at black (saturation is 1, value is 0) (Step 2 
& 3). After updating the iterator, we set the longest path length as 
1 to search for the local optimal solution Step 4. Then we search all 
of the previous colors ranging from white to the current color (Step 
5 & 6) to update the longest path length ends at the current point 
(Step 7 & 8). After the search, we could have multiple longest paths 
with the same length. Then we found out which colors these paths 
contained with recorded data (Step 9). Finally, we calculated the 
confusion probability of the whole mapping and selected the one 
with the least confusion probability (Step 10). Please refer to the 
supplementary material for the detailed version of the algorithm. 

We ran the algorithm 1 on the results of red hue in Section 3.3, 
with the starting color of (S = 0, V = 0), ending color of (S = 1, V = 1), 
a threshold of confusion probability as 31.8%, which corresponds 
to one standard deviation in normal distributions. As a result, we 
obtained a color-to-depth mapping with the maximized 8 (color, 
depth) pairs and minimized confusion probability of 23.8% on av-
erage. The mapping is visualized in Figure 6b. We also applied the 
same algorithm on the results of single S channel and V channel in 
Section 3.2, with starting colors of (S = 0, V = 1) and (S = 1, V = 0), 
ending color of (S = 1, V = 1). The results showed that only altering 
S or V supports for distinguishing at most four depth levels, which 
confrmed that the combination of S and V provides color-to-depth 
mappings with better depth resolution than either channel. 

5 EVALUATION OF THE COLOR-TO-DEPTH 
MAPPING 

We conducted an user study on a mid-air sketching task to evaluate 
whether the color-to-depth mapping generated by the algorithm 

in Section 4.2 could enhance participants’ depth perception in VR 
interaction tasks. 

5.1 Design 
Participants were asked to observe a target shape and sketch to 
reproduce the shape beside it. In this process, we can study whether 
applying the mapping can facilitate the observation of the target 
shape and/or the user’s movement control. We also wanted to 
investigate whether the mapping could improve the sketching per-
formance on 2D and/or 3D shapes. Thus participants were asked to 
complete the study in 2 output levels (color-to-depth mapping vs. 
single colored target) × 2 input levels (color-to-depth mapping vs. 
single colored strokes) × 2 types of shapes (2D vs. 3D) = 8 condi-
tions. Table 1 listed these conditions and the factors. We designed a 
within-subject study with independent variables augmenting tech-
nique (NN, CN, NC, CC) and shapes (2D, 3D). In this experiment, 
we rendered the targets and sketching strokes in pure black as a 
baseline. The underlying consideration was that, to our knowledge, 
there is no commonly agreed color-to-depth mapping in current 
VR sketching applications for comparison, so the pure color base-
line serves as a neutral reference to help evaluate the proposed 
mapping’s performance. 

The trial target shapes are illustrated in Figure 7a. To test the 
sketching accuracy in a 3D space, we rotated the 2D and 3D shapes 
on the dimensions of roll, pitch, and yaw with an interval of 45 
degrees. After removing the repeated ones, we ended up with 23 
2D and 12 3D distinctive targets. Each participant thus need to 
perform 4 × 23 + 4 × 12 = 140 trials. We counterbalanced the order 
of the eight conditions with a Latin-square, and the order of target 
shapes in each condition was randomized for each participant. After 
completing trials in each condition, the participant took a three-
minute break and answered a questionnaire based on a 7-point 
Likert scale (1: strongly disagree; 4: neutral; 7: strongly agree) in 
fve aspects: 

• Easiness: It is easy to sketch with the technique. 
• Confdence: I can draw the shapes accurately. 
• Mental workload: I feel mentally tired. 
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• Preference: I like the color-to-depth augmentation. 
• Willingness: I am willing to use the sketching technique with 
the color-to-depth augmentation. 

Since there were no color cues in NN2 and NN3 conditions, 
participants were not asked to answer the last two questions in these 
two conditions. As for the quantitative metrics, we evaluated the 
user’s task completion time and error of orientation, size, similarity, 
and depth. Each participant received a 15 USD compensation for 
the 60 minutes experiment. 

Condition Target Sketch Shape 

NN2 None None 2D 
CN2 Color-to-depth None 2D 
NC2 None Color-to-depth 2D 
CC2 Color-to-depth Color-to-depth 2D 
NN3 None None 3D 
CN3 Color-to-depth None 3D 
NC3 None Color-to-depth 3D 
CC3 Color-to-depth Color-to-depth 3D 

Table 1: The factorial design of the eight conditions that we 5.5 Results 
tested in the experiment. 

5.2 Procedure 
To control the relative observation angle, we asked the participant 
to sit on a chair during the experiment. After recording the partici-
pant’s personal information, we conducted a warm-up session to 
help the participant get familiarized with the experiment. Pressing 
A on the controller started a trial and the target shape appeared. 
Then the participant could draw strokes in the virtual space by 
pressing the index fnger trigger on the controller. Pressing B on 
the controller cleared the VR scene and ended the current trial. 
Participants were allowed to put their arms down during the trials 
to reduce the infuence of physical fatigue. 

(a) (b) 

Figure 7: (a) The 2D and 3D target shapes tested in the evalu-
ation. (b) An example of the CC3 condition: left is the color-
augmented target and right is the color-augmented sketch. 
The colors at diferent depths were determined by the color-
to-depth mapping generated in Section 4. 

5.3 Apparatus 
We implemented the experiment platform using Unity 2019 and ran 
it on the Oculus Quest 2 with Oculus Link connected to a desktop 
so that the experimenter could observe the participant’s behaviors 

in VR. The tracking frequency of the handheld controller was 60Hz, 
and the Oculus Quest2 display had a 30Hz refresh rate. The target 
shapes were shown at 10 cm beneath the user’s head,10 cm towards 
the left, and from 20 cm to 40 cm from the user in depth, which 
were within their arms’ reach and used in other sketch research [5]. 
We applied the red color-to-depth mapping in this range as well. 
The length of the target shape’s side (diameter for ring and sphere) 
was 8cm. We conducted the experiment with a white background to 
control the infuence of the virtual background. Figure 7b illustrated 
the virtual scene in the experiment. 

5.4 Participants 
We recruited 16 participants from a local university, including 8 
females and 8 males. Participants’ ages ranged from 21 to 24, with 
an average of 21.94 (SD = 0.99). The average self-reported familiarity 
with VR score was 3.69 with a standard deviation of 1.54 with a 
7-point Likert scale (1: strongly disagree; 4: neutral; 7: strongly 
agree). All participants had normal vision and did not have color 
weakness or blindness. 

We conducted Repeated-Measures ANOVA with Bonferroni-corrected 
post-hoc T-tests on the quantitative metrics. As for the qualitative 
results, we conducted a non-parametric analysis of variance based 
on the Aligned Rank Transform with the post-hoc t-tests. 

We used the completion time, orientation error, size error, 
similarity error and depth error to comprehensively evaluate a 
3D sketch’s accuracy and depth specifcally. We calculated the dura-
tion completion time from the user started to observe the pattern 
till he fnished the task. For 2D shapes, we used the least square 
error to estimate a plane that best fts the strokes and calculated 
the orientation error between the target shape and the plane. As 
for 3D shapes, we estimated a plane for every surface in a shape 
and calculated the overall orientation error. After revising the 
orientation error, we calculated the size error by computing the 
percentage error of the length of the diagonal. The length of the 
user-drawn diagonal stroke was estimated by the average distance 
of 10 furthest apart pairs of points to avoid the outliers’ infuence. 
The similarity error was then calculated on sketches with cor-
rected orientation and size. The similarity error was represented 
by the overall space distance between points in a target-sketch 
mapping generated by a DTW [11] algorithm. With the mapping 
results given by Dynamic Time Warping (DTW [67]) algorithm, 
we calculated the overall depth error between the targets and the 
raw sketches without revisions to investigate the color-to-depth 
mapping’s infuence on the depth perception. 

5.5.1 Completion time. Participants did not use more time to sketch 
with the augmented input and/or output while they spent more time 
on 3D shapes. Statistical analysis results showed that only 2D/3D had 
a signifcant efect on completion time error (F(1,15) = 335.06, p < 
0.001). Pair-wise results showed that CC2 (AVG = 9.13, SD = 
5.76) had a larger completion time than NN2 (AVG = 7.05, SD = 
4.02, t = 4.38, p = 0.001), CN2 (AVG = 6.77, SD = 3.25, t = 
5.44, p < 0.001), NC2 (AVG = 6.83, SD = 3.77, t = 4.82, p < 
0.001). These results indicated that the user would compare his 
augmented sketch to the augmented target on 2D shapes. However, 
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Figure 8: Quantitative results on the completion time, orientation error, size error, similarity error, and depth error. 3D and 
2D sketch results are visualized with blue and orange colors. 

the completion time on 3D shapes has no signifcant diference in 
the four conditions. 

5.5.2 Orientation error. Participants performed similarly on orien-
tation with or without color cues while the orientation error on 3D 
shapes was signifcantly less. Statistical analysis results showed that 
only 2D/3D had a signifcant efect on orientation error (F(1,15) = 
138.42, p < 0.001) and there was no interaction efect. The 3D 
shapes’ orientation error is signifcantly smaller since the user could 
perceive the virtual object’s space orientation better by leveraging 
the spatial relationship of diferent surfaces. 

5.5.3 Size error. The color cues did not signifcantly infuence the 
sketch’s size error while 3D shapes had a larger size error. Results 
showed that only 2D/3D had a signifcant efect on size error (F(1,15) = 
16.23, p < 0.001) and there was no interaction efect. 

5.5.4 Similarity error. Participants could draw the shapes more sim-
ilar to the target shapes with augmented targets and/or augmented 
sketches while the 3D shape had a larger similarity error than 2D. 
Results showed that there was a signifcant efect on similarity error 
of target (F(1,15) = 96.97, p < 0.001), sketch (F(1,15) = 53.78, p < 
0.001), and 2D/3D (F(1,15) = 252.64, p < 0.001). Pair-wise results 
showed that NN2 (AVG = 1.06, SD = 0.14) had a larger similarity 
error than CN2 (AVG = 0.73, SD = 0.12, t = 7.80, p < 0.001), 
NC2 (AVG = 0.76, SD = 0.14, t = 7.03, p < 0.001), CC2 (AVG = 
0.71, SD = 0.15, t = 6.71, p < 0.001). This indicated that augment-
ing either the input or the output could improve the similarity error 
on 2D shapes. While on 3D shapes, NN3 (AVG = 5.07, SD = 0.70)
had a larger similarity error than CN3 (AVG = 2.34, SD = 1.02, t = 
8.15, p < 0.001), NC3 (AVG = 2.84, SD = 1.08, t = 6.75, p < 
0.001), CC3 (AVG = 1.37, SD = 0.94, t = 11.99, p < 0.001). And 
CC3 had a less similarity error than both CN3 (t = 2.94, p = 0.01)
and NC3 (t = 4.51, p < 0.001). Compared to NN3 (AVG = 5.07), 
the similarity error reduced by 72.98% in CC3 (AVG = 1.37). These 
results indicated that the color cues could improve the similarity 
error and the improvement was more signifcant when both the 
target and the sketch were augmented. 

5.5.5 Depth error. Participants could perceive and control the vir-
tual sketch’s depth better with augmented target and/or augmented 
sketches while the 3D shape had a larger depth error than 2D. Results 
showed that there was a signifcant efect on depth error of tar-
get(F(1,15) = 76.79, p < 0.001), sketch(F(1,15) = 45.23, p < 0.001), 
and 2D/3D(F(1,15) = 21.12, p < 0.001). Pair-wise results showed 
that NN2(AVG = 2.15, SD = 0.83) had a larger similarity error than 
CN2 (AVG = 1.57, SD = 0.78, t = 2.46, p < 0.05), NC2(AVG = 

1.55, SD = 0.82, t = 2.35, p < 0.05), CC2(AVG = 1.19, SD = 
0.93, t = 3.02, p < 0.01). While CN2, NC2, and CC2 don’t have 
signifcant diference with each other (p > 0.05), this indicated that 
augmenting only the input or the output could improve the depth on 
2D shapes. On 3D shapes, NN3 (AVG = 3.75, SD = 0.47) also had 
a larger similarity error than CN3 (AVG = 2.14, SD = 0.69, t = 
6.80, p < 0.001), NC3 (AVG = 2.41, SD = 0.98, t = 4.33, p = 
0.001), CC3 (AVG = 1.47, SD = 0.73, t = 10.30, p < 0.001). Fur-
thermore, augmenting the input and output simultaneously(CC3) 
could signifcantly improve the depth error compared to only aug-
menting the input(NC3 (t = 2.46, p < 0.05)) or the output(CN3 
(t = 2.97, p = 0.01)). The depth error reduced by 72.98% in CC3 
(AVG = 1.47) compared to NN3 (AVG = 3.75), This indicated that 
our color-to-depth mapping could improve the perception and con-
trol of the virtual object’s depth and the improvement was more 
signifcant when both the target and the sketch were augmented 
by the color-to-depth mapping. 

5.5.6 Easiness. Participants felt easier to sketch both 2D and 3D 
shapes with color cues. Results indicated statistically signifcant ef-
fect on Easiness of target(F(1,105) = 28.32, p < 0.001), sketch(F(1,105) = 
38.50, p < 0.001), and 2D/3D(F(1,105) = 23.50, p < 0.001). Post-
hoc tests results showed that participants felt easier to sketch 
in CC2(AVG = 5.35, SD = 0.90) compared to NN2 (AVG = 
4.00, SD = 1.00, t = −4.93, p < 0.001) on 2D shapes. While 
on 3D shapes, CC3(AVG = 5.19, SD = 0.63) had signifcant dif-
ference with NN3(AVG = 3.25, SD = 0.90, t = −6.76, p < 
0.001), CN3(AVG = 3.63, SD = 1.27, t = −5.40, p < 0.001), 
and NC3(AVG = 3.75, SD = 1.09, t = −5.16, p < 0.001). 

5.5.7 Confidence. Participants were more confdent with their sketch’s 
accuracy with color cues on both 2D and 3D shapes while they had 
more confdence on 2D shapes. Results indicated statistically signif-
icant efect on Confdence of target(F(1,105) = 40.01, p < 0.001), 
sketch(F(1,105) = 79.70, p < 0.001), and 2D/3D(F(1,105) = 37.36, p < 
0.001). Post-hoc tests results showed that participants were more 
confdent with color cues on the sketch strokes since the ratings 
on CC2(AVG = 5.25, SD = 0.66) had a signifcant diference 
with NN2(AVG = 3.63, SD = 0.93, t = −5.99, p < 0.001). 
The conclusion remained the same on 3D shapes since the rat-
ings on CC3(AVG = 4.75, SD = 0.75) had a signifcant diference 
with NN3(AVG = 2.69, SD = 0.68, t = −7.85, p < 0.001 and 
CN3(AVG = 3.06, SD = 0.75, t = −6.52, p < 0.001. 
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Figure 9: Qualitative results on the easiness, confdence, mental workload, preference, and willingness. 

5.5.8 Mental workload. Participants did not feel more mentally tired 
with color cues on both 2D and 3D shapes. Results indicated statis-
tically signifcant efect on Mental workload of 2D/3D (F(1,105) = 
8.86, p < 0.01). Post-hoc tests showed that no signifcant diference 
exists. 

5.5.9 Preference. Participants preferred augmented targets and aug-
mented sketches on both 2D shapes and 3D shapes. Results indicated 
statistically signifcant efect on Preference of sketch (F(1,105) = 
14.28, p < 0.001), and 2D/3D (F(1,105) = 19.72, p < 0.001). Post-
hoc tests results showed signifcant diference on the ratings be-
tween: CN2 (AVG = 4.24, SD = 0.86) and CC2 (AVG = 5.38, SD = 
0.86, t = −3.37, p < 0.05, CN3 (AVG = 3.44, SD = 1.25) and CC3 
(AVG = 5.13, SD = 0.93, t = −4.99, p < 0.001). 

5.5.10 Willingness. Participants are willing to use augmented targets 
and augmented sketches on both 2D shapes and 3D shapes. Results 
indicated statistically signifcant efect on Willingness of sketch 
(F(1,105) = 26.06, p < 0.001), and 2D/3D (F(1,105) = 12.79, p < 
0.01). Post-hoc tests results showed signifcant diference on the 
ratings between: CN2 (AVG = 4.06, SD = 1.09) and CC2 (AVG = 
5.56, SD = 0.86, t = −5.10, p < 0.001, CN3 (AVG = 3.25, SD = 
1.19) and CC3 (AVG = 5.38, SD = 0.93, t = −6.64, p < 0.00). 

6 APPLICATIONS 
To demonstrate how the generated color-to-depth mappings can 
be benefcial, we developed four example applications, as shown 
in Figure 10. The frst three built on previous research [16, 18, 22], 
including performing mid-air gestures, arranging UI layouts, and 
scientifc data visualization. The last one illustrates the potential of 
applying the mappings in Augmented Reality (AR) scenarios and 
enabling the switch between depth perspectives. The mappings 
applied in these applications are all generated with the proposed 
model on the data that we have collected. We believe that with 
extra eforts in data collection, similar mappings between depth 
and other attributes, for instance contrast and transparency, can be 
generated which might suit diferent applications better. 

6.1 Improving accuracy of performing mid-air 
gestures in VR 

Similar to providing target shapes in the sketching task that we 
tested, providing visual guides of the mid-air gestures is a commonly 
applied method to reduce the user’s eforts in recalling the gestures. 
Fennedy et al. proposed to use dynamic guides to help users perform 
the gestures by visualizing possible 3D gestures in VR [22]. At the 
start, gesture strokes of diferent commands are visualized with 
diferent hues. As the user gradually follows the visual guide to 
complete the target stroke, the system flters out the less probable 

gestures by comparing the user’s current stroke and the candidates. 
In this process, the more accurately the user follows the stroke, 
the more efciently the system can flter out non-target strokes 
and recognize the target. We expect that augmenting the gesture 
strokes with color-to-depth mappings that alter saturation and 
value can help users make sense of the 3D structure of the strokes (as 
proved in the evaluation) and thus follow them accurately. We thus 
implemented, as shown in Figure 10a, a color-to-depth mapping 
from white to black which indicates the depth of each stroke and 
adapts accordingly as the user follows the stroke. 

6.2 Facilitating user interface arrangement 
Suggested by SemanticAdapt [16], users have a need to arrange 
UI elements into grouped patterns, including rows, columns, or 
grids, and place them at diferent depth layers according to their 
interaction priority levels. For example, the user may want to place 
the social applications that they frequently interact with at the 
nearest layer, and several documents that they read but do not 
necessarily touch in the middle layer, and other applications like 
weather and shop list in the furthest layer. To facilitate this process, 
we implemented a mode-switch function that replaces the original 
color of the elements with a color-to-depth mapping, and users can 
accurately group sets of elements to be at diferent depth levels. 
After they are satisfed with the layout, they can switch back from 
the colored mode. As Figure 10b illustrated, initially multiple virtual 
elements (e.g., virtual icons, web browsers, weather widgets) were 
laid out in a default manner. Then the user could leverage the color-
to-depth mapping to place these virtual interfaces at diferent layers 
of depth to facilitate reading and interactions. 

6.3 Enhancing 3D data visualization 
Data visualization is essential to helping users understand data. 
Immersive virtual reality can help researchers to perceive and un-
derstand data in a 3d space [18, 23]. We propose to augment the 
visualization by altering the saturation and value of the colors of 
the data points to infer their depths. Figure 10c shows an example 
with four types of data points, colored by diferent hues. In this 
case, we could apply four separate color-to-depth mappings to the 
four groups and adapts the saturation and value in response to 
the change of the user’s observation perspective in a user-centric 
reference frame. In this manner, the user can further observe the 
distribution of the data points on the depth axis and make sense of 
the spatial relationship between the data points. As suggested in 
MRAT [54], we allow users to further zoom into a certain group and 
we can adapt the color-to-depth mapping accordingly for clearer 
observation. 
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(a) (b) (c) (d) 

Figure 10: (a) Augmented OctoPocus [22]: The mid-air gesture guidance is colored with various S and V to improve tracing 
accuracy. (b) Facilitating virtual elements arrangement: The virtual elements are augmented to help users precisely place 
elements at diferent depth layers. (c) Enhancing 3D data visualization: We augment the data visualization to hint at the 
spatial relationship between the data points. (d) Enhancing real world depth perception: We use the color-to-depth mapping 
to hint at the physical objects’ depth to facilitate the user’s observation. 

6.4 Enhancing real world depth perception 
Depth misperception not only exists in virtual space but also in the 
real world. Users can have problems deciding the physical depth 
in various scenarios, e.g., driving, reaching objects, and navigating. 
We thus developed a demonstration that facilitates the user’s ob-
servation of physical objects’ depth in real world by augmenting 
the physical objects with a color-to-depth mapping. We used the 
pass-through function of Quest 2 headset to develop an AR appli-
cation as illustrated in Figure 10d. The fgure shows a parking lot 
with several cars, pillars and a pedestrian in the scene augmented 
with a color-to-depth mapping. It would be hard to determine the 
distance to these objects for the drivers in such a narrow and small 
space. As computer vision techniques (e.g., SLAM) would enable us 
to measure the distance from the camera to objects, we can render 
color efects on the physical objects to notify the users about the 
depth information. In our current implementation, we did not inte-
grate SLAM algorithms, as we manually placed the virtual planes to 
the position of the physical object and then calculated the relative 
depth in real time. In this scenario, it is interesting that the relative 
depth between the car and the obstacles is the key information to 
present, so we actually apply the mapping in a car-centric reference 
frame. We consider that closer objects are more dangerous to users 
and make them brighter and bigger while further ones are darker 
and smaller. We recognize that it is an important future work to 
explore applying color-to-depth mappings from diferent perspec-
tives. In addition, we expect that color-to-depth mappings may be 
more useful for users with low vision to gain a better sense of the 
obstacles in their way as they may have challenges obtaining other 
precise depth cues. 

7 DISCUSSION 
This paper investigated how users map the color space to the depth 
axis through several user experiments. Based on the results, we 
devised a computational model able to generate color-to-depth 
mappings that fulfll various constraints and requirements. We 
evaluated the generated mapping in a sketching task compared to 
single-colored baseline conditions. In this section, we discuss ways 
of extending the mappings and the limitations of our work. 

7.1 Mapping depth to other channels than 
color 

Other than color, it is also common practice to use contrast, opacity, 
blurriness, and other rendering attributes of objects to deliver depth 
information. Even for color, there are multiple kinds of models to 
represent a color (e.g., RGB, HSL, CDIE). As we discussed in Sec-
tion 6, other visual channels may fts certain scenarios better than 
color, and we recognize it worthwhile to explore these channels 
in the future. We expect the research methodology presented in 
this paper could also be leveraged in the research of other channels 
or other representations of color. For instance, distance fog [78] 
is another widely used technique to present depth information by 
using fog to change objects’ contrast and opacity in virtual scenes. 
Similar to color-to-depth mappings, using fog to render depth has a 
trade-of between the number of fog layers and confusion probabil-
ity. If the fog has lots of layers, users will also be confused about the 
presented depth information. Researchers thus could leverage our 
methodology to investigate the relationship between the distance 
fog and the user perceiving depth. 

7.2 Adjustable inputs, constraints and usages 
of the model 

As the study results in Section 3 show, the optimal color-to-depth 
mappings that provide the most depth levels with the least con-
fusion level are mostly non-linear, and they cannot be generated 
through simple interpolation. Therefore, we presented an algorithm 
that took in a given confusion probability and other constraints 
and then outputs a color-to-depth mapping. Except for the pro-
posed ones, the constraints can also be varied to satisfy diferent 
needs, such as changing the starting and ending color to meet the 
user’s personal preference or strengthening the requirements for 
confusion probability for scenarios very sensitive to depth per-
ception, e.g., the driving application. Moreover, we could also use 
the model reversely to calculate the confusion probability when 
given a color-to-depth mapping. With Section 3 results, we could 
interpolate the sampled data points and calculate the confusion 
probability for arbitrary saturation and value on the hue. This could 
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help other researchers or designers who would like to know if their 
color-to-depth mapping is confusing or not. 

7.3 Additional support for mode switch and 
input augmentation 

We recognized there could be potential issues with using the map-
pings in practical scenarios. It is common for users to color their 
sketches for aesthetic and other purposes while if the color-to-depth 
mapping is applied, the original color could afect the presentation 
of depth information. Furthermore, if the mapping is applied in 
driving discussed in Section 6.4, the environment color could be 
essential for users, such as the trafc lights. To solve these issues, 
we could apply a mode switch in practical use. Users could easily 
switch to the color mode to observe the object’s depth and switch 
back to the normal mode when color is not needed. We could also 
design other augmentation techniques to show our color augmen-
tation and the object’s original color simultaneously, e.g., adding 
colored outlines around the object. And in sketch application, we 
could also combine the color-to-depth mappings with other auto-
corrected techniques [83, 84] to improve the sketching’s accuracy 
and aesthetics. 

7.4 Limitations and future work 
In our study, all participants had normal vision and did not have 
color weakness or blindness. In future work, it would be interesting 
to explore how to best adapt our computational model to support 
diferent types of color blindness and further investigate possible 
applications of our work to enhance accessibility of VR interfaces 
(e.g., developing new lenses for the SeeingVR [85] toolkit). 

Since environmental factors (e.g., background, lightness), and 
the mental and physical state of users (e.g., digital eye strain [24]) 
can also infuence the user’s color perception [49], we will evaluate 
proposed mappings in more complex and realistic scenarios in the 
future. 

In this paper, we investigate the color-to-depth mapping within 
a reachable distance in which most interactions happen. We also 
generated color-to-depth mappings that worked well in this most 
frequently used range. However, the depth perception issue also 
exists for further objects. Moreover, the objects may not be right 
ahead of the user and the color-to-depth mapping can be afected 
the observation angle. Our research methodology can be extended 
to other depth ranges and observation angles in future research. 

In Section 3, we collected data from a group of users so that the 
model built on it could be extendable to the general population. 
However, we believe with more data collected with the same user, 
the model can also be adapted for personalization purpose. We in-
vestigated and evaluated the color-to-depth mappings while users 
sat in the chair with a static pose and observed the virtual objects. 
However, if the user is freely moving in the virtual space, map-
ping colors to ego-centric or world-anchored depth might result 
in diferent user experiences. While our color-to-depth mapping 
can be leveraged to render both kinds, we will further investigate 
the diferences between rendering ego-centric and world-anchored 
depths in the future. 

In Section 5, we evaluated a discrete color-to-depth range map-
ping since we collected data on discrete colors. If we used the 

discrete results to generate a continuous mapping, the mapping’s 
confusion probability and expressivity may be diferent. Future 
research should investigate this further and can leverage our re-
sults to generate continuous color-to-depth mappings. Besides, we 
chose a pure color as the baseline method instead of existing color 
mappings. Our consideration is to use a neutral reference to avoid 
cherry-picking as no standard mapping is commonly agreed for 
the task. We acknowledge that it remains unclear whether and how 
our mappings outperforms the existing mappings in various tasks 
and thus more comparisons are required as future work. 

8 CONCLUSION 
This paper investigates how to use color as a cue to improve the 
user’s depth perception in VR. In approaching this, we studied how 
users map the 3D color space to the depth axis. We conducted three 
user studies to explore each color’s representing depth and confu-
sion probability with other colors. With the results, we constructed 
a computational model to generate color-to-depth mappings with 
a given confusion probability and several constraints. We then gen-
erated a red color-to-depth mapping and conducted a user study 
to evaluate it on a sketch application. Results showed that the 
color-to-depth mapping could signifcantly improve the sketch’s 
similarity and depth accuracy. Users were more confdent in their 
accuracy while did not feel more mentally tired with color cues. 
We demonstrated the usability of the color-to-depth mappings in 
four applications that augment the user’s observation and motion 
control. 
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