
@ Record & Draw ® Demonstrate © Review & Infer @ Test the result

Rapido: Prototyping Interactive AR Experiences through
Programming by Demonstration

Germán Leiva
Jens Emil Grønbæk
Clemens Klokmose

leiva@cavi.au.dk
jensemil@cs.au.dk
clemens@cs.au.dk

Aarhus University, Denmark

Cuong Nguyen
Rubaiat Habib Kazi

Paul Asente
cunguyen@adobe.com
rhabib@adobe.com
asente@adobe.com

Adobe Research, USA

Figure 1: Rapido has an AR interface with live and playback modes, as well as an overview interface with a timeline and a state
machine diagram. A: In the AR interface, designers record a video scenario and sketch content. B: They next demonstrate
inputs, animations, and rules. C: In the overview interface, all the demonstrations are saved in the timeline, at their corre-
sponding demonstrated time, to create a video prototype. The designer reviews the timeline and lets Rapido infer an initial
state machine from it. D: The state machine drives an interactive prototype that the designer can test in the AR interface.

ABSTRACT
Programming by Demonstration (PbD) is a well-known technique
that allows non-programmers to describe interactivity by perform-
ing examples of the expected behavior, but it has not been exten-
sively explored for AR. We present Rapido, a novel early-stage
prototyping tool to create fully interactive mobile AR prototypes
from non-interactive video prototypes using PbD. In Rapido, de-
signers use a mobile AR device to record a video prototype to
capture context, sketch assets, and demonstrate interactions. They
can demonstrate touch inputs, animation paths, and rules to, e.g.,
have a sketch follow the focus area of the device or the user’s
world-space touches. Simultaneously, a live website visualizes an
editable overview of all the demonstrated examples and infers a
state machine of the user fow. Our key contribution is a method
that enables designers to turn a video prototype into an executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00
https://doi.org/10.1145/3472749.3474774

state machine through PbD. The designer switches between these
representations to interactively refne the fnal interactive proto-
type. We illustrate the power of Rapido’s approach by prototyping
the main interactions of three popular AR mobile applications.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality;
Interface design prototyping; Systems and tools for interaction design;
User interface programming.

KEYWORDS
rapid prototyping, design by enaction, programming with examples
ACM Reference Format:
Germán Leiva, Jens Emil Grønbæk, Clemens Klokmose, Cuong Nguyen,
Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping Interactive
AR Experiences through Programming by Demonstration. In The 34th An-
nual ACM Symposium on User Interface Software and Technology (UIST ’21),
October 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3472749.3474774

1 INTRODUCTION
Augmented Reality (AR) applications are becoming widely available
due to the support provided by major mobile operating systems.
For example, there were 13 million downloads of AR apps within

626

https://doi.org/10.1145/3472749.3474774
https://doi.org/10.1145/3472749.3474774
mailto:permissions@acm.org
mailto:asente@adobe.com
mailto:rhabib@adobe.com
mailto:cunguyen@adobe.com
mailto:clemens@cs.au.dk
mailto:jensemil@cs.au.dk
mailto:leiva@cavi.au.dk
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472749.3474774&domain=pdf&date_stamp=2021-10-12

UIST ’21, October 10–14, 2021, Virtual Event, USA Leiva et al.

the frst six months of the release of the ARKit development plat-
form [43]. Almost half of these downloads were games, but other
popular categories included utilities, such as measuring tapes; en-
tertainment, such as camera flters; lifestyle apps, such as furniture
placement; and education, such as celestial body visualizers [48].
While apps that exploit new input modalities, such as face, hand,
and body tracking, are emerging, the vast majority of mobile AR
apps are based on common touch gestures for mobile devices [18].

There is a need for authoring tools that do not rely on code [3,
11, 23, 38] to allow non-programmers to prototype new AR ideas.
In a recent study [3], AR/VR creators ranged from hobbyists to
domain experts to professional designers. Most professional design-
ers struggled with current tools and felt they required “too much
coding” [3]. Ashtari et al. [3] identifed eight barriers in authoring
AR/VR applications, including difculty knowing where to start,
designing for the physical aspect of immersive experiences, planning
and simulating motion, and designing story-driven immersive ex-
periences. Among other considerations, they suggest supporting
early-to-middle-stage AR prototyping, personalizing AR author-
ing tools based on expertise, and building integrated debugging
and testing facilities [3]. A recent study on professional AR/VR
creators [23] presented fve implications for design; this work will
focus on four of them: using simple tools developed based on tasks and
goals; drawing from existing methods, approaches, and workarounds;
creating well-built artifacts for interdisciplinary communication; and
making use of all three dimensions.

Designers’ practices, such as storyboarding [39], sketching [14],
animating [50], and video editing [29], contain rich but implicit
descriptions of the expected behaviors relevant for the creation of
interactive AR prototypes. The designers’ practice of acting out the
design with their own bodies in the real world [22], or with the help
of props while using the Wizard-of-Oz (WOz) technique [20], can
be an alternative medium to the ubiquitous code representations.

Some commercial AR tools ofer intuitive direct manipulation in-
terfaces to author simple mobile interactions. For instance, Torch [46]
lets non-programmers create mobile AR prototypes with common
discrete inputs, such as tapping on the screen. On the other end of
the spectrum, the symbolic representations (code, node diagrams) of
visual/textual programming tools (e.g., Spark Studio [9], Unity [47],
RealityComposer [2]) aford the fexibility and power required for
more diverse AR interactions. Yet, these programming tools are
complex, indirect, and often challenging for non-technical designers
wanting to explore ideas. Furthermore, laborious programming and
crafting detailed 3D assets is at odds with rapid prototyping [5, 6].
Krauß et al. [23] reported that some participants “had trouble in
getting rid of artifacts which were no longer needed, because they
had to put a lot of efort in constructing them”.

In the context of AR prototyping, our goal is to leverage Pro-
gramming by Demonstration (PbD) [34] to bridge the benefts of
these two approaches—the direct manipulation, speed, and contex-
tual nature of video prototyping [25], and an underlying symbolic
representation (i.e., state machine) to construct fexible and diverse
interactive AR prototypes. Video prototyping, state machines, and
PbD are known techniques; however, transitioning from a video pro-
totype to a computational representation requires technical skills.
Our target user group are interaction designers familiar with touch
gestures and 2D prototyping tools (paper, video editing) that are in

the early exploration of an interactive AR experience—in the design
phases before development. We ask, how can PbD enable designers
to use their video prototyping eforts to create an interactive proto-
type without coding? Our key contribution is a new workfow to
turn a video prototype into an executable state machine through
PbD. We implemented this workfow in a prototyping system called
Rapido. Its goal is to explore this new authoring workfow for early-
stage prototyping of existing and popular AR mobile experiences.

To clarify how Rapido’s specifc features ft into the context of
existing work, we are postponing a detailed discussion of related
work to Section 7.

2 MOTIVATION
One of the most popular types of AR lifestyle apps is helping
users shop for furniture by letting them place items in their own
rooms [43]. We selected prototyping this AR experience as our
motivating scenario and ask the question, “How can a designer
create an interactive prototype of an app like this without using
conventional programming?”

Today, designers use diferent technologies to create early proto-
types. The most popular early-stage design mediums are art supplies
like pen, paper and scissors, and software tools like graphic edit-
ing software and presentation software [7]. Designers can quickly
sketch interaction ideas with art supplies. Software tools are more
time consuming but they provide higher visual precision [5] and
support dynamic interactions. Graphic editing software can provide
a refned static visual representation of an interaction. Presenta-
tion software can illustrate certain level of interactivity by using
simple animations as system actions and re-purposing slide transi-
tions as user inputs [21]. However, none of these technologies are
well-equipped to support AR interactions in a 3D world.

Can we provide a fast AR prototyping process that is as familiar
as sketching on paper and that also supports interactivity? Our goal
is to provide a workfow for rapid prototyping of AR interactions
using techniques and methods already familiar to designers. Video
prototyping [32] is “the process of videotaping the use of physical
prototyping material (paper, transparencies, Post-It notes) when
acting out an interaction idea as part of a design process” [15]. Video
prototyping [30, 31, 49] uses non-technical methods like paper pro-
totyping [41] and the WOz technique [13]. While video prototyping
primarily focuses on physical materials, we use a broader defnition
that includes digital materials, such as in Virtual Video Prototyp-
ing [15] or in Montage [25]. These tools are well-aligned with our
goal of supporting rapid prototyping interactions and have been
adapted for AR [25, 27]. However, the output of these tools is a
non-interactive video, while our goal is an interactive prototype.

We want to combine a fast workfow with an interactive result by
augmenting the video prototyping process with a designer-friendly
computational representation of the interaction. Our goal is to
allow designers to start by creating a video prototype of their AR
experience, and, instead of discarding the efort of creating it, use it
to transition to a fully interactive prototype [5]. We want to support
a process similar to the WOz technique. However, as the designer
demonstrates system behaviors by playing the role of the computer,
we capture the demonstrations in a state machine via PbD, and use
this state machine to drive a live, interactive prototype.

627

□-- ,________ □ ~ _____________ I ~
'--/

Rapido: Prototyping Interactive AR Experiences through Programming by Demonstration UIST ’21, October 10–14, 2021, Virtual Event, USA

Record
video

Video prototyping

Draw sketches

Demonstrate I/O
Modify visibility

Position sketches

Review
timeline

Programming with examples

Review
state machine

Playback test

Testing

Live test

Infer

Figure 2: The iterative workfow with Rapido. Blue arrows indicate how the designer can iterate and refne the design.

We propose an iterative workfow with three phases (Figure 2):
video prototyping, programming with examples [19], and testing.

During the video prototyping phase, the designer will:
• record a video background along with AR information,
• draw sketches to represent content and UI elements, and
• demonstrate user inputs and the prototype’s actions.

During the programming with examples phase, the designer will:
• defne the states of the user experience,
• defne the transitions between those states, and
• associate demonstrated actions with states and transitions.

During the testing phase, the designer can assess the prototype
by interacting with the environment in real time or automatically
replaying the demonstrated inputs over the video.

Designers are already used to the concept of states and transi-
tions from their current practices. Tools like Figma [10] and In-
Vision [17] let designers create simple interactive click-through
prototypes. Designers defne meaningful visual states (generally
represented by the screen of the website or app), hot-spot areas
(generally on buttons or scrolling areas), and triggers associated
with user inputs to generate a transition between states (generally
a click or a tap).

How does this workfow align with the design implications de-
scribed by Ashtari et al. [3] and Krauß et al. [23]? Video prototyping
is an early-to-middle-stage prototyping technique suitable for de-
signers with low technical expertise to quickly explore diverse
design ideas. Designers are familiar with video editing concepts,
and creating a single linear video scenario is a concrete task that
leverages this familiarity. Inspired by existing paper prototyping
practices, designers should be able to draw rough sketches starting
from scratch. The video prototyping and the programming with ex-
amples phases need a shared vocabulary to ease the transition from
one to the other. Designers can demonstrate examples in the real
world, taking advantage of the 3D space when necessary. Finally,
the integration among the three phases allows for in situ testing
and debugging.

This workfow can accommodate diferent types of user inputs,
such as voice, mid-air gestures, and gaze; actions, such as sound,
haptic feedback, and visual changes; as well as multiple compu-
tational representations of the interaction supporting states and
transitions, such as object-oriented high-level programming code,
spreadsheets, and fow diagrams.

3 RAPIDO
Rapido is an AR prototyping tool based on the rapid prototyping
workfow described in the previous section (Figure 2) and infu-
enced by the design principles presented in Enact [26]: Multiple
viewpoints to provide representations of the design at diferent lev-
els of abstraction; One source of truth to provide mechanisms to keep
the viewpoints in sync; Reveal the invisible to reify concepts that are
generally unavailable for the designer; and Design by enaction to
design through embodiment and demonstrations. It supports touch
user inputs, actions and interactive behaviors represented in a state
machine diagram. Actions apply to sketched assets and include
things like appearing, pinning, and following an animation path.
Rapido has two views, an AR interface and an overview interface
(Figure 3). The AR interface let designers capture a video scenario,
draw sketches, demonstrate individual interaction examples, and
experience the fnal interactive prototype. The overview interface
has a timeline and a state machine diagram. The timeline organizes
all the sketches and demonstrated examples based on their starting
and ending times, and has all the information necessary to create
the video prototype. The state machine diagram organizes actions
inside states and inputs inside transitions. The underlying state
machine will defne the interactive behavior of the prototype.

In Rapido, these two interfaces are on two diferent devices: an
AR-capable tablet and a website displayed on a computer screen.
The tablet is used to create the video prototype by capturing spa-
tial information and drawing sketches. The website displays the

Figure 3: The Rapido system. A: The mobile AR interface.
B: The overview interface, composed of a timeline (left) and
state machine diagram (right).

628

UIST ’21, October 10–14, 2021, Virtual Event, USA Leiva et al.

Figure 4: The AR interface in live mode. A: The fve buttons.
B: All sketches are in the list on the left. C: Available ac-
tion buttons for the selected sketch. D: A focus square rei-
fes a rectangular area of interest according to the current
AR camera pose. E: A world touch reifes a point of interest
in world-space according to a user’s touch on the screen. F:
Live/Playback toggle button at the top. G: Test button.

timeline and state machine diagram enabling the designer to turn
the video prototype into an interactive AR prototype.

3.1 The AR interface
The AR interface (Figure 4) lets designers capture video, draw
sketches, and demonstrate inputs and actions. At the bottom there
are fve buttons (Figure 4A) that let the designer draw, capture
video, demonstrate animations, demonstrate user inputs and test.
The Draw, Video and Test buttons are toggles that designers press
to activate and press again when fnished. The Animation and Input
buttons are active for the duration of the user’s next touch gesture
and deactivate automatically when that touch fnishes.

The AR interface focuses on working on one sketch at a time. All
the sketches are in a list on the left (Figure 4B). The designer presses
the plus button to create a new sketch and then starts drawing with
the stylus. A sketch can be in screen space, representing a 2D UI
element (the default), or it can represent an object in the 3D world.
When a sketch is selected, its name can be changed and potential
action buttons appear next to it (Figure 4C): Pin, Unpin, Follow,
Show, Hide, and Lay down. The designer can pin a sketch to a fxed
location in the scene or make a sketch follow another object, such
as a world-space touch or the device’s focus. They can control the
visibility of a sketch with the “Show” and “Hide” buttons. Finally, a
sketch in the 3D world can be either perpendicular (the default) or
parallel to its vertical or horizontal plane; the “Lay down” button
toggles between them. A perpendicular sketch could represent a
chair on the foor or a shelf sticking out from the wall. A parallel
sketch could represent a carpet on the foor or a poster on the wall.
To demonstrate an action for a selected sketch (see Section 3.1.2
for more details) the designer can tap on the corresponding action
button or, in some cases, create a link with a stylus between the
action button and an object in the 3D scene.

Rapido reifes [4] AR programming concepts typically unavail-
able for the designer, such as world-space touches and the device’s
focus, into visual 3D objects in the scene that designers can directly
manipulate [44]. The focus square represents the user’s area of
interest in the scene (Figure 4D). Its position is calculated as the
intersection of a ray cast orthogonally from the center of the screen
and a plane detected by the AR engine; it lies on that plane and
is depicted as a yellow square. A world-space touch, from now on
simply world touch, is a point in world space corresponding to a
screen-space touch (Figure 4E). Its position is calculated as the in-
tersection of a ray cast orthogonally from the screen at the location
of the touch and a plane detected by the AR engine; it is depicted
as a red target on that plane.

3.1.1 Live Mode. This is the starting mode of the AR interface
(Figure 4). The live camera feed is shown at the center of the device
while the AR engine detects feature points and infers surfaces.
Designers record the initial video from this mode and switch to
playback mode (Figure 4F) to see the result. However, a designer
can return to live mode to

(1) move the camera freely to author outside the feld of view
of the camera’s position at playback time, or

(2) test the interactive prototype by pressing the test button
(Figure 4G).

Figure 5: The AR interface in playback mode. A: The play-
back slider. B: The action list with the last item selected. C:
Start time (blue handle) and end time (red handle) of the se-
lected action. D: A white triangle showing when a user input
was demonstrated. E: Linking to create a follow rule between
the selected sketch (marker) and the focus square.

3.1.2 Playback Mode. This mode adds a playback slider (Figure 5A)
to the interface to control the video playback. When an already-
demonstrated action is selected on the right (Figure 5B), handles
appear on the slider to change its beginning and end (Figure 5C).
Also, the start time for each demonstrated input is depicted at
the bottom of the slider with a triangle (Figure 5D). Adjusting the
handles lets a designer synchronize a demonstrated action with a
demonstrated input. In this mode, the designer can press the test
button to replay the saved inputs over the recorded video. In this
way the designer can observe the recorded inputs and assess the
interactive behaviors of the prototype over the recorded scenario.

3.2 Actions: Animations and Rules
There are two types of actions: animations and rules. The list on
the right shows all the actions that the designer has demonstrated
for the selected sketch.

629

RAPIDO

® s•••• ■
User Inputs

@ screen

Sketches

sketch01 0

® sketch02 "" sketch03 "" sketch04 ""

"" 0 "" 0 ""
""

©
II •

D

Observing

Rapido: Prototyping Interactive AR Experiences through Programming by Demonstration UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 6: The overview interface: timeline. A: Video preview
showing the recorded or the live view from the AR device. B:
The diferent state placeholders of the video scenario. C: A
row holding the demonstrated screen user inputs, i.e. touch
gestures. D: One row per sketch, holding their correspond-
ing demonstrated outputs. E: Buttons to reveal and to infer
the state machine from the timeline information.

3.2.1 Animations. Animations are time-based keyframe changes in
the transformation matrix for a sketch. To create one, the designer
selects a sketch, presses the demonstrate Animation button, and
creates a 2D animation path by dragging a fnger across the screen.
When the fnger is released, the system creates a keyframe anima-
tion based on the touched screen positions. The begin time comes
from the current position of the playback slider and the duration is
inferred from the duration of the pan gesture. Rapido generates a
default name that can be changed and adds the animation to the
action list on the right.

3.2.2 Rules. A rule defnes a value for some property of a sketch
or how the value will be calculated. For example, it could defne
that the the visibility property is true or that the position property
follows the focus square. To create a rule, the designer selects a
sketch and then interacts with an action button from the list next
to the sketches. Some actions have implicit values; for example the
Show and Hide action buttons set the visibility property to true and
false. The designer just needs to tap these. Other actions require
more interaction. To make a sketch follow the focus of the user, the
designer draws a link connecting the the Follow action button to
the focus square (Figure 5E).

Rapido generates a name derived from the type of the action
and adds it to the list of demonstrated actions on the right. Similar
to an animation, the action’s begin time comes from the current
position of the playback slider, but its default duration is to last
until the next user input.

3.3 The Overview Interface
The overview interface is a live website that provides an over-
all visualization of the created sketches and demonstrations in a

timeline (Figure 6) and, organizes the interactive behaviors into a
state machine diagram (Figure 7).

3.3.1 The Timeline. The timeline has a preview of the fnal video
prototype at the top (Figure 6A), a playback slider in the center, and
multiple rows at the bottom. It lets the designer refne the timing
of the demonstrated actions in relationship with each other and
the demonstrated inputs. The slider controls the current time of
the video playback, going from 0 to 100 percent. The State row
contains placeholders for the potential states of the user experience
(Figure 6B). Rapido assumes that every demonstrated input creates
a transition to a new state, e.g., four inputs separate the time into
fve placeholder states (Figure 6B). Each following row contains
rectangles representing demonstrated inputs and actions. The po-
sition and width of each rectangle represent the starting time and
duration. When the action is a show or hide action, it is depicted
as an eye icon, open or crossed out, instead of as a rectangle. The
User inputs row shows demonstrated inputs—touch gestures such
as tap, pan, and pinch (Figure 6C). Each sketch gets a row in the
Sketches section, and each row contains rectangles representing
demonstrated actions (Figure 6D). For example, Figure 6 shows
four sketches. Sketch04 has an animation colored in green and a
follow(worldTouch1) rule colored in orange.

3.3.2 The State Machine Diagram. The state machine diagram rep-
resents states as circles and transitions as arrows in a directed graph
(Figure 7). Designers can create new states with a double click and
new transitions with a shift-drag. The designer presses the Infer
button (Figure 6E) to make Rapido infer the initial state machine
from the demonstrated inputs and the placeholder states created in
the timeline. For example, Figure 8 shows six potential placeholder
states based on fve demonstrated inputs. However, if a user input

Figure 7: The overview interface: state machine diagram.
A: A state inferred from the video prototype. B: A transi-
tion inferred from the video prototype. C: The state that
is currently manually selected or active during playback. D:
Properties of the selected/active state; its name, and anima-

tions/rules on enter or exit of the state.

630

..... --· i i -
0

.

-■

0

--

---· . - ·

-·

..... --· -
0 · , B :
~ ..

0
St-'• ■

i i - , __ - -· .,_
.. © -- .. - . ..

a •

i i
.. . .. --

0

- -.i - .. - -

UIST ’21, October 10–14, 2021, Virtual Event, USA Leiva et al.

Figure 8: Merging placeholder states in the timeline view. A: The placeholder states before merging. B: The designer drags a
link from one placeholder to another. B: The two placeholder states are merged into one.

Figure 9: Indicating recurring states in the state machine view. A: The designer drags a link from the placeholder State 5 in
the timeline to State 3 in the state machine. Before the link, there are fve states. B: Once the link is applied, State 5 is deleted
and all the transitions ending in State 5 will end in State 3.

should not create a new transition (see Section 4.4 for an example),
designers can improve the inference by merging the placeholder
states in the timeline (Figure 8A). Also, if a state is revisited in the
timeline, i.e. there is no need to create a new state, the placeholder
state can be linked with an existing state in the diagram (Figure 9).

The state machine defnes the behavior of an interactive proto-
type, and the designer can run and test this prototype by pressing
the Test button in the AR interface. The designer can test either
in playback mode or in live mode. In playback mode, when the
recorded video plays, Rapido synthetically recreates the demon-
strated inputs at their recorded times. However, in this mode, the
AR outputs are dynamically controlled by the state machine instead
of coming from the video prototype. This lets the designer verify
that changes made to the state machine are correct. In live mode,
the state machine controls the current scene being captured by
the AR device’s camera, and the designer must perform the inputs
in this new context. This lets the designer verify that the proto-
typed experience generalizes correctly, and is a true live, interactive
prototype. In either mode, when the prototype is running, the dia-
gram highlights the currently active state or transition (Figure 7D).
This help designers debug the prototype and detect the need for
changes, e.g, merging placeholder states or modifying the timings
of the demonstrated actions in the timeline.

We will explain how to create an interactive prototype with the
Rapido system using our motivating scenario.

4 MOTIVATING SCENARIO: AN AR
FURNITURE APP

A designer is prototyping an AR experience that lets users visualize
how a new piece of furniture will look in their home.

First, the designer will capture a video scenario, draw sketches,
and demonstrate inputs to create an initial video prototype. Sec-
ond, the designer will create a state machine based on this video
prototype that defnes the behavior of the interactive experience.
Third, the designer will switch back-and-forth between the video
prototype and the state machine to test and refne the prototype.

4.1 Use scenario
In the experience the designer wants to prototype, the user selects
an item from a catalog, positions it in the room, and then decides
to move it somewhere else. From the point of view of the user, this
seemingly simple AR interaction is not trivial and includes many
detailed steps:

(1) seeing a 2D view containing a catalog of furniture items
(2) tapping an item of interest—a lamp—to select it and make

the catalog disappear
(3) seeing the camera live feed with a marker indicating the

focused world surface, and a check button on the screen
(4) tapping the check button once the marker is in the desired

location
(5) seeing the lamp appear at the marker location and the

marker and the check button disappear
(6) long-pressing the lamp to initiate repositioning
(7) seeing the check button reappear, and the lamp foating up-

and-down with the marker appearing underneath it
(8) dragging the lamp to reposition it on another surface
(9) tapping the check button to confrm the new location
(10) seeing the check button and the marker disappear and, the

lamp resting at the fnal position

631

Catalog Check button Lamp Marker

Rapido: Prototyping Interactive AR Experiences through Programming by Demonstration UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 10: Sketches needed for the furniture app scenario

4.2 Creating a video prototype
The designer uses the AR interface to record a video scenario of the
area the user is working in, draw sketches, demonstrate potential
user inputs, and animate them.

4.2.1 Capturing a video scenario. With the AR interface in live
mode, the designer presses the Video button to start a recording.
After a 3-2-1-go countdown, Rapido starts capturing video frames
along with spatial 3D information of the environment. The designer
walks through the room holding the device, imagining the user
selecting the desired furniture, focusing on an area to place it, and
moving to other areas where the user might want to reposition it.
When the designer presses the Video button again, the recording
stops and Rapido switches to playback mode. In playback mode
the designer can play, pause and scrub the recorded video with the
playback slider.

4.2.2 Drawing sketches. The video scenario starts out empty, and
it needs some content (Figure 10). The designer presses the plus
button to create a new sketch. A new sketch appears on the left
list with the default name sketch01. The designer draws a menu
UI element with four options, representing the initial screen of
the system (Step 1 above). To change the name of the sketch the
designer simply scribbles a new name on the list, in this case catalog.
Next they sketch two more user interface items: a check button to
confrm furniture placement and a custom circular marker that will
indicate a potential position for the furniture. Then, the designer
sketches a lamp to be used as the selected furniture. Finally, the
designer demonstrates a hide action at the beginning of the video
for the check button, marker, and lamp sketches, so that only the
catalog will be shown when the video starts.

4.2.3 Demonstrating user inputs. The designer demonstrates an
input by navigating to the desired time in the video and demon-
strating the touch gesture that the user is expected to perform at
that time. To demonstrate the action of selecting a furniture item
from the catalog by tapping (Step 2), the designer selects the catalog
sketch from the left list, advances the video a couple of seconds,
presses the Input button, and performs a tap gesture on the cata-
log. The demonstrated input over the catalog sketch is saved and
depicted in the player’s slider with a white triangle.

4.2.4 Modifying visibility. The designer wants the catalog to dis-
appear when the user taps it and wants the check button and the
positioning marker to become visible (Step 3). To make the button
and the marker sketch appear, the designer leaves the time slider
at the tap time, selects the sketches and presses “Show” to create
two show rules in the action list. Similarly, the designer selects the
catalog and presses “Hide” to create a hide rule. The new rules take

place at the current time; show rules appear as a blue open eye and
hide rules appear as a red crossed-out eye above the playback slider.

4.2.5 Positioning sketches in the world. The default position for a
sketch is to be attached to the screen in the same position it was
drawn, and not to respond to the content of the video. However,
the designer wants the marker to be located at the position of the
user’s focus area in 3D space. Rapido reifes the focus area in the
form of a yellow fat square called the focusSquare. The designer
selects the marker and drags a link between the “Follow” button
and the focusSquare, indicating that the marker should follow the
focusSquare. This creates a new follow rule in the right list and is
depicted in the player’s slider with a blue bar with two handles, blue
and red, representing the beginning and end of the time the rule
applies. The default orientation of the marker is perpendicular to
the focusSquare instead of being parallel to the foor, so the designer
presses the “Lay down” button to fx this.

The prototype now has the check button attached to the screen
(the default attachment) and the marker following the focusSquare.
The designer next wants to demonstrate having a tap input on the
check button place the lamp on the current focus position (Step 4).
After advancing the time several seconds to a frame that shows a
plausible location for the lamp, the designer presses the Input but-
ton, demonstrates a tap gesture on the button, hides the button and
the marker, and shows the lamp. However, the lamp has its default
position, attached to the screen. Instead it should be positioned
at the current location of the focusSquare location, but unlike the
marker, it should stay at the current location and not follow the
square (Step 5). The designer selects the lamp and creates a link
between the “Pin” button and the focusSquare. This creates a new
pinAt rule in the right list and is also depicted in the playback slider
with a blue bar.

4.2.6 Demonstrating an animation. Finally, the designer wants to
prototype the user repositioning the lamp (Step 6). The envisioned
experience has the lamp foat up and down a few times to show
that the user can move it. The designer advances the video and
demonstrates a long-press input to initiate the action. Then, they
create the foating animation by pressing the Animation button and
drawing an animation path on the screen. As before, the designer
makes the check button and the marker reappear (Step 7).

4.2.7 Using world touches. The designer wants to have the user
drag the lamp and the marker with a pan gesture (Step 8). All
previously demonstrated inputs were stationary, i.e. the camera
position was not changing while tapping or long-pressing. However,
in this case, the designer wants to demonstrate dragging combined
with a change in the scene, as recorded in the video. To record an
input while the video is playing instead of paused, the designer
can hold the Input button for a second and then demonstrate a
drag input while the video plays. After demonstrating the input,
the designer needs to make the lamp and the marker follow the
drag in world-space. Every screen-space touch in the demonstrated
input has a corresponding world touch, represented as a red target
over the nearest detected plane. The designer creates “follow” rules
between the lamp and the world touch, and between the marker
and the world touch, via linking.

632

UIST ’21, October 10–14, 2021, Virtual Event, USA Leiva et al.

Figure 11: State modifcations: the initial and fnal state ma-

chines for the furniture app prototype.

4.3 Finalizing the video prototype
As before the designer demonstrates a tap input (Step 9) and makes
the button and marker disappear and the lamp take its fnal position
(Step 10). The designer can play the video to assess that everything
looks as expected.

4.4 Creating a state machine
The designer opens Rapido’s overview interface to create an initial
state machine from the saved timeline information. The frst row of
the timeline shows six placeholder states, which is one more than
the number of demonstrated inputs. If the designer presses the infer
button, Rapido creates a naive state machine with six states and fve
transitions (Figure 11A). However, dragging the lamp should not
change to another state; the user is still repositioning the furniture.
To fx this, the designer merges states 4 and 5 so that the pan input
returns to the same state. The designer renames the frst four states
to be Selecting the furniture, Placing the furniture, Observing the
placed furniture, and Repositioning the furniture, and leaves the last
one as State 6. Step 4 and Step 9 should transition the prototype
to the same state—after Repositioning, the system should return to
Observing. To adjust this, the designer creates a link between the last
placeholder state in the timeline to the state named Observing. This
leaves State 6 with no incoming transition. Refreshing the inference
makes State 6 disappear, giving the expected result (Figure 11B).

4.5 Testing the prototype
The designer can test the prototype live in the AR interface. Rapido
is a live environment; pressing the Test button in the AR inter-
face starts the prototype. Typically the designer would frst test in
playback mode, to verify that the state machine modifcations are
correct, and then play the role of the end user in live mode in a
diferent area or with diferent camera positioning.

Testing reveals a problem with the prototype: after repositioning
the lamp and tapping the check button, the lamp returns to its
initially-placed position instead of staying at the desired location.
Inspecting the timeline and observing how the corresponding states
and transitions highlight in the state machine help diagnose the
problem. The designer discovers that the pinAt(focusSquare)
rule happens within the state named Observing. However, it should
happen when leaving the state named Placing. A state executes
actions either when entering or exiting that state. To fx this, the
designer can drag the pintAt(focusSquare) rule in the timeline
to the left to be under the Placing state rather than Observing.

Figure 12: The planetary app. A: Drawing the sun. B: Pinning
it at the window using the AR device’s current 3D location.
C: Viewing the pinned sketch of the sun from further away.

5 ADDITIONAL SCENARIOS
We explained in detail how to prototype an interactive experience
with our motivating example. There are many mobile AR applica-
tions that can be prototyped with Rapido’s building blocks. Other
types of applications require additional functionality. Rapido’s ac-
tions, such as pin and follow, rely on the capacity of the AR engine
to detect planes. We would like to use Rapido to prototype objects
that are not attached to any plane. Also, the previously presented
actions are applied to the entirety of the sketch. We would like
to decompose a sketch and execute independent actions over the
parts. We present two additional scenarios to illustrate how Rapido
supports these situations.

5.1 Planetary App
A designer is trying to prototype an AR mobile application that
displays information about celestial bodies, such as the sun, the
moon, and Mars. The designer envisions the user looking at the
sky with a mobile device, tapping on a region of the sky, and then
seeing information related to the closest celestial body. Previously,
we showed how to position objects by pinning to the focusSquare
or by following a worldTouch. In a planetary app, the content’s
location is not related with any detected plane. Rapido lets the
designer use the position of the device’s camera in live mode to pin
a sketch to it. First, the designer moves the device to the desired
position. Second, with the desired sketch selected, the designer
presses the “Pin” action button instead of dragging a link from the
“Pin” button into the scene. Rapido pins the sketch at the physical
location of the device’s camera. With this interaction, the sketch of
the sun can be placed on top of the actual location of the sun within
the recorded video. A tap input could reveal extra information, such
as the name of the celestial body or the distance to planet Earth.
The result can be seen in Figure 12.

5.2 Measuring Tape App
A designer is trying to prototype an AR interaction to measure the
distance between two points. The user should tap once to set the
initial point to the current focus location, move the device, and tap
again to set the fnal point to the new focus location. While the
user moves after the frst tap between these locations, the output
will be similar to “rubberbanding” in a drawing program, with a
line connecting the initial point and the current focus location.

In Rapido, every sketch has a start point where the stylus frst
touched the screen and an end point where the fnal stroke ended.
The designer can reveal these points by swiping right on top of a
selected sketch. Once they are revealed, these points are depicted

633

Rapido: Prototyping Interactive AR Experiences through Programming by Demonstration UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 13: The measuring app. A: The selected start point is
pinned to the current focus. B: The selected end point will
follow the focusSquare. C: Viewing the result.

as spheres that the designer can select by tapping. The points can
be part of demonstrated actions in the same way as sketches. If the
start and end points have been given locations through a pin or
follow action, Rapido displays the sketch by stretching it to match
the points’ locations.

To prototype the measuring tape interaction, the designer sketches
a line and needs to pin its start point to a fxed position and its
end point to the current focus. To pin the start point the designer
selects the start sphere and links the “Pin” action button to the
focusSquare. To make the end point follow the focus, the designer
selects the end sphere and links the “Follow” action button to the
focusSquare. The result can be seen in Figure 13.

6 SYSTEM IMPLEMENTATION
Rapido consists of two user interfaces and a server. Its mobile AR
interface is implemented on iOS 14 running on an iPad Pro 2 tablet
with an Apple Pencil 2 as the stylus. The video recording uses
ARKit1 to save frames and spatial information. We use SceneKit2 to
render the 3D scene in live and playback mode. Rapido’s Overview
interface is implemented as a Web app using VueJS3 running on a
MacBook Pro 2019 laptop computer with a 2.6Ghz processor and
32GB of memory. The tablet and the laptop communicate through
a server implemented in NodeJS4 also running on the laptop. The
components expose services with Bonjour5—a zero confguration
networking protocol—allowing the creation of socket connections
without manually specifying IP addresses. Once connected, the
tablet and the laptop share the timeline information, such as the
demonstrated examples or the current playback time, using a cus-
tom communication protocol build on top of SocketIO6. Also, the
tablet continuously live streams the AR view to the laptop.

The overview interface uses a simple inference algorithm to cre-
ate a state machine on demand, based on the timeline information.
For each:

(1) Placeholder State in the timeline, a new State is created.
(2) Demonstrated input between two Placeholder States, a Tran-

sition is created between the involved States.
(3) Demonstrated input timed within a Placeholder State, a new

Transition is created to the same State.

1https://developer.apple.com/documentation/arkit/
2https://developer.apple.com/documentation/scenekit/
3https://vuejs.org
4https://nodejs.org/
5https://developer.apple.com/bonjour/
6https://socket.io

(4) Demonstrated actions within a Placeholder State, an action
will be added to the corresponding state’s “On Enter” or “On
Exit” list.

If a demonstrated action is timed within the frst half of the state it
will be assigned to “On Enter,” otherwise to “On Exit.” To help align
the demonstrated actions and inputs precisely, Rapido snaps the
beginning and end times to the transitions between Placeholder
States. For example, when the designer drags a demonstrated action,
its start time snaps to the start time of the Placeholder State unless
the distance between them is greater than a threshold of 100ms.

The source code of Rapido is available at https://github.com/
germanleiva/rapido.

7 RELATED WORK
There is extensive research proposing the use of concrete result-
ing examples [28] or demonstrations of a procedure [8] to create
computer programs without the need of coding. Myers et al. [34]
categorize three types of demonstrational interfaces: no inference,
simple rule-based inferencing, and sophisticated AI algorithms.
Rapido has a demonstrational interface that uses simple rule-based
inferencing. However, Kato et al. [19] warns that “PbE [Program-
ming by Examples] systems without the capability of explicit pro-
gramming are not suitable for user interface design.” We build on
top of their “programming with examples” approach [19]. Rapido
provides means to manipulate the examples in the timeline and to
have explicit programming on the state machine diagram. However,
Rapido’s approach is closer to the concept of "design by enaction"
were the end-goal is designing and not necessarily creating a com-
puter program [25].

While there are many research tools for prototyping interactive
systems, we will focus on the most relevant for AR. Video proto-
typing systems (VPS) like Montage [25] and Pronto [27] support
the design of AR interfaces. Montage is a general purpose VPS that
overlays 2D sketches on top of a regular video scenario without
any 3D information. Pronto was designed specifcally for AR and
captures 3D information that lets designers navigate a 2D video
frame in 3D space, allowing the creation of spatial layers to draw
sketches. However, both of these systems have a non-interactive
video prototype as an output. Rapido builds on top of these ap-
proaches but introduces mechanisms to transition from these videos
to fully interactive prototypes [5].

DART [45] pioneered many aspects of AR prototyping. It was
build as a plugin on top of Director, a timeline-based design tool,
but required programming with textual scripts for manipulating
interactive behaviors. It provided the ability to replay captured
information and sketch early assets. However, creating animations
was time consuming and was done via the GUI rather than by
demonstration, e.g., “ARTIST expressed a desire to identify physical
locations by moving through the space” [11]. Rapido acknowledges
that time-based representations are a friendly medium for design-
ers but do not require the use of textual programming to create
interactive behaviors.

There are AR prototyping tools specifcally focused on early-
stage design such as 360Proto [36], ProtoAR [37], PintAR [12], and
XRDirector [35]. 360Proto relies in laborious paper backgrounds
for creating 360 experiences while ProtoAR combines paper with

634

https://developer.apple.com/documentation/arkit/
https://developer.apple.com/documentation/scenekit/
https://vuejs.org
https://nodejs.org/
https://developer.apple.com/bonjour/
https://socket.io
https://github.com/germanleiva/rapido
https://github.com/germanleiva/rapido

UIST ’21, October 10–14, 2021, Virtual Event, USA Leiva et al.

clay modeling. These representation are designer-friendly but the
prototypes require live WOz to support interactivity. Rapido pro-
vides similar creation capabilities without needing WOz every time
that the prototype is tested. PintAR [12] uses spatial sketches and
video. However, video is used only as an output and not as a de-
sign medium, hindering the ease of iteration. XRDirector supports
collaboration among multiple designers and uses demonstrations.
However, the demonstrations are used for live performances rather
than for capturing interactive behaviors. Rapido uses video and
replay capabilities to better support iterations without the need to
repeat the same demonstrations multiple times during design.

Newer AR tools, such as RealitySketch [45], enable real time bind-
ings between sketches and physical objects for embedded visualiza-
tions. However, these bindings are defned by indirect manipulation
requiring a structured naming of the potential variables. Saquib et
al. [42] presents an interface to map predefned user gestures to
graphical elements for live presentation purposes. However, unlike
these works, Rapido enables prototyping interactive AR experi-
ences with a state machine representation that support multiple
actions going beyond single input-output mappings.

Commercial tools such as Reality Composer and Adobe Aero [1]
share our target audience. However, they cannot prototype con-
tinuous inputs, such as panning, without external symbolic pro-
gramming; they hide discrete trigger-action behaviors inside virtual
objects without an overview; and every test of the prototype re-
quires manual inputs without a playback testing feature. Finally,
these commercial tools output only linear scenes (e.g. in glTF7

format) while Rapido supports non-linearity by revisiting states.

8 DISCUSSION
Olsen [40] presents several dimensions for evaluating user interface
systems research. Previous work that follows this approach includes
D-Macs [33], WatchConnect [16] and Astral [24]. We will organize
the discussion using some of Olsen’s evaluation dimensions.

8.1 Situations (S), Tasks (T) and Users (U)
We developed Rapido for interaction designers (U) to enable proto-
typing the interactions of a mobile AR experience without coding
(T). It supports early-stage prototyping (S), transitioning from a
video to an interactive state machine using a video timeline as an
intermediate representation. Rapido uses a particular approach to
defning states. The state machine organizes actions in states that
represent the user fow (selecting/placing/observing/repositioning)
rather than individual UI widgets’ states such as button-pressed.
Designers already work with visual states in the form of screen-
shots, for example, on a user fow diagram or a wireframe. We
expect Rapido’s states to resemble these user-level visual states
in existing design tools. However, the state machine diagram is a
proof-of-concept, understanding to which extent it can be appropri-
ated by designers would require a user evaluation. This could also
inform future iterations in the design of the state machine diagram
and its integration with the other components of Rapido.

7https://www.khronos.org/gltf/

8.2 Expressive leverage
Rapido provides four common actions: pin/unpin, follow, show/hide,
and lay/stand. This limited set of actions already exhibits a "power
in combination" that covers many AR mobile experiences. For ex-
ample, when a single follow action is created, it encapsulates a
keyframe animation in the video prototype and an instruction to
make the target sketch mimic the transformation of the linked
object when testing. Achieving the same functionality in Unity
requires programming an event handler and expressing locations
symbolically in a script.

Currently, Rapido does not support proximity or physics sim-
ulations but intermediate objects representing distances or force
vectors could be added. A new rule called applyForce could receive a
force vector as a parameter. Similarly to how designers demonstrate
animations, a force vector could be extracted from a touch gesture
on the screen or from the tablet’s motion. For example, to proto-
type throwing a ball in AR, a force vector could be demonstrated
with a touch gesture over the sketch of a ball. Next, Rapido would
save the applyForce action and the designer could add it after a
particular user input transition, such as a tap or a swipe on the
ball. During playback, the ball will be animated to follow the path
that the demonstrated force vector would generate if applied on an
object of a default mass and gravity. During testing, a mechanism
to dynamically generate the force vector in relation with the prop-
erties of the user input should be in place—using the same default
mass and gravity. For example, the force vector’s direction and mag-
nitude should be calculated in runtime taking into consideration
the direction and speed of the swipe gesture.

8.3 Expressive match
Sketches are drawn on top of a real scenario and user inputs are
loaded by demonstration. This reduces the cognitive load of imag-
ining where an asset will appear in the scene and navigating hierar-
chical menus looking for touch gestures’ names—or realizing that
a continuous gesture is not supported, requiring external coding.
In Rapido, the designer performs a desired gesture and the system
saves it at the current video time for later use. This user input can be
reused during testing, not making the designer perform it manually.
A pitfall is that creating user inputs becomes repetitive. This can be
mitigated in the overview by copy-pasting timeline elements such
as an input example.

9 LIMITATIONS AND FUTURE WORK
We presented how Rapido supports the prototyping of an interac-
tive mobile AR experience from an initial video prototype. There
are many design decisions in Rapido that are a consequence of the
selected motivating example. We applied a bottom-up approach
with multiple scenarios to keep the concepts of Rapido general
enough to cover multiple mobile AR experiences. Rapido cannot
currently prototype all types of mobile AR interactions, but its ap-
proach can be extended to support other types of prototyping and
input modalities.

9.1 Additional inputs and actions
We cannot currently prototype a game where the user throws an
object and causes an action to be triggered on a collision (e.g., as

635

https://www.khronos.org/gltf/

Rapido: Prototyping Interactive AR Experiences through Programming by Demonstration UIST ’21, October 10–14, 2021, Virtual Event, USA

when a poke ball hits a Pokemon in Pokemon Go). A state machine
can represent this behavior by having transitions triggered on the
detection of a collision. However, the current version of Rapido
does not use physics engine events for transitions. Nonetheless, the
timeline representation is fexible enough to accommodate these
events as examples, alongside the touch gestures. Similarly, Rapido
could be extended to allow transitions based on image or object
detection and tracking, e.g., to change state when the face of a
person is detected or touched.

9.2 Computational model
Interactivity in Rapido is modeled using a fnite state machine. This
limits the complexity of the generated prototypes because memory
(e.g., counting or keeping track of points) has to be encoded as
states and, hence, only a constant amount of information can be
stored. Currently, it is not possible to prototype a shopping expe-
rience where the interface reacts diferently to diferent types of
products, or extracts prices of products from a database to accumu-
late a total price when furnishing a home. Going beyond what is
expressible with a state machine will require specifying side efects
like incrementing a counter on a transition and guarding transi-
tions based on conditionals. Future work will assess the trade-of
between expressivity and complexity that this would entail.

9.3 Reifcations
Rapido currently reifes the focus area and the world touches. Other
actions present in AR experiences can be also supported by reifying
other concepts. For example, to support billboarding, i.e. having
a sketch always face the camera, the camera could be reifed and
a “Look At” rule could be added. This new “Look At” rule could
work between sketches too, allowing one sketch to always face
another. When slight variations to existing rules are necessary, e.g.,
following an object but with certain ofset, reifying the ofset could
be a way of letting designers still customize the prototype without
programming. Finally, Rapido could support other input styles,
such as face, hand or body tracking, by reifying the detection of
body parts and allowing links to these joints.

9.4 Supporting other platforms
Rapido is currently constrained to the iOS platform and mobile
AR. There was a need for a larger space to support the timeline, re-
quiring the use of multiple devices. However, a similar prototyping
system could be implemented on a single AR or VR head-mounted
device. This would extend the working space without being con-
strained to the size of the tablet’s screen. However, a beneft of
supporting web technologies is the ease of collaboration. We expect
to extend Rapido to support multiple users, and a simple URL could
be shared with other stakeholders to let them design or test with
their own AR devices.

10 CONCLUSION
We presented Rapido, an early-stage prototyping tool for authoring
interactive mobile AR experiences using Programming by Demon-
stration (PbD). We addressed the problem that prototyping interac-
tivity for AR currently requires complex tooling and programming
skills. With Rapido, we show how it is technically possible to create

interactive prototypes starting from video enactments and hand-
drawn sketches that are gradually imbued with interactivity. Based
on a combination of live direct manipulation on a handheld de-
vice and editing a timeline in a web interface, the designer can
use Rapido to generate a state machine that describes the inter-
active behaviors of the prototype. The interactive prototype can
be tested by running the state machine live in an AR device, such
as a tablet. Rapido is a proof-of-principle that has been designed
to realize examples of mobile AR applications that primarily rely
on touch gestures, so the ceiling of expressivity is currently lim-
ited to this input modality. However, even with these limitations,
we have shown that it is possible to create non-trivial interactive
prototypes such as a furniture placement app. Rapido uses only a
portion of the AR information that is available, and the rest of this
information has great potential to enable creating richer and more
expressive prototyping experiences that include proximity triggers
and physics-based interactions. We hope Rapido will inspire other
researchers to study the impact of this approach in AR creators’
design workfows, to extend it to other input modalities, and to
apply it to other types of AR devices.

ACKNOWLEDGMENTS
This work was funded by Carlsbergfondet and Adobe Research. We
thank the reviewers for their insightful comments and suggestions.

REFERENCES
[1] Adobe. 2021. Aero. Retrieved 2021-04-01 from https://www.adobe.com/products/

aero.html
[2] Apple Inc. 2021. AR Tools - Augmented Reality - Apple Developer. Retrieved

2021-04-01 from https://developer.apple.com/augmented-reality/tools/
[3] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K

Chilana. 2020. Creating Augmented and Virtual Reality Applications: Current
Practices, Challenges, and Opportunities. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376722

[4] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reifcation, Polymorphism
and Reuse: Three Principles for Designing Visual Interfaces. Proceedings of
the Working Conference on Advanced Visual Interfaces (2000), 102–109. https:
//doi.org/10.1145/345513.345267

[5] Michel Beaudouin-Lafon and Wendy E. Mackay. 2003. Prototyping Tools and
Techniques. In The Human-Computer Interaction Handbook: Fundamentals, Evolv-
ing Technologies and Emerging Applications. 1017–1039. https://doi.org/10.1201/
9781410615862

[6] Bill Buxton. 2007. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann. 448 pages. https://doi.org/10.1016/B978-0-12-
374037-3.X5043-3

[7] Adam S. Carter and Christopher D. Hundhausen. 2010. How is User Interface
Prototyping Really Done in Practice? A Survey of User Interface Designers. In
2010 IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE,
207–211. https://doi.org/10.1109/VLHCC.2010.36

[8] Allen Cypher and Daniel C. Halbert. 1993. Watch What I Do: Programming by
Demonstration. MIT Press. 652 pages. http://acypher.com/wwid/WWIDToC.html

[9] Facebook Inc. 2021. Spark AR Studio - Create Augmented Reality Experiences.
Retrieved 2021-04-01 from https://sparkar.facebook.com/ar-studio/

[10] Figma Inc. 2016. Figma: the Collaborative Interface Design Tool. https://www.
fgma.com/

[11] Maribeth Gandy and Blair MacIntyre. 2014. Designer’s Augmented Reality
Toolkit, Ten Years Later. In Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology - UIST ’14. ACM Press, New York, New
York, USA, 627–636. https://doi.org/10.1145/2642918.2647369

[12] Danilo Gasques, Janet G Johnson, Tommy Sharkey, and Nadir Weibel. 2019.
PintAR: Sketching Spatial Experiences in Augmented Reality. In Companion Pub-
lication of the 2019 on Designing Interactive Systems Conference 2019 Companion
(DIS ’19 Companion). ACM, New York, NY, USA, 17–20. https://doi.org/10.1145/
3301019.3325158

[13] Paul Green and Lisa Wei-Haas. 1985. The Rapid Development of User Inter-
faces: Experience with the Wizard of OZ Method. Proceedings of the Human

636

https://www.adobe.com/products/aero.html
https://www.adobe.com/products/aero.html
https://developer.apple.com/augmented-reality/tools/
https://doi.org/10.1145/3313831.3376722
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/345513.345267
https://doi.org/10.1201/9781410615862
https://doi.org/10.1201/9781410615862
https://doi.org/10.1016/B978-0-12-374037-3.X5043-3
https://doi.org/10.1016/B978-0-12-374037-3.X5043-3
https://doi.org/10.1109/VLHCC.2010.36
http://acypher.com/wwid/WWIDToC.html
https://sparkar.facebook.com/ar-studio/
https://www.figma.com/
https://www.figma.com/
https://doi.org/10.1145/2642918.2647369
https://doi.org/10.1145/3301019.3325158
https://doi.org/10.1145/3301019.3325158

UIST ’21, October 10–14, 2021, Virtual Event, USA

Factors Society Annual Meeting 29, 5 (1985), 470–474. https://doi.org/10.1177/
154193128502900515

[14] Saul Greenberg, Carpendale Sheelagh, Marquardt Nicolai, and Buxton Bill. 2012.
Sketching User Experiences: The Workbook. Morgan Kaufmann. 272 pages. https:
//doi.org/10.1016/C2009-0-61147-8

[15] Kim Halskov and Rune Nielsen. 2006. Virtual Video Prototyping. Human-
Computer Interaction 21, 2 (may 2006), 199–233. https://doi.org/10.1207/
s15327051hci2102_2

[16] Steven Houben and Nicolai Marquardt. 2015. WatchConnect: A Toolkit for Proto-
typing Smartwatch-Centric Cross-Device Applications. Association for Computing
Machinery, New York, NY, USA, 1247–1256. https://doi.org/10.1145/2702123.
2702215

[17] InVisionApp Inc. 2011. InVision | Digital Product Design, Workfow and Collabo-
ration. https://www.invisionapp.com/

[18] Jiyoung Jeon, Min Hong, Manhui Yi, Jiyoon Chun, Ji Sim Kim, and Yoo-Joo Choi.
2016. Interactive Authoring Tool for Mobile Augmented Reality Content. JIPS
12, 4 (2016), 612–630.

[19] Jun Kato, Takeo Igarashi, and Masataka Goto. 2016. Programming with Examples
to Develop Data-Intensive User Interfaces. Computer 49, 7 (jul 2016), 34–42.
https://doi.org/10.1109/MC.2016.217

[20] J. F. Kelley. 1983. An Empirical Methodology for Writing User-friendly Natural
Language Computer Applications. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’83). ACM, New York, NY, USA, 193–
196. https://doi.org/10.1145/800045.801609

[21] Khella Productions Inc. 2013. Keynotopia. https://keynotopia.com/
[22] Scott R Klemmer, Björn Hartmann, and Leila Takayama. 2006. How Bodies

Matter: Five Themes for Interaction Design. In Proceedings of the 6th Conference
on Designing Interactive Systems (DIS ’06). Association for Computing Machinery,
New York, NY, USA, 140–149. https://doi.org/10.1145/1142405.1142429

[23] Veronika Krauß, Alexander Boden, Leif Oppermann, René Reiners, Sankt Au-
gustin, and Sankt Augustin. 2021. Current Practices, Challenges, and Design
Implications for Collaborative AR/VR Application Development. Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (2021).
https://doi.org/10.1145/3411764.3445335

[24] David Ledo, Jo Vermeulen, Sheelagh Carpendale, Saul Greenberg, Lora Oehlberg,
and Sebastian Boring. 2019. Astral: Prototyping Mobile and Smart Object In-
teractive Behaviours Using Familiar Applications. In Proceedings of the 2019
on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19).
Association for Computing Machinery, New York, NY, USA, 711–724. https:
//doi.org/10.1145/3322276.3322329

[25] Germán Leiva and Michel Beaudouin-Lafon. 2018. Montage: A Video Prototyping
System to Reduce Re-Shooting and Increase Re-Usability. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology - UIST
’18. ACM Press, Berlin, Germany. https://doi.org/10.1145/3242587.3242613

[26] Germán Leiva, Nolwenn Maudet, Wendy Mackay, and Michel Beaudouin-Lafon.
2019. Enact: Reducing Designer-Developer Breakdowns When Prototyping
Custom Interactions. ACM Trans. Comput.-Hum. Interact. 26, 3 (may 2019), 19:1–
19:48. https://doi.org/10.1145/3310276

[27] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020. Pronto:
Rapid Augmented Reality Video Prototyping Using Sketches and Enaction. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376160

[28] Henry Lieberman. 2001. Your Wish is My Command: Programming by Example.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[29] Danwei Tran Luciani and Peter Vistisen. 2017. Empowering Non-Designers
Through Animation-based Sketching. 7 (2017). http://www.nordes.org/
nordes2017/assets/full_papers/nordes17a-sub1006-cam-i26_LUCIANI_v2.pdf

[30] Wendy E. Mackay. 1988. Video Prototyping: A Technique for Developing Hyperme-
dia Systems. Vol. 5. ACM/SIGCHI.

[31] Wendy E. Mackay and Anne-Laure Fayard. 1999. Video Brainstorming and
Prototyping: Techniques for Participatory Design. CHI’99 Extended Abstracts on
Human Factors in . . . May (1999), 118–119. https://doi.org/10.1145/632716.632790

Leiva et al.

[32] Wendy E. Mackay, Anne V. Ratzer, and Paul Janecek. 2000. Video Artifacts for
Design: Bridging the Gap Between Abstraction and Detail. In DIS ’00. ACM, New
York, New York, USA, 72–82. https://doi.org/10.1145/347642.347666

[33] Jan Meskens, Kris Luyten, and Karin Coninx. 2010. D-Macs: Building Multi-
Device User Interfaces by Demonstrating, Sharing and Replaying Design Actions.
Association for Computing Machinery, New York, NY, USA, 129–138. https:
//doi.org/10.1145/1866029.1866051

[34] Brad A. Myers, Richard G. McDaniel, and David Wolber. 2000. Programming by
Example: Intelligence in Demonstrational Interfaces. Commun. ACM 43, 3 (mar
2000), 82–89. https://doi.org/10.1145/330534.330545

[35] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung,
Piaoyang Wang, and Janet Nebeling. 2020. XRDirector: A Role-Based Collabo-
rative Immersive Authoring System. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376637

[36] Michael Nebeling and Katy Madier. 2019. 360Proto: Making Interactive Virtual
Reality and Augmented Reality Prototypes from Paper. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, 596:1–596:13. https://doi.org/10.1145/3290605.3300826

[37] Michael Nebeling, Janet Nebeling, Ao Yu, and Rob Rumble. 2018. ProtoAR:
Rapid Physical-Digital Prototyping of Mobile Augmented Reality Applications.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, 353:1–353:12. https://doi.org/10.1145/
3173574.3173927

[38] Michael Nebeling and Maximilian Speicher. 2018. The Trouble with Augmented
Reality/Virtual Reality Authoring Tools. In 2018 IEEE International Symposium
on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). 333–337. https:
//doi.org/10.1109/ISMAR-Adjunct.2018.00098

[39] Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards, and
Specifcations: A Sketch of Web Site Design Practice. In Proceedings of the
Conference on Designing Interactive Systems Processes, Practices, Methods, and
Techniques - DIS ’00. ACM Press, New York, New York, USA, 263–274. http:
//dl.acm.org/citation.cfm?id=347642.347758

[40] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
(Newport, Rhode Island, USA) (UIST ’07). Association for Computing Machinery,
New York, NY, USA, 251–258. https://doi.org/10.1145/1294211.1294256

[41] Marc Rettig. 1994. Prototyping for Tiny Fingers. Commun. ACM 37, 4 (apr 1994),
21–27. https://doi.org/10.1145/175276.175288

[42] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li. 2019. Interactive
Body-Driven Graphics for Augmented Video Performance. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM,
New York, NY, USA, 622:1–622:12. https://doi.org/10.1145/3290605.3300852

[43] SensorTower Inc. 2018. ARKit-only Apps Surpass 13 Million Downloads in
First Six Months, Nearly Half from Games. Retrieved 2021-03-30 from https:
//sensortower.com/blog/arkit-six-months

[44] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming
Languages. Computer 16, 8 (aug 1983), 57–69. https://doi.org/10.1109/MC.1983.
1654471

[45] Ryo Suzuki, Rubaiat Habib Kazi, Li-yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. RealitySketch: Embedding Responsive Graphics and
Visualizations in AR through Dynamic Sketching. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (UIST ’20).
Association for Computing Machinery, New York, NY, USA, 166–181. https:
//doi.org/10.1145/3379337.3415892

[46] Torch 3d Inc. 2020. Torch. Retrieved 2020-05-25 from https://www.torch.app/
[47] Unity Technologies. 2021. Unity Real-Time Development Platform | 3D, 2D VR

and AR Engine. Retrieved 2021-04-01 from https://unity.com/
[48] Verizon Media. 2018. ARKit-only Apps Top 13 Million Installs, Nearly Half From

Games | TechCrunch. Retrieved 2021-03-30 from https://techcrunch.com/2018/
03/28/arkit-only-apps-top-13-million-installs-nearly-half-are-games

[49] Laurie Vertelney. 1989. Using Video to Prototype User Interfaces. ACM SIGCHI
Bulletin 21, 2 (oct 1989), 57–61. https://doi.org/10.1145/70609.70615

[50] Peter Vistisen. 2016. Sketching with Animation: Using Animation to Portray
Fictional Realities–Aimed at Becoming Factual. Aalborg Universitetsforlag.

637

https://doi.org/10.1177/154193128502900515
https://doi.org/10.1177/154193128502900515
https://doi.org/10.1016/C2009-0-61147-8
https://doi.org/10.1016/C2009-0-61147-8
https://doi.org/10.1207/s15327051hci2102_2
https://doi.org/10.1207/s15327051hci2102_2
https://doi.org/10.1145/2702123.2702215
https://doi.org/10.1145/2702123.2702215
https://www.invisionapp.com/
https://doi.org/10.1109/MC.2016.217
https://doi.org/10.1145/800045.801609
https://keynotopia.com/
https://doi.org/10.1145/1142405.1142429
https://doi.org/10.1145/3411764.3445335
https://doi.org/10.1145/3322276.3322329
https://doi.org/10.1145/3322276.3322329
https://doi.org/10.1145/3242587.3242613
https://doi.org/10.1145/3310276
https://doi.org/10.1145/3313831.3376160
http://www.nordes.org/nordes2017/assets/full_papers/nordes17a-sub1006-cam-i26_LUCIANI_v2.pdf
http://www.nordes.org/nordes2017/assets/full_papers/nordes17a-sub1006-cam-i26_LUCIANI_v2.pdf
https://doi.org/10.1145/632716.632790
https://doi.org/10.1145/347642.347666
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/1866029.1866051
https://doi.org/10.1145/330534.330545
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3290605.3300826
https://doi.org/10.1145/3173574.3173927
https://doi.org/10.1145/3173574.3173927
https://doi.org/10.1109/ISMAR-Adjunct.2018.00098
https://doi.org/10.1109/ISMAR-Adjunct.2018.00098
http://dl.acm.org/citation.cfm?id=347642.347758
http://dl.acm.org/citation.cfm?id=347642.347758
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/175276.175288
https://doi.org/10.1145/3290605.3300852
https://sensortower.com/blog/arkit-six-months
https://sensortower.com/blog/arkit-six-months
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/3379337.3415892
https://doi.org/10.1145/3379337.3415892
https://www.torch.app/
https://unity.com/
https://techcrunch.com/2018/03/28/arkit-only-apps-top-13-million-installs-nearly-half-are-games
https://techcrunch.com/2018/03/28/arkit-only-apps-top-13-million-installs-nearly-half-are-games
https://doi.org/10.1145/70609.70615

	Abstract
	1 Introduction
	2 Motivation
	3 Rapido
	3.1 The AR interface
	3.2 Actions: Animations and Rules
	3.3 The Overview Interface

	4 Motivating Scenario: an AR Furniture App
	4.1 Use scenario
	4.2 Creating a video prototype
	4.3 Finalizing the video prototype
	4.4 Creating a state machine
	4.5 Testing the prototype

	5 Additional scenarios
	5.1 Planetary App
	5.2 Measuring Tape App

	6 System Implementation
	7 Related Work
	8 Discussion
	8.1 Situations (S), Tasks (T) and Users (U)
	8.2 Expressive leverage
	8.3 Expressive match

	9 Limitations and Future Work
	9.1 Additional inputs and actions
	9.2 Computational model
	9.3 Reifications
	9.4 Supporting other platforms

	10 Conclusion
	Acknowledgments
	References

