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Abstract

Dense depth and pose estimation is a vital prerequisite for
various video applications. Traditional solutions suffer from
the robustness of sparse feature tracking and insufficient cam-
era baselines in videos. Therefore, recent methods utilize
learning-based optical flow and depth prior to estimate dense
depth. However, previous works require heavy computation
time or yield sub-optimal depth results. We present GCVD,
a globally consistent method for learning-based video struc-
ture from motion (SfM) in this paper. GCVD integrates
a compact pose graph into the CNN-based optimization
to achieve globally consistent estimation from an effective
keyframe selection mechanism. It can improve the robust-
ness of learning-based methods with flow-guided keyframes
and well-established depth prior. Experimental results show
that GCVD outperforms the state-of-the-art methods on both
depth and pose estimation. Besides, the runtime experiments
reveal that it provides strong efficiency in both short- and
long-term videos with global consistency provided.

Introduction
Acquiring dense depth and camera pose from videos is es-
sential for various applications including augmented real-
ity (Holynski and Kopf 2018; Du et al. 2020), video frame
interpolation (Bao et al. 2019), view synthesis (Choi et al.
2019; Yoon et al. 2020; Liu et al. 2021) and stabilization (Liu
et al. 2009; Lee et al. 2021). In this paper, we propose a
learning-based approach to achieve the concurrent inference
of scene depth and camera pose from offline videos. Our
study belongs to the research track of SfM with the videos
acquired. Unlike visual SLAM (Engel, Schöps, and Cremers
2014; Mur-Artal, Montiel, and Tardos 2015; et al. 2017;
Teed and Deng 2021) assuming streaming videos that should
be estimated on-line, more information of batched frames
stored in the video can be used for a globally consistency
estimation.

Inferring both depths and poses for every frame is essen-
tially a challenging chicken-and-egg problem. Traditional
solutions rely on the established SfM tools (e.g., COLMAP
(Schonberger and Frahm 2016)) to estimate the camera tra-
jectory and then perform multi-view stereo. However, the
tools often yield incomplete depth and suffer from the ro-
bustness issue due to the fragile, sparse feature tracking.
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Figure 1: Comparison of estimation errors and runtime.
The proposed method outperforms the state-of-the-art meth-
ods CVD2 (Kopf, Rong, and Huang 2021) and Deep3D (Lee
et al. 2021) on both depth and pose estimation on 7-Scenes
dataset (Shotton et al. 2013). Furthermore, our method per-
forms the fastest in short videos; and slightly slower than
Deep3D in long videos while Deep3D does not maintain
global consistency.

Especially in the videos containing dynamic objects, mo-
tion blur, or large texture-less regions, the estimation process
usually fail early even in the pre-processing step.

In learning-based studies, many works (Eigen, Puhrsch,
and Fergus 2014; Ranftl et al. 2020; Miangoleh et al. 2021)
focus on estimating the depth using a single image (i.e., sin-
gle depth estimation). Though every single depth is visually
plausible in 2D, it is up-to-scale or even a projective ambigu-
ity (Hartley and Zisserman 2003). Thus the individual depths
obtained from sequential frames suffer easily from temporal
and geometric inconsistency. To learn from videos, unsuper-
vised (or self-supervised) methods (Zhou et al. 2017; Yin
and Shi 2018; Godard et al. 2019; Bian et al. 2019) are pro-
posed. They may maintain the scale consistency (Bian et al.
2019) but their capability of generalizing the pre-trained
model to the testing scene is usually restricted by the train-
ing data.

To overcome these issues, test-time training video-based
SfM methods are introduced (Luo et al. 2020; Kopf, Rong,
and Huang 2021; Lee et al. 2021), which optimize the depth
and pose of a test video directly. The solutions provide a
promising way to maintain the depth and ego-motion co-
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herence in an input video. Luo et al. propose CVD (Luo
et al. 2020) to refine the single-depth network for enhancing
depth consistency of a monocular video. However, it relies
on the COLMAP tool in advance to obtain the camera poses
and thus is still limited by the robustness issue of traditional
SfM. Kopf et al. extend CVD to CVD2 (Kopf, Rong, and
Huang 2021) without requiring SfM tools. CVD2 performs
simultaneous depth and pose optimization with the off-the-
shelf single depth network, MiDaS (Ranftl et al. 2020), as
initial. An issue is that the optimization is often affected by
the bias of single depths and therefore yields poor pose re-
sults. Lee et al. present Deep3D (Lee et al. 2021) to learn
depth and pose of the test video to solve video stabiliza-
tion problem. However, the optimization still results in sub-
optimal estimations for short-camera-baseline videos due to
the lack of single depth prior. Moreover, CVD2 and Deep3D
ensure temporal consistency in a local range, whereas nei-
ther of them consider global consistency which is crucial
especially in long videos.

Global-consistency of video depth: We argue that current
test-time training methods lack of the ability to achieve
global consistency between the depth and pose, which is a
demanding issue for accurate and long-term SfM estima-
tion and thus they will yield drifting outcomes for the input
videos. We propose GCVD, a globally consistent test-time
training method for depth and pose estimation based on of-
fline videos. GCVD has the advantage that it can achieve
robust inference without relying on traditional SfM tools.
Our method integrates a keyframe-based pose graph into
learning to attain the global consistency. Fig. 2 illustrates its
pipeline. In our method, the keyframes are extracted from
the input video to compose a pose graph with sequential and
associated non-sequential edges. It estimates the depth and
pose of keyframes and performs pose graph optimization to
fulfill the global consistency. Then, the depth and pose of the
remaining frames can be estimated efficiently leveraging the
keyframes. The experimental results validate the strength of
GCVD (Fig. 1) that our approach outperforms the state-of-
the-art approaches, CVD2 and Deep3D, on both depth and
pose estimations (7-Scenes dataset (Shotton et al. 2013)).
Besides, it is significantly faster than CVD2 and achieves a
good trade-off between efficiency and global consistency in
contrast to Deep3D. The main characteristics of our GCVD
include:

Global consistency: To tackle the challenging on joint depth
and pose estimation based on video collections, to our
knowledge, we introduce the first test-time-training method
that enforces the global consistency with robustness.

Efficient global-pose-graph and optimizer: Our method
requires merely the pose-only bundle adjustment on the
keyframes, and can then leverage network learning for es-
timating the depths and poses for all frames efficiently.

Performance improvements and competitive speed: Our
method outperforms SOTA on both depth and pose with over
19% improvement on 7-Scenes dataset (Shotton et al. 2013),
and also shows strong computational efficiency.

Related Work
Traditional Approach: Traditional SfM (Wu et al. 2011;
Moulon et al. 2016; Schonberger and Frahm 2016) jointly
estimate the 3D structure and camera poses of multi-view
images via bundle adjustment (Agarwal, Mierle, and Oth-
ers 2022; Kümmerle et al. 2011) on the local features.
Subsequently, multi-view stereo (MVS) (Furukawa and
Hernández 2015) following the estimated pose obtain dense
depth but often yield holes and noises in general.

In another track, traditional visual odometry (VO) and
SLAM (Klein and Murray 2007; Engel, Schöps, and Cre-
mers 2014; Mur-Artal, Montiel, and Tardos 2015) usu-
ally maintain keyframes and a pose graph to perform ef-
ficient and consistent localization. Besides, bundle adjust-
ment (BA) (Triggs et al. 1999) and pose graph optimiza-
tion (Kümmerle et al. 2011) can be introduced to prevent
drifts and enhance global consistency.

The performance of traditional methods generally rely on
successful feature tracking. The sparse local features (Lowe
2004; Bay, Tuytelaars, and Van Gool 2006; Rublee et al.
2011) extracted are often fragile in various challenging con-
ditions such as homogeneous areas, motion blur, and illumi-
nation changes. Hence, they are demanding to obtain dense
depth maps and non-robust enough to handle the texture-less
and blur situations for the videos in the wild.
Learning Depth Only (Given Pose): Supervised learning
has been widely used for the ill-posed single depth estima-
tion problem (Eigen, Puhrsch, and Fergus 2014; Liu et al.
2015; Eigen and Fergus 2015). Apart from acquiring real
depth as groundtruth, some methods (Garg et al. 2016; Go-
dard, Mac Aodha, and Brostow 2017; Gonzalez and Kim
2021) learn the single depth with binocular pairs. Other stud-
ies leverage synthetic data (Mayer et al. 2016) or pseudo
groundrtuth (Chen et al. 2016; Li and Snavely 2018; Chen
et al. 2020; Li et al. 2019b). MiDaS (Ranftl et al. 2020)
obtains relative depth of stereo pairs from large-scale and
diverse 3D movies. Recently, Miangoleh et al. (Miangoleh
et al. 2021) integrate multi-scale depth of MiDaS to handle
high-resolution images. Yin et al. (Yin et al. 2021) utilize
point cloud networks to solve the perspective ambiguity of a
single depth. Despite the single-depth methods show visual
plausibility on individual depth maps, the issue of geometri-
cal inconsistency among multi-views is not addressed.

With known camera poses, learning-based multi-view
stereo can estimate dense depth of multiple images. In
(Huang et al. 2018; Yao et al. 2018; Im et al. 2019), plane
sweep algorithm is employed to estimate dense depth in a
supervised manner. The methods in (Long et al. 2021; Wim-
bauer et al. 2021) estimate video depth with known camera
pose or obtain the pose via COLMAP.
Depth and/or Pose Supervision and Joint Estima-
tion: Approaches of this type utilize groundtruth depths
and/or known-pose views for training; the obtained joint-
depth/pose estimator is then applied to the test-scene se-
quences of unknown poses. For depth estimation, UNet-
like models are used to perform per-pixel depth regres-
sion (Ummenhofer et al. 2017; et al. 2017; Zhou, Ummen-
hofer, and Brox 2018; Bloesch et al. 2018; Czarnowski et al.
2020). Deep cost volume with plane sweep structure are also



Figure 2: Pipeline overview. GCVD takes a monocular RGB video as input to estimate per-frame depth and pose. The pre-
processing and pose graph generation stage (Sec. ) first estimates adjacent optical flows and find static masks to filter likely-
dynamic regions. It then uses single depths as prior for the optimization stage and constructs a pose graph by selecting the
keyframes as vertices. The sequential (blue) and non-sequential (red) edges are thus formed via keyframe association. The
optimization stage (Sec. ) takes the estimations in the pre-processing stage as priors to optimize the depth and pose of input
frames using the same Joint Optimization of Depth and Pose (Sec. ). The keyframe 3D estimation is followed by pose-only
bundle adjustment (BA) for global consistency. The depth of keyframes and depth/pose of the remaining non-keyframes can
then be optimized more efficiently through learning.

adopted (Wei et al. 2020; Teed and Deng 2019; Wang et al.
2021). To estimate the pose, some methods directly use net-
works for regression (Ummenhofer et al. 2017; Zhou, Um-
menhofer, and Brox 2018; Wei et al. 2020; Teed and Deng
2021); some others leverage the fundamental multi-view and
epipolar geometry (et al. 2017; Bloesch et al. 2018; Teed and
Deng 2019; Czarnowski et al. 2020; Wang et al. 2021). How-
ever, acquiring the groundtruth pose or depth in real world
is non-trivial (e.g., requiring LiDAR (Saxena, Sun, and Ng
2008; Geiger et al. 2013) or RGB-D cameras (Sturm et al.
2012; Nathan Silberman and Fergus 2012; Shotton et al.
2013)). The demanding ability of generalization to the test-
ing data of unknown scenes also restricts the usage in prac-
tice.
Self-Supervision for Depth and Pose: Methods in this cat-
egory learn a joint depth/pose inference network in a self-
supervised (or unsupervised) manner without relying on pre-
given groundtruths (Zhou et al. 2017; Gordon et al. 2019;
Godard et al. 2019; Chen, Schmid, and Sminchisescu 2019;
Li et al. 2019a; Bian et al. 2019; Ranjan et al. 2019; Zou
et al. 2020; Jiao, Tran, and Shi 2021; Watson et al. 2021;
Zhou et al. 2021; Jung, Park, and Yoo 2021). They coopera-
tively regulate the depths and poses on monocular videos via
warping-based view synthesis from the training data. Further
approaches use optical flow (Yin and Shi 2018; Ranjan et al.
2019; Jiao, Tran, and Shi 2021) and segmentation (Casser
et al. 2019; Ranjan et al. 2019) to improve the performance
and handle dynamic objects. Yet, in test time, most networks
still perform single-depth estimation and thus yield incoher-
ent results. The methods also suffer from the generalization
issue due to the domain gap between training and testing
data.
Test-Time Training Approach: To avoid the difficulty
of applying the inference model learned from given envi-
ronment to unseen environment, test-time-training methods
have been proposed more recently, making the solutions bet-
ter for practical use. Despite the speed of test-time-training
is slower than pure inference, the approaches meet the re-
quirement of offline videos that need no real-time process-
ing. CVD (Luo et al. 2020) is the first attempt toward test-

time training to obtain geometrically consistent depth and
pose estimation of a video. However, CVD relies on the SfM
tool COLMAP which suffers from the fragile and sparse
reconstruction and the computation is slow. Deep3D (Lee
et al. 2021) uses a network-based optimization framework
to learn video depth and pose for video stabilization, but
the depth performance is restricted due to the lack of single
depth prior. CVD2 (Kopf, Rong, and Huang 2021) uses a de-
formative mesh on single depth with a post-processing filter
to show promising depth results; however, the pose perfor-
mance still suffers from the bias of single depth as no fine-
tuning mechanisms have been accommodated for the depth
net. Besides, CVD2 requires tremendous optimization time.
Its quantitative performance is only evaluated on the videos
of 50 frames (Wulff et al. 2012).

Current works only ensure local consistency with nearby
frames, whereas the global consistency is not tackled. We
introduce GCVD that is the first test-time-training method
with global consistency, which can obtain more accurate and
robust results. Due to the global consistency, GCVD is scal-
able to long videos. In our experiments, 1000-frames videos
are used to validate the performance.

Methodology
Given an N -frame video I1..N , our goal is to estimate dense
depth mapsD1..N and camera poses P1..N . Our CNN-based
optimization framework utilizes the learning-based SfM to
jointly estimate depth and pose of each frame. Nevertheless,
applying SfM to a video may suffer from various challenges
such as small camera baseline motion and lacking of co-
visible scenes among frames.
Proper baselines arrangement: Current test-time-training
solutions (e.g., Deep3D (Lee et al. 2021) and CVD2 (Kopf,
Rong, and Huang 2021)) simply take near-to-distant neigh-
bor frames with certain frame intervals empirically selected
(e.g., 1, 2, 4, 8) to ensure a coherence baseline. The strat-
egy does not take the real disparities between the frames
into account, and does not guarantee the proper baselines
among the frames for SfM. In our work, we leverage the re-
cent progress of deep optical flow estimation, and introduce



dense flow-guided keyframes to perform initial optimiza-
tion with adequate baseline motions. The pipeline (Fig. 2)
is introduced in Pre-processing and Pose Graph Genera-
tion and Keyframe-based 3D Optimization and the network-
based optimization module is elaborated in Joint Optimiza-
tion of Depth and Pose.

Pre-processing and Pose Graph Generation
Videos often contain motion blurs and large view-direction
changes, yielding failures of traditional sparse features on
matching. We use learning-based optical flows among video
frames to overcome this difficulty and obtain dense flow
maps. However, in contrast to existing approaches CVD2
and Deep3D which need the computation of flows from a
target frame to many other frames, our GCVD initially esti-
mates the depth and pose of keyframes with reliable camera
baselines and then enforces global optimizations later; thus,
we can only take the flow of adjacent views (i.e., F̂ tt±1) to
save the computation burden.

Besides, to prevent dynamic objects from disturbing pose
estimation, semantic segmentation (e.g., Mask-RCNN in
Detectron2 (Wu et al. 2019)) is used to obtain a binary mask
M̂t that filters out the likely-dynamic pixels in each frame
It. We also take the single depths of MiDaS (Ranftl et al.
2020) as the depth prior to regularize the optimization.

The ideas of keyframe and pose graph have been widely
used in traditional SLAM (Klein and Murray 2007; Engel,
Schöps, and Cremers 2014; Mur-Artal, Montiel, and Tar-
dos 2015) and SfM (Schonberger and Frahm 2016; Barath
et al. 2021) to reduce the computational complexity and en-
sure global consistency for large-scale reconstruction. Our
method constructs a pose graph. Nevertheless, unlike tra-
ditional SLAM or SfM, we use learning-based approach
to provide better robustness in the optimization. The pose
graph has k keyframes (κ1..k) as its vertices, and the edges
of the graph include the sequential edges and the non-
sequential co-visible edges, as depicted below.
Dense-flow-guided keyframe decision. To sample repre-
sentative keyframes from videos, traditional solutions rely
on sparse feature tracking while long feature tracks are
challenging to obtain. Instead, the dense optical flow ac-
quired in the pre-processing can provide a reliable reference
for keyframe decision. Thus, the frame It is chosen as a
keyframe if the accumulated flow magnitude F̄κ

∗

t from the
last selected keyframe κ∗ exceeds a movement threshold ∆.

F̄κ
∗

t =
t−1∑
i=κ∗

 1

|M̂i|

∑
x∈M̂i

‖F̂ ii+1‖2

 , (1)

where we set ∆ = 0.1 and only use the static regions M̂ for
evaluation. Then, the flow of adjacent keyframes, F̂κi

κi±1
, are

established for the keyframe optimization. As we use the ac-
cumulated adjacent flows to pick just-needed frames, com-
pared to uniform selection, a more compact and exemplary
keyframe set can be built. After selecting k keyframes, the
sequential edges are formed by connecting the keyframes of
nearby indices within a subset of κi±α in the pose graph
to ensure local consistency. For those keyframe pairs with

Figure 3: Joint optimization of depth and pose. The 3D
optimization module takes a set of frame pairs as input to
estimate the depths and poses. The depth component adopts
MiDaS (Ranftl et al. 2020) with an additional layer nor-
malization and a learnable mesh deformation (Kopf, Rong,
and Huang 2021). The pose component consists of ResNet-
based encoder-decoder (Godard et al. 2019) with a posi-
tional encoding (Vaswani et al. 2017) to encourage better
convergence. Both Steps 1 and 3 in the Keyframe-based 3D
Optimization stage of Fig. 2 use this module for learning.

the index differences exceeding α, we will consider their
co-visibility of shared scenes to form the further edges of
non-sequential co-visible views to enforce better the global
consistency.
CNN-based keyframe association. The keyframe pairs
with high image similarities are picked and geometrically
verified to serve as non-sequential co-visible edges. We
leverage the deep features of the k keyframes and compute
their cosine similarity one-by-one to form a similarity ma-
trix Ak×k. For each keyframe, the feature is extracted by an
ImageNet-pretrained ResNet encoder (Godard et al. 2019).
The output feature is then passed through a global average
pooling layer andL2 normalization. Thus,Ak×k can be sim-
ply computed by the inner-product of the k normalized fea-
ture vectors. Then, the associated pairs are sampled from A
by a similarity threshold δ (= 0.9) and max-pooling for re-
ducing redundant pairs.

Besides, the geometric verifications are necessary to fil-
ter the noisy associated keyframe pairs. Traditional verifica-
tions utilize the inlier ratio of estimated fundamental matrix
or homography via SIFT (Lowe 2004) and RANSAC (Fis-
chler and Bolles 1981), while it is not reliable enough. We
additionally examine the forward-backward consistency of
the dense optical flow of each associated pair. Moreover, to
guarantee adequate co-visible areas for optimization, the as-
sociated pairs are removed if the average flow magnitude
exceeds the movement threshold ∆ of keyframe decision.

Keyframe-based 3D Optimization
The proposed pipeline performs keyframe optimization with
suitable camera movement to achieve robust estimation as
initials. Then, pose graph optimization is utilized to retain
global consistency of keyframes’ pose estimations. Finally,
the depth and pose of the remaining frames are estimated
efficiently according to the pose graph obtained. In the fol-
lowing, we give an overview of the procedures. Details of
our joint depth-and-pose deep network model is depicted in
Joint Optimization of Depth and Pose.
Keyframe 3D estimation via deep model. For each



keyframe κi, the depth and pose are learned with multiple
nearby keyframes of κi±τ (i.e., the sequential edges in pose
graph) with a descending weight 1

τ to acquire consistent re-
sults. Besides, a mini-batch of keyframes are optimized si-
multaneously with a GPU. Thus, the mini-batches are over-
lapped with the interval τ to ensure coherent solutions (Lee
et al. 2021). In our work, we set τ ∈ {1, 2, 4, 8}. The rel-
ative poses obtained for sequential edges are then recorded
for the next pose-only bundle adjustment. Likewise, we opti-
mize the non-sequential co-visible keyframe pairs (without
decreasing weights) and obtain the their relative poses ac-
cordingly. Hence, each edge of the pose graph is set up with
an initial relative-pose transformation.
Global pose graph optimization with efficiency. The pose
graph optimization (Kümmerle et al. 2011) is used to refine
the pose estimations of keyframes from the above initializa-
tion. Note that we perform pose-only bundle adjustment for
Pκ1..k

rather than depth and pose bundle adjustment for ef-
ficiency. Instead, the depths of keyframes are fine-tuned in
the next step leveraging the learning models. The extensive
bundle-adjustment overhead can thus be shared with deep
networks that are cooperated to yield a more efficient opti-
mization.
Non-keyframe 3D optimization and keyframe depth
refinement. Besides fine-tuning the keyframe depth, the
remaining non-keyframes are optimized with the fixed
keyframe poses (i.e., Pκ1..k

) over fewer iterations via the
deep network. Likewise, (Dt, Pt) of each frame is optimized
with multiple nearby views t ± τ . We then obtain the depth
D1..N and pose P1..N of the entire video.

Joint Optimization of Depth and Pose
In this section, we introduce the optimization module for
3D estimation. Our approach leverages the deep networks to
save the scene information in the model weights to facilitate
sequential fragments optimization. The module takes a set
of frame pairs as input and estimate the depths and poses
simultaneously. For simplicity, we depict the module with
a pair of images (Ia, Ib) as input. More pairs simply use
the sum of respective loses. The networks learn both depth
and pose to obtain the the output Da, Db, Pa, Pb with the
objectives designed below.
Depth and pose components. As shown in Fig. 3, the depth
and pose components estimate the individual depth Dt and
6-DoF global pose Pt, respectively, associated with an in-
put RGB frame It. The depth component exploits a MiDaS-
pretrained network (Ranftl et al. 2020) with an additional
layer normalization to stabilize the output scale of depth es-
timation. Then, a learnable mesh deformation (Kopf, Rong,
and Huang 2021) is adopted to achieve better alignments
among sequential depths. Unlike CVD2 (Kopf, Rong, and
Huang 2021) that directly takes fixed single depths as ini-
tials, we use a trainable depth network that can refine the bias
of the initial depth to encourage better estimations. While
due to the time and space efficiency, only the last two con-
volutional layers of MiDaS network are used to learn a larger
span of frames at a time.

The pose component adopts the PoseNet (Godard et al.
2019) based on ResNet encoder (He et al. 2016). Similar

Figure 4: Depth gradient loss Lgrad retains the depth prior
of initial single depth (Ranftl et al. 2020). The result with-
out Lgrad may introduce blurring after updating the depth
component.

to the depth component, the pose encoder is frozen with
ImageNet-pretrained weights and only the decoder can be
optimized. The information saved in the learned weights of
the decoder can help boost the convergence for the next op-
timization. Moreover, the feature map is added with a po-
sitional encoding (Vaswani et al. 2017) which encodes the
chronological order of the entire sequence to enhance the
learning for the sequence.
Objectives. The proposed objectives include inter-frame
constraints for geometrical consistency and intra-frame reg-
ularization. The inter-frame objectives ensure consistent es-
timations between two views. The test-time learner exploits
the point transformation between (Ia, Ib) via 3D projection
as formulated below:

x̃b ∼ KPbP−1
a Da(xa)K−1x̃a, (2)

where x̃a and x̃b denote the homogeneous form of a pixel in
Ia and Ib, respectively. K stands for the camera intrinsics.
Accordingly, the rigid flow F ba = xb − xa is used to realize
the inter-frame constraints in the following three aspects.

The photometric loss computes the appearance bias be-
tween Ia and the synthesized Iba (warped using F ba ) by L1

and structure dissimilarity (Wang et al. 2004) losses:

Lphotoa,b =
1

|V ba |
∑
x∈V b

a

‖Iba − Ia‖1 +DSSIM(Iba, Ia), (3)

where V ba denotes the valid points projected from Ib onto
the image plane of Ia and excluding likely-dynamic pixels
by M̂a.

The optical flow loss measures the displacement error in
the image space. Hence, the flow F̂ generated in the pre-
processing is used as the supervision for the rigid flow F .
We examine the forward-backward consistency between the
pre-processing flows F̂ ba and F̂ ab to form a binary mask Ṽ ba ,
and let V̂ ba = Ṽ ba ∩ V ba .

Lflowa,b =
1

|V̂ ba |

∑
x∈V̂ b

a

‖F ba − F̂ ba‖1. (4)

The depth consistency loss Lconst (Bian et al. 2019)
assesses the inconsistency between individually estimated
depth Da and Db.

Lconsta,b =
1

|Va|
∑
xa∈Va

‖Db
a −Da‖1
Db
a +Da

, (5)

where Db
a is the transformed depth of Ia using Db, PbP−1

a .



Method known
pose?

Depth Metrics Pose Metrics

AbsRel↓ SqRel↓ RMSE↓ δ < ATE RPE Trans RPE Rot
1.25 ↑ (m)↓ (m) ↓ (deg) ↓

DPSNet† (Im et al. 2019) X 0.199 0.142 0.438 0.710 - - -
CNMNet† (Long et al. 2020) X 0.161 0.083 0.361 0.766 - - -
NeuralRecon† (Sun et al. 2021) X 0.155 0.104 0.347 0.820 - - -
DeepV2D (Teed and Deng 2019) 0.162 0.092 0.380 0.767 0.471 1.018 60.979
DROID-SLAM (Teed and Deng 2021) 0.209 0.132 0.462 0.665 0.463 0.928 40.143
Deep3D (Lee et al. 2021) 0.172 0.105 0.406 0.748 0.310 0.306 8.665
CVD2 (Kopf, Rong, and Huang 2021) 0.154 0.085 0.379 0.795 0.375 0.517 31.102
Ours (GCVD) 0.124 0.054 0.307 0.858 0.249 0.257 8.155

Table 1: Quantitative evaluations of depth and pose on 7-Scenes dataset (Shotton et al. 2013). The standard depth evaluation
measures per-frame errors and accuracy metrics. The pose evaluation computes the per-sequence pose errors. †We also refer to
the approaches of multi-view stereo and 3D reconstruction with known camera pose and compare with the results reported in
NeuralRecon (Sun et al. 2021).

Apart from inter-frame losses, the intra-frame objectives
are utilized to regularize each depth Dt, including the dy-
namic areas. We conduct the depth gradient loss Lgradt to
preserve the depth prior from pre-computed MiDaS depth
D̂t. The optimization can refine the bias of initial sin-
gle depth. Thus, the single depth D̂t obtained in the pre-
processing is exploited to provide the supervision of depth
edge (Fig. 4). Let ∇Ds

t (x) denote the 2D gradient vector of
pixel x in the downsampled depth map Ds

t , s ∈ {0, 1, 2}.
We measure the orientation difference of depth gradients to
avoid scale difference between D̂t and Dt.

Lgradt =
∑
s

∑
x

(
1− ∇Ds

t (x) · ∇D̂s
t (x)

‖∇Ds
t (x)‖2‖∇D̂s

t (x)‖2

)2

. (6)

The regularization of deformation proposed by Kopf et
al. (Kopf, Rong, and Huang 2021) maintains the spatial
smoothness of learnable mesh for a flexible deformation.
Likewise, we use the regularization loss Ldeformt to encour-
age smoothness in dynamic area 1 − M̂t. Finally, the total
loss L of a pair of (Ia, Ib) is conducted as:

L =λphotoLphoto + λflowLflow + λconstLconst

+ λgradLgrad + λdeformLdeform,
where the inter-frame objectives compute the bidirectional
losses and the intra-frame objectives sum up the losses of
individual frames. The weights λphoto, λflow, λconst, λgrad,
λdeform are set as 1, 10, 0.5, 0.1, 0.5, respectively. Note that
Lflow is used only when Ia and Ib are adjacent.

Implementation Detail
The approach is realized in PyTorch with Adam and g2o li-
brary (Kümmerle et al. 2011). The resolution of depth and
deformation mesh are 384 and 17, respectively, following
CVD2 (Kopf, Rong, and Huang 2021) for the longer side
of frame. RTX3090 GPU is used on the mini-batch size
40. We run the optimizations of sequential keyframes, non-
sequential keyframes, and non-keyframes with 300, 100 and
100 iterations, respectively. We further perform flow-guided
depth filter like CVD2 (Kopf, Rong, and Huang 2021) as
post-processing. The optical flow (Teed and Deng 2020) is
used. More details are given in the appendix.

Experiments

We compare the proposed method with the SOTA test-time-
training methods, CVD2 (Kopf, Rong, and Huang 2021)
and Deep3D (Lee et al. 2021). CVD2 jointly optimizes pose
and learnable deformation from initial MiDaS (Ranftl et al.
2020) depths. Deep3D takes DepthNet and PoseNet (Godard
et al. 2019) and learns from ImageNet pretrained weight to
acquire depth and pose. For fair comparisons, we assume an
ideal camera intrinsic and re-implement Deep3D with the
same resolution of depth, optical flow estimation (Teed and
Deng 2020) and static masks as CVD2 and ours. In addition,
we compare our approach with the SOTA supervised SLAM
systems (Teed and Deng 2019, 2021), where the SLAM
mode of DeepV2D (Teed and Deng 2019) performs pose op-
timization in a tracking window and DROID-SLAM (Teed
and Deng 2021) utilizes dense bundle adjustment to achieve
global consistency.

Datasets. In contrast to CVD2 conducting evaluations on
synthetic video clips (with each only 50-frames long) of
Sintel dataset (Wulff et al. 2012), We conduct the exper-
iments on long sequences (500 to 3000 frames) of real-
world datasets.

• 7-Scenes RGB-D dataset (Shotton et al. 2013) has 46 se-
quences with either 500 or 1000 frames. The indoor scenes
are grabbed with a Kinect camera at size 640×480.

• TUM RGB-D dataset (Sturm et al. 2012) is gathered by
a handheld Kinect camera with more demanding cases such
as texture-less area and abrupt motions. Seven representative
sequences (613∼2965 frames) in TUM RGB-D are used for
evaluation.

• EuRoC dataset (Burri et al. 2016) has 11 sequences
(1710∼3682 frames) filmed by a micro aerial vehicle. We
demonstrate the comparisons in our appendix.

Evaluation metrics. We follow the standard depth evalua-
tion (Eigen, Puhrsch, and Fergus 2014) to align the scales
between the estimated and groundtruth depths by median
scaling. The pose evaluation uses the metric of visual odom-
etry (Sturm et al. 2012; Zhang and Scaramuzza 2018), in-
cluding absolute trajectory error (ATE) and relative pose er-
ror (RPE) with 7-DoF alignment.



Figure 5: Visual comparisons with state-of-the-art on 7-Scenes (Shotton et al. 2013). The 3D point cloud is back-projected
from a view with the estimated depth. Deep3D (Lee et al. 2021) produces in weak depth results and even collapse (constant
value). CVD2 (Kopf, Rong, and Huang 2021) results in poor pose performance (observed via the bad alignment of the green
and blue trajectories) despite the plausible depth. Our method shows the most favorable performance on both depth and pose.
Zoom in for more detailed visualization is suggested.

Evaluation on 7-Scenes (Shotton et al. 2013)

Table 1 shows the quantitative comparisons of our approach
to the SOTA methods. Although DeepV2D (Teed and Deng
2019) and DROID-SLAM (Teed and Deng 2021) utilize
pose graph for the pose refinement and bundle adjustment
in testing, they are restricted by the generalization capability
of supervised learning in different datasets. Test-time train-
ing approach Deep3D (Lee et al. 2021) shows the second
best pose performance; however, it results in worse depth
estimation. CVD2 (Kopf, Rong, and Huang 2021) maintains
more depth priors from MiDaS while the bias in the depth
prior leads in poor pose estimation. Besides, we compare our
GCVD with other depth-estimation approaches with known
camera pose. The quantitative depth scores of DPSNet (Im
et al. 2019), CNMNet (Long et al. 2020), and NeuralRe-

con (Sun et al. 2021) are provided by (Sun et al. 2021).
Similar to DeepV2D and DROID-SLAM, the supervised
methods with known pose may still suffer from the domain
discrepancy between training and test data. In contrast, the
proposed GCVD achieves globally consistent optimization
on test data and demonstrates the best performance on both
standard depth and pose metrics.

We conduct visual comparisons by displaying the back-
projected point clouds and the pose estimation with the
groundtruth trajectory by 7-DoF alignment (Zhang and
Scaramuzza 2018). As shown in Fig. 5, although Deep3D
demonstrates some promising camera estimations, it is
prone to collapse on the depth estimation. CVD2 provides
plausible depths with the aids of MiDaS while yields weak
pose results due to the lack of global consistency. Again, our
method reveals better results in 3D visualization.



Figure 6: Visual comparisons of geometric consistency. Visualizing the geometric consistency via the point clouds between
two distant views (200-frames interval). As shown in the groundtruth, the back-projected point clouds (brown and cyan) from
two views are supposed to align in the co-visible area. Our GCVD and Deep3D (Lee et al. 2021) maintain better geometric
consistency and show promising alignments of point clouds, while CVD2 (Kopf, Rong, and Huang 2021) results in severe
misalignment between the distant views.

Sequence Pose Error (ATE in meters) ↓ Depth Error (Abs Rel) ↓
COLMAP Deep3D CVD2 GCVD Deep3D CVD2 GCVD

fr1 desk 0.019 0.580 0.273 0.229 0.1940 0.1090 0.0940
fr1 desk2 0.027 0.611 0.314 0.156 0.2282 0.1139 0.1305
fr2 desk 0.818 0.260 0.613 0.422 0.0973 0.1544 0.1130
fr3 cabinet failed 1.225 0.444 0.850 0.4613 0.1236 0.1832
fr3 nstr tex near loop 0.015 0.694 0.491 0.399 0.2437 0.0615 0.0352
fr3 sitting static 0.033 0.006 0.029 0.006 0.2368 0.1260 0.1243
fr3 str tex far 0.008 0.089 0.169 0.131 0.0511 0.0742 0.0810
Mean 0.153 0.495 0.333 0.313 0.2160 0.1089 0.1087

Table 2: Quantitative evaluation on TUM RGB-D (Sturm et al. 2012). We present the depth and pose errors of each sequence
and compare with Deep3D (Lee et al. 2021), and CVD2 (Kopf, Rong, and Huang 2021). We additionally provide the pose results
of COLMAP (Schonberger and Frahm 2016) as reference.

Evaluation on TUM-RGBD (Sturm et al. 2012)

In this experiment, we compare our GCVD with the test-
time training approaches (CVD2 and Deep3D) and also
COLMAP which is a traditional representative solution hav-
ing maintaining global consistency. Table 2 provides the
per-sequence quantitative errors. We only present the pose
results of COLMAP since its dense depths via multi-view
stereo still contain holes and noises. Although COLMAP
shows superior pose results, it completely fails (collapses)
in a sequence (marked as red in Table 2) due to the fragile
sparse reconstruction. As for test-time training, our method
attains the lowest depth and pose errors in overall. We handle
depth prior properly with the learnable networks to facilitate
pose learning. Thus, our approach shows better pose estima-
tion on most sequences compared with CVD2, which accu-
mulates more pose errors for long sequences. Our GCVD
can refine the long pose estimation for maintaining global
consistency. On the other hand, we find the weak pose per-
formance of some sequences affected by the unreliable pre-
computed optical flow, which will be discussed in the limi-
tations of our approach in the appendix.

Besides, we compare the geometric consistency by visu-
alizing the alignment of point clouds from different views.
The two distant frames viewing the common scenes are
back-projected the 3D point clouds. Hence, the geometric

inconsistency can be seen by the misalignment between the
two point clouds in the co-visible area. As shown in Fig. 6,
Deep3D and ours show similar point cloud alignments to the
groundtruth’s because both approaches have the depth fine-
tuning mechanisms. Nevertheless, the accumulated depth
bias leads CVD2 to yield poor pose estimation and large
misalignment between the views.

Ablation studies
We conduct ablation studies on 7-Scenes dataset (Shotton
et al. 2013) in Table 3. For the depth component, the in-
serted layer normalization stabilizes the depth scale of Mi-
DaS (Ranftl et al. 2020) network and hence facilitates the
depth and pose performance by 35% and 40%, respectively.
The flexible deformation (Kopf, Rong, and Huang 2021)
regulates the spatial misalignments of each depth to improve
depth estimation by 4%. Besides, the depth gradient loss re-
tains the initial depth priors during refining the depth bias.
The well-handled depth prior can encourage a better joint
optimization, thus reducing the pose errors by 15% (0.327
to 0.277). Moreover, the method without the keyframe strat-
egy raises 11% pose error (0.277 to 0.308) due to the lack of
proper camera baselines for initial optimization. Finally, the
pose graph optimization for global consistency further cuts
down the pose error by 10% (0.277 to 0.249).



Ablation settings Errors ↓

KF layer mesh grad.
PGO

Depth Pose

norm deform. loss AbsRel ATE
X 0.208 0.555
X X 0.137 0.332
X X X 0.132 0.327
X X X X 0.125 0.277

X X X 0.127 0.308
X X X X X 0.124 0.249

Table 3: Ablation studies on 7-Scenes (Shotton et al.
2013). We validate the effectiveness of the keyframe strat-
egy (KF), the added layer normalization and mesh deforma-
tion in the depth component, depth gradient loss, and pose
graph optimization (PGO) in our pipeline.

# frames 50 200 500 1000 2000
CVD2 13.90 14.83 17.34 21.73 26.13
Deep3D 4.13 3.03 2.75 2.66 2.61
GCVD 2.40 2.53 2.74 2.83 3.04

Table 4: Runtime comparison. We compute the per-frame
runtime (sec) in different lengths of videos. Our method
shows the fastest speed in short videos and achieves a good
trade-off between efficiency and global consistency com-
pared with Deep3D.

Runtime comparisons
We compare the runtime of our GCVD with the test-time-
training methods. We select five long videos and extract the
first n frames of the videos to compose different lengths of
sequences for runtime evaluation. The execution times of
the videos are measured on an i7-11700K with a RTX3090
GPU. We present the averaged per-frame time in Table 4.
Note that we do not compare with COLMAP which requires
extremely expensive time (e.g., ∼56 secs for each frame on
a 2000-frame video). CVD2 shows about 6 to 9 times slower
than our method due to the preparation of multiple pairs of
optical flow and the traditional optimizer with CPU. Deep3D
provides strong efficiency in long videos; however, it tends
to yield drifts and collapse in depth estimation. In con-
trast, our method performs fastest in short videos by learn-
ing few keyframes first then optimizing the non-keyframes
with fewer iterations. For long videos, our GCVD is slightly
slower than Deep3D due to keyframe association on more
keyframes for global consistency.

Conclusion
We present GCVD, a learning-based method for video depth
and pose estimation with global consistency and efficiency.
To our knowledge, this is the first study tackling global con-
sistency for test-time training. Based on the global poses of
keyframes from the pose-only bundle adjustment, the deep
networks jointly learn keyframe depth refinement and the
depth and pose of the remaining frames efficiently. In ad-
dition, our proposed method can better handle single depth
prior properly and fine-tune the depth network to alleviate
depth bias and achieve robust and consistent 3D estima-

tion. Experimental results show that GCVD outperforms the
state-of-the-art approaches on both depth and pose evalua-
tion. Moreover, GCVD achieves high efficiency by keeping
the scene knowledge in network weights to boost the op-
timization of next fragment of frames. We will release our
codes to public. In contrast to COLMAP that uses traditional
techniques, our GCVD is a fundamental deep-learning tool
for the offline-video SfM.



Appendix
We present GCVD, a test-time training method for video-
based 3D estimation based on offline videos. There are still
few test-time training studies for video-based SfM. Exist-
ing approaches are, however, robust to only local consis-
tency for video depth estimation. Our approach is the first
global-consistency solution to this direction. It needs only
light-weight pose-only bundle adjustment as initial, and then
takes advantage of neural-networks learning for global op-
timization of poses and depths simultaneously. Our GCVD
can serve as a generally useful tool for offline video-based
SfM (like the renowned tool COLMAP using traditional ap-
proach), where it can provide dense 3D estimations instead
of fragile or sparse 3D outputs for challenging conditions
such as homogeneous areas and motion blurs. Compared
to the representative test-time-training approaches (such as
CVD2 (Kopf, Rong, and Huang 2021)), our approach can
handle long videos at reasonable runtime. Unlike the ap-
proach of (Kopf, Rong, and Huang 2021) that only validates
the performance using 50-frames video clips, we validate
the performance for 500∼3682 frames, which considerably
boosts the validation to practically useful situations.

In this appendix, we present additional details to com-
plement our main paper, including implementation details,
comparisons with the state-of-the-art SLAM approaches,
evaluation on EuRoC dataset (Burri et al. 2016), runtime
analysis, and limitations of our GCVD.

Implementation Detail
Keyframe-based pose graph optimization. We perform
pose graph optimization with g2o (Kümmerle et al. 2011)
for globally consistent pose estimation. The edges of the
pose graph include sequential and non-sequential edges.
Each sequential edge ei,i±τ , τ ∈ {1, 2, 4, 8} of the pose
graph connects the keyframe pair (κi, κi±τ ) with the relative
pose P−1

κi
Pκi±τ and the weight matrix diag( 1

τ ) to ensure
temporal coherence in a local range. The sequential edges
contain relatively nearby views determined by the optical-
flows. However, in addition to the sequential edges, there
could be farther views which share co-visible scenes. Hence,
we also establish the non-sequential edges via keyframe as-
sociation, which connects the keyframe pairs with the in-
dex differences exceeding α = max(τ) but sharing a co-
visible scene to enhance global consistency. Similarly, the
non-sequential co-visible edges are constructed with the op-
timized relative poses and identity weight matrices. The
pose graph optimization is conducted with at most 100 it-
erations to obtain global pose estimation Pκ1..k

. Afterward,
the depth and pose of the remaining frames and the depth
of keyframes are estimated simultaneously with the frozen
keyframe poses to maintain global consistency. Figure 7
demonstrates the effectiveness of the pose graph optimiza-
tion for achieving the global consistency.
Detail of joint depth and pose optimization. The test-
time optimization framework is implemented in PyTorh with
Adam (with β1 = 0.9, β2 = 0.999). The learning rates for
sequential keyframes, non-sequential keyframes, and non-
keyframes are 2×10−4, 5×10−5, and 1×10−4, respectively.

Figure 7: Visualization of global consistency. Our method
reduces 18% pose error by using pose graph optimization
(PGO) on the sequence fr3 nstr tex near loop in
TUM RGB-D dataset (Sturm et al. 2012).

To speed up the optimization, we compute the loss with a
quarter scale of depth estimation in the keyframe optimiza-
tion. Thus, the depth of keyframes will be further refined in
the non-keyframe optimization with original scale (i.e., 384
for the longer side of the frame).
Post-processing. We follow the flow-guided depth filter pro-
posed in CVD2 (Kopf, Rong, and Huang 2021) to further
enhance the temporal consistency of edge details in depth
maps. The final filtered depth D̃t acquires the depth details
from neighboring depthsDt−Ω..t+Ω (Ω = 4) with the chain-
ing optical flow F̃ .

D̃t =

t+Ω∑
i=t−Ω

ωi→tDi→t, (7)

where Di→t is the projected depth of It by transforming Di

with Pt, Pi and the chaining flow F̃i→t to align the pixel co-
ordinate. The maximum span Ω is set as 4 by default, and the
weight term ωi→t considers both the depth reprojection error
and the forward-backward inconsistent error of the chaining
flow as follows:

ωi→t = exp

(
−γ1

max(Dt, Di→t)

min(Dt, Di→t)
− γ2F̃

diff
i→t

)
, (8)

where F̃ diffi→t denotes the forward-backward inconsistency
between the chaining flow F̃i→t and F̃t→i. The γ1 = 2 and
γ2 = 0.1 balance the strength of the temporal depth filter. In
the end, the final consistent depth D̃1..N and pose P1..N of
the entire video I1..N is accomplished.

Comparison with SOTA learning-based SLAMs
Although the SLAM approach reconstructs depth and pose
from online (streaming) videos, which is different from
our problem setting of video SfM for offline videos, we
compare with the state-of-the-art supervised SLAMs (Teed
and Deng 2019, 2021) which tackle global consistency.
DeepV2D (Teed and Deng 2019) performs global pose op-
timization with a tracking window of eight frames. DROID-
SLAM (Teed and Deng 2021) utilizes dense and full bundle
adjustment to achieve global consistency. Table 5 presents
the quantitative comparison on 7-Scenes (Shotton et al.
2013) and TUM RGBD (Sturm et al. 2012) datasets. Though
DROID-SLAM achieves a superior score on the pose met-
ric of Absolute Trajectory Error (ATE) on TUM RGBD,
it shows the deficiency on the other pose metric, Relative



Table 5: Comparison with learning-based SLAMs on 7-Scenes (Shotton et al. 2013) and TUM RGBD dataset (Sturm
et al. 2012).

Dataset Method
Depth Metrics Pose Metrics

AbsRel↓ SqRel↓ RMSE↓
δ < ATE RPE Trans RPE Rot

1.25 ↑ (m)↓ (m) ↓ (deg) ↓

7-Scenes
DeepV2D (Teed and Deng 2019) 0.162 0.092 0.380 0.767 0.471 1.018 60.979
DROID-SLAM (Teed and Deng 2021) 0.209 0.132 0.462 0.665 0.463 0.928 40.143
Ours 0.124 0.054 0.307 0.858 0.249 0.257 8.155

TUM
RGBD

DeepV2D (Teed and Deng 2019) 0.166 0.153 0.648 0.745 0.460 1.360 60.479
DROID-SLAM (Teed and Deng 2021) 0.214 0.211 0.778 0.639 0.013 1.327 50.794
Ours 0.109 0.077 0.461 0.858 0.313 0.277 15.919

Pose Error (RPE), which is used for measuring the drift.
Both DeepV2D and DROID-SLAM are supervised meth-
ods trained on other datasets with groudtruth depth or pose.
They suffer from generalization ability due to domain dis-
crepancy and thus result in weak results on 7-Scenes dataset.
In contrast, our test-time training approach directly learns on
the input test video to address the generalization issue and
achieves the best scores on 7-Scenes.

Comparison with ORB-SLAM2 (Mur-Artal,
Montiel, and Tardos 2015)

We also compare GCVD with the traditional state-of-the-
art SLAM approach ORB-SLAM2 (Mur-Artal, Montiel, and
Tardos 2015), which performs loop closure to retain glob-
ally consistent poses and 3D map. Table 6 shows the pose
comparisons with traditional COLMAP (Schonberger and
Frahm 2016) and ORB-SLAM2 (Mur-Artal, Montiel, and
Tardos 2015) on TUM RGBD dataset (Sturm et al. 2012). In
general, ORB-SLAM2 shows the most accurate pose results
with sparse hand-crafted features. Nonetheless, the sparse
3D reconstruction cannot provide complete dense depth for
various video processing applications. Moreover, COLMAP
and ORB-SLAM2 suffer from the robustness issues of the
fragile hand-crafted features. They failed on reconstruction/-
tracking on one and two sequences as shown in Table 6, re-
spectively. On the other hand, the test-time training-based
approach can overcome the robustness issue and provide
dense depths with dense flow. Note that our GCVD shows
promising pose results close to COLMAP’s on average (ex-
cluding the failed sequences). Our GCVD thus provides a
fundamental video SfM tool on dense depth reconstruction
for video processing applications.

Evaluation on EuRoC (Burri et al. 2016)

The challenging EuRoC dataset (Burri et al. 2016) consists
of 11 gray-scale sequences from a stereo camera mounted
on a micro aerial vehicle in relatively large indoor environ-
ments. The groundtruth camera poses are captured by a laser
tracker and motion capture system. We present the absolute
trajectory error (ATE) of each sequence in Table 7 and the
qualitative comparison of depth estimation in Figure 8. Our
method shows the lowest pose error in average. Besides, our
GCVD and CVD2 maintain the depth prior of MiDaS while
Deep3D produces sub-optimal depth or collapse.

Figure 8: Depth visualization on EuRoC dataset (Burri
et al. 2016). CVD2 (Kopf, Rong, and Huang 2021) and our
method show plausible depths while Deep3D (Lee et al.
2021) tends to collapse with training from ImageNet pre-
trained weights.

Runtime Analysis
We analyze the runtime of each stage in our algorithm
in detail. The pipeline is divided into three main steps,
pre-processing, main procedure, and post-processing for
fair comparison with Deep3D (Lee et al. 2021) and
CVD2 (Kopf, Rong, and Huang 2021). The averaged per-
frame runtimes of videos of varying length are presented in
Table 8. Note that Deep3D does not perform post-processing
for video depth and pose estimation.

In the pre-processing step, our method takes fewer time
since we only requires adjacent optical flow. In contrast,
Deep3D and CVD2 requires multiple pairs of optical flow
for a target frame (e.g., Ft±γ→t, γ ∈ {1, 2, 4, 8}) an thus
consumes more time.

In the main procedure for joint depth and pose optimiza-
tion, although Deep3D takes fewer runtime by reducing the
iterations for the optimization of non-first fragments, it may
lead to sub-optimal results and yield global inconsistency.
On the other hand, CVD2 consumes extremely long time
due to the traditional optimization with CPU. The per-frame
runtime of our main procedure slightly increase with the
longer length of videos mainly due to the geometric verifica-
tion in keyframe association and increasing non-sequential
edges for pose graph optimization. Nevertheless, we em-
phasize the global consistency, especially in long videos.
In the last post-processing step, we re-implement the post-
processing proposed by CVD2 with GPU to shorten the
computational time.

In sum, the proposed method shows strong efficiency
by using keyframe-based pose graph and optimization. Our



Table 6: Comparison of Absolute Trajectory Error (ATE) with traditional COLMAP (Schonberger and Frahm 2016)
and ORB-SLAM2 (Mur-Artal, Montiel, and Tardos 2015) on TUM RGBD dataset (Sturm et al. 2012). We only show
the pose results since both COLMAP and ORB-SLAM2 perform 3D reconstruction with sparse point clouds instead of
dense depths.

COLMAP ORB- Deep3D CVD2 OurSequence SLAM2 GCVD
fr1 desk 0.019 0.013 0.580 0.273 0.229
fr1 desk2 0.027 failed 0.611 0.314 0.156
fr2 desk 0.818 0.009 0.260 0.613 0.422
fr3 cabinet failed failed 1.225 0.444 0.850
fr3 nstr tex near loop 0.015 0.010 0.694 0.491 0.399
fr3 sitting static 0.033 0.023 0.006 0.029 0.006
fr3 str tex far 0.008 0.009 0.089 0.169 0.131
Mean
(exclude fr1 desk2,fr3 cabinet) 0.179 0.013 0.326 0.315 0.237

Table 7: Pose evaluation on EuRoC dataset (Burri et al. 2016). The per-sequence absolute trajectory errors (ATE) are reported
in meters.

Sequence MH MH MH MH MH V1 V1 V1 V2 V2 V2 Mean01 02 03 04 05 01 02 03 01 02 03
Deep3D 3.24 3.82 2.82 4.26 5.06 1.53 1.57 1.32 1.97 1.87 1.73 2.65
CVD2 1.48 1.32 2.63 4.20 4.31 0.94 1.63 1.19 1.43 1.56 1.74 2.04
Our GCVD 1.33 1.72 1.99 3.78 4.59 1.11 1.07 1.33 0.96 1.88 1.46 1.93

globally-consistent method is slightly slower than Deep3D
for the videos which is greater than 500 frames, yet is able
to perform the fastest for the video less than 500 frames.

Limitations
Our method can achieve globally consistent depth and pose
estimation with efficient test-time training. Nevertheless, we
discuss the following cases that may introduce poor perfor-
mance.
Restriction by optical flow estimation. Although the dense
optical flow estimation can improve the robustness of tradi-
tional sparse features, the performance of depth and pose
substantially relies on the accurate optical flow. Yet, the
state-of-the-art optical flow estimation could still suffer
from the generalization issues and thus produce un-satisfied
flow estimation in some cases. Furthermore, the forward-
backward consistency check is helpful but still cannot fully
guarantee the accuracy of optical flow. Hence, how to further
improve the dense optical flow estimation remains a promis-
ing future direction.
Learnable camera intrinsic parameters. In this work, we
assume an ideal camera intrinsic with fixed focal length to
simplify the learning of scale consistency in depth and cam-
era pose. It is still challenging on handing the videos with
varying focal lengths for global consistency. Thus, we put
the reconstruction of varying focal length in our future di-
rections.



per-frame runtime on a 50-frame video
Pre- Main Post- Sumprocess. procedure process.

Deep3D 1.85 2.27 - 4.13
CVD2 1.73 7.08 5.09 13.90

Ours

0.97 1.40

0.04 2.40per-frame KF KF KF association+ non-KF
pre-process. decision optim. pose graph optim. optim.

0.78 0.19 0.33 0.01 1.05

per-frame runtime on a 200-frame video
Pre- Main Post- Sumprocess. procedure process.

Deep3D 1.88 1.14 - 4.13
CVD2 1.61 8.15 5.07 14.83

Ours

0.97 1.53

0.03 2.53per-frame KF KF KF association+ non-KF
pre-process. decision optim. pose graph optim. optim.

0.67 0.30 0.29 0.11 1.12

per-frame runtime on a 500-frame video
Pre- Main Post- Sumprocess. procedure process.

Deep3D 1.90 0.85 - 2.75
CVD2 1.60 10.69 5.05 17.34

Ours

1.00 1.71

0.03 2.74per-frame KF KF KF association+ non-KF
pre-process. decision optim. pose graph optim. optim.

0.64 0.36 0.35 0.11 1.25

per-frame runtime on a 1000-frame video
Pre- Main Post- Sumprocess. procedure process.

Deep3D 1.91 0.75 - 2.66
CVD2 1.59 15.07 5.07 21.73

Ours

1.03 1.77

0.03 2.83per-frame KF KF KF association+ non-KF
pre-process. decision optim. pose graph optim. optim.

0.64 0.39 0.37 0.13 1.28

per-frame runtime on a 2000-frame video
Pre- Main Post- Sumprocess. procedure process.

Deep3D 1.90 0.70 - 2.61
CVD2 1.60 19.44 5.09 26.13

Ours

1.04 1.96

0.03 3.04per-frame KF KF KF association+ non-KF
pre-process. decision optim. pose graph optim. optim.

0.63 0.41 0.39 0.25 1.31

Table 8: Runtime comparisons broken down by three main steps. The per-frame runtime are reported in seconds. (KF =
keyframe)
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