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Fig. 1. From an input fractured shape, DeepJoin estimates latent codes for a complete shape and break surface using occupancy (Occ), signed distance function
(SDF), and normal field (NF) samples, and predicts a restoration shape to repair the input fractured shape using the estimated latent codes.

We introduce DeepJoin, an automated approach to generate high-resolution
repairs for fractured shapes using deep neural networks. Existing approaches
to perform automated shape repair operate exclusively on symmetric objects,
require a complete proxy shape, or predict restoration shapes using low-
resolution voxels which are too coarse for physical repair. We generate a
high-resolution restoration shape by inferring a corresponding complete
shape and a break surface from an input fractured shape. We present a
novel implicit shape representation for fractured shape repair that combines
the occupancy function, signed distance function, and normal field. We
demonstrate repairs using our approach for synthetically fractured objects
from ShapeNet, 3D scans from the Google Scanned Objects dataset, objects
in the style of ancient Greek pottery from the QP Cultural Heritage dataset,
and real fractured objects. We outperform three baseline approaches in terms
of chamfer distance and normal consistency. Unlike existing approaches
and restorations using subtraction, DeepJoin restorations do not exhibit
surface artifacts and join closely to the fractured region of the fractured
shape. Our code is available at: https://github.com/Terascale-All-sensing-
Research-Studio/DeepJoin.
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1 INTRODUCTION
Household objects often undergo damage, e.g. denting, part loss,
weathering, or fracturing. Fractured objects may be reassembled
if all of their parts can be found. However, in some cases parts are
destroyed during the fracture, e.g. the sugar jar in Figure 2(a), pre-
venting reassembly of the object. Other damage, such as weathering,
cannot be repaired using reassembly. Instead the object must be
rebuilt using other materials. Users are likely to want to repair an
object if the object has some sentimental or functional value. Repair
is also necessary if the object is no longer manufactured. With the
proliferation of 3D printing, the field of computational fabrication
is ideally positioned to enable the repair of damaged objects by
generating 3D printable repair parts.
Existing approaches that repair a single damaged object [Antlej

et al. 2011; Rengier et al. 2010; Schilling et al. 2014; Scopigno et al.
2011; Seixas et al. 2018] require modeling a repair part by hand
using 3D design tools. While users may attempt to manually repair
an object if the process is straightforward, repairing large or com-
plex fractures, e.g. the cup in Figure 2(a), is outside the scope of an
average user. Most automated repair approaches, e.g. for aerospace
components [Gao et al. 2008; Zheng et al. 2006] and medical im-
plants [Harrysson et al. 2007; Witek et al. 2016], are domain-specific
and unlikely to generalize. Other automated approaches require
fractures to be symmetric to existing object parts [Gregor et al. 2014;
Papaioannou et al. 2017], or need to be fed a complete 3D proxy
object [Lamb et al. 2019]. Though 3D-ORGAN [Hermoza and Sipiran
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Fig. 2. (a) A fractured mug and a fractured jar with a destroyed part. (b) A
complete, partial, and fractured shape.

2018] operates directly on fractured objects without geometric con-
straints, it encodes objects in low-resolution voxel space, producing
restorations that are too coarse for physical repair.
We present DeepJoin, an approach rooted in deep learning that

infers a restoration shape from an input fractured shape by decon-
structing the fractured shape into a corresponding complete shape
and break surface, shown in Figure 1. Our approach is related to
approaches that input a partial shape and perform shape completion
by inferring a latent code to fit the partial shape observation [Chen
and Zhang 2019; Duggal et al. 2022; Hao et al. 2020; Park et al. 2019;
Sitzmann et al. 2020; Tretschk et al. 2020; Yan et al. 2022a; Zheng
et al. 2021]. However, different from approaches that perform par-
tial shape completion, our approach addresses the challenge that,
unlike a partial shape that is a strict subset of the complete shape,
as shown in Figure 2(b), a fractured shape includes novel geometry
at the fractured region that is not present in the complete shape.

To enable shape repair, our first contribution is a novel shape rep-
resentation using a joint function that predicts three features—the
occupancy function, the signed distance function (SDF), and the
normal field. We find that when representing fractured shapes exclu-
sively using the SDF, the most common implicit shape representa-
tion, deep networks struggle to accurately deconstruct the fractured
shape into a complete shape and break surface. Our approach learns
the occupancy function jointly with the SDF and partitions the
fractured shape using the break occupancy, effectively treating esti-
mation of the complete shape and break surface SDF as two partial
completion tasks. The normal field (NF) represents surface normals
for a shape. Our work uses the NF to capture the difference in sur-
face properties between fractured and intact regions, in objects of
materials such as ceramic or earthenware. Our second contribu-
tion is a set of loss functions for learning a representation of the
complete shape and break surface using neural networks. Our third
contribution is to use operations for constructive solid geometry
(CSG) in occupancy and SDF space to formalize the dependence
of fractured and restoration shapes on complete shapes and break
surfaces in occupancy, SDF, and NF space. To generate a restoration
mesh, we perform optimization over a fractured shape to obtain
complete and break codes, predict the restoration SDF from the
codes, and extract a mesh as the 0-level set.

As no dataset of real fractured shapes currently exists, we synthet-
ically fracture 24,208 meshes from the ShapeNet [Chang et al. 2015]
dataset and use them to validate our approach. We compare our
approach to 3 baselines using existing shape completion approaches,
i.e. DeepSDF [Park et al. 2019], ONet [Mescheder et al. 2019], and

ESSC [Zhang et al. 2018]. To demonstrate generalizability to cultural
heritage objects and real 3D scans, we synthetically fracture and re-
pair objects from the QP Cultural Heritage dataset [Koutsoudis et al.
2009] and the Google Scanned Objects dataset [GoogleResearch
2022]. We also show restorations for physically fractured objects.

2 RELATED WORK
Fractured Shape Restoration.Most existing approaches require a user
to generate a repair part manually [Antlej et al. 2011; Rengier et al.
2010; Schilling et al. 2014; Scopigno et al. 2011; Seixas et al. 2018],
which is out of the scope of the average user. Some approaches repair
symmetric objects using reflection followed by subtraction [Gre-
gor et al. 2014; Papaioannou et al. 2017]. These approaches cannot
repair asymmetrical objects or objects that have undergone symmet-
ric damage. The approach of Lamb et al. [2019] requires a ground
truth complete proxy shape as input, which may be unobtainable
e.g. in the case of a rare or specialized object. 3D-ORGAN [Her-
moza and Sipiran 2018] performs shape completion from a fractured
shape without requiring the shape to be symmetric. However, as
3D-ORGAN encodes shapes as 323 resolution voxels, their restora-
tions cannot accurately represent the fractured surface and cannot
be closely joined to the fractured shape. DeepJoin infers a restora-
tion shape directly without geometric constraints, and generates
high-resolution restorations that fit closely to the fractured shape.

Partial Shape Completion. Though not directly related to our work,
a large body of prior work has focused on performing shape com-
pletion from partial inputs using deep neural networks. Many ap-
proaches use point clouds [Achlioptas et al. 2018; Dai et al. 2017;
Han et al. 2017; Liu et al. 2020; Pan et al. 2021; Sarmad et al. 2019;
Son and Kim 2020; Yuan et al. 2018] due to their compactness. How-
ever, point clouds cannot intrinsically represent closed surfaces,
which are necessary to generate repair parts that may be 3D printed.
Approaches that predict meshes directly [Groueix et al. 2018; Yu
et al. 2022] struggle to reconstruct complex shapes [Mescheder et al.
2019], and cannot represent shapes of arbitrary topology. Voxel-
based approaches [Brock et al. 2016; Sharma et al. 2016; Smith and
Meger 2017; Wu et al. 2016; Zhang et al. 2018], become computa-
tionally intractable at high resolutions. Though approaches have
reduced the memory footprint of voxels using hierarchical mod-
els [Dai et al. 2020, 2018] and sparse convolutions [Dai et al. 2020; Yi
et al. 2021], these approaches discretize the output space, rendering
them incapable of representing high frequency geometry.

Many recent shape completion approaches encode shapes implic-
itly using the signed distance function (SDF) [Chabra et al. 2020;
Duggal et al. 2022; Hao et al. 2020; Lin et al. 2020; Ma et al. 2020; Park
et al. 2019; Sitzmann et al. 2020; Tretschk et al. 2020; Xu et al. 2020;
Yang et al. 2021; Zheng et al. 2021], the occupancy function [Chen
and Zhang 2019; Chibane et al. 2020a; Genova et al. 2020; Jia and
Kyan 2020; Liao et al. 2018; Lionar et al. 2021; Mescheder et al. 2019;
Peng et al. 2020; Poursaeed et al. 2020; Sulzer et al. 2022; Yan et al.
2022b,a], or the unsigned distance function [Chibane et al. 2020b;
Tang et al. 2021; Venkatesh et al. 2020]. DeepSDF [Park et al. 2019]
introduced an autodecoder architecture that uses maximum a poste-
riori estimation to perform shape completion by estimating a latent
code to fit a set of SDF samples. Approaches have extended the
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Fig. 3. We express the fractured shape 𝐹 and the restoration shape 𝑅 as
the intersection of the complete shape𝐶 with the break shape 𝐵 and break
shape complement 𝐵′ respectively. 𝐵 is separated from 𝐵′ by the break
surface (blue). The fracture surface (green) is the surface shared by 𝐵 and 𝐹 .

autodecoder architecture by incorporating meta-learning [Sitzmann
et al. 2020], encoding shapes at multiple resolutions [Hao et al.
2020], and proposing incremental loss functions [Duan et al. 2020].
Venkatesh et al. [2020] propose a joint shape function using the
unsigned distance and NF, and do not learn the occupancy function.
We demonstrate that excluding the occupancy function results in
inaccurate restoration shapes with a high chamfer distance.
One could imagine an approach that identifies and removes the

fractured region of the fractured shape to create a partial shape,
applies a shape completion approach, and performs subtraction of
the fractured shape from the complete shape to obtain a restora-
tion shape. As we demonstrate in Section 7.2, approaches based on
subtraction produce artifacts on the surface of the fractured shape.
Attempts to remove artifacts by discarding components that have a
volume less than a threshold cannot eliminate connected artifacts.
Our approach automatically generates restoration shapes that join
closely to the fractured shape without producing artifacts.

3 REPRESENTING FRACTURED SHAPES
We represent complete, fractured, and restoration shapes as point
sets𝐶 , 𝐹 , and 𝑅 respectively. For a given shape 𝑆 ∈ {𝐶, 𝐹, 𝑅}, we rep-
resent the occupancy of a point x as 𝑜𝑆 (x) ∈ {0, 1}, where 𝑜𝑆 (x) = 1
if x is inside 𝑆 and 0 if x is outside or on the boundary of 𝑆 . We
exclude the boundary of 𝑆 to prevent a point from being inside
multiple shapes simultaneously, e.g. inside 𝐹 and 𝑅. We define the
break surface, shown in Figure 3 in blue, as a 2D surface that inter-
sects 𝐹 at the fractured region. As shown in Figure 3, we define the
break shape, 𝐵, as the set of points on the same side of the break
surface as the fractured shape. Theoretically the break shape 𝐵 has
an infinite size. In practice, we limit the break shape to a occupy
a unit cube. We define the fractured surface, shown in Figure 3 in
green, as the surface shared by the fractured shape and the break
surface. We express the fractured shape as the intersection of the
complete shape and the break shape, i.e. 𝐹 = 𝐶 ∩ 𝐵. Similarly, we
express the restoration shape as the intersection of the complete
shape and the complement of the break shape, i.e. 𝑅 = 𝐶 ∩ 𝐵′.

For a shape 𝑆 ∈ {𝐶, 𝐹, 𝑅}, we define the SDF value of a point x
as 𝑠𝑆 (x) ∈ R, the signed distance from x to the surface of 𝑆 . The
value of 𝑠𝑆 (x) is negative inside the shape and positive outside. We
define the NF value of a point x as n𝑆 (x) ∈ S3, where n𝑆 (x) is the
normal vector of the closest point to x on the surface of 𝑆 , and S3 is
the unit sphere. We define the SDF 𝑠𝐵 (x) and the NF n𝐵 (x) for the
break shape as the signed distance to the fractured surface, shown
in Figure 3 in green, and the normal vector of the closest point to x
on the fractured surface respectively. The value of 𝑠𝐵 (x) is negative
on the fractured side and positive on the restoration side.

The set definitions of 𝐹 and 𝑅 as 𝐹 = 𝐶 ∩ 𝐵 and 𝑅 = 𝐶 ∩ 𝐵′ imply
that the point occupancies 𝑜𝐹 (x) and 𝑜𝑅 (x) for 𝐹 and 𝑅 can be ex-
pressed as a logical conjunction of occupancy in the complete shape,
and occupancy in the break shape and the break shape complement,
i.e. as 𝑜𝐹 (x) = 𝑜𝐶 (x) ∧ 𝑜𝐵 (x) and 𝑜𝑅 (x) = 𝑜𝐶 (x) ∧ ¬𝑜𝐵 (x). The
symbols ∧ and ¬ represent the logical and and not operators. We
relax these logical relationships to work with continuous values
using the product T-norm [Gupta and Qi 1991], as

𝑜𝐹 (x) = 𝑜𝐶 (x)𝑜𝐵 (x) and (1)
𝑜𝑅 (x) = 𝑜𝐶 (x) (1 − 𝑜𝐵 (x)) . (2)

Figure 4 demonstrates the dependency of 𝑜𝐹 (x) and 𝑜𝑅 (x) on 𝑜𝐶 (x)
and 𝑜𝐵 (x) given by Equations (1) and (2). In the figure, 𝑜𝐹 (x) and
𝑜𝑅 (x) can be seen as using the break shape and the inverse break
shape to carve out the complete shape from a CSG perspective.

To compute the SDF value 𝑠𝐹 (x) for the fractured shape from the
SDF values for the complete and break shapes, we express 𝑠𝐹 (x) as

𝑠𝐹 (x) =
{
𝑠𝐵 (x), if 𝑜𝐵 (x) = 0 or 𝑠𝐵 (x) > 𝑠𝐶 (x)
𝑠𝐶 (x), otherwise.

(3)

Visually, Figure 4 demonstrates how the SDF values for 𝑠𝐹 (x) are
obtained from the break shape for points outside the break shape
and close to the break surface, i.e. when 𝑠𝐵 (x) > 𝑠𝐶 (x), following
a CSG perspective in SDF space [Breen et al. 2000], similar to the
perspective for occupancy. We express the SDF value 𝑠𝑅 (x) for the
restoration shape in terms of the complete and break shapes as

𝑠𝑅 (x) =
{
−𝑠𝐵 (x), if 𝑜𝐵 (x) = 1 or − 𝑠𝐵 (x) > 𝑠𝐶 (x)
𝑠𝐶 (x), otherwise.

(4)

We negate values for the break shape in Equation (4) compared to
Equation (3) as the restoration shape is on the opposite side of the
break surface from the fractured shape. Figure 4 illustrates how the
SDF values for 𝑠𝑅 (x) are obtained from the inverted break shape for
points outside the break shape and near the break surface where
the SDF for the break shape is more positive than the complete
shape, i.e. when −𝑠𝐵 (x) > 𝑠𝐶 (x) holds. Computing the SDF for the
fractured and restoration shapes as a function of the occupancy for
the break shape allows our approach to treat the estimation of the
complete and break SDF as two partial shape completion problems,
where the partial shapes are defined by the break occupancy.

Similar to the SDF, the NF value at a point x for a shape 𝑆 is
given by the closest point on the surface of 𝑆 to x. We use the same
approach as in Equations (3) and (4) to define the fractured NF n𝐹 (x)
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and n𝐵 (x) . The restoration shape values, 𝑠𝑅 (x) and n𝑅 (x) , are the opposite of the break shape for points inside and near the surface of the break shape.
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Fig. 5. Networks 𝑓 𝐶 and 𝑓 𝐵 predict the occupancy, SDF, and NF values for
𝐶 and 𝐵 given an input point x and latent codes z𝐶 and z𝐵 . We compute
the occupancy, SDF, and NF values for 𝐹 and 𝑅 from the values for𝐶 and 𝐵.

and restoration NF n𝑅 (x) in terms of 𝐶 and 𝐵, as

n𝐹 (x) =
{
n𝐵 (x), if 𝑜𝐵 (x) = 0 or 𝑠𝐵 (x) > 𝑠𝐶 (x)
n𝐶 (x), otherwise, and

(5)

n𝑅 (x) =
{
−n𝐵 (x), if 𝑜𝐵 (x) = 1 or − 𝑠𝐵 (x) > 𝑠𝐶 (x)
n𝐶 (x), otherwise.

(6)

We negate the NF for the break shape in the definition of n𝑅 (x) in
Equation (6), as normals on the restoration shape at the fracture are
oriented in the opposite direction of normals on the break surface.
Figure 4 shows that the normals for the fractured and break shape
are the same outside of the break shape and near the break surface,
i.e. where 𝑠𝐵 (x) > 𝑠𝐶 (x) holds. Normals for the restoration shape
are also the opposite of the break shape inside the break and near
the break surface, i.e. where −𝑠𝐵 (x) > 𝑠𝐶 (x) holds.

We represent the joint occupancy, SDF, and NF function 𝑓 𝑆 for a
shape 𝑆 ∈ {𝐶, 𝐵} using a neural network based on the autodecoder
architecture of DeepSDF [Park et al. 2019] as shown in Figure 5.
We condition the autodecoder for S by associating S with a latent
code z𝑆 ∈ R𝑝 fed as input to the network, where 𝑝 is the size of
the code. We use 𝑝 = 128 and 64 for the complete and break shapes
respectively. We use 𝑓 𝑆𝑜 (z𝑆 , x), 𝑓 𝑆𝑠 (z𝑆 , x), and 𝑓 𝑆n (z𝑆 , x) to refer to
the occupancy, SDF, and NF values predicted at point x.

4 NETWORK OPTIMIZATION
To train our networks, we use a dataset of sample shapes where
each sample is a tuple {𝐶, 𝐹, 𝑅, 𝐵} corresponding to a complete,
fractured, restoration, and break shape. We perform optimization
over the network parameters, and over the complete and break
shape codes. For a shape 𝑆 , we use the notation 𝑜𝑆 (x), 𝑠𝑆 (x), and
n𝑆 (x) to represent the ground truth values for occupancy, the SDF,
and NF respectively. During training, we optimize the loss

Ltrain =
∑
z𝐶 ∈Z𝐶 ,z𝐵 ∈Z𝐵

+L𝐶𝐵 + L𝐹 + L𝑅 + _regLreg, (7)

whereZ𝐶 andZ𝐵 are the sets of complete and break shape latent
codes. We define the loss L𝐶𝐵 for the complete and break shapes as

L𝐶𝐵 =
1
|X|

∑
𝑆 ∈{𝐶,𝐵 }

∑
x∈X

(
𝐵𝐶𝐸 (𝑓 𝑆𝑜 (z𝑆 , x), 𝑜𝑆 (x))+

_s | |𝑓 𝑆𝑠 (z𝑆 , x) − 𝑠𝑆 (x) | |1 + _n | |𝑓 𝑆n (z𝑆 , x) − n𝑆 (x) | |2
)
, (8)

where 𝐵𝐶𝐸 is the binary cross-entropy loss andX is a set of probing
sample points. We define the fractured shape loss L𝐹 as

L𝐹 =
1
|X|

∑
x∈X

(
𝐵𝐶𝐸

(
𝑓𝐶𝑜 (z𝐶 , x) 𝑓 𝐵𝑜 (z𝐵, x), 𝑜𝐹 (x)

)
+

_sL𝐹𝑠 + _nL𝐹n

)
. (9)

The first argument to 𝐵𝐶𝐸, corresponds to the definition for frac-
tured occupancy from Equation (1). We represent the reconstruction
error for the fractured shape SDF L𝐹𝑠 , as

L𝐹𝑠 =


| |𝑓 𝐵𝑠 (z𝐵, x) − 𝑠𝐹 (x) | |1 if 𝑓 𝐵𝑜 (z𝐵, x) ≤ ` or

𝑓 𝐵𝑠 (z𝐵, x) > 𝑓𝐶𝑠 (z𝐶 , x),
| |𝑓𝐶𝑠 (z𝐶 , x) − 𝑠𝐹 (x) | |1 otherwise,

(10)

and the reconstruction error for the fractured shape NF L𝐹𝑛 , as

L𝐹n =


| |𝑓 𝐵n (z𝐵, x) − n𝐹 (x) | |2 if 𝑓 𝐵𝑜 (z𝐵, x) ≤ ` or

𝑓 𝐵𝑠 (z𝐵, x) > 𝑓𝐶𝑠 (z𝐶 , x),
| |𝑓𝐶n (z𝐶 , x) − n𝐹 (x) | |2 otherwise.

(11)

Equations (10) and (11) use the definitions for the fractured shape
SDF and NF given in Equations (3) and (5). We use ` = 0.5 as a
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threshold to determine if a point is inside the predicted break shape.
L𝑅 , the loss for the restoration shape, is given as

L𝑅 =
1
|X|

(∑
x∈X𝐵𝐶𝐸

(
𝑓𝐶𝑜 (z𝐶 , x) (1 − 𝑓 𝐵𝑜 (z𝐵, x)), 𝑜𝑅 (x)

)
+

_sL𝑅𝑠 + _nL𝑅n

)
. (12)

The first argument to 𝐵𝐶𝐸 in Equation (12) corresponds to the defi-
nition for restoration shape occupancy given in Equation (2). We
give the restoration SDF reconstruction error L𝑅𝑠 as

L𝑅𝑠 =


| | − 𝑓 𝐵𝑠 (z𝐵, x) − 𝑠𝑅 (x) | |1 if 𝑓 𝐵𝑜 (z𝐵, x) > ` or

−𝑓 𝐵𝑠 (z𝐵, x) > 𝑓𝐶𝑠 (z𝐶 , x),
| |𝑓𝐶𝑠 (z𝐶 , x) − 𝑠𝑅 (x) | |1 otherwise,

(13)

and the error for the restoration shape NF L𝑅𝑛 as

L𝑅n =


| | − 𝑓 𝐵n (z𝐵, x) − n𝑅 (x) | |2 if 𝑓 𝐵𝑜 (z𝐵, x) > ` or

−𝑓 𝐵𝑠 (z𝐵, x) > 𝑓𝐶𝑠 (z𝐶 , x),
| |𝑓𝐶n (z𝐶 , x) − n𝑅 (x) | |2 otherwise,

(14)

which use the definitions for the restoration shape SDF and NF
from Equations (4) and (6). We negate the SDF and NF value for the
predicted break shape in Equations (13) and (14) as the restoration
lies on the opposite side of the break surface from the fractured
shape. We define the regularization Lreg loss as

Lreg = | |z𝐵 | |1 + ||z𝐶 | |1 . (15)

Lreg imposes a zero-mean Laplacian prior on the complete and
break codes. We use _𝑠 = 1.0, _n = 1𝑒 − 1, and _reg = 1𝑒 − 4, i.e. the
coefficients for the SDF, NF, and regularization losses respectively.
We use the Adam optimizer [Kingma and Ba 2014].

5 INFERRING RESTORATION SHAPES
At inference time our approach generates a restoration shape for a
novel fractured shape by performing optimization over occupancy,
SDF, and NF samples from the fractured shape to obtain complete
and break shape codes. We use the codes to predict the SDF value
for the restoration shape. During inference we optimize the loss

Linf = L𝐹 + _regLreg, (16)

We find that the surface for the break shape estimated in occupancy
space may deviate slightly from the surface in SDF space, causing ar-
tifacts if Equation (4) is used to reconstruct the restoration mesh. To
prevent artifacting, when generating the restoration mesh we obtain
SDF values using the CSG equation for Boolean subtraction [Breen
et al. 2000] in SDF space, i.e. 𝑠𝑅 (x) = max(𝑓𝐶𝑠 (z𝐶 , x),−𝑓 𝐵𝑠 (z𝐵, x)),
in place of Equation (4). To obtain a restoration mesh, we perform
Marching Cubes [Lorensen and Cline 1987] on a 2563 grid of points.

6 DATA PROCESSING AND DATASETS
We evaluate our approach on four datasets.

ShapeNet.We use 3 ShapeNet [Chang et al. 2015] classes corre-
sponding to commonly fractured objects, i.e. jars, bottles, and mugs,
and 5 classes with more complex geometry, i.e. airplanes, chairs,
cars, tables, and sofas. We train one network per ShapeNet class.

Google Scanned Objects dataset. The dataset [GoogleResearch
2022] contains 3D scanned meshes of household objects such as
shoes, pots, and plates. We train one network for the entire dataset.

QP Cultural Heritage dataset. The dataset [Koutsoudis et al. 2009]
contains artist designed meshes in the style of Greek pottery. We
use all meshes for testing on a network trained on ShapeNet jars.
Real Fractured Objects. We fracture and scan 3 mugs and use 2

items from Lamb et al. [2019].We test them against networks trained
on synthetically fractured ShapeNet mugs and jars respectively.

As the ShapeNet, Google, andQP datasets do not contain fractured
meshes, we synthetically fracture meshes from these datasets using
the fracturing approach described by Lamb et al. [2021]. To generate
closed meshes we use the approach of Stutz and Geiger [2020].
We normalize meshes so they occupy a unit cube. We perform a
fracture retention test by fracturing each mesh using a randomized
geometric primitive 15 times. If between 5% and 20% of the vertices
of the mesh are not removed after 15 attempts we discard the mesh.
As the bottles, jars, and mugs ShapeNet classes have less than 600
samples we fracture meshes from these classes 3, 3, and 10 times
respectively. We fracture all other meshes once. We retain 24,208
out of 26,166 meshes from ShapeNet, 1,042 out of 1,298 meshes from
the Google dataset, and 333 out of 408 meshes from the QP dataset.

Thoughmeshes from the Google dataset are oriented upright they
are not facing in a uniform direction.We augment the Google dataset
by randomly rotating meshes around the ground plane normal by
90 degrees. We partition the ShapeNet and Google datasets using a
70%/10%/20% train/validation/testing split. To obtain ground truth
break surfaces we fit a thin-plate spline (TPS) [Duchon 1977] to the
fractured region of each mesh such that the domain of the spline
corresponds to a plane that is fitted to the fracture region vertices.
We use the TPS to partition sample points into two sets, and denote
the set that intersects with the fractured shape as the break shape.
We discuss point our point sampling method in the supplementary.

7 RESULTS
Weuse the chamfer distance (CD), as defined by Park et al. [2019] and
the normal consistency (NC), as defined byMescheder et al. [2019] to
evaluate the overall accuracy of predicted restoration shapes. In Sec-
tion 7.2, we compare our approach to methods based on subtraction
from completed shapes. Restorations generated using subtraction
tend to exhibit physically implausible surface artifacts. We con-
tribute the non-fractured region error (NFRE) metric to evaluate the
degree of surface artifacting. To compute the NFRE we sample 𝑛
points on the non-fractured region of the fractured shape and on
the predicted and ground truth restoration shapes, and compute
the percentage of points on the non-fractured region with a nearest
neighbor on the predicted restoration that is closer than [ and a
nearest neighbor on the ground truth restoration farther than [.
We use 𝑛 = 30, 000 and [ = 0.02. For success the NFRE and CD is
low and the NC is high. In 1.2% of cases, our approach generates
an empty restoration. Where applicable, we show the non-empty
percentage, (NE%), i.e. the percentage of restorations generated.

We show restoration shapes generated using our approach on the
ShapeNet dataset in Figure 6. Our approach generates restoration
shapes that join closely to the fractured region of the fractured shape
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Fig. 6. Predicted restoration shapes (red), joined to input fractured shapes
(gray) and opened to show the fracture.

and restore complex structures such as the handle of the mug on
the right, and the thin table leg on the left of Figure 6. Restoration
shapes keep with the style of the input shape, e.g. the connected
feet of the sofa in the bottom right. Unlike approaches based on
symmetry [Gregor et al. 2014; Papaioannou et al. 2017], our approach
repairs asymmetrical objects and objects with symmetrical fractures,
such as the L-shaped sofa, airplane, beer bottle, vase, mugs, and both
cars in Figure 6, and the mug, sofa, dresser, and bottle in Figure 1.

In Figure 7 we show restorations generated for meshes from the
QP Cultural Heritage dataset, 3D scans from the Google Scanned
Objects dataset, and real fractured objects. Our approach obtains
a CD of 0.117 on the Google Scanned Objects dataset and a CD of
0.144 on the QP dataset. Our approach is able to generate plausible
restoration shapes for Greek pottery, as shown in Figure 7(a), even
having never been trained on objects from that time period. Though
the Google Scanned Objects dataset is highly varied, our approach
generates closely fitting repairs for simple household objects such
as plates, bowls and cups, and for more complex objects, e.g. shoes,
as shown in Figure 7(b). Figure 7(c) demonstrates that our approach
generates feasible restoration shapes for real fractured objects, even
when trained entirely on synthetic fractures. We 3D print a restora-
tion part for the candlestick and the mug on the right. Though the
base of the candlestick does not match the complete shape, the pre-
dicted restoration is physically plausible. For the mug, while small
deviations in structure introduced by waterproofing and printer
tolerances occur, the print provides a close fit, enabling repair.

7.1 Ablation Study: Joint Function Modalities
We evaluate the impact of learning a joint function for multiple
features by training our approach to represent fractured shapes
using joint functions for the SDF alone, for occupancy alone (‘Occ’),
SDF and NF (‘SDF+NF’), occupancy and SDF (‘Occ+SDF’), and for
all three features (‘Occ+SDF+NF’). We show the CD and NE% for

Method bottles cars chairs jars mugs planes sofas tables Mean NE%
Occ 0.047 0.089 0.159 0.092 0.048 0.057 0.135 0.170 0.099 89.4

SDF+NF 0.225 0.130 0.187 0.176 0.153 0.122 0.235 0.202 0.179 96.1
Occ+SDF 0.042 0.023 0.127 0.071 0.028 0.043 0.101 0.159 0.074 98.9

Occ+SDF+NF 0.034 0.018 0.089 0.090 0.027 0.033 0.077 0.128 0.062 98.8

Table 1. Chamfer (CD) and percentage of non-empty restorations (NE%),
using DeepJoin with different features. Best values are bolded.

(a) QP Cultural Heritage Objects (b) Google Scanned Objects

(c) Real Objects With Physical Fractures and 3D Printed Repairs

Fig. 7. Predicted and ground truth restorations for synthetically fractured
(a) objects in the style of ancient Greek pottery and (b) 3D scans of common
objects. (c) Objects with real fractures and with two 3D printed restorations.
Complete objects from Lamb et al. [2019] are also shown in gray.

each variation of our approach in Table 1, over all restorations
predicted by each approach. We do not show results for SDF as we
find that the network is not able to learn a stable representation for
the break shape and predicts no restorations. As shown in Table 1,
using occupancy gives a low CD of 0.099. However, it often fails to
converge, with a NE% of 89.4%. Though SDF+NF shows a higher
CD than Occ, it predicts restorations more often. Using Occ+SDF
shows lower CD compared to Occ, and predicts more restorations
than SDF+NF, with a NE% of 98.9%. Adding NF gives lowest CD and
a similar NE%, showing that NF improves restoration fidelity.

7.2 Comparison: Fracture Removal and Shape Completion
As no generalizable high-resolution shape repair approaches ex-
ist, we compare our approach to three baseline approaches that
automatically remove the fractured region and perform shape com-
pletion. The baseline approaches use the existing shape completion
approaches of DeepSDF [Park et al. 2019], ONet [Mescheder et al.
2019], and ESSC [Zhang et al. 2018]. For each shape completion
approach we create a partial input shape by removing the fractured
region. To generate partial shapes, we train a point cloud classifier
based on PointNet++ [Qi et al. 2017] to classify the fractured region.
Our classifier obtains a test accuracy of 97.1%.

We train DeepSDF to reconstruct complete shapes from SDF point
samples. We create a partial shape for inference by removing in-
put sample points that have a nearest neighbor in the fractured
region of the fractured shape identified by our classifier. We train
ONet to reconstruct complete shapes from complete point clouds.
We create a partial point cloud for inference by removing points
that are classified as belonging to the fractured region identified by
our classifier. 3D-ORGAN [Hermoza and Sipiran 2018] generates
low-resolution voxelized restoration shapes from fractured shapes.
We find that the approach is unstable and does not converge during
training. To provide a fair comparison to a voxel-based approach,
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Method Metric bottles cars chairs jars mugs planes sofas tables Mean

DSDF
CD 0.024 0.025 0.109 0.134 0.043 0.034 0.076 0.129 0.072
NC 0.723 0.636 0.471 0.506 0.679 0.562 0.591 0.495 0.583
NFRE 0.084 0.158 0.316 0.217 0.092 0.125 0.215 0.238 0.181

ONet
CD 0.103 0.122 0.160 0.133 0.150 0.121 0.148 0.190 0.141
NC 0.441 0.428 0.416 0.391 0.445 0.384 0.418 0.460 0.423
NFRE 0.829 0.753 0.518 0.538 0.523 0.787 0.649 0.473 0.634

ESSC
CD 0.175 0.069 0.167 0.056 0.052 0.126 0.152 0.122 0.115
NC 0.108 0.388 0.153 0.414 0.481 0.138 0.251 0.377 0.289
NFRE 0.346 0.114 0.168 0.051 0.029 0.178 0.298 0.030 0.152

Ours
CD 0.034 0.018 0.089 0.090 0.027 0.033 0.077 0.128 0.062
NC 0.687 0.749 0.567 0.558 0.783 0.660 0.537 0.505 0.631
NFRE 0.052 0.021 0.042 0.054 0.008 0.024 0.064 0.040 0.038

Table 2. Chamfer distance (CD), normal consistency (NC) and non-fracture
region error (NFRE) for baseline approaches and our approach. Best metric
values are bolded. Mean is computed over class means.

Fig. 8. From left to right: input fractured shapes (gray) and restorations
(red) from DeepSDF, ONet, ESSC, DeepJoin, and ground truth.

we use ESSC [Zhang et al. 2018] to perform partial shape com-
pletion. We train ESSC to reconstruct complete voxel grids from
partial voxel grids at 323 spatial resolution to match the resolution
of 3D-ORGAN. We use an input resolution of 1283 encoded with the
flipped-truncated SDF (FTSDF) [Song et al. 2017]. During inference,
we create a partial input by computing the FTSDF with respect to a
mesh with the fractured region, identified by our classifier, removed.
For each baseline approach we obtain a restoration shape by

subtracting the predicted complete shape from the input fractured
shape in occupancy space. For DeepSDF and ONet we obtain a mesh
using Marching Cubes for 2563 sample points. As restoration shapes
must be closed meshes and not voxel grids, we generate a mesh for
ESSC using Marching Cubes at 323 resolution. To mitigate surface
artifacts, for each of the baseline approaches we automatically re-
move connected components from the predicted restoration shape
that have a volume less than 𝛿 , where we use 𝛿 = 0.01.
Table 2 summarizes metrics over non-empty restorations pre-

dicted by our approach. Comparative approaches generate all non-
empty restorations. DeepJoin outperforms baseline approaches in
terms of themean CD, NC, and NFRE. DeepSDF predicts restorations
with a relatively low CD of 0.072 and high NC of 0.583 compared
to the other baselines. However, as shown by the NFRE of 0.181 in
Table 2, restorations predicted by DeepSDF exhibit artifacts on the
surface of the fractured shape e.g. for the bottle, sofa, and pot in
Figure 6. Complete shapes predicted by ONet are less accurate than
DeepSDF, resulting in restoration shapes with large artifacts that

Input Fractured
Shape

Predicted Complete
Shape and Break Surface

Input Fractured
Shape

Predicted Restoration Ground Truth
Restoration

Fig. 9. Left: The complete and break shape may not intersect. Right: Restora-
tions may be small predicted in the wrong location.

often cover most of the surface of the fractured shape, as shown in
Figure 8, and by the NFRE of 0.634. ESSC shows a the lowest mean
CD for 2 classes, and often predicts restoration shapes in the correct
location and without surface artifacts. However, the restoration
shapes do not precisely match the ground truth, as shown by the
NC of 0.289, do not join to the fractured shape, e.g. the cutaway in
Figure 8, and are too small to fully restore the fractured shape due
to their coarse structure. DeepJoin generates accurate restoration
shapes that do not exhibit artifacts, as shown in Figure 8.

8 CONCLUSION AND FUTURE WORK
In this paper we present DeepJoin, an approach to automatically
generate restoration shapes from input fractured shapes by decon-
structing the fractured shape into corresponding complete and break
shapes. We contribute a novel method to encode a shape using a
joint function for occupancy, signed distance, and NF and use this
encoding to regress a high resolution restoration shape. Our ap-
proach overcomes the disadvantages of prior work using voxels for
automated shape repair, and plays an important role in enabling
consumer-driven object repair using additive manufacturing.
Limitations. In 1.2% of cases our approach fails to generate the

restoration shape, e.g. on the left of Figure 9, when the break sur-
face is predicted away from the fractured shape. However, as our
approach also predicts a complete shape, it enables fallback to gener-
ating a restoration using subtraction. As we represent break surfaces
using thin-plate splines, our approach is unable to accurately rep-
resent concave breaks. In future work, we will explore using more
generalizable representations for the break surface, such as non-
uniform rational basis splines (NURBS) [Piegl and Tiller 1996]. Our
approach may predict a restoration shape that is smaller than the
ground truth, e.g. the cabinet in Figure 9, or may predict the restora-
tion shape in the wrong location if the fractured region is small, e.g.
the TV stand in Figure 9. However, these repair parts can still be
used to partially repair the fracture, e.g. for the table.
Future Work. Though we focus on single component fractures,

future work can explore simultaneous estimation of inter-part trans-
formations to facilitate multi-fracture assembly and repair. In fu-
ture work, we will investigate automated repair deformation near
the fracture surface to enable fine-precision joins of 3D prints for
physical water-tightness. Though our fractured shapes simulate the
surface roughness found in ceramic or earthenware objects, prolifer-
ation of our approach requires large-scale analysis of fracture across
diverse materials. Our future work will contribute a comprehensive
fracture dataset of 3D scans of physically fractured objects with
accurate waterproofing, to facilitate data-driven study of fracture.
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