
LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces
from Video using Pose and Lighting Normalization

Avisek Lahiri1,2∗† Vivek Kwatra1∗ Christian Frueh1∗ John Lewis1 Chris Bregler1

1Google Research 2Indian Institute of Technology Kharagpur
{avisek,kwatra,frueh,jplewis,bregler}@google.com

Abstract
In this paper, we present a video-based learning frame-

work for animating personalized 3D talking faces from au-
dio. We introduce two training-time data normalizations
that significantly improve data sample efficiency. First, we
isolate and represent faces in a normalized space that de-
couples 3D geometry, head pose, and texture. This decom-
poses the prediction problem into regressions over the 3D
face shape and the corresponding 2D texture atlas. Second,
we leverage facial symmetry and approximate albedo con-
stancy of skin to isolate and remove spatio-temporal light-
ing variations. Together, these normalizations allow sim-
ple networks to generate high fidelity lip-sync videos under
novel ambient illumination while training with just a single
speaker-specific video. Further, to stabilize temporal dy-
namics, we introduce an auto-regressive approach that con-
ditions the model on its previous visual state. Human rat-
ings and objective metrics demonstrate that our method out-
performs contemporary state-of-the-art audio-driven video
reenactment benchmarks in terms of realism, lip-sync and
visual quality scores. We illustrate several applications en-
abled by our framework.

1. Introduction
“Talking head” videos, consisting of closeups of a talk-

ing person, are widely used in newscasting, video blogs,
online courses, etc. Other applications that feature talking
faces prominently are face-to-face live chat, 3D avatars and
animated characters in games and movies. We present a
deep learning approach to synthesize 3D talking faces (both
photorealistic and animated) driven by an audio speech sig-
nal. We use speaker-specific videos to train our model in a
data-efficient manner by employing 3D facial tracking. The
resulting system has multiple applications, including video
editing, lip-sync for dubbing of videos in a new language,
personalized 3D talking avatars in gaming, VR and CGI, as
well as compression in multimedia communication.
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Figure 1: Flow diagram of our approach to (a) generate a dynamically textured 3D
face mesh from audio, and (b) insert the generated face mesh into a target video to
create a synthesized talking head video from new audio input.

The importance of talking head synthesis has led to a
variety of methods in the research literature. Many recent
techniques [6, 7, 40, 43, 28, 30] use the approach of regress-
ing facial motion from audio, employing it to deform one or
more reference images of the subject. These approaches
can inherit the realism of the reference photos, however, the
results do not accurately reproduce 3D facial articulation
and appearance under general viewpoint and lighting varia-
tions. Another body of research predicts 3D facial meshes
from audio [38, 13, 19, 11]. These approaches are directly
suitable for VR and gaming applications. However, visual
realism is often restricted by the quality of texturing. Some
recent approaches [32, 33, 14] attempt to bridge the gap by
combining 3D prediction with high-quality rendering, but
are only able to edit fixed target videos that they train on.

Our work encompasses several of the scenarios men-
tioned above. We can use 3D information to edit 2D video,
including novel videos of the same speaker not seen dur-
ing training. We can also drive a 3D mesh from audio or
text-to-speech (TTS), and synthesize animated characters
by predicting face blendshapes.
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Next, we highlight some of our key design choices.
Personalized models: We train personalized speaker-

specific models, instead of building a single universal model
to be applied across different people. While universal mod-
els like Wav2Lip [30] are easier to reuse for novel speak-
ers, they need large datasets for training and do not ad-
equately capture person-specific idiosyncrasies [5]. Per-
sonalized models like ours and NVP [33] produce results
with higher visual fidelity, more suitable for editing long
speaker-specific videos. Additionally, our model can be
trained entirely using a single video of the speaker.

3D pose normalization: We use a 3D face detector [20]
to obtain the pose and 3D landmarks of the speaker’s face
in the video. This information allows us to decompose
the face into a normalized 3D mesh and texture atlas, thus
decoupling head pose from speech-induced face deforma-
tions, e.g. lip motion and teeth/tongue appearance.

Lighting normalization: We design a novel algorithm
for removing spatial and temporal lighting variations from
the 3D decomposition of the face by exploiting traits such
as facial symmetry and albedo constancy of the skin. This
lighting normalization removes another confounding factor
that can otherwise affect the speech-to-lips mapping.

Data-efficient learning: Our model employs an
encoder-decoder architecture that computes embeddings
from audio spectrograms, and decodes them to predict the
decomposed 3D geometry and texture. Pose and light-
ing normalization allows us to train this model in a data-
efficient manner. The model complexity is greatly reduced,
since the network is not forced to disentangle unrelated head
pose and lighting changes from speech, allowing it to syn-
thesize high quality lip-sync results even from short training
videos (2-5 minutes long). Lighting normalization allows
training and inference illumination to be different, which
obviates the need to train under multiple lighting scenarios.
The model predicts 3D talking faces instead of just a 2D
image, even though it learns just from video, broadening its
applicability. Finally, pose and lighting normalization can
be applied in a backward fashion to align and match the ap-
pearance of the synthesized face with novel target videos.
See Figure 1 for an overview of our approach.

Our key technical contributions are:
• A method to convert arbitrary talking head video footage

into a normalized space that decouples 3D pose, geome-
try, texture, and lighting, thereby enabling data-efficient
learning and versatile high-quality lip-sync synthesis for
video and 3D applications.

• A novel algorithm for normalizing facial lighting in video
that exploits 3D decomposition and face-specific traits
such as symmetry and skin albedo constancy.

• To our best knowledge, this is the first attempt at dis-
entangling pose and lighting from speech via data pre-
normalization for personalized models.

• An easy-to-train auto-regressive texture prediction model
for temporally smooth video synthesis.

• Human ratings and objective metrics suggest that our
method outperforms contemporary audio-driven video
reenactment baselines in terms of realism, lip-sync and
visual quality scores.

2. Related Work
Audio-driven 3D Mesh Animation: These methods gener-
ate 3D face models driven by input audio or text, but do not
necessarily aim for photorealism. In [38], the authors learn
a Hidden Markov Model (HMM) to map Mel-frequency
Cepstral Coefficients (MFCC) to PCA model parameters.
Audio features are mapped to Jali [13] coefficients in [44].
In [19], the authors learn to regress to 3D vertices of a face
model conditioned on input audio spectrograms and simul-
taneously disambiguate variations in facial expressions un-
explained by audio. In [18], the authors learn to regress
blendshapes of a 3D face using the combined audio-visual
embedding from a deep network. VOCA [12] pre-registers
subject-specific 3D mesh models using FLAME [26] and
then learns (using hours of high quality 4D scans) an off-
set to that template based on incoming speech, represented
with DeepSpeech [15] features.

Audio-driven Video Synthesis: These methods aim to gen-
erate visually plausible 2D talking head videos, conditioned
on novel audio. In [6], an audio-visual correlation loss is
used to match lip shapes to speech, while maintaining the
identity of the target face. In [7], a two-stage cascaded
network is used to first predict 2D facial landmarks from
audio, followed by target frame editing conditioned upon
these landmarks. In [36], the authors leverage a tempo-
ral GAN for synthesizing video conditioned on audio and
a reference frame. They improve it further in [37] via a spe-
cialized lip-sync discriminator. In contrast to our approach,
the above methods fail to produce full-frame outputs; in-
stead they generate normalized cropped faces, whose lips
are animated based on input audio and a reference frame.

Among efforts on full-frame synthesis, Video
Rewrite [5] was a pioneering work. It represented
speech with phonetic labels and used exemplar-based
warping for mouth animation. Speech2Vid [8] learns a
joint embedding space for representing audio features and
the target frame, and uses a shared decoder to transform
the embedding into a synthesized frame. X2Face [40]
learns to drive a target frame with the head pose and
expression of another source video, and it can optionally
be also driven by an audio to animate a target frame. A
framework to translate an input speech to another language
and then modify the original video to match it is presented
in [23]. Recently, Wav2Lip [30] reported appreciable
lip-sync performance by using a powerful offline lip-sync



Figure 2: Joint prediction pipeline: geometry and texture models have dedicated
decoders but share the audio encoder. The texture model also depends on the previ-
ously predicted atlas. Optionally, the audio embedding can drive a 3D CGI character
via a blendshape coefficients decoder. Please enlarge to see details.

discriminator [9] as an expert to train their generator. While
currently this is one of the best universal models, it lacks
the visual fidelity of speaker-specific models.

Some recent works [32, 33, 31] have focused on 3D
model guided video synthesis. In [32] an RNN regresses au-
dio to mouth shape, producing convincing results on Presi-
dent Obama. The approach required very extensive training
data however (17 hours). In [33], the DeepSpeech RNN is
used to map input speech to audio expression units which
then drive a blendshapes-based 3D face model. Finally, a
neural renderer [22] is used to render the face model with
the audio expressions. Since neural renderer training de-
pends on target illumination, the methods leveraging such
rendering [31, 33] suffer from the need for retraining if
inference-time lighting conditions change. On the contrary,
our method seamlessly adapts to novel lighting.

Text-based Video Editing: In [14], the authors present a
framework for text based editing of videos (TBE). They first
align written transcripts to audio and track each frame to
create a face model. During edit operations, a (slow) viseme
search is done to find best matching part of training video.
This method needs a time-aligned transcript and around one
hour of recorded data, and is mostly suitable for for small
edits. Our method, on the other hand, relies on just the audio
signal and can synthesize videos of unrestricted length.

Actor-driven Video Synthesis: [34, 22] present techniques
for generating and dubbing talking head videos by transfer-
ring facial features, such as landmarks or blendshape pa-
rameters, from a different actor’s video. These techniques
generate impressive results, however they require a video
of a surrogate actor to drive synthesis. We emphasize that
our approach uses only audio or text-to-speech (TTS) as the
driving input, and does not require any actors for dubbing.
It is therefore fundamentally different from these methods.

3. Method
We now describe the various components of our ap-

proach including data extraction and normalization, neural
network architecture and training, and finally, inference and
synthesis. Figure 2 shows an overview of our model.

Figure 3: Pose normalization of training data. For each subject– Left: input frames
with detected features (see zoomed in); Middle: normalized vertices and triangle
mesh; Right: texture atlas which acts as ground truth for texture prediction.

We extract the audio channel from the training video and
transform it into frequency-domain spectrograms. These
spectrograms are computed using Short-time Fourier trans-
forms (STFT) with a Hann window function [39], over
30ms wide sliding windows that are 10ms apart. We align
these STFTs with video frames and stack them across time
to create a 256× 24 complex spectrogram image, spanning
240ms centered around each video frame. Our model pre-
dicts the face geometry, texture, and optionally, blendshape
coefficients, for each frame based on the audio spectrogram.

The face in the video is tracked using a 3D face landmark
detector [20], resulting in 468 facial features, with the depth
(z-component) predicted using a deep neural network. We
refer to these features as vertices, which are accompanied
by a predefined triangulated face mesh with fixed topology.

3.1. Normalizing Training Data

We preprocess the training data to eliminate the effects
of head movement and lighting variations, and work with
normalized facial geometry and texture. Both training and
inference take place in this normalized space.

3.1.1 Pose normalization

For pose normalization, we first select one frame of the in-
put video as a reference frame, and its respective 3D face
feature points as reference vertices. The choice of frame is
not critical; any frame where the face is sufficiently frontal
is suitable. Using the reference vertices, we define a ref-
erence cylindrical coordinate system (similar to [4]) with a
vertical axis such that most face vertices are equidistant to
the axis. We then scale the face size such that the eyes and
nose project to fixed locations on this reference cylinder.

Next, for each frame of the training video, we stabilize
the rigid head motion (see [3, 24]) to provide a registered 3D
mesh suitable for training our geometry model. Specifically,
we approximately align the vertices of the upper, more rigid
parts of the face with corresponding vertices in the normal-
ized reference using Umeyama’s algorithm [35] and apply
the estimated rotation R, translation t and scale c to all
tracked vertices v as r̂ = cRv + t.

We use these normalized vertices, along with the cylin-
drical mapping defined above, to create a pose-invariant,
frontalized projection of the face texture for each video



Figure 4: Steps of our proposed lighting normalization during training. (A:) First step is to specularity removal from an input frame. (B:) Second step is self normalization of
the reference atlas. (C:) Finally, any given training frame is normalized with respect to the pre-normalized reference atlas of step B.

frame (including the reference frame). Mapping the face
vertices to the reference cylinder creates a set of 2D texture
coordinates for the face’s surface, which are used to unroll
its texture. We warp the triangles associated with these co-
ordinates from the source frame onto the texture domain,
resulting in a 256×256 texture atlas that resembles a frontal
view of the face, but with the non-rigid features like the lips
and mouth moving with the speech. Figure 3 demonstrates
the effect of normalization; the head pose is removed, but
the moving lip shapes and mouth interior are preserved.

3.1.2 Lighting normalization

We normalize the frontalized texture atlas to remove light-
ing variations, which are mostly caused by head motion
or changing illumination. Our lighting normalization algo-
rithm works in two phases. It first exploits facial symmetry
to normalize the reference atlasR spatially, removing spec-
ularities and lighting variations that run across the face. It
then performs a temporal normalization across video frames
that transforms each frame’s atlas F to match the illumi-
nation of R. The resulting atlases have a more uniform
albedo-like appearance, that stays consistent across frames.

We first describe the temporal normalization algorithm,
as it is a core component also used during spatial normal-
ization. This algorithm assumes that the two textures F and
R are pre-aligned geometrically. However, any non-rigid
facial movements, e.g. from speech, can result in different
texture coordinates, and consequently, misalignments be-
tween R and F . Hence, we first warp R to align it with
F ’s texture coordinates, employing the same triangle-based
warping algorithm used for frontalization.

Given the aligned R and F , we estimate a mapping that
transforms F to match the illumination of R. This mapping
is composed of a smooth multiplicative pixel-wise gain G
in the luminance domain, followed by a global channel-wise
gain and bias mapping {a, b} in the RGB domain. The re-
sulting normalized texture Fn is obtained via the following
steps: (1) (Fy, Fu, Fv) = RGBtoYUV(F ); (2) F l

y = G∗Fy;
(3) F l = YUVtoRGB(F l

y, Fu, Fv); (4) Fn = aF l + b.
Gain Estimation: To estimate the gain G, we observe

that a pair of corresponding pixels at the same location k
in F and R should have the same underlying appearance,
modulo any change in illumination, since they are in geo-
metric alignment (see Figure 4(C)). This albedo constancy
assumption, if perfectly satisfied, yields the gain at pixel k

asGk = Rk/Fk. However, we note that (a)G is a smoothly
varying illumination map, and (b) albedo constancy may be
occasionally violated, e.g. in non-skin pixels like the mouth,
eyes and nostrils, or where the skin deforms sharply, e.g. the
nasolabial folds. We account for these factors by, firstly, es-
timating Gk over a larger patch pk centered around k, and
secondly, employing a robust estimator that weights pixels
based on how well they satisfy albedo constancy. We for-
mulate estimating Gk as minimizing the error:

Ek =
∑
j∈pk

Wj‖Rj −Gk ∗ Fj‖2, (1)

where W is the per-pixel weights image, and solve it us-
ing iteratively reweighted least squares (IRLS). In partic-
ular, we initialize the weights uniformly, and then update
them after each (ith) iteration as:

W i+1
k = exp

(
−Ei

k

T

)
, (2)

where T is a temperature parameter. The weights and gain
converge in 5-10 iterations; we use T = 0.1 and a patch
size of 16 × 16 pixels for 256 × 256 atlases. Figure 4(C)
shows example weights and gain images. Pixels with large
error Ek get low weights, and implicitly interpolate their
gain values from neighboring pixels with higher weights.

To estimate the global color transform {a, b} in closed
form, we minimize

∑
kWk‖Rk−aFk−b‖2 over all pixels,

with Wk now fixed to the weights estimated above.

Reference Atlas Normalization using Facial Symme-
try: We first estimate the gain Gm between the reference
R and its mirror image R′, using the algorithm described
above. This gain represents the illumination change be-
tween the left and right half of the face. To obtain a ref-
erence with uniform illumination, we compute the sym-
metrized gain Gs = max(Gm, Gm′), where Gm′ is the
mirror image of Gm, i.e. for every symmetric pair of pix-
els, we make the darker pixel match the brighter one. The
normalized reference is thenRn = Gs∗R, as shown in Fig-
ure 4(B). Note that our weighting scheme makes the method
robust to inherent asymmetries on the face, since any incon-
sistent pixel pairs will be down-weighted during gain esti-
mation, thereby preserving those asymmetries.

Specularity Removal: We remove specularities from
the face before normalizing the reference and video frames,
since they are not properly modeled as a multiplicative gain,
and also lead to duplicate specularities on the reference due



to symmetrization. We model specular image formation as:
I = α+ (1− α) ∗ Ic, (3)

where I is the observed image, α is the specular alpha map
and Ic is the underlying clean image without specularities.
We first compute a mask, where α > 0, as pixels whose
minimum value across RGB channels in a smoothed I ex-
ceeds the 90th percentile intensity across all skin pixels in
I . The face mesh topology is used to identify and restrict
computation to skin pixels. We then estimate a pseudo clean
image Ĩc by hole-filling the masked pixels from neighboring
pixels, and use it to estimate α = (I − Ĩc)/(1− Ĩc).

The final clean image is then Ic = (I − α)/(1 − α).
Note that our soft alpha computation elegantly handles any
erroneous over-estimation of the specularity mask (see Fig-
ure 4(A)). The above method is specifically tailored for sta-
bilized face textures and is simple and effective, thus we
do not require more generalized specularity removal tech-
niques [42].

3.2. Joint Prediction Model and Training Pipeline

In this section we describe the framework for learning a
function F to jointly map from domain S of audio spectro-
grams to the domains V of vertices andA of texture atlases:
F : S → V×A, with V ∈ R468×3 and A ∈ R128×128×3,
where for the purpose of prediction, we crop the texture at-
las to a 128 × 128 region around the lips, and only pre-
dict these cropped regions. The texture for the upper face
is copied over from the reference, or target video frames,
depending upon the application. We follow an encoder-
decoder architecture for realizing F(·), as shown in Fig-
ure 2. It consists of a shared encoder for audio, but separate
dedicated decoders for geometry and texture. However, the
entire model is trained jointly, end-to-end.

Audio encoder: The input at time instant t is a complex
spectrogram, St ∈ R256×24×2. Our audio encoder — and
face geometry prediction model — is inspired by the one
proposed in [19], in which the vertex positions of a fixed-
topology face mesh are also modified according to an au-
dio input. However, while [19] used formant preprocessing
and autocorrelation layers as input, we directly use complex
spectrograms St. Each St tensor is passed through a 12
layer deep encoder network, where the first 6 layers apply
1D convolutions over frequencies (kernel 3×1, stride 2×1),
and the subsequent 6 layers apply 1D convolution over time
(kernel 1× 3, stride 1× 2), all with leaky ReLU activation,
intuitively corresponding to phoneme detection and activa-
tion, respectively. This yields a latent code Ls

t ∈ RNs .
Geometry decoder: This decoder maps the latent au-

dio code Ls
t to vertex deformations δt, which are added

to the reference vertices Vr to obtain the predicted mesh
V̂t = Vr + δt. It consists of two fully connected layers with
150 and 1404 units, and linear activations, with a dropout
layer in the middle. The resulting output is 468 vertices

(1404 = 468 × 3 coordinates). As proposed in [19], we
initialize the last layer using PCA over the vertex training
data. Further, we impose `2 loss on the vertex positions:
Rgeo = ‖Vt − V̂t‖2, where Vt are ground-truth vertices.

Texture decoder: This decoder maps the audio code
Ls
t to a texture atlas update (difference map) ∆t which is

added to the reference atlas Ar to obtain the predicted at-
las, Ât = Ar + ∆t. It consists of a fully connected layer
to distribute the latent code spatially, followed by progres-
sive up-sampling using convolutional and interpolation lay-
ers to generate the 128×128 texture update image (see Ap-
pendix G.1). We impose an image similarity loss between
the predicted and ground-truth atlasAt: Rtex = d(At, Ât),
where d is a visual distance measure. We tried different
variants of d(·) including the `1 loss, Structural Similarity
Loss (SSIM), and Gradient Difference Loss (GDL) [27] and
found SSIM to perform the best.

Blendshapes decoder: To animate CGI characters us-
ing audio, we optionally add another decoder to our network
that predicts blendshape coefficients Bt in addition to ge-
ometry and texture. For training, these blendshapes are de-
rived from vertices Vt by fitting them to an existing blend-
shapes basis either via optimization or using a pre-trained
model [25]. We use a single fully connected layer to pre-
dict coefficients B̂t from audio code Ls

t , and train it using
`1 loss Rbs = ‖Bt−B̂t‖1 to encourage sparse coefficients.

3.2.1 Auto-regressive (AR) Texture Synthesis:

Ambiguities in facial expressions while speaking (or silent)
can result in temporal jitters. We mitigate these by incorpo-
rating memory into the network. Rather than using RNNs,
we condition the current output of the network (At) not only
on St but also on the previous predicted atlas Ât−1, encod-
ing it as a latent code vector La

t−1 ∈ RNa . Ls
t and La

t−1
are combined and passed to the texture decoder to gener-
ate the current texture Ât (Figure 2). This appreciably im-
proves the temporal consistency of synthesized results. We
can train this AR network satisfactorily via Teacher Forc-
ing [41], using previous ground truth atlases. The resulting
network F is trained end-to-end, minimizing the combined
loss R = Rtex + α1Rgeo + α2Rbs, where α1 = 3.0 and
α2 = 0.3 (when enabled). We used hyperparameter search
to determine the latent code lengths, Ns = 32 andNa = 2.

3.3. Inference and Synthesis

Textured 3D mesh: During inference, our model pre-
dicts geometry and texture from audio input. To convert it to
a textured 3D mesh, we project the predicted vertices onto
the reference cylinder, and use the resulting 2D locations as
texture coordinates. Since our predicted texture atlas is de-
fined on the same cylindrical domain, it is consistent with
the computed texture coordinates. The result is a fully tex-
tured 3D face mesh, driven by audio input (Figure 1a).



Figure 5: Benefits of proposed auto-regressive (AR) prediction. Left: Four consecutive frames when the subject was silent. Middle: Prediction without AR. Right: Prediction
with AR. In absence of AR, the model fluctuates between different visual states, while the AR substantially improves temporal stability.

Figure 6: (a:) Benefits of the proposed lighting normalization. Top row shows
representative training frames in a sunny outdoor setting while we conduct inference
under two novel lighting settings which have not been used in training. Note that the
proposed lighting normalization enables realistic synthesis under new lighting while
absence of lighting normalization yields degraded outputs. (b:) Plot of SSIM loss
(texture prediction) and vertex loss (geometry prediction) on the evaluation set. Even
though both models result in similar lip shapes, the lower SSIM loss of the lighting-
normalized model boosts the visual realism and overall lip-sync quality.

Talking head video synthesis: The pose and lighting
normalization transforms (Section 3.1) are invertible, i.e.
one can render the synthesized face mesh in a different pose
under novel lighting, which allows us to procedurally blend
it back into a different target video (Figure 1b). Specifically,
we warp the textured face mesh to align it with the target
face, then apply our lighting normalization algorithm in re-
verse, i.e. on the warped texture, using the target face as ref-
erence. One caveat is that the target frame’s area below the
chin may not align with the warped synthesized face, due to
inconsistent non-rigid deformations of the jaw. Hence, we
pre-process each target frame by warping the area below the
original chin to match the expected new chin position. To
avoid seams at border areas, we gradually blend between
the original and new face geometry, and warp the original
face in the target frame according to the blended geometry.

Cartoon rendering: For stylized visualizations, we can
create a cartoon rendering of the textured mesh (or video),
by combining bilateral filtering with a line drawing of the
facial features. In particular, we identify nose, lips, cheeks

and chin contours in the synthesized face mesh, and draw
them prominently over the filtered texture or video frame.

CGI Characters: Models trained with the blendshapes
decoder also output blendshape coefficients that can drive
a CGI character. We combine these predicted blendshapes
(that generally affect the lips and mouth) with other blend-
shapes, such as those controlling head motion and eye
gaze, to create lively real-time animations. Please refer to
Appendix- J and Fig. 14 for more details.

4. Experiments
Our training and inference pipelines were implemented

in Tensorflow [1], Python and C++. We trained our mod-
els with batch sizes of 128 frames, for 500-1000 epochs,
with each epoch spanning the entire training video. Sample
training times were between 3-5 hours, depending on video
length (usually 2-5min). Average inference times were
3.5ms for vertices, 31ms for texture and 2ms for blend-
shapes, as measured on a GeForce GTX 1080 GPU. Our
research-quality code for blending into target videos takes
50-150ms per frame, depending on the output resolution.

4.1. Ablation Studies

Benefit of Auto-Regressive Prediction: The auto-
regressive texture prediction algorithm stabilizes mouth dy-
namics considerably. In Figure 5, we show that without
auto-regression, the model can produce an unrealistic jitter-
ing effect, especially during silent periods.

Benefit of Lighting Normalization: We use a short
training video (∼4 minutes) recorded in an outdoor setting
but with varying illumination. However, during inference,
we select two novel environments: a) indoor lighting with
continuous change of lighting direction, and b) a dark room
with a face illuminated by a moving flash light. Some rep-
resentative frames of models trained with and without light-
ing normalization are shown in Figure 6(a). Without light-
ing normalization, the model produces disturbing artifacts
around the lip region, exacerbated by the extreme changes
in illumination. However, with normalized lighting, the
model adapts to widely varying novel illumination condi-
tions. This ability to edit novel videos of the same speaker
on-the-fly without needing to retrain for new target illumi-
nation is a significant benefit. In contrast, neural rendering
based approaches [33] require retraining on each new video,
because they map 3D face models directly to the facial tex-
ture in video without disentangling illumination.



Figure 7: Qualitative comparison on subjects from GRID, CREMA-D and TCD-TIMIT against IJCV’19 and CVPR’19 (latter only available on GRID). Our model is capable
of seamlessly blending back into the video instead of animating a normalized cropped frame as in IJCV’19 and CVPR’19..

Proposed

CPBD: 0.52

Wav2Lip

CPBD: 0.36 CPBD: 0.42 CPBD: 0.47

Figure 8: Comparison with Wav2Lip [30]. Our model generates higher resolu-
tion outputs (evident by higher CPBD metric [29]) with fewer artifacts compared to
Wav2Lip. Examples are provided in accompanying video.

Figure 9: Comparison with NVP [33]. We show that a sequence generated by our
method usually has better lip dynamics compared to NVP. The observation is also
supported by LSE-D (lower is better) and LSE-C (higher is better) metrics [30] for
our model. Examples are provided in accompanying video. Best viewed zoomed in.

We also visualize the loss curves on held out evaluation
sets in Figure 6(b). With lighting normalization, the SSIM
loss (used for texture generation) saturates at a much lower
value than without normalization. This supports our hy-
pothesis that lighting normalization results in more data-
efficient learning, since it achieves a better loss with the
same amount of training data. The vertex loss (responsible
for lip dynamics) is similar for both models, because light-
ing normalization does not directly affect the geometry de-
coder, but overall lip-sync and visual quality are improved.

4.2. Comparison: Self-reenactment

We objectively evaluate our model under the self-
reenactment setting (audio same as target video), since it
allows us to have access to ground truth facial informa-
tion. We show experiments with three talking head datasets:
GRID [10], TCD-TIMIT [16] and CREMA-D [21].

Comparing Methods: We perform quantitative compar-
isons against state-of-the-art methods whose models/results
are publicly available: CVPR’19 [7], IJCV’19 [37], CVPR-
W [36]. It is difficult to do an apples-to-apples comparison,
since we use personalized models while other techniques
use a universal model. However, we minimize this gap by
testing on the same 10 subjects from each of the 3 datasets
used in IJCV’19 and CVPR’19, and employing the official

evaluation frameworks of these papers. We also compare
against other prior methods, but reuse the results already re-
ported by CVPR’19 or IJCV’19. Details of subject IDs are
provided in Appendix- H

Evaluation Metrics: We follow the trend in recent pa-
pers [7, 37, 36], which use SSIM (Structural Similarity In-
dex) as a reconstruction metric, LMD (Landmark Distance)
on mouth features as a shape similarity metric, CPBD
(Cumulative Probability Blur Detection) [29] as a sharp-
ness metric and WER (word error rate) as a content met-
ric to evaluate the correctness of words from reconstructed
videos. Following [37], we use a LipNet model [2] pre-
trained for lip-reading on GRID dataset [10].

Observations: We report the metrics in Figure 10
(left). On LMD and WER, which capture lip-sync, our
model is significantly better than any competing method.
Also, in terms of reconstruction measures (SSIM, CPBD),
our model almost always performs better. CVPR-W and
IJCV’19 have a better (though comparable) CPBD on
GRID, but it is a low-resolution dataset. On higher reso-
lution TCD-TIMIT and CREMA-D, our CPBD is the best.
We also show qualitative comparisons in Figure 7. Note
that we synthesize full frame videos, while CVPR’19 and
IJCV’19 only generated normalized face crops at a resolu-
tion of 128 × 128, and 96 × 128 respectively. Thus our
method is more suitable for practical video applications.

4.3. Comparison: Audio-Driven Video Dubbing

In this section we focus on ‘audio-driven’ video dubbing
where the driving audio is different from the target video.

User Study: We conducted a user study to quantitatively
compare our lip-sync and perceptual quality against the
state-of-the-art audio-driven frameworks of Wav2Lip, NVP,
IJCV’19 and TBE. In the study, 35 raters were each shown
29 sample clips consisting of synthetic and real videos. For
competing methods, we used their released videos or gener-
ated results with their pre-trained models. The raters were
asked three questions: Q1) Is the video real or fake? Q2)
Rate lip-sync quality on a 3-point discrete scale. Q3) Rate
visual quality on a 5-point discrete scale. We report the
Mean Opinion Scores (MOS) of the questions in Figure 10
(right). As is evident, among the competing methods our
method receives the most favorable user ratings.
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Figure 10: Left: Self-reenactment performance comparison against state-of-the-art benchmarks of CVPR-W’19 [36], IJCV’19 [37], CVPR’19 [7], BMVC’17 [8], Chen et
al. [6] and Wiles et al. [40]. Pre-trained LipNet (for WER) is available only on GRID. Authors of [7] released checkpoint for GRID only. (↑):Higher is better. (↓):Lower is
better. Best results are marked in bold. Right: Mean Opinion Scores of user study. The statistical significance of these differences in ratings is confirmed by ANOVA with Tukey
post-hoc tests. Please see Appendix- A for details.

Comparison with Wav2Lip [30]: Unlike other image-
based methods, Wav2Lip can paste back the generated face
on background video. However, compared to our model,
the outputs from Wav2Lip are of low resolution. Also, at
high resolution, Wav2Lip produces significant visual arti-
facts (see Figure 8) and lip-sync starts to degrade.

Comparison with NVP [33]: The lip-sync and dy-
namics of our model are generally better than NVP. The
lip movements of NVP are clearly muted compared to our
model, as seen in representative frames in Figure 9(a).

5. Applications
Speech/Text-to-Video: We can create or edit talking

head videos for education, advertisement, and entertain-
ment by simply providing new audio transcripts. “Actor-
free” video translation: while ‘actor-driven’ video trans-
lation techniques [22, 34] generally require a professional
actor to record the entire translated audio and video, our
‘actor-free’ approach does not need video, and can be
driven by either recorded audio, TTS, or voice cloning [17].
Voice controlled Avatars: Our model’s blendshapes output
can be used to animate CGI characters in real-time, allow-
ing low-bandwidth voice-driven avatars for chat, VR, and
games without the need for auxiliary cameras. Assistive
technologies: Voice-driven 3D faces can support accessi-
bility and educational applications, e.g. personified assis-
tants and cartoon animations for visualizing pronunciation.

6. Limitations and Conclusion
Facial expressions: We do not explicitly handle fa-

cial expressions, though our model may implicitly capture
correlations between expressions and emotion in the audio
track. Strong movements in the target video: When syn-
thesized faces are blended back into a target video, em-
phatic hand or head movement might seem out of place.
This has not proved to be a problem in our experiments.
Processing speed: Our research-quality code, running at
highest quality, is slightly slower than real-time. We have
presented a data efficient yet robust end-to-end system for
synthesizing personalized 3D talking faces, with applica-
tions in video creation and editing, 3D gaming and CGI.
Our proposed pose and lighting normalization decouples
non-essential factors such as head pose and illumination

from speech and enables training our model on a relatively
short video of a single person while nevertheless generat-
ing high quality lip-sync videos under novel ambient light-
ing. We envision that our framework is a promising step-
ping stone towards personalized audio-visual avatars and
AI-assisted video content creation.

7. Ethical Considerations
Our technology focuses on world-positive use cases and

applications. Video translation and dubbing have a vari-
ety of beneficial and impactful uses, including making ed-
ucational lectures, video-blogs, public discourse, and en-
tertainment media accessible to people speaking different
languages, and creating personable virtual “assistants” that
interact with humans more naturally.

However, we acknowledge the potential for misuse, es-
pecially since audiovisual media are often treated as vera-
cious information. We strongly believe that the develop-
ment of such generative models by good actors is crucial for
enabling preemptive research on fake content detection and
forensics, which would allow them to make early advances
and stay ahead of actual malicious attacks. Approaches like
ours can also be used to generate counterfactuals for train-
ing provenance and digital watermarking techniques. We
also emphasize the importance of acting responsibly and
taking ownership of synthesized content. To that end, we
strive to take special care when sharing videos or other ma-
terial that have been synthesized or modified using these
techniques, by clearly indicating the nature and intent of
the edits. Finally, we also believe it is imperative to obtain
consent from all performers whose videos are being modi-
fied, and be thoughtful and ethical about the content being
generated. We follow these guiding principles in our work.
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Appendix

A. User Study Analysis

We conducted a user study to quantitatively compare
our lip-sync and perceptual quality against the state-of-the-
art audio-driven frameworks of Wav2Lip [30], NVP [33],
IJCV’19 [37] and TBE [14]. In the study, N=35 raters were
each shown a total 29 sample clips consisting of synthetic
and real videos. For competing methods, we used their re-
leased videos (NVP, TBE) or generated results with their
pre-trained models (IJCV’19, Wav2Lip). The raters were
primarily drawn from a pool of subjects without research
expertise, supplemented with a minority (N=14) who were
researchers. The subgroup of researchers included some
having familiarity with computer vision topics but none
were expert on speech-driven animation. The raters were
asked three questions: Q1: Is the video real or fake? Q2:
Rate the quality of the lip-sync, i.e. how well does the mo-
tion of the lips match the audio, on a 3-point (discrete) scale
(poor, acceptable, great). Q3: Rate the picture quality,
e.g. naturalness, resolution, and consistency of the video,
on a discrete 5-point scale from 1-5 (poor-great).

Figure 12 shows, for each question, the percentage of
raters who selected each rating. We report the Mean Opin-
ion Scores (MOS) of the questions in Table 1. As is evi-
dent, among the competing methods, our method receives
the most favorable user ratings.

We performed a statistical analysis to confirm the signif-
icance of these ratings. For Q1 (only) we excluded the text-
to-speech results from consideration, since it was straight-
forward to judge the videos as “fake” due to the computer-
generated speech. However, questions Q2 and Q3 are still
relevant in the text-to-speech case, since it is possible to rate
the quality of lip-sync and overall image naturalness even
when the voice is clearly synthetic.

The statistical analysis confirms that the differences in
real-fake ratings on Q1 are significant (Kruskal-Wallis test,
χ2 = 158, p<1e-04), and our method outperforms the other
methods after adjusting for multiple comparisons (Tukey’s
Honest Significant Differences (HSD) IJCV p adj.= .003,
Wav2Lip p adj.<1e-04, NVP p adj.<1e-04). For Q2 the
differences in ratings are significant (Kruskal-Wallis χ2 =
279, p<1e-04), and our method outperforms most com-
peting methods with statistical significance after adjust-
ing for the multiple tests (Tukey’s HSD TBE p adj.=
.035, Wav2Lip p adj.<1e-04, NVP p adj.<1e-04), how-
ever the difference versus IJCV’19 is not significant. For
Q3 (Kruskal-Wallis χ2 = 248, p<1e-04) our method out-
performs most competing methods with statistical signifi-
cance after adjustment for multiple comparison (HSD IJCV
p adj.<1e-04, Wav2lip p adj.<1e-04, NVP p adj.= 0.04
however the comparison with TBE is not significant.

These significance results for Q2 and Q3 (and in particu-

Figure 11: Screen shot from our user study.

Method Is Real ?
(% Yes)

[no TTS]
Is Real ?
(% Yes)

Lip-Sync
(1-3) )

Visual Quality
(1-5)

Real 97.6 97.6 2.95±0.03 4.55±0.13
IJCV’19 60.7 60.7 2.45±0.11 2.49±0.17
Wav2Lip 34.4 37.6 1.72±0.12 3.35±0.20
NVP 44.4 50.0 1.80±0.13 3.75±0.19
TBE 50.7 n/a 2.17±0.17 4.07±0.26
Proposed 71.6 77.25 2.46±0.10 4.10±0.15

Table 1: User study analysis. Column 1: percentage of
“real” ratings by category. Column 2: percentage of “real”
ratings with text-to-speech driven results removed. Column
3: mean opinion score of lip-sync quality. Column 4: mean
opinion score of picture quality.

lar the lack of significance for IJCV and TBE respectively)
are plausible given cursory examination of the videos. The
results of IJCV’19 show qood quality lip-sync but the over-
all image quality is limited, thus explaining its good perfor-
mance on Q2 but poor performance on Q3. TBE operates
in part by re-mixing input video frames so it results in high
picture quality by definition (Q3), but its lip-sync quality is
poorer than our method and that of IJCV’19.

B. Comparison Notes on Text Based Edit-
ing [14]

According to the user study, among the 3D model
based methods, Text-based-Editing (TBE) is the second-
best method (following our method). However, our frame-
work has some distinct training and inference time advan-
tages over TBE:

• TBE was trained on a training corpus of more than 1
hour of video recording. Our model was trained on∼7
minutes of data in this case.

• TBE assumes an accurate text transcript and uses
phoneme based alignment tools to align the text with
audio. In contrast, our model only requires a speech
signal as input.

• The average training time of TBE is 42 hours. Our typ-
ical training time is somewhere in between 3-5 hours.
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Figure 12: Raw user study results. Q1: Percentage of real/fake ratings for each of the six video categories. Viewers believe our synthetic
videos (proposed) are real roughly two-thirds of the time. Q2: Ratings of lip-sync quality for the six video categories, expressed as
percentages. Our synthetic videos (proposed) are perceived as at least comparable to those of IJCV while being clearly superior to other
competing methods in lip-sync quality. Q3: Ratings of picture quality for the six video categories, expressed as percentages. Here our
method greatly outperforms IJCV (and NVP and wav2lip) while being at least comparable to TBE. It can be seen that our method is the
best performer across the three questions.

• The inference speed of TBE is significantly slower.
This is mainly attributed to the costly viseme search
(∼5 minutes for 3 words). Our method executes within
a few tens of milliseconds.

• TBE also relies on neural rendering for learning to
generate facial texture based on the illumination in the
training sequence. It is thus not apt for operating under

new ambient lighting without further retraining. Our
framework is capable of seamlessly adapting to novel
lighting conditions during inference.



C. Limited comparison with Suwajanakorn et
al. [32]

The work by Suwajanakorn et al. also involves training
a personalized talking face model. However, [32] only syn-
thesized results for a single person (former U.S. President
Barack Obama), using hours of training video. While our
model is perfectly capable of similar synthesis, we con-
sciously refrain from training on living political personal-
ities due to ethical considerations. Hence, we are unable
to directly compare our work with that of Suwajanakorn et
al.. Nevertheless, our framework offers the following ad-
vantages:

• Suwajanakorn et al. trained on 14 hours of weekly
President addresses recorded between 2009-2016. In
contrast, our framework just requires ∼5 minutes of
training video.

• Suwajanakorn et al. demonstrate their outputs only un-
der the specific studio lighting setup of the President’s
office. Their texture generation network is not de-
signed with the goal of handling diverse ambient light-
ing. In contrast, our network disentangles and normal-
izes the effects of illumination, thereby enabling infer-
ence under diverse lighting conditions.

• Typical training data pre-processing time of Suwa-
janakorn et al. is around 2 weeks on 10 cluster nodes
of Intel Xeon E5530. In contrast, our combined pre-
processing and training takes only about 3-5 hours on
a single system equipped with a NVIDIA P1000 GPU.

D. Discussion on LSE metrics
We have used the official code release 1 by the authors of

Wav2Lip for evaluating the automated LSE metrics, LSE-D
(lower is better) and LSE-C (higher is better). We faced two
issues while using this metric:
(a:) Even though user study suggest that the lip-sync qual-
ity of Wav2Lip is usually inferior to our model, the LSE
metrics are always better for Wav2Lip. We observed this
pattern over a range of different videos. LSE metrics are
computed from paired audio-visual representation coming
from a SyncNet [9] network. Wav2Lip also leverages a
SyncNet architecture and audio-visual representations as a
lip-sync loss during training. We hypothesize that since a
similar architecture is used both as a training loss and for
scoring, Wav2Lip may be biased to do particularly well on
this metric. Thus, we refrained from reporting LSE metrics
for Wav2Lip. However, for other methods, the metric yields
numbers consistent with human evaluations of lip-sync.
(b:) The code sometimes fails to detect faces even under
normal illumination and thereby does not give LSE metrics.
So, we could not report LSE metrics on all videos.
1 https://github.com/Rudrabha/Wav2Lip

Figure 13: Comparing our result against ground-truth. For each
subject, top row is the original sequence of frames, while the bot-
tom row is the resynthesized sequence.

E. Leaving out Wav2Lip for Self-reenactment
Comparisons

While comparing methods for self-reenactment tasks
(Figure 10), we do not include Wav2Lip among the com-
peting methods. Along with the current audio, Wav2Lip
also feeds in the sequence of target frames with the lip re-
gion unmasked. In a self-reenactment setting, the input tar-
get frames are same as the final expected output from the
network. Hence, Wav2Lip would have an unfair advan-
tage over our method, since our framework is entirely audio
driven and only utilizes masked target frames (around the
lip region) for pasting back the synthesized output. There-
fore, we do not compare Wav2Lip for self-reenactment re-
sults. A similar advantage is also available to LipGAN [23]
which is a precursor to the framework of Wav2Lip.

F. Selecting Code Length for Audio and Previ-
ous Atlas

In this section we report studies to determine the code
length for encoding the current time step’s spectrogram and
previous time step’s predicted atlas. Since we wish to au-
tomatically determine acceptable settings of these parame-
ters, the study was conducted for a self-reenactment task in
which we have access to ground truth facial information.

For this study, we curated a custom dataset of sub-
jects selected from YouTube instructional videos, webcam
recordings, and studio conversations. The custom dataset
had around 10,000 audio-synchronized frames. Sample

https://github.com/Rudrabha/Wav2Lip


frames and corresponding reconstructions from two such
subjects are shown in Figure 13.

F.1. Selection of Previous Atlas Code Length, Na

We conducted an ablation study to determine the length
Na of the latent code LA

t−1. The code length governs the
contribution of the previous visual state to the current frame.
With increasing code length, the model starts to incorrectly
neglect the current audio input, instead basing its output
mostly on the previous state. In Table 2 we report the av-
erage metrics over different Na. Note that Na = 0 signifies
a model trained without auto-regression. Both SSIM and
LMD improve when using auto-regression initially but de-
teriorate as we increase Na, with Na = 2 giving the best
results.

Metric ← AR Code Length: Na→
0 2 8 16

SSIM 0.92 0.93 0.901 0.889
LMD 2.00 1.88 2.91 2.16

Table 2: Parameter sweep for selecting latent code lengths,
Na, for encoding previous time step atlas based on LMD
(lower is better) and SSIM (higher is better) metrics. Best
results are marked in bold.

F.2. Selection of Audio Code Length, NS

As mentioned earlier, we used a 32-dimensional vec-
tor for encoding the audio spectrogram. This number
was chosen by performing a parameter sweep over NS ∈
{8, 16, 32, 64, 128} on our custom dataset. In Table 3 we
compare the SSIM and LMD metrics, averaged over the
subjects in the dataset. We observe that NS = 32 yields
the most favorable performance. Hence, we use it as our
default choice when encoding the spectrogram.

← Audio Code Length: NS →
Metric 8 16 32 64 128
LMD 1.83 1.87 1.77 1.81 1.82
SSIM 0.907 0.914 0.917 0.917 0.910

Table 3: Parameter sweep for selecting audio latent code
length based on LMD and SSIM metrics. Best results are
marked in bold.

G. Network Architectures
In the main paper, we describe the architecture of the

audio encoder, which computes the latent code from audio

spectrograms, and the geometry decoder, which computes
the 3D vertices from the audio latent code. Here, we de-
scribe the additional network components of our model.

G.1. Texture Decoder Architecture

In Table 4 we present details of the texture decoder. The
input to the decoder is either a 32D vector (conditioned on
only audio latent code), or 34D (conditioned on audio la-
tent code + previous time step atlas latent code). This is
followed by a series of convolution and upsampling layers.

G.2. Auto-regressive Encoder Architecture

In our auto-regressive architecture, the previous atlas at
the last time step is encoded as an additional latent vector
(along with the audio encoded vector). The output is a
latent vector of length Na = 2. The encoder architecture
for the auto-regressive model is shown in Table 5.

Training by “Teacher Forcing”: As stated in the main pa-
per, during training we do not provide the actual previous
predicted atlas as input to the auto-regressive model, since
that would entail a recursion in the network. Instead we
follow the Teacher Forcing [41] paradigm of training the
network with the ground truth previous atlas.

In our initial experiments, we implemented a recursive
network and fed in the actual predicted previous atlas to
the model during training. The reconstruction quality of
that approach was worse than using ground truth atlases
during training (i.e. Teacher Forcing), however. Note that
during inference, the predicted previous atlas is fed to the
model, because the ground truth atlas is not known at that
time. Also, for predicting the first frame, we provide an ‘all-
zeros’ image as a proxy for previous frame because there is
no previous frame to start with. To handle this case, we
train the model by feeding it with ‘all-zeros’ for the previ-
ous atlas with a probability of 20%. This trains the model to
reconstruct the atlas both with and without the knowledge
of previous time step’s visual state.

H. Subject Details: GRID, CREMA-D and
TCD-TIMIT

For self-reenactment studies we performed experiments
on GRID [10], TCD TMIT [16] and CREMA-D [21]
datasets. Following the exact setting in [37], we select
the same set of 10 subjects (see Table 6) from each of the
datasets).

I. Sharpness of Synthesized Lip Region
In main paper, we mentioned that our method is capable

of generating high quality lip-sync, and we objectively es-
tablished this with the commonly used CPBD metric. The
metric was evaluated on the entire face. While it is true



Input Type Kernel Stride Channels Outputs
Input (Latent Vector):
= 32D (only audio)
= 34D (Audio + AutoRegressive)
Latent Vector FC - - - 16384
Reshape: 4×4×1024
2× Bilinear Upsample
8×8×1024 Conv 3×3 1×1 512 8×8×512
2× Bilinear Upsample
16×16×512 Conv 3×3 1×1 256 16×16×256
2× Bilinear Upsample
32×32×256 Conv 3×3 1×1 128 32×32×128
2× Bilinear Upsample
64×64×128 Conv 3×3 1×1 64 64×64×64
2× Bilinear Upsample
128×128×64 Conv 5×5 1×1 3 128×128×3

Table 4: Architecture of the texture decoder. Each fully connected (FC) and convolution layer is followed by a ReLU non-
linearity, while only the last convolution layer is followed by a tanh non-linearity. The length of the input latent vector
depends on the mode of the experiment.

Input Type Kernel Stride Channels Outputs
Input (RGB):
=128×128×3
Input Conv 5×5 2×2 128 64×64×128
64×64×128 Conv 5×5 2×2 256 32×32×256
32×32×256 Conv 5×5 2×2 512 16×16×512
16×16×512 Conv 5×5 2×2 1024 8×8×1024
8×8×1024 Conv 5×5 2×2 2048 4×4×2048
4×4×2048 FC - - - 2

Table 5: Architecture of the encoder for the previous atlas in auto-regressive mode. The encoder input is an RGB image and
output is a latent vector. Each convolution layer is followed by a ReLU non-linearity. The last fully-connected (FC) layer is
followed by a tanh non-linearity.

that the sharpness of the final composite full face is a pri-
mary factor of photo-realism, we also acknowledge that our
method benefits from copying the texture from upper part
of face from target frames.

Here we focus on determining the sharpness of only the
lower half of the face (below the nostrils). In Table 7, we
compare against Wav2Lip, LipGAN, NVP and TBE on the
user study videos. Even on the lower mouth region, our
method attains better CPBD scores across all competing
methods.

J. Applications
Our approach of generating textured 3D geometry en-

ables us to address a broader variety of applications than
purely image-based or 3D-only techniques, as discussed
here. Sample screenshots from some of these applications

are shown in Figure 14.

3D Talking Avatars: 3D avatars can make multiplayer
online games and Virtual Reality (VR) environments more
social and engaging. They may also be employed for au-
dio/video chat applications and virtual visual assistants.
While such avatars can be driven by a video feed from a
web-cam or head-mounted camera, the ability to generate
a 3D talking face from just audio obviates the need for any
auxiliary camera device, and also helps preserve privacy,
while reducing bandwidth requirements at the same time.
Our technique supports generating both 3D textured faces
as well as CGI avatars for these applications.

Video creation and editing: Our approach can be used
for editing videos, e.g. to insert new content in an online
course, or to correct an error without the cumbersome



Dataset Test Subject ID
GRID 2, 4, 11, 13, 15, 18, 19, 25, 31, 33

TCD-TMIT 8, 9, 15, 18, 25, 28, 33, 41, 55, 56
CREMA-D 15, 20, 21, 30, 33, 52, 62, 81, 82, 89

Table 6: IDs of subjects used for self-reenactment experiment.

LipGAN Proposed Wav2Lip Proposed TBE Proposed NVP Proposed
0.07 0.14 0.06 0.13 0.12 0.18 0.10 0.18

Table 7: Comparing CPBD metrics (on lower half of faces) of competing methods against our proposed method. For each
method, we select common pairs of videos for the competing and our method from the pool of user study videos.

Figure 14: Sample applications enabled by our 3D talking face generation pipeline.

and sometimes impossible procedure of re-shooting the
whole video under original conditions. Instead, a new
audio transcript may be recorded for the edited portion,
followed by applying our synthesis technique to modify
the corresponding video segment. Such a speech-to-video
or text-to-video system may be useful in multiple domains
such as education, advertising and entertainment. We
can also generate cartoon renderings for these videos,
which may be preferred in some applications, e.g. sketch
videos, stylized animations, or assistive technologies such
as pronunciation visualization.

Video translation and dubbing: Even though we train

our models on videos in a single language, they are surpris-
ingly robust to both different languages as well as text-to-
speech (TTS) audio at inference time. Using available tran-
scripts or a speech recognition system to obtain captions,
and subsequently a text-to-speech system to generate audio,
we can automatically translate and lip-sync existing videos
into different languages. In conjunction with appropriate
video re-timing and voice-cloning [17], the resulting videos
look fairly convincing. We have employed our approach for
translating and dubbing videos from English to Spanish or
Mandarin, and vice-versa. Notably, in contrast to narrator-
driven techniques [22, 34], our approach for video dubbing
does not require a human actor in the loop, and is therefore
more scalable across languages.


