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ABSTRACT 
Head and eye movement can be leveraged to improve the 
user’s interaction repertoire for wearable displays. Head 
movements are deliberate and accurate, and provide the 
current state-of-the-art pointing technique. Eye gaze can 
potentially be faster and more ergonomic, but suffers from 
low accuracy due to calibration errors and drift of wearable 
eye-tracking sensors. This work investigates precise, 
multimodal selection techniques using head motion and eye 
gaze. A comparison of speed and pointing accuracy reveals 
the relative merits of each method, including the achievable 
target size for robust selection. We demonstrate and discuss 
example applications for augmented reality, including 
compact menus with deep structure, and a proof-of-concept 
method for on-line correction of calibration drift. 
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INTRODUCTION 
Recently available head-worn Augmented Reality (AR) 
devices will become useful for mobile workers in many 
practical applications, such as controlling networks of smart 
objects [15], situated analytics of sensor data [14], or in-situ 
editing of CAD or architectural models [36]. For users to be 
mobile and productive, it is important to design interaction 
techniques that allow precise selection and manipulation of 
virtual objects, without bulky input devices. 

Eye gaze is a potentially useful input mode for AR 
applications, since it uses an innate human ability and 

doesn’t require extra hardware to be carried. However, eye 
gaze is well known to be inaccurate, due to both human 
physiology and tracking system limitations. Head-pointing 
has been used as a proxy for gaze [42,53], and is fairly 
precise, but requires unnatural, fatiguing head movements 
[3,4,31]. Alternatively, researchers have developed 
multimodal techniques that use a secondary input mode to 
refine eye gaze selection. Researchers have investigated 
such techniques in several domains, including desktop 
displays [56], handheld devices [49] and virtual reality [52], 
however they have been little explored for wearable AR. 

 
Figure 1. Pinpointing explores multimodal head and eye gaze 
selection for wearable AR a) Study layout of target markers, 
with feedback cues and HoloLens viewing field shown. 
b) Pinpointing techniques consist of a primary pointing motion 
plus secondary refinement. c) Refinement techniques: air-tap 
gesture, HoloLens clicker device, and head motion. 

This paper explores Pinpointing: multimodal head and eye 
gaze pointing techniques for wearable AR (Figure 1). We 
build on prior work by adapting multimodal pointing refine-
ment techniques for wearable AR, by combining gaze with 
hand gestures, handheld devices and head movement. Our 
exploration also includes head pointing, the current state-of-
the-art pointing technique [30,35]. We further discuss the 
implications of these results for interface designers, and 
potential applications of Pinpointing techniques. We 
demonstrate two example implementations for precise 
menu selection and online improvement of gaze calibration. 

KEY CONTRIBUTIONS 
The contributions of the paper are: 

• A broad comparison of target selection accuracy and 
speed for eye gaze, head pointing, and several 
multimodal techniques for improved accuracy. Results 
help clarify previous contradictory results for similar 
techniques, predict attainable target sizes for a wide 
range of techniques, and demonstrate previously 
unattained precision (< 0.2º) for head-based pointing. 
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• Adaption of multimodal techniques for wearable AR, 
resulting in several previously unexplored implementa-
tions that refine coarse eye gaze and head pointing with 
fine hand gesture, device gyro and head motion input. 

• Two example applications that demonstrate the 
potential of Pinpointing for improving wearable AR 
interaction: GazeBrowser uses gaze interaction with 
high precision pointing to navigate compact smart 
object menus. SmartPupil shows a novel online method 
for mitigating calibration drift of wearable eye trackers. 

RELATED WORK ON GAZE BASED INTERACTION 
Our user study investigates head- and eye gaze-based 
interaction techniques coupled with different refinement 
techniques. We review the related work in the following. 

Head- and Eye-Based Target Selection 
Our study explores eye gaze as an input method, as well as 
head pointing, which can provide a proxy for gaze, but has 
become a separate method in its own right. 

Head-pointing 
Together with hand-based interaction techniques, head-
based interaction has been actively investigated in the field 
of 3D user interface, virtual reality (VR) [6,11], desktop 
GUIs [5,29], assistive interfaces [37], and wearable 
computing [7]. One of the earliest works in interaction 
techniques for virtual environments [40] included head 
directed navigation and object selection. Recently head-
direction-based pointing has been widely adopted as a 
standard way of pointing at virtual objects without using 
hands or hand-held pointing devices (e.g., Oculus Rift [44] 
and Microsoft HoloLens [39]). Atienza et al. [1] further 
explored head-based interaction techniques in a VR 
environment. With wearable eye-tracking devices becoming 
affordable to use in combination with head-worn displays 
(e.g. Pupil Labs [32,51], FOVE [19]), researchers are 
increasingly exploring wearable eye gaze input [50,55]. 

Eye gaze 
While initially used for measuring and understanding users’ 
focus and attention [41], eye gaze has been actively 
investigated as an input method [27]. Gaze pointing uses 
eye tracking technology to identify which object a person is 
looking at. In one of the earliest investigations, Jacob [28] 
proposed basic interaction techniques using eye gaze on a 
desktop computer. Eye movement reflects not only 
conscious (explicit) but also unconscious (implicit) intent. 
As a result, eye-based input suffers from the well-known 
‘Midas Touch’ problem [28] of involuntarily selection. 
Researchers have investigated solutions to this problem, 
mostly based on dwell time (e.g. [28,45,54,62]), smooth 
pursuits, where eye gaze follows continuously a target (e.g. 
[17,33,63,64]) and gaze gestures (e.g. [2,13,25,26]), but 
also by using a second modality for confirming selections 
(e.g. a button press or hand gesture as in HoloLens).  

Inaccuracy of eye tracking causes challenges in designing 
gaze-based interactions. Feit et al. [18] showed that 
achieving a success-rate of 90% percent of target fixations 

requires targets as large as 5.9 cm in width and 6.2 cm, at 
65 cm from the screen, although filtering eye-movements 
can decrease target size by 35% (3.9 cm width, 4.2 cm 
height). Such inaccuracy is more challenging with gaze-
based interaction in limited field-of-view (FoV) head-worn 
displays, such as HoloLens (FoV approx. 30×17º), which 
we use in our work. 

Beyond calibration issues, eye gaze interaction is limited by 
sensor noise in pupil detection and drift due to shifting of 
the eye tracking hardware [8,34,50]. We address this issue 
with an application that uses refinement input to improve 
the calibration as the system is used (See SmartPupil: 
Online Calibration Improvement, below). 

Comparative Studies on Pointing Techniques 
Head-pointing is well known for its benefit of providing 
hands-free interaction, yet its performance and usability has 
been considered inferior compared to hand-based input 
methods. Early investigation by Jagacinski and Monk [29] 
reported a joystick being faster than head-pointing. Lin et 
al. [35] compared head- and hand-directed pointing 
methods on a large stereoscopic projection display. The 
results suggest hand directed pointing has better overall 
performance, lower muscle fatigue, and better usability, yet 
head-pointing provides better accuracy. Bernardos et al. [4] 
compared pointing with an index finger and head- pointing 
on a wall-size projection screen in terms of speed and 
accuracy. They did not find a significant difference in terms 
of task performance, yet hand-based pointing showed better 
perceived usability.  

In comparison to eye gaze interaction, head-pointing is 
more voluntary and stable. Bates and Istance [3] compared 
head- and gaze-based pointing techniques on a desktop 
computer, and found that eye gaze had worse performance, 
a steeper learning curve,  was more uncomfortable to use, 
and required higher workload. Similarly, Jalaliniya et 
al. [31] compared eye and head pointing with mouse 
pointing, and found that eye gaze was faster than head or 
mouse, but head motion was more accurate and convenient. 

Comparing eye gaze with hand pointing in VR, Tanriverdi 
and Jacob [61] found eye gaze performed faster, especially 
for distant objects, while participants’ ability to recall 
spatial information was weakened. However, Cournia et al. 
[12] later found eye gaze performed worse for distant 
objects. They postulated this contradiction in results might 
have been resulted from a difference in interaction styles.   

These works show that despite disadvantages, eye gaze 
interaction has many potential benefits for wearable AR. 
Because tracking limitations make gaze a poor selection 
tool, especially for very small objects, we explore how to 
improve accuracy by coupling gaze with other techniques, 
such as hand gestures or handheld devices. We furthermore 
investigate whether it is possible to use similar methods to 
substantially improve the precision of head pointing to fare 
better against standard pointing methods such as the mouse. 
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Combining Pointing Techniques 
Next, we introduce prior works that have explored multi-
modal interaction methods using gaze- or head-based input.  

Combination of Eye Gaze and Head-Pointing 
Closest to our work in focus on pointing accuracy, Spakov 
et al. [56] proposed using head movement to complement 
the low accuracy of gaze-based pointing. From a series of 
user experiments, they found head-assistance significantly 
improved accuracy without sacrificing efficiency. 

The works discussed thus far, along with several others 
[38,43,57], have investigated eye gaze and head pointing 
primarily with desktop monitors. A handful of recent works 
have used wearable eye trackers with head-worn AR and 
VR displays. Jalaliniya et al. [30] used a Google Glass [65] 
combined with a custom eye tracker to investigate 
combination of head- and eye-based pointing. They found 
that their proposed refinement of quick eye-based pointing 
with subsequent head-motion, was faster than head pointing 
alone, without sacrificing accuracy. Conversely, Qian and 
Teather  [52] recently found that head-pointing was faster 
than combined eye and head input in wearable VR. They 
also found, contrary to other previous studies [31,61], that 
head input was faster than eye gaze only. As such, it is still 
unclear how eye gaze and head-pointing should be 
combined in order to allow fast and accurate pointing.  

Combination of Eye gaze and Manual Input 
One of the earliest efforts to refine eye gaze input was 
MAGIC, proposed by Zhai et al. [66], which used a mouse 
to improve gaze accuracy. When the user looks at a target 
object, the mouse pointer appears at the gaze point, 
allowing users to refine its position. Through a pilot study 
they showed MAGIC pointing could reduce physical effort 
and fatigue compared to manual input alone, while 
providing greater accuracy than eye gaze alone. 

Chuan and Sivaji [10] compared a combination of eye gaze 
and finger pointing against mouse and finger pointing alone 
on a desktop interface. They found the proposed method 
had lower error and faster performance on larger targets 
compared to finger pointing, while mouse outperformed 
both overall. Later, Chatterjee et. al. [9] investigated 
various desktop interaction methods combining eye gaze 
with hand gesture input. A Fitts’ Law study showed a 
proposed method having a higher index of performance 
compared to eye gaze or hand gesture input alone. 

Pfeuffer et al. investigated using eye gaze coupled with 
touch input in various setups including touch screen [46] 
multi-screen [48], touch pen [47], and tablet computer [49] 
setups. The most relevant work to our study is CursorShift, 
a technique that combined eye-gaze and touch for tablet 
interaction, using eye-gaze for low fidelity cursor position 
and touch for fine tuning the cursor position [49].Using a 
similar touch refinement approach, Stellmach and Dachselt 
developed various eye- and head-based refinement 
techniques on a distant screen using a handheld touch 

surface [58,59]. While their eye-based touch refinement 
technique was faster, a head-controlled zoom approach 
provided users with more feeling of control [59].  

In summary, much prior research on improving gaze input 
has used hand input for refinement, while some works have 
used head motion, with mixed results. While head-pointing 
is shown to be less accurate than mouse input [31], there 
have not been any efforts, to our knowledge, to refine head 
movements as we explore in this work. Furthermore, most 
prior work has focused on desktop environments, whereas 
few studies have explored gaze refinement for wearable 
displays.  Whereas most prior works focus on a single 
technique, we provide a broad comparison of both eye gaze 
and head pointing with several refinement methods (scaled 
head motion, hand gesture input, and handheld device 
input) for improved accuracy on a head-worn AR display. 

PINPOINTING: SELECTION TECHNIQUES FOR AR 
In this section, we discuss the primary design factors 
relevant to Pinpointing. We define Pinpointing as the use of 
multimodal pointing techniques for wearable (AR) 
interfaces. Specifically, these techniques use coarse point-
ing selection, followed by a secondary, local refinement 
motion (Figure 1) to provide pinpoint accuracy. In this 
exploratory work, we limit our investigation to Pinpointing 
on 2D surfaces, as might be used in menu selection, 
interactive visualization or in-situ CAD applications.  

Target Applications 
Our exploration of these techniques is aimed at wearable 
AR applications that require precise accuracy for selecting 
virtual or real objects. A wide variety of applications can 
make use of precise selection in menus, for instance to 
select system parameters, or to control various functions of 
a smart object. Because many head-worn AR displays have 
a limited FoV and because virtual menus or annotations can 
obstruct important real-world objects, menu item size 
should be minimized as much as possible. Also, many 
applications such as interactive data visualizations or in-situ 
CAD may require the selection of tiny visual features. 

Design Requirements 
We summarize the design requirements for Pinpointing 
interaction as follows: 

R1) Pinpointing must balance the needs of selecting large 
objects with minimal speed and effort, with the ability 
to select very small targets when desired. 

R2) Because wearable AR platforms overlay content 
directly on the real world, interaction should leverage 
the context provided by a user’s visual focus. 

R3) To afford mobility in interactive environments and 
provide a natural experience with virtual content, use 
of wieldy, external devices should be minimized. 

R4) Interaction in AR applications should be as ‘invisible’ 
as possible, so that users are primarily focused on real 
and virtual objects, and not mechanics of the interface. 
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R5) Interactions that trigger noticeable object behaviours 
should be deliberate, so that users are not distracted by 
unintended consequences of actions. 

Next, we discuss the primary elements of Pinpointing 
techniques – primary pointing mode, selection method, and 
refinement technique – and describe the options used in the 
current work. A summary of techniques used in our 
following study is outlined in Figure 2. 

 
Figure 2. Pinpointing refinement methods. Each primary 

selection mode can be paired with any refinement method. 

Primary Pointing Mode  
Our Pinpointing exploration includes two primary input 
modes, eye gaze and head pointing. These modes have 
strong potential for head-worn AR devices, since they 
require low effort and the required sensors can be 
embedded into devices worn by the users. These methods 
observe requirements R2 and R4, since a user’s focus of 
attention is a strong indicator of their intended actions. 

Selection Method 
Selection methods can be defined as implicit or explicit. 
Implicit selections are made without any conscious effort 
by the user, whereas explicit selections require a deliberate 
user action. Eye gaze and head pose can both be used to 
trigger selections implicitly, with coarse accuracy, by 
predicting when a user is focused on a particular object. 

Currently, we explore only explicit selections. While 
mechanisms that require no additional input mode have 
been studied (R3), such as head tilt [57] and dwell [28], we 
instead use simple yet reliable methods that provide fast 
and deliberate interaction (R5). Our implementations use 
two simple triggers, a button click on a small device and a 
finger gesture, that both integrate cleanly with the 
refinement input modes described next. 

Refinement Technique 
Secondary refinement techniques provide precision beyond 
the limits of eye or head input alone, to allow the selection 
of very small targets; after the initial selection with the eye 
or head pointing mode, a second mode is used to provide 
additional input. In practical applications, this refinement 
phase can be made optional, however for study purposes we 
strictly delineate techniques with or without refinement. 

In our study we explore three options that add minimal bulk 
for mobile users (R2): head motion, hand gesture input, and 
input from a small handheld device (Figure 1, Figure 2). 
These methods all provide a clear distinction from the 
primary mode (R5), and can be scaled for fine control (R1). 
We implemented and tested these methods in the user study 
described next. 

PINPOINTING STUDY 
We conducted a user study to compare various Pinpointing 
techniques to evaluate their efficacy as pointing techniques 
for AR. We investigate both eye gaze and head pointing as 
primary pointing modes, each combined with head motion, 
hand gesture and device refinement techniques (Figure 2). 
For the current study, we use only explicit selection 
techniques, triggered by a handheld device or hand gesture. 
This study explores only 2D selection, with all targets and 
feedback superimposed on a wall of the study environment. 

Technique Implementation 
These techniques were implemented on a Microsoft 
HoloLens device [39] running Windows 10. Mounted on 
the HoloLens is a Pupil Labs’ eye tracker [51] (Figure 3), 
which captures the user’s right eye at 120 Hz. The eye 
tracker is tethered to a desktop PC (Intel Core i7-770K with 
NVIDIA GeForce GTX 1070), which sends eye tracking 
data to the HoloLens via Wi-Fi. The eye tracker is 
calibrated using a separate desktop program linked to Pulil 
Labs’ Pupil Capture software, remotely connected to the 
HoloLens. The selection techniques are implemented as 
follows and summarized in Table 1.  

 
Figure 3. Pinpointing techniques were implemented on a 
Microsoft HoloLens with a Pupil Labs eye tracking device 
mounted below the user’s right eye. 

The baseline head-pointing technique (Head Only), is 
controlled by a 1:1 mapping of the user’s head position. 
Selections are triggered explicitly using either the handheld 
HoloLens ‘clicker’ device, or by an ‘air-tap’ gesture. 

Technique Pre-refine 
feedback 

Refinement 
triggered 

Refinement 
feedback 

Selection 
triggered 

Head Only 
 

none none click up 

Head+ 
Gesture  

air-tap down 
 

air-tap up 

Head+ 
Device  

click down 
 

click up 

Head+ 
Head  

click down 
 

click up 

Eye Only none none none click up 

Eye+ 
Gesture none air-tap down 

 
air-tap up 

Eye+ 
Device none click down 

 
click up 

Eye+Head none click down 
 

click up 

Table 1. Refinement technique mechanisms and feedback. 
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The baseline eye gaze technique (Eye Only) works by 
simply directing the eye to the target centre and triggering 
an explicit selection. To make the technique as fast and 
natural as possible, we opted to not provide feedback on the 
detected gaze position. While a gaze-controlled cursor may 
help improve selection accuracy, it may also slow the 
selection speed and cause unwanted distraction [20,66]. 

The six refinement techniques consist of two phases, pre-
refinement and refinement. In the pre-refinement phase, the 
user makes an initial target selection with the given baseline 
technique. For head conditions, a cursor is shown (without 
crosshairs). For eye conditions, the user looks at the target. 

The refinement phase provides an opportunity for users to 
improve their initial selection. Refinement begins when the 
user holds down either the device button or air-tap gesture, 
and ends when the button or air-tap is released. As the start 
of the refinement phase, a crosshair cursor appears at the 
position of the head-pointer or detected gaze. The crosshair 
is controlled according to the corresponding technique:  

The Head+Device and Eye+Device techniques use rotation 
of the HoloLens clicker device (Figure 1c) to control the 
crosshair. Control is similar to a gyro-mouse [21], where 
the device yaw and pitch control the x and y crosshair 
movement, respectively. The start and end of the refinement 
phase are controlled by the clicker button, which can be 
easily held down while rotating the device. 

The Head+Gesture and Eye+Gesture techniques use 
horizontal and vertical movement of the hand to control the 
x and y crosshair movement, respectively. The start and end 
of the refinement phase are controlled by the air-tap 
gesture, which consists of moving an extended finger down 
toward the thumb to tap and back up to release (Figure 1c). 

With the Head+Head and Eye+Head techniques, the 
crosshair is controlled by head motion, as with head 
pointing. Whereas the control-display (CD) ratio of head-
pointing is 1:1, head refinement uses a higher CD ratio (set 
to 2:1 with pilot trials) to increase targeting precision. The 
CD ratio of device and gesture refinement techniques were 
tuned so that all three were similar. The refinement duration 
is controlled by holding and releasing the clicker button. 

Task  
Participants are required to select a point target, marked by 
a cross, using a crosshair cursor (Figure 1). From a central 
starting position, targets are found in one of 8 compass 
directions at 2 target distances. The direction factor is 
included to account for variation of eye calibration in 
different regions of the user’s view, and for drift as the head 
is moved. As current AR displays typically have relatively a 
small display size, we test two distances to include targets 
that lie either inside or outside the device FoV. Near 
distance targets are initially visible within the device FoV, 
so that participants can ideally shift their eye gaze among 
all items using eye movement alone. Targets at the Far 

distance require participants to move their head before 
being able to see them.  

To prevent the need to search for targets, all locations are 
anchored to visible, real-world markers (Figure 1). Markers 
are placed on a wall 2m in front of the participant, which 
coincides with the focal distance and virtual image plane 
distance of the Microsoft HoloLens.  

To begin a trial, the participant must align a visible head 
pointer with a central starting target (1.2° diameter). After a 
random interval of 750-1250 ms, a virtual cross-shaped 
target appears at one of the 16 marker positions, chosen in 
random order. Since the target may not be initially visible 
within the FoV, a directional arrow appears in place of the 
central target to indicate the target’s direction (Figure 1).  

Participants are asked to align a crosshair cursor (see 
Design and Procedure, below) with the target as precisely 
as possible, and to do so as quickly as possible. To 
discourage excessive effort on accuracy at the expense of 
time, a limit of 5 s (based on pilot studies) is placed on each 
trial. Similarly, distance limit (5° at start of refinement and 
2° for selection) is enforced to eliminate trials affected by 
mishaps such as sensor noise. 

Design and Procedure 
We used a within-participants design with 3 factors:  

• selection technique (Head Only, Eye Only, 
{Head/Eye}+{Gesture/Device/Head}) 

• target angle (0, 45, 90, 135, 180, 225, 270, 315° 
measured anti-clockwise from the right axis) 

• target distance (Near and Far – 7, 21° from 
centre, respectively) 

For each technique, participants completed 3 blocks (in 
addition to 1 block for training) of all target combinations, 
for a total of 8 techniques × 8 directions × 2 distances × 3 
blocks = 192 trials each. 

To mitigate fatigue, the study was broken into two sessions 
lasting 40-90 minutes each, for head-based and eye-based 
techniques. To reduce learning effects, half of participants 
were randomly assigned to start with either session. Targets 
were presented in a random order within each block, and 
refinement techniques within each session were fully 
counter-balanced using a Latin square design. 

For analysis, we collected the position of each selection on 
the target plane, including the pointing position both before 
and after the refinement phase. We also collected the time 
of each trial and each phase. Participants provided 
demographic information prior to the study and completed a 
questionnaire on completion, containing questions and 
comments on their general preference. After each 
technique, the perceived task load of each technique was 
measured using a raw-TLX questionnaire [23]. 
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Participants 
We recruited 12 participants (2 female, mean age 32 years, 
SD = 6.8) from our university. Due to the variety of 
technologies used for this study, we sought participants 
with at least some previous experience with one or more of 
them. All but 2 participants had at least intermediate 
experience using handheld AR and see-through AR 
displays such as the HoloLens, and 8 had intermediate or 
expert experience with eye-tracking equipment. 

Analysis 
We conducted a repeated-measures ANOVA (α = .05) for 
accuracy and time by having interaction technique, target 
angle and distance as independent variables. When the 
assumption of sphericity was violated (tested with 
Mauchly’s test), we used Greenhouse-Geisser corrected 
values in the analysis. The post hoc tests were conducted 
using pairwise t-tests with Bonferroni corrections. Effect 
sizes are reported as partial eta squared (𝜂"#). Time and error 
analyses included only successful target selections (6275 of 
7263 total trials, or 86.4%). Accuracy results are reported in 
angular distance (degrees). For reference, a 1 degree angle 
is approximately 3.5 cm in width at a distance of 2 m. 

RESULTS 
The primary results are summarized in Figure 4 and Figure 
5. For head-based input, all three refinement techniques 
exceed the accuracy of the state-of-the-art Head Only  
technique by two to three times. We also found out that 
Head+Device and Head+Head refinements did not increase 
the task load compared to Head only. Head+Device and 
Head+Head were subjectively preferred over Head only. 

For the eye gaze techniques, refinement improved selection 
accuracy over the baseline Eye Only substantially, by five 
to six times, but remained less precise than Head Only. Our 
introduced device-gyro refinement technique (Eye+Device) 
performed well, providing slightly better accuracy than 
Eye+Head and slightly faster than Eye+Gesture. It was also 
subjectively preferred over Eye+Head and Eye+Gesture 
and required lower perceived task load. We provide more 
detailed analyses in the following. 

Accuracy 
We found a significant main effect on accuracy only for 
interaction technique, F(1.18, 13.01) = 63.69, p < .001, 𝜂"# = 
.85. No interaction effects were found. As expected, Head 
Only (mean error 0.32º, SD = 0.22) was more accurate than 
Eye only (2.42º, SD = 1.27, Figure 4).  

Generally, the refinement techniques drastically improved 
pointing accuracy. All improvements in accuracy compared 
to the corresponding baseline mode were statistically 
significant (Figure 4). The accuracy of eye pointing in 
particular improved from 2.42º to be below 0.5º. Our results 
support findings from Spakov et al. [56], who showed that 
head movements can be used to improve accuracy of gaze 
on a desktop display. They found a nearly threefold 
improvement in accuracy, while we found nearly fivefold, 
from 2.42º to 0.49º. With Gesture refinement, improvement 
was even greater and the mean error decreased to 0.30º. As 
such, we extend the results of Chatterjee et al. [9], who used 
hand gestures to improve gaze accuracy in desktop setup, to 
wearable AR. In addition, our novel refinement technique 
Eye+Device, using a device’s gyro sensor, was as accurate 
as gesture refinement. 

With head pointing, accuracy was improved from 0.32º to 
be below 0.2º, a substantial improvement over the 
commonly used baseline technique. Interestingly, the eye-
based refinement techniques remained slightly less accurate 
than Head Only. A similar result by Jalaliniya et al.  [30] 
found that eye gaze with head refinement resulted in the 
same accuracy as head only. However, they used the same 
CD ratio for the baseline and refinement techniques, 
whereas we used higher CD-ratio (2:1) in the head-based 
refinement phase. 

Overall, Head+Head appeared the most accurate; it was 
statistically more accurate than any of the eye based 
techniques, although not significantly better than 
Head+Device or Head+Gesture. Head+Gesture and 
Head+Device were more accurate than Eye+Head, which 
suffered noticeably from FoV limitations; head movements 
with Eye+Head were larger than with Head+Head because 
the refinement started an average of 1.6º further from the 
target (Figure 6a). These large movements often caused the 
target to move out of view with the Eye+Head technique. 
This problem could be mitigated by lowering the 
refinement phase CD ratios for the eye based techniques. 
However, for study purposes we kept CD ratios constant 
between eye- and head-based techniques. 

Time 

Main Effects 
We found main effects on performance time of technique, 
F(7, 77) = 40.03, p < .001, 𝜂"# = .78, distance F(1,11) = 
1000.00, p < .001, 𝜂"# = .99, and angle, F(7,77) = 3.14, p = 
.006, 𝜂"# = .22. The difference for distance is easily 
explained by the required head movement for Far targets, 
but angle is more difficult to explain. Pairwise comparison 

Figure 4. Mean pointing error with different techniques. 
Statistical significances are marked with stars (**=p<.01 and 
*=p<.05). Error bars represent standard deviations. 
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showed that 0º (middle-right) was significantly faster than 
225º (bottom-left), and marginally faster than the other 
bottom targets (p = .084 for 270º and p = .056 for 315º). A 
similar study of target selection with a limited FoV by Ens 
et al. [16] also found slower selection for lower targets.  

Whereas Head Only was more accurate than Eye Only, Eye 
Only was the faster technique (mean selection time 1.38s., 
SD = .73s versus 2.30s, SD = .73s). A similar conclusion 
was found by Jalaliniya et al. [31], however, Qian et al. [52] 
found the opposite, that head pointing was faster than eye 
pointing. The reason for this difference could be the 
presence of the cursor in Qian’s study, although Jalaliniya 
[31] also visualized eye gaze using a the cursor. Thus, it is 
unclear what has caused the difference in results between 
these two studies, as they do not report radial distances to 
targets, which has been shown to have impact on results 
(see Interaction Effects, below). 

Head movement as a refinement method was generally 
faster than gesture and device refinement. When paired 
with head-pointing, the difference was statistically 
significant (Figure 5). Moreover, Eye+Head was 
significantly faster than Head+Device and Head+Gesture. 
We expect the faster selection times with head refinement 
was partly because due to the lack of mode-switching 
during the selection task. In fact, refinement with the 
Head+Head condition started about 0.35s earlier than with 
Head+Gesture (Figure 6a). This difference was statistical 
significant (p =.026). 

Interaction Effects 
There was a significant interaction between technique and 
distance, F(3.77, 41.43) = 2.92, p = 0.035, 𝜂"# = .21. From 
individual ANOVAs for each distance, we found that Head 
Only was significantly faster (p < .001) than Eye+Head for 
the Near distance but not for Far (p = 1.00, see Figure 6b). 
This result is similar to a study by Jalaliniya  [30], which 
found that eye gaze with head refinement (CD ratio 1:1) 
was faster at large radial distances than head only. Possibly, 

Figure 6. a) Time-error plot for different interaction 
techniques. Arrows represent differences at start and end of 
refinement1 and b) interaction effect between distance and two 
techniques (Head only and Eye+Head) on time.  

all eye refinement techniques may improve in this way with 
a wider FoV, as the required head movements are reduced. 

Task load 
Results from the NASA TLX questionnaire showed differ-
ences for perceived task load between techniques, with 
significant effects for all, as well as the overall mean. The 
results from repeated-measures ANOVA were as follows: 
FMental (3.00) = 3.47, p = .027, 𝜂"# = .24, FPhysical (7) = 7.57, p 
< .001, 𝜂"# = .41, FTemporal (3.04) = 3.57, p = .024, 𝜂"# = .25, 
FPerformance (3.38) = 5.84, p = .002, 𝜂"# = .35, FEffort (7) = 5.54, 
p < .001, 𝜂"# = .34, FFrustration (7) = 5.09, p < .001, 𝜂"# = .32 and 
FMean (3.50) = 7.81, p < .001, 𝜂"# = .42. The results from 
pairwise comparisons between techniques can be seen in 
Figure 7 (next page). Eye-based interaction technique with 
gestural refinement (Eye+Gesture) revealed a much higher 
task load compared to other techniques. 

For head-based techniques, Head+Device and Head+Head 
had the lowest task load for all attributes. Interestingly, the 
perceived Physical load and Effort were rated equally or 
even lower than Head only, which requires less head 
movement overall. For eye-based techniques, Eye only and 
Eye+Device had the lowest loads. Eye+Head scores 
suffered from the problem of the cursor disappearing 
beyond the FoV as explained earlier (see Accuracy, above).   

When comparing corresponding head- and eye-based 
techniques together (i.e. Eye+X vs. Head+X), it can be 
noted that there were not significant differences between 
conditions, except with Head refinement in Performance. 
However, Eye Only generally had a lower task load than 
Head Only (though not significant). Head was lower than 
Eye for Gesture and Head refinements, where eye-based 
techniques resulted in a higher load, likely due to longer 
refinement motions. 

                                                             
1 There is also a small change in mean error for Eye Only. As we used moving 
average to smooth eye movements, the fixations are filtered during the button 
click (≤ 200 ms), during which time the mean error is slightly decreased. 

Figure 5. Mean times with different interaction techniques. 
The statistical significances are marked with stars 
(**c=p<.01 and *=p<.05). Error bars represent standard 
deviations. 
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Preferences 
Figure 8 shows the results of user preference. As well as 
being more accurate, head interaction was slightly preferred 
overall: 58.3% preferred Head, whereas 41.7% preferred 
Eye. Head pointing was often seen as the more familiar 
technique (P11: “I usually speed through UI with a mouse 
and I think this reflects in this technique.”). However, some 
participants found it difficult to stabilize head movements 
(P9: “hard to keep the head steady for a longer time”) and 
this caused some issues to neck muscles (P5: “I feel 
uncomfortable on my neck.”). Eye pointing, conversely, 
was easy and fast (P15: “Very easy and fast.”), but 
inaccurate and difficult to control (P4: “It was frustrating 
that the eye tracking was not accurate enough. I was just 
hoping it will be close enough to the target. Cannot really 
control how accurately I can perform the task.”). 
Interestingly, time for refinement techniques did not always 
match with preference. For example, Head+Head was 
faster than Head+Device, but was not preferred. Device 
was the most preferred refinement condition for both 
primary techniques. 

Figure 8. The Device refinement was the most preferred 
technique with both primary modes (1: best ~ 4: worst). 

Defining target sizes 
To design applications that use Pinpointing techniques, we 
computed the required target size for each technique using 
two methods.  The first follows the approach presented by 
Feit et al. [18], who defined the width and height (Swidth and 
Sheight) for the rectangular targets according to Equation 1:  

S&'()*/S*,'-*) 	= 2	(𝑂3/4 + 2	σ3/4)         (1) 
where Ox/y is the mean x or y offset between target and 
values and σx/y is the x or y component of the standard 
deviation. Then about 95% of values lie within two 
standard deviations of the mean for normally distributed 
data. Second, we computed ellipses using multivariate 
normal distribution with 95% confidence intervals. We used 
the maximum distance between the target position and 
ellipse edge to define the radii of circular targets. We 
expect the latter method to provide near-100% targeting 
accuracy in most conditions, although this has yet to be 

empirically tested. Sizes for rectangular (width and height) 
and circular (diameter) targets are shown in Table 2.  

Our study resulted in a larger rectangular target size for Eye 
Only (7.0º × 12.7º) than reported by Feit et al. (5.2º × 5.5º). 
Both are extended along the y-dimension, however ours is 
much more so. This likely resulted from differences in the 
underlying eye tracking systems as well as drift introduced 
by our wearable configuration. We noticed the vertical 
alignment between the HoloLens display and eye tracker 
drifts more easily than the horizontal direction (Table 2).   

Technique Width (°) Height (°) Diameter (°) 
Head Only 2.20 2.08 3.65 

Head+Gesture 1.22 1.87 3.28 
Head+Device 1.19 1.37 1.61 
Head+Head 0.58 1.10 1.82 

Eye Only 7.00 12.67 16.17 
Eye+Gesture 2.06 2.70 4.70 
Eye+Device 1.80 2.00 3.75 
Eye+Head 1.98 3.95 6.54 

Table 2. Target sizes for each technique. 

Removing this drift is a potential application for refinement 
techniques (see SmartPupil: Online Calibration 
Improvement, below). The inaccuracy of eye tracking has 
been evident in other studies using head-worn displays. 
Qian et al. [52] found in their experiment with a 
commercial VR platform that the selection error rate with 
eye gaze for a target of 8º in diameter was approximately 
15%, comparable to the 20.8% miss error rate for our 10º 
diameter distance threshold (not including time-out errors). 

DISCUSSION 
The accuracy of current state-of-the-art head pointing is not 
at the level where it should be to allow precise selections, 

Eye Head 

Figure 7. The mean responses for the attributes of NASA TLX questionnaire. The statistical significant differences are 
marked as connecting lines. 

Figure 9. Examples of defined target sizes for a) Eye only and 
b) Eye+Device techniques. For both conditions, the diameter 
for circle targets was determined by the bottom-most target. 

CHI 2018 Best Paper Award CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 81 Page 8



 

 

far worse than a mouse, for example. As such, there is clear 
motivation for Pinpointing refinement techniques. While 
previous studies have focused on refining eye gaze, 
according to best of our knowledge, no one has investigated 
refining head movements before. We showed in this study 
that refinement techniques can improve head pointing 
accuracy by a factor of three, in particular Head+Head, 
which provided the greatest precision. This technique 
allows interaction with very small objects such as small 
menu items (see Gaze Browser: Precise Menu Selection, 
below) or data points. 

Previous studies investigating eye gaze refinement have 
implemented a single refinement technique, e.g., mouse 
[66], touch [49], head [56] or gesture [9], and have 
compared against eye pointing without refinement, but no 
wide-ranging comparative studies between refinement 
techniques have been conducted before this study. We 
studied two previously suggested refinement modalities 
(head and gesture) that are feasible for wearable AR 
scenarios and included device as a new addition. The latter 
technique was the most preferred and provided slightly 
faster selection compared to gesture and head refinement 
techniques. A drawback of these methods is the need for an 
external handheld device. This requirement could be 
eliminated by triggering refinement with a binary gesture 
(e.g. a tap gesture) or touch on a wearable item (e.g. a ring 
or clothing) that can be detected with higher reliability than 
continuous gestures.  

Although we studied the refinement techniques with one 
particular AR platform, the interaction techniques can be 
ported to other wearable AR and VR systems. Time, error 
and preference results may generalize to other systems with 
similar display and eye tracking hardware, although results 
will generally improve with developments in display FoV, 
eye tracking reliability, and gesture sensing technologies. 

APPLICATIONS FOR PINPOINTING  
In this section, we show example AR applications where 
Pinpointing can be used to enhance interaction. 

Gaze Browser: Precise Menu Selection 
We developed a prototype application called GazeBrowser 
(Figure 10) for interacting with smart object menus. 
GazeBrowser demonstrates how both implicit and explicit 
selection techniques, with varying capabilities for targeting 
accuracy, can be combined in a single interface. Gaze 
[22,63] and AR [24] have both been previously explored in 
the context of controlling smart objects. Combining gaze 
and AR may be a very useful approach, since in future 
many such objects will become distributed in our physical 
environments. These may lack displays and input controls 
but can be controlled through network connections.  

We designed a fractal radial menu that can be controlled by 
Pinpointing. The fractal menu is compact to minimize 
visual clutter of AR annotations; virtual annotations are 
initially hidden but users can “browse” objects with their 

gaze to implicitly reveal simple visual markers. When an 
object of interest is found, menu interaction begins with an 
explicit selection.   

Once a menu is opened, users can make further selections 
to open recursive sub-menus. To keep information within 
an easily browsable space, each level becomes smaller, as 
shown in Figure 10. By controlling the refinement motion, 
users can navigate through several levels continuously, with 
a single selection. The fine obtainable precision of 
Pinpointing allows deep menu structures to be condensed 
within a small physical space. Refinement techniques allow 
such fractal radial menus that would be impractical using 
eye gaze alone, since menu items would need to be much 
larger, thus distributed over a wider area.  

 
Figure 10. Compact fractal radial menus with deep structure 
in GazeBrowser. a) Example application controlling humidity 
and temperature sensors. b) HoloLens screenshot of menu 
used with device refinement. c) A close-up showing selection of 
very small radial menu items using Pinpointing. The selected 
item is the small yellow dot marked by the crosshair. 

SmartPupil: Online Calibration Improvement 
Our second prototype application, SmartPupil, is an online 
method for improving the gaze calibration. This method 
learns from data collected during the refinement stage of 
the Pinpointing techniques. Drift of gaze calibrations is a 
well-known issue especially on wearable eye trackers 
[50,60]. During our study, we observed that gaze 
calibration was typically less accurate for extreme upper 
and lower targets, and that overall accuracy tended to 
degrade over time, due to minute shifting of the HoloLens 
during head movement. 

We implemented a basic method based on the Eye+Device 
technique, that learns from refinement motions to improve 
the accuracy of future interactions. Recall that at the start of 
the refinement phase, the cursor appears at the currently 
detected gaze position. With our technique, a correction 
vector, 𝑣, is added to this position, and updated with each 
refinement motion. The correction vector is calculated as 

𝑣 = 𝑣"89: + 	𝛼𝜖                             (2) 
Where 𝑣"89:  is the previous correction vector and 𝛼 is a 
tuning parameter, set to 0.5 in our implementation. The 
update vector 𝜖 is calculated as the distance from the initial 
cursor position pstart to the target centre t if the target is 
correctly selected, otherwise from pstart to the final cursor 
position pend (Figure 11). If the cursor is not moved in the 
refinement phase, then no update is added for that selection. 
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Figure 11. A basic online calibration improvement method, 
implemented for proof of concept. 

We ran a small pilot study with four participants (all male, 
1 left handed) to test our improvement method. With a 
design similar to the above user study, participants 
completed 6 blocks of trials using two variations of the 
Eye+Device technique, with and without SmartPupil 
updates (improvement and no improvement, respectively). 
Participants were asked to focus their gaze on a small 
marker at the centre of targets (diameter 2º) before clicking, 
so that the pre-refinement error could be measured. 

 
Figure 12. a) Gaze calibration error increases over time. With 
SmartPupil, degradation is less noticeable, and the mean pre-
refinement cursor-placement error is reduced. b) SmartPupil 
led to a reduction the overall number of missed targets. 

From the recorded successful trials (760 of 820 total), we 
examined this offset over time, and verified that the gaze 
tracking accuracy appeared to degrade. This degradation is 
visible in Figure 12a as an increase in the mean gaze-
prediction error over the 6 blocks of trials. However, the 
degradation of the calibration was less noticeable when the 
improvement method was used. The tracking error was 
lower overall with the improvement method, with a mean 
pre-refinement offset of 1.50° (SD = 1.10) from the target 
centre when using SmartPupil versus 2.34° (SD = 1.38) 
without. Furthermore, the total number of target misses was 
lower when using SmartPupil (41/417 trials, 10%, vs. 
19/403, 5%), as shown in Figure 12b. 

Participants overall preferred SmartPupil over the baseline 
technqiue, and most noticed they were able to hit the targets 
more easily and more frequently. While this naïve method 
appears to be useful for improving gaze calibrations online, 
it could easily be improved. For instance, the current 
method stores a single vector, with the implicit assumption 
that calibration error is equal for all targets. Instead, a more 
sophisticated implementation could store multiple vectors, 
weighted by the user’s current gaze and head orientation. 

FUTURE WORK 
In future work, we would like to first further study the 
proposed Pinpointing techniques on alternate platforms, 
particularly on AR devices with wider FoV. Such a study 
may reveal further benefits of gaze versus head pointing. 
We would further like to explore techniques for other types 
of interaction beyond target selection. For instance, 
applications such as CAD may benefit from precise 
techniques for scaling, rotating and placing objects. 
Additionally, interaction languages need to be developed 
around these precision techniques so that users can apply 
them in various ways or in combination. For instance, a 
user may want to select a face or vertex rather than a whole 
object, or apply multiple different operations in sequence. 
Additional precision-techniques for operations such as 
group selection and set subtraction will also be useful for 
applications with a large number of minute objects, such as 
analysis of 3D scatterplots or point clouds. 

When considering the use of Pinpointing in real-world, 3D 
AR environments, it would be worthwhile to study 
precision techniques in the depth direction. For example, 
when interacting with smart objects or 3D visualizations, 
eye-based techniques can leverage focus and convergence 
cues, which is not possible with head-based techniques. In 
addition, the use of eye- and head-based selection 
techniques in real-world AR applications will raise 
questions about how the user’s mobility (e.g., walking) 
affects the feasibility of these techniques. For example, 
walking may cause the visual attention to be directed 
towards navigating in the environment, making the use of 
Pinpointing techniques more difficult. 

CONCLUSION 
In summary, this work has taken a close look at a variety of 
multimodal techniques for precision target selection in AR. 
We investigated both eye gaze and head pointing combined 
with refinement provided by a handheld device, hand 
gesture input and scaled head motion. A user study showed 
trade-offs of different variations of Pinpointing. Confirming 
previous work, eye gaze input alone is faster than head 
pointing, but the head pointing allows greater targeting 
accuracy. A previously unexplored use of scaled head 
refinement proved to be the most accurate, although 
participants primarily preferred device input and found 
gestures required the most effort. We further demonstrated 
two applications for Pinpointing, compact menu selection 
and online correction of eye gaze calibration. Further work 
is required to reproduce these techniques on a wider variety 
of device hardware and to explore more sophisticated 
applications such as situated analytics and in-situ CAD. 
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